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ABSTRACT

We examine the relative orientation of radio jets and dusty tori surrounding the active galactic nucleus (AGN) in powerful radio
galaxies at z > 1. The radio core dominance R = P20 GHz

core /P
500 MHz
extended serves as an orientation indicator, measuring the ratio between the

anisotropic Doppler-beamed core emission and the isotropic lobe emission. Assuming a fixed cylindrical geometry for the hot, dusty
torus, we derive its inclination i by fitting optically-thick radiative transfer models to spectral energy distributions obtained with the
Spitzer Space Telescope. We find a highly significant anti-correlation (p < 0.0001) between R and i in our sample of 35 type 2 AGN
combined with a sample of 18 z ∼ 1 3CR sources containing both type 1 and 2 AGN. This analysis provides observational evidence
both for the Unified scheme of AGN and for the common assumption that radio jets are in general perpendicular to the plane of
the torus. The use of inclinations derived from mid-infrared photometry breaks several degeneracies which have been problematic in
earlier analyses. We illustrate this by deriving the core Lorentz factor Γ from the R-i anti-correlation, finding Γ >∼ 1.3.

Key words. galaxies: high-redshift – galaxies: active – radio continuum: galaxies – infrared: galaxies – galaxies: jets –
quasars: general

1. Introduction

Radio galaxies are among the most luminous objects in the
Universe over the entire electromagnetic spectrum. Their pow-
erful radio emission betrays the presence of a central massive
black hole (Blandford & Payne 1982) up to a few billion M� in
mass (McLure et al. 2006; Nesvadba et al. 2011). Early in the
development of the subject, local radio galaxies were associated
with massive elliptical galaxies (Matthews et al. 1964). It is now
well established that powerful radio sources are also hosted by
massive galaxies at higher redshift (e.g. De Breuck et al. 2010),
as expected from the bulge-black hole mass relation (Ferrarese
& Merritt 2000). Radio galaxies appear to be a singular stage
in the evolution of massive galaxies, observed during a peak of
activity. This phase presents a unique chance to test models of
galaxy formation and the interaction between the AGN and their
host galaxies (e.g. Nesvadba et al. 2008).

According to current understanding, an active galactic nu-
cleus (AGN) consists of an accretion disk around a supermassive
black hole (SMBH; Rees 1984). About 10% of AGN show radio
jets (e.g. Best et al. 2005); these are expected to be aligned with
the black hole spin axis. A dusty torus has been hypothesized
to explain the observed dichotomy between unobscured (type 1)
AGN where the observer can see the region close to the black
hole directly and obscured (type 2) AGN with a more edge-on
view (for a review, see Antonucci 1993). As a result of this ge-
ometry, the AGN emission is anisotropic at most wavelengths.
The accretion disk is a powerful source of soft and hard X-rays

� Figures 11, 12, and Tables 1, 2, 6 are available in electronic form
at http://www.aanda.org

which are attenuated when passing through the torus. Assuming
a universal torus shape, the dominating factor determining the
amount of obscuration along the line of sight is the orientation
of the torus with respect to the observer. In particular, soft X-rays
are sensitive to the hydrogen column density (NH) which varies
from 1020 cm−2 in type 1 AGN to >1024 cm−2 type 2 AGN (e.g.
Ibar & Lira 2007).

In the optical domain, the effects of inclination can explain
why the Broad Line Regions (BLR) are observed directly in
type 1 AGN, while in type 2’s, they are mostly obscured or
seen in scattered emission (Antonucci & Miller 1985; Tran et al.
1992). In both types, Narrow Line Regions (NLR) are observed
further out from the torus. In the case of type 2’s, the torus
acts as a coronograph blocking the much brighter central emis-
sion, and allows the NLR to be traced out to ∼100 kpc (Reuland
et al. 2003; Villar-Martín et al. 2003). Such detailed studies have
shown that the NLR is frequently aligned with the radio jets
(McCarthy et al. 1987). Moreover, optical polarimetry of type 2
AGN reveals a continuum polarization angle mostly perpendic-
ular to the radio axis, implying that the light passing through
torus opening is scattered by dust clouds along the radio jets
(di Serego Alighieri et al. 1989, 1993; Cimatti et al. 1993; Hines
1994; Vernet et al. 2001). Both observations imply that the ra-
dio jets are aligned orthogonally to the equatorial plane of the
torus.

The torus surrounding the SMBH re-processes a significant
fraction of the AGN radiation (X-rays, UV and optical) into
mid-IR thermal dust emission. This establishes a radial tem-
perature gradient within the torus ranging from the sublimation
temperature (∼1500 K) at the inner surface of the torus to a few
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hundred Kelvin in the outer parts. The torus geometry creates a
strong anisotropy in the hot dust emission because the amount
of extinction towards the innermost (hottest) parts is very sensi-
tive to the orientation with respect to the observer (Pier & Krolik
1992, hereafter PK92). It should therefore be possible to derive
the inclination by modelling of the mid-IR SED. The magnitude
of the variation with inclination is illustrated by the difference
between the mean type 1 and type 2 mid-IR SEDs of an isotrop-
ically selected AGN sample where the type 2 AGN SED can be
reproduced by simple reddening of the type 1 distribution (Haas
et al. 2008).

The most isotropic emission from AGN comes from the ra-
dio lobes which mark the interaction between the jets and the
surrounding intergalactic medium. This can happen on scales as
large as several Mpc and produces steep-spectrum synchrotron
emission. In contrast, the radio cores generally have flatter spec-
tral indices and are anisotropic as they are subject to Doppler
beaming effects. The radio cores will look brighter if the jet axis
is observed closer to the line of sight (e.g. in type 1 AGN). The
ratio of the core to total radio emission (core dominance) is a
proxy for orientation (e.g. Scheuer & Readhead 1979; Kapahi &
Saikia 1982).

In summary, previous observations suggest that the radio jets
are orthogonal to the equatorial plane of the torus. Assuming a
generic torus geometry, an inclination can be derived by fitting
the mid-IR SED; the core dominance can also be used to es-
timate the inclination of the radio jets. Provided that these as-
sumptions are correct, the two measures of inclination should be
consistent. In this paper, we make use of the unique database
consisting of six-band mid-IR data for 70 radio galaxies span-
ning z = 1 to z = 5.2 (Seymour et al. 2007; De Breuck et al.
2010, S07 and DB10 hereafter). We derive the inclination angle
by fitting dust emission from the torus, and compare it with the
radio core dominance. We indeed find a significant correlation
between these parameters, consistent with the previously men-
tioned observational statements which sample directions in the
plane of the sky. We also use this constraint on the orientation to
estimate the pc-scale jet speeds from the core/jet dominance.

This paper is organised as follows. Sections 2 and 3 de-
scribe the samples. In Sect. 4, we describe our approach to mod-
elling the mid-IR emission, using both empirical correlations
and a torus model for a sub-sample with well-sampled AGN dust
emission. We discuss the implications in Sect. 5. Throughout
this paper, we adopt the current standard cosmological model
(H0 = 70 km s−1 Mpc−1, ΩΛ = 0.7, ΩM = 0.3).

2. Spitzer high redshift radio galaxy sample

Our Spitzer high redshift radio galaxy (SHzRG) sample is se-
lected from a compendium of the most powerful radio galaxies
known in 2002. From this parent sample of 225 HzRGs with
spectroscopic redshifts, a subset was selected in order to sample
the redshift-radio power plane evenly out to the highest redshifts
available. The full description of this sample is presented by S07.
In short, the HzRG are distributed across 1 < z < 5.2 and have
P3 GHz > 1026 W Hz−1, where P3 GHz is the total luminosity at a
rest-frame frequency of 3 GHz (Table 1 of S07).

2.1. Infrared data

The mid-IR data presented here were obtained with the
Spitzer Space Telescope (Werner et al. 2004) during Cycles 1
and 4. All galaxies were observed in the four Infrared Array

Camera (IRAC; Fazio et al. 2004) channels (3.6, 4.5, 5.8, 8 μm),
the 16 μm peak-up mode of the Infrared Spectrograph (IRS;
Houck et al. 2004) and the 24 μm channel of the Multiband
Infared Photometer (MIPS; Rieke et al. 2004). The 24 sources
with the lowest expected background emission were also ob-
served with the 70 and 160 μm channels of MIPS. We refer the
reader to S07 and DB10 for the full description of the data reduc-
tion procedures and the full photometric data (Table 3 of DB10).
We augment our photometry with K-band magnitudes from S07.

2.2. Radio data and core dominance

The radio morphologies of HzRGs are dominated by steep-
spectrum radio lobes with fainter and flatter spectrum radio
cores (Carilli et al. 1997; Pentericci et al. 2000). A variety
of physical processes contribute to the radio emission at dif-
ferent restframe frequencies (e.g. Blundell et al. 1999). Above
ν ≈ 1 GHz, Doppler boosting will introduce an orientation bias
in the radio cores. In addition, the radio lobes are affected by
synchrotron and inverse Compton losses. At very low frequen-
cies ν <∼ 100 MHz, synchrotron self-absorption, free-free ab-
sorption and any low-energy cutoff of the relativistic particles
may reduce the observed synchrotron emission. We therefore
choose a rest-frame wavelength of 500 MHz to obtain an accu-
rate measure of the energy injected by the AGN which is also
independent of orientation. Observationally, the 500 MHz lumi-
nosities P500 MHz

extended can also be determined most uniformly over the
entire sky (DB10).

Our measure of orientation for the radio jets is the ratio of
core to extended emission or core dominance R (Scheuer &
Readhead 1979; Kapahi & Saikia 1982). Since the flatter spec-
trum cores can only be spatially resolved with interferometers
at high frequencies, this is defined as R = P20 GHz

core /P500 MHz
extended ,

where P20 GHz
core is the 20 GHz restframe core luminosity.

Core flux densities are either taken from the literature (see
Table 1), or measured directly from radio maps by the following
method. First, we take the Spitzer/IRAC 3.6 μm image and over-
lay the radio contours. After identifying the core with the host
galaxy, we measure the integrated total and core flux densities
using the aips verb tvstat. If only the lobes are identified, we
derive an upper limit to the core dominance from the 3σ sensi-
tivity of the radio map. Next, we calculate P20 GHz

core using 8.4 GHz
observations and the core spectral index αcore, defined as S ∝ να.
If no spectral index is available, we use the median value from
our sample 〈αcore〉 = −0.8. Note that given the large range of R,
the exact value of αcore does not significantly affect our results.
At higher redshifts, inverse Compton losses can increase signif-
icantly, which may affect R values. However, Fig. 1 does not
show a significant dependence of R on redshift, so we consider
this effect to be negligible.

Table 1 lists the values of P500 MHz
extended (summing the compo-

nents in the case of multiple detections) and R, together with the
core flux densities and spectral indices αcore (see references in
Table 1).

3. 3CR sample

To compare the results of our approach for type 1 and 2 radio-
loud AGN, samples of the two classes with matched selection
criteria are required. Unfortunately, there is no type 1 (quasar)
sample in the literature which matches our radio-galaxy sam-
ple and has both radio and Spitzer observations. The best sample
available, although significantly smaller than our SHzRG sample

A45, page 2 of 19



G. Drouart et al.: AGN configuration in HzRG

Fig. 1. Core dominance R versus redshift. Note the lower redshifts for
the s3CR sample (blue diamonds and open squares). The open black
diamonds correspond to radio galaxies with observed broad lines, see
Sect. 5.3.

Fig. 2. Core dominance R versus P500 MHz
extended . Note that the s3CR quasars

(open blue squares) typically have higher values of R than the galaxies
from the same sample (filled blue diamonds).

and with a lower median redshift, is the 3CR sample (Spinrad
et al. 1985).

3.1. Infrared data

A selection of 64 3CR high-redshift sources has been observed
with the four IRAC channels (3.6, 4.5, 5.8, 8 μm), IRS (16 μm)
and the MIPS1 channel (24 μm). We refer to Haas et al. (2008)
for a full description of the sample and data reduction. Table 2
reports the Spitzer photometry.

3.2. Radio data and core dominance

To compare the 3CR and SHzRG sources, we need equivalent ra-
dio data for both groups. We take the relevant measurements for
the subset of 3CR sources from Hoekstra et al. (1997). Selecting
sources with both Spitzer and radio data gives us a subset of
18 sources: 11 quasars and 7 radio galaxies. The radio data
are reported in Table 3. We recalculate the 500 MHz rest-frame
luminosity from the 178 MHz flux densities (Hoekstra et al.
1997, and references therein), using a spectral index α = −1.5,
which is typical of powerful steep-spectrum radio sources in

Table 3. Radio data for the s3CR sample.

Name Type z log P500 MHz S 5 GHz
core R

[W Hz−1] [mJy]
3C 009 Q 2.01 29.26 0.55 0.00039
3C 065∗ G 1.18 28.69 0.76 4.9e-05
3C 068.1 Q 1.24 28.63 0.83 0.00011
3C 204 Q 1.11 28.39 0.34 0.0040
3C 205 Q 1.53 28.88 0.67 0.0025
3C 208 Q 1.11 28.64 0.54 0.0044
3C 212 Q 1.05 28.52 0.88 0.015
3C 239∗ G 1.78 29.01 0.33 5.3e-05
3C 241 G 1.62 28.85 0.34 0.00037
3C 245 Q 1.03 28.48 1.40 0.33
3C 252 G 1.10 28.41 0.32 0.00014
3C 267 G 1.14 28.54 0.59 0.00031
3C 268.4 Q 1.40 28.68 0.60 0.0062
3C 270.1 Q 1.52 28.86 0.87 0.022
3C 318 Q 1.57 28.15 0.75 0.0019
3C 325 G 1.13 28.34 0.82 9.9e-05
3C 356∗ G 1.08 28.43 0.38 0.00011
3C 432 Q 1.80 28.94 0.31 0.00097

Notes. Types: Q = quasar, G = radio galaxy. (∗) Radio galaxies common
with SHzRG sample.

this frequency range. The 20 GHz rest-frame core luminosities
are calculated using the flux density at 5 GHz assuming αcore =
−0.8. The derived values of R are also reported in Table 3.

4. Modelling the torus emission

4.1. Contributions to the infrared SED

The near- to far-IR emission from radio galaxies and quasars
consists of several components: (i) non-thermal synchrotron
emission; (ii) line emission; (iii) starburst- and AGN-heated dust
continuum; (iv) an (old) stellar population. We now discuss the
importance of these contributions in turn.

Of the type 2 objects in our sample, the source which is likely
to have the highest synchrotron contribution at 5 μm wavelength
is B3 J2330+3927, which has the highest value of R and one of
the flattest core spectra (α = −0.1). Its extrapolated synchrotron
contribution is <5% of the total emission at 5 μm. The syn-
chrotron contribution can therefore be safely ignored for all of
the type 2 objects. However in type 1 objects, this assumption
may not be valid. We further discuss this point in Sect. 5.2.2.

The line emission is dominated by fine structure and
CO lines in the far-IR (e.g. Smail et al. 2011), and in the mid-IR
by polycyclic aromatic hydrocarbon (PAH) emission. The sili-
cate emission/absorption is also seen in type 1/2 AGN, respec-
tively. Both can affect the broad-band photometry. Due to the
large redshift range of our sources, the sampling of the SED dif-
fers from object to object. To keep our study as homogeneous as
possible, we focus only on the part of the SED below the sili-
cate feature (<10 μm), which is dominated by AGN heated dust
emission (see below). Mid-IR spectroscopy with IRS (Seymour
et al. 2008; Leipski et al. 2010; Rawlings et al., in prep.) shows
that PAH features are either not detected or weak relative to the
AGN emission.

The contribution of the dust continuum spans three orders
of magnitude in wavelength. The energy source of this emis-
sion (AGN and/or starburst) has been the subject of considerable
debate (e.g. Sanders et al. 1988; Haas et al. 2003). To disen-
tangle these two components, good sampling of the entire IR
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SED is essential. The Herschel Radio Galaxy Evolution or pro-
jet HeRGÉ will observe our sample between 70 μm and 500 μm.
First results on PKS1138−262 (Seymour et al. 2012) show that
the AGN component dominates for λrest � 30 μm. The contri-
bution of starburst-heated dust may vary from source to source,
but is unlikely to contribute significantly at λrest � 10 μm as the
required dust temperature would be more than several hundred
Kelvin, which cannot be sustained throughout the host galaxy.
We consequently focus only on λrest � 10 μm. A crucial ingre-
dient in modelling the torus is the 9.7 μm silicate feature, which
can be used as an indicator of its intrinsic properties (e.g. the
differences between clumpy and continuous or optically thin and
thick tori and the dust composition; van Bemmel & Dullemond
2003). Using this feature to characterize the torus is beyond
the scope of this paper, since our broad-band photometry is not
particularly sensitive to it.

Emission from the old stellar population peaks at λrest ∼
1.6 μm (S07). In this paper, we model this contribution assum-
ing a formation redshift zform = 10, using an elliptical-galaxy
template predicted by PEGASE.2 (Fioc & Rocca-Volmerange
1997). The stellar contribution from this galaxy template is then
normalised for the bluest available band and subtracted in each
filter. Uncertainties for the subtracted data are taken to be the
rms of the uncertainties of the individual measurement and the
stellar fit. For the type 2 3CR radio galaxies, we follow the same
method. For the type 1 3CR AGN, we do not subtract any stel-
lar contribution, as the transmitted non-thermal continuum is ex-
pected to dominate over the stellar emission. The remaining flux
is considered to be a “pure” AGN contribution.

4.2. Sub-samples with well-sampled AGN dust emission

After stellar subtraction (see Sect. 4.1), the signal to noise ra-
tio (S/N) is calculated for each data-point. Then, we create a
preferred sub-sample fulfilling the criteria that: (a) there are at
least 3 points with S/N > 2; and (b) there is no significant con-
tribution from emission with λrest > 10 μm in the passband. This
in practice restricts the wavelength range to 2 μm < λrest < 8 μm
in any passband. 35 radio galaxies from the SHzRG sample
and 50 sources (22 radio galaxies, 25 quasars and 3 unidenti-
fied) from the 3CR sample meet these criteria. We refer to these
two restricted samples as “sSHzRG” and “s3CR” respectively.
Note that only 31 objects have a known core dominance value in
sSHzRG and 18 in the s3CR (11 quasars and 7 radio galaxies).

4.3. Empirical approach

To first order, increasing the viewing angle of the torus causes
it to act as a varying dust screen: higher inclinations lead to in-
creased extinction of the hottest dust located in the innermost
parts of the torus. Leipski et al. (2010) and Haas et al. (2008)
have shown that the mean radio galaxy SED can be approxi-
mated by applying an extinction law to the mean quasar SED.

Following the same approach, we model this dust absorp-
tion using the mean Sloan Digital Sky Survey (SDSS) quasar
spectrum (Richards et al. 2006) and a Fitzpatrick (1999) ex-
tinction law with classical Galactic dust properties (RV = 3.1,
Fig. 3). This law extrapolates Galactic dust properties to the mid-
IR without any specific treatment of the silicate absorption and
emission features around 10 μm. This latter approximation is
still valid as we are focusing on the 2–8 μm part of the SED.

Using a standard χ2 minimization technique, we fit two pa-
rameters (extinction AV and normalization) to the data for our

Fig. 3. Template SEDs for the empirical approach. The black curve is
the mean quasar spectrum from Richards et al. (2006). The bluer/redder
curves correspond to a increasing extinction (from –12 to 90 Av in steps
of 6), using the Fitzpatrick (1999) extinction law.

Fig. 4. Extinction AV versus core dominance R. Note the absence of
points in the top right part of the plot. This figure is consistent with
Fig. 12 of Cleary et al. (2007).

sSHzRG and s3CR samples. Tables 5 and 6 report the result-
ing values of AV . Figure 4 plots AV against R for the subset of
objects with radio data available. Note the apparently unphysi-
cal negative AV values for the majority of s3CR quasars, which
are bluer than the composite SDSS template. The lack of points
in the upper right part of this plot indicates an absence of core-
dominated objects with high extinction, as expected from the
orientation-based Unified model (e.g. Antonucci 1993).

To test the correlation between AV and core dominance tak-
ing the upper limits in R into account, we use the survival
analysis package within IRAF. The generalized Spearman rank
test gives probabilities of non-correlation of p = 0.009 and
p = 0.0001 for sSHzRG and sSHzRG+s3CR samples, respec-
tively. We note that Cleary et al. (2007) report a similar distri-
bution (their Fig. 12), although with a different core dominance
definition and using the silicate optical depth, τ9.7 μm as a mesure
of extinction.

4.4. Torus models

We now aim to reproduce the observed range in extinction as-
suming a torus geometry observed at varying angles to the
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line of sight. The infrared torus SED has been modelled exten-
sively, assuming structures with various degrees of complexity.
Despite the evidence for a clumpy structure (Krolik & Begelman
1988), the first models to solve the radiative transfer equa-
tions used the continuous density approximation (Pier & Krolik
1992). Later, a treatment of the clumpy structure was given by
Nenkova et al. (2002). Currently, models with continuous and
clumpy structures are available in the literature with a range
of geometries and using different computational techniques to
solve the radiative transfer equation. Examples include: contin-
uous models (Pier & Krolik 1992; Dullemond & van Bemmel
2005; Granato & Danese 1994; Rowan-Robinson 1995); clumpy
models (van Bemmel & Dullemond 2003; Hönig et al. 2006;
Schartmann et al. 2005; Fritz et al. 2006; Nenkova et al. 2008)
and bi-phased models (Stalevski et al. 2012).

Clumpy models are closer to reality than continuous models,
but the latter require fewer free parameters and remain valid if
the inter-clump distance is not significantly larger than the clump
size. While more sophisticated modelling may be possible for
some individual objects, our aim is to extract global trends from
as many sources as possible in our sample. Because of the small
number and irregular sampling of the data points in the mid-
IR, we therefore opt for the Pier & Krolik continuous model
(PK model, hereafter). Trying to derive detailed information on
the torus itself is beyond the scope of this paper, and remains
challenging even at lower redshift (e.g. Ramos Almeida et al.
2009; Kishimoto et al. 2011).

The PK model assumes a cylindrical geometry for the torus.
The opening angle of the torus is θ = tan−1(2a/h), where a/h
is the aspect ratio (Fig. 5). It models the spectrum of radiation
from the central point sources as a power law decreasing from
UV to IR. As the index of this power-law α does not have a sig-
nificant effect for our purpose, we take the default value α = 1.
We adopt an effective temperature for the inner edge of the torus
of Teff = 1000 K as this is the only temperature available for all
the geometries in the template library from PK92 (see Table 4).
Indeed, a higher Teff corresponds to a higher contribution from
the hottest dust (i.e. 1–2 μm) but would not affect the global
analysis presented here.

The inner radius a (see Fig. 5) is then set by the central
source luminosity. For each inclination i, an SED is computed
by solving the radiative transfer equations. The final SED is the
sum of the thermal torus emission and the absorbed quasar com-
ponent. For a full description of the model and an example of its
application, we refer the reader to Pier & Krolik (1992, 1993).

The main goal of this approach is to find a physically mean-
ingful geometry which can give an adequate description of the
entire sample, to estimate torus inclinations and thereby to test
the general configuration mentioned in Sect. 1. We have consid-
ered a set of representative candidate models, as listed in Table 4.

Some reasonable arguments and previous observations help
us to define the average geometry and to select among the mod-
els in Table 4. First, the statistical study of the relative frequency
of type 1 and 2 AGN by Barthel (1989) implies a torus opening
angle θ ∼ 45◦, which corresponds to a/h ∼ 0.3 in the PK mod-
els. Second, X-ray observations of nearby AGN (e.g. NGC 1068)
set a lower limit on the torus opacity of τ ≥ 1 (Mulchaey et al.
1992). Only the c and w model geometries satisfy both criteria.
The main difference between these geometries is illustrated in
Fig. 6: they have chunky (c) and disky (w) shapes, respectively.

A more objective approach is to give each model a score
based on the goodness of fit averaged over the whole sample.
The fit again uses χ2 minimization with two free parameters per
fit: the normalization of each model and the inclination i of the

Fig. 5. Sketch of the PK model (Pier & Krolik 1992). The inner radius,
a, outer radius, b and height, h are marked, and the torus is viewed
from angle i, measured as shown. The central nucleus is indicated by an
asterisk. The density is assumed to be constant throughout the torus.

Table 4. Parameters of the torus model.

Parameters
Model τr τz a/h b/h Score
a 0.1 0.1 0.3 1.3 59
b 1.0 0.1 0.1 10.1 70
c 1.0 1.0 0.3 1.3 64
d 1.0 1.0 0.2 1.2 68
e 1.0 1.0 0.1 1.1 54
f 0.1 0.1 0.1 1.1 67
gg 1.0 1.0 1.0 2.0 33
hh 0.1 0.1 1.0 2.0 49
ii 10.0 10.0 1.0 2.0 2
j 10.0 1.0 0.1 10.1 50
o 1.0 0.1 1.0 11.0 28
p 10.0 1.0 1.0 11.0 14
t 1.0 0.1 0.3 10.3 59
w 10.0 1.0 0.3 10.3 44
y 10.0 10.0 1.0 2.0 2

Notes. τr: radial depth, τz vertical depth, a/h ratio of inner radius over
height and b/h : outer radius. For the score value, see Sect. 4.4.

torus. This score (rightmost column of Table 4) is the number
of “reasonable” fits, i.e. those with an associated probability of
>95%. The average score is therefore an indicator of how well
the model fits the samples: higher scores correspond to mod-
els which performed better at modelling the observed SEDs.
Fig. 7 shows the inclination distribution for the four geome-
tries with the best scores for both samples (s3CR and sSHzRG).
Models with narrow opening angles (e.g. b and f , and d to a
lesser extent) artificially bias the distribution towards low incli-
nations. We therefore do not use the scores in Table 4 to sim-
ply select between all the torus geometries; instead, the scores
are used to select only between models c and w, which already
meet criteria set by the physical arguments and observations de-
scribed above. Of these, we select c, which has the higher score
(Table 4). The inclinations i from model c with their 5 μm rest
frame monochromatic energies of the torus model νPAGN

ν (5 μm) are
reported in Table 5 and Table 6 for the sSHzRG and s3CR sam-
ples, respectively. Their SEDs are presented in Figs. 11 and 12.
Section 5 discusses these inclinations in more detail.

Figure 8 shows a plot of core dominance R against the in-
clination i derived from the mid-IR observations. The distribu-
tion of the points in the diagram suggests an anti-correlation
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0◦ 45◦ 60◦ 85◦ 90◦

Fig. 6. Modelled tori for τr/τz = 10 (top, model w, disky) and τr/τz = 1 (bottom, model c, chunky) for increasing inclinations. Note the appearance
of the central engine at 45◦ (light blue point), and the complete disappearance of the hottest part for 90◦ (yellow area) due to the cylindrical
configuration. This artificially emphasises the difference of the SEDs in the range 85◦ < i < 90◦.

Fig. 7. Distribution of inclination angles i for the four best-scoring
models. The vertical dashed line indicates i = 45◦.

between i and R, which is confirmed with a generalized
Spearman rank test for the sSHzRG sample alone (p = 0.011).
Adding the s3CR sample causes the correlation to become ex-
tremely significant (p < 0.0001), but note that this is primarily
because of the inclusion of the (less obscured) s3CR quasars,
which extends the ranges of both R and i.

We would like to add a cautionary note on using the individ-
ual inclinations at face value. One source of uncertainty stems
from the misalignment of the radio jets with respect to the torus
axis This misalignment adds an intrinsic scatter in the R-i rela-
tion. A similar scatter is observed in the plane of the sky through
polarimetric measurements.

The distribution of inclinations within 0◦ < i <∼ 45◦ is in-
consistent with the expectations for an isotropically-distributed
parent sample: far too many values are clustered around i ≈ 0◦
or i ≈ 30◦. In particular, inclinations close to i ≈ 0 seem suspi-
cious since they would be expected for blazars which are absent
from our sample.

5. Discussion

5.1. From extinction to inclination

Both the empirical approach (Sect. 4.3) and the torus model
(Sect. 4.4) successfully fit the hot dust emission. We now check
the consistency between these two methods by comparing the
empirical extinction and the orientation from our best torus
model. As shown in Fig. 9, these two parameters are tightly

Table 5. Results from the modelling of the SHzRG sample from
Sects. 4.3 and 4.4.

Name AV i log νPAGN
ν (5 μm)

[◦] [W]
6C 0032+412 1.5 46 38.87
MRC 0037-258 1.5 67 38.11
6C 0058+495 37.2 86 38.04
MRC 0114-211 26.3 86 38.40
MRC 0152-209 10.8 79 38.85
MRC 0156-252 4.7 57 39.05
MRC 0211-256 3.1 55 37.92
TXS 0211-122 13.9 79 39.13
MRC 0324-228 26.3 86 38.32
MRC 0350-279 6.2 59 37.99
MRC 0406-244 38.8 86 38.74
PKS 0529-549 34.1 86 38.59
USS 0828+193 7.8 67 39.31
B2 0902+34 7.8 67 38.61
6CE 0905+3955 38.8 86 38.64
3C 239 31.0 86 38.43
MRC 1017-220 4.7 53 38.47
3C 257 9.3 71 39.04
WN J1123+3141 10.8 71 39.27
PKS 1138-262 1.5 67 39.32
6C 1232+39 12.4 75 38.70
4C 24.28 13.9 82 38.90
USS 1410-001 6.2 64 38.83
USS 1558-003 9.3 71 38.91
LBDS 53W002 12.4 79 38.52
3C 356.0 48.0 86 38.07
3C 368 54.2 86 37.91
7C 1805+6332 13.9 79 38.06
TXS J1908+7220 4.7 59 39.43
TN J2007-1316 0.0 31 38.83
MRC 2025-218 0.0 46 38.25
4C 23.56 20.1 82 39.34
MRC 2224-273 4.7 79 38.30
B3 J2330+3927 6.2 75 39.35
3C 470 34.1 86 38.49

correlated. Their relation is well described by the following
function:

AV = 8.43(cos i)−0.62 − 10.89. (1)

Since the link between extinction and inclination is essentially
determined by the geometry of the torus, the small scatter
provides support for our choice of a single torus model (c) for
the entire sample (sSHzRG and s3CR).
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Fig. 8. Plot of inclination i against core dom-
inance R. The dashed line at i = 45◦ corre-
sponds to the division between radio galaxies
and quasars derived by Barthel (1989). Filled
diamonds represent the type 2 radio galax-
ies from the sSHzRG (black) and s3CR (blue)
samples, respectively. Open symbols represent:
sSHzRG broad-line radio galaxies (black dia-
monds) and s3CR quasars (blue squares).

Fig. 9. Inclination i obtained from the torus model plotted against ex-
tinction AV from the empirical approach. The dashed vertical line is
plotted at i = 45◦, and the dashed curve corresponds to Eq. (1).

5.2. Isolating the torus emission

5.2.1. Stellar and extended warm dust emission

Here, we investigate the impact of the assumptions made in
Sect. 4.1 to isolate the hot dust component from all other con-
tributions in the SED. As we assume that the main stellar contri-
bution is dominated by an evolved population (>500 Myr old),
all galaxies of our sample have already formed the bulk of their
stellar mass (see S07). The SED of such a population has a char-
acteristic shape for λrest >∼ 1.6 μm, as illustrated by the stellar
SEDs plotted in Fig. 11. This shape is relatively independent of
age, since the light is dominated by low-mass stars. The assump-
tion of a single high formation redshift therefore has minor con-
sequences for the separation of stellar and hot dust components.

A more important aspect is the SED coverage, which
varies systematically with redshift. The number of data points
measuring purely stellar emission depends on the sampling be-
yond the stellar bump (∼1.6 μm) and the relative hot dust con-
tribution in the redmost stellar dominated IRAC channel. This

may, for instance, cause an overestimate of stellar emission for
z < 2 and lead to a higher inclination and extinction estimate.
However, we do not observe such a redshift bias in the sSHzRG
sample. On the other hand, the s3CR sample, which contains
only z < 2 objects, may be more affected by this effect. We
indeed find that s3CR type 2 sources mostly have a high de-
rived inclination (70◦ < i < 90◦). Adding near-IR photometry
could solve this problem, but this is not available for most of
this sample.

Similarly, the reddest end of the SED may be affected by
extended warm dust emission. To minimize this problem, we cut
at 8 μm as explained in Sect. 4.1. Nevertheless, in some cases,
a rising spectrum from λobs = 16 μm to λobs ≥ 24 μm (e.g.
MRC 0152−209, MRC 0406−244) suggests that even at λrest =
8 μm, a contribution from such a component cannot be excluded.

Indeed, we note that most of the galaxies for which
the fit converged to the highest inclination (i.e. the reddest
model) may be affected (MRC 0211−256, MRC 0324−228,
6CE 0905+3955, 3C 356, 3C 368, 7C 1805+6332, 3C 470). This
could partially explain the clustering of points at i = 86◦. To test
the influence of this contamination, we reduced by a factor of
three the flux in the redmost filter for these seven sources. The
effect is small: the inclination only decreases in three of them,
with a maximum change of 7◦. To quantify this effect, a tightly
sampled SED over the wavelength range 8 μm < λrest � 20 μm
would be required. Alternatively, we would have to isolate the
torus spatially from more extended emission. This has been at-
tempted for nearby type 2 AGN (van der Wolk et al. 2010)
where such an extended component has indeed been identified
at λrest = 12 μm. Both types of observation are beyond the reach
of current facilities for our samples.

5.2.2. Additional complications for type 1 AGN

In addition to the difficulty of estimating the inclination of an
individual type 1 AGN, as described in Sects. 4.3 and 4.4, there
are two further complications: at the blue end of the spectrum,
transmitted quasar continuum emission can still outshine both
the host galaxy and the hot dust emission from the torus. The
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PK model already includes the power-law emission from the
AGN. As explained in Sect. 4.1, we have not included a contri-
bution from the host galaxy in fitting type 1 AGN. As a test, we
have included this component in the same way as in the type 2
AGN, i.e. assuming that the bluest IRAC point is 100% stellar
emission. In all 11 s3CR quasars, we find that adding this stellar
component severely degrades the quality of the fit, but even in
this extreme case, the R-i correlation still remains significant at
the p = 0.002 level. It is still possible that a smaller stellar com-
ponent has a smaller contribution on the blue end. Subtracting
such a partial stellar population would slightly increase the in-
clinations found.

On the red end of the torus emission, some sources may also
have a contribution from core synchrotron emission (Cleary et al.
2007). This effect is similar to the extended dust component de-
scribed above, but given the relative small core dominance in our
samples (Tables 1 and 3), we do not expect such contributions to
have a significant effect.

Despite the above complications, we do find that all quasars
have i < 45◦ (see Fig. 8) as expected from unified models.

5.3. The relative orientations of jets and tori

Our mid-IR SED fitting provides the first estimates of AGN torus
inclinations at high redshift. The significant correlation between
the radio core dominance and the torus inclination (Fig. 8) im-
plies that the radio jets are indeed generally orthogonal to the
equatorial plane of the torus. Orthogonality in projection on the
plane of the sky had already been inferred from polarimetric
measurements (e.g. Vernet et al. 2001). Our result confirms this
geometry in an orthogonal plane containing the line of sight.
Together, these observations provide further evidence in favour
of the orientation-based unified scheme for AGN.

In the choice of our geometrical model of the torus, we have
assumed a half opening angle θ = 45◦, as constrained by sta-
tistical studies of the relative numbers of type 1 and 2 AGN in
a radio-selected sample (Barthel 1989). Other studies have sug-
gested slightly different values of θ (e.g. Willott et al. 2000, find
θ = 56◦). The torus opening angle may well vary from object to
object. This will produce a natural scatter in the R-i relationship.
In addition, the transition between direct and obscured view is
not expected to be sharp due to the clumpiness of the obscuring
material. Two classes of radio galaxies are expected to have in-
clinations near this transition region. First, radio galaxies with
observed broad Hα emission (Humphrey et al. 2008; Nesvadba
et al. 2011), are indeed found at 45◦ < i < 75◦ (open dia-
monds in Fig. 8). Second, the two radio galaxies with observed
broad absorption lines (MRC 2025−218 and TXS J1908+7220;
Humphrey et al. 2008; De Breuck et al. 2001), have i = 46◦ and
i = 59◦, respectively, consistent with the expectation to observe
them near the grazing line of sight along the torus (e.g. Ogle
et al. 1999).

In addition, the torus model adopted to be most representa-
tive for the complete sample may not be the optimal choice for
a given object. This is particularly true for type 1 AGN, where
we cannot constrain the orientation within the range where we
have a direct view of the central source, i.e. 0◦ < i <∼ 45◦ (see
Sects. 4.3, 4.4 and 5.2.2).

Given these caveats, we deliberately do not quote uncertain-
ties on i. In Sect. 5.4 (below), we use only the inclinations for
the Type 2 galaxies.

Fig. 10. Core dominance R versus inclination i. The black dashed line
is the best fit for all type 2 radio galaxies, Γ = 1.3. The red dashed line
represents the case Γ = 5.

5.4. Constraints on the core Lorentz factor

Many lines of evidence lead to the conclusion that the jets in
radio-loud AGN are relativistic on pc scales, with Lorentz fac-
tors of at least 2 and perhaps as high as 50. The highly signifi-
cant correlation between R and i (Fig. 8) arises naturally if the
core radio emission comes from the base of a relativistic jet. If
the intrinsic ratio between core and extended emission is con-
stant, then we can use the core dominance for simple assump-
tions about the jet flow. For anti-parallel, identical jets with ve-
locity βc (Lorentz factor Γ = (1 − β2)−1/2) and spectral index α
at an angle i to the line of sight, the predicted value of R is:

R = R0

[
(1 − β cos i)−(2−α) + (1 + β cos i)−(2−α)

]

where 2R0 is the value of R when the jets are in the plane of the
sky (i = 90◦).

Figure 10 plots R against i for all of the type 2 radio galax-
ies (sSHzRG and s3CR) with measured R values. For a spectral
index α = −0.9 (the median value of both samples), the best-
fitting Lorentz factor derived from an unweighted least-squares
fit to the relation between log R and i is Γ = 1.3, with R0 = 10−4.
As our type 2 samples are restricted to inclinations i > 30◦, the
Lorentz factor is not well constrained (the dependence of R on
i is quite flat). Only very low values of Γ are firmly excluded,
and adequate fits can be found for any Γ >∼ 1.3 (for example, see
Fig. 10, where the red dashed line represents Γ = 5). The disper-
sion in log R for the best-fitting Γ is 0.59. A stronger constraint
on Γ could be obtained from the R−i relation for a compara-
ble sample of broad-lined objects (or just from the median value
of R if inclinations are not available). As noted earlier (Sect. 5.3),
we do not believe that our estimates of inclination for the s3CR
quasars are reliable enough for this purpose.

One potential source of additional scatter in the relation be-
tween core dominance and inclination is any dependence of the
intrinsic core/extended ratio on luminosity. Such a dependence
was found by Giovannini et al. (1988) for a sample of sources
covering a wide range in luminosity. We have checked for this
effect over the restricted luminosity range of the present type 2
sample, but find no detectable correlation between core domi-
nance and luminosity (Fig. 2).
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The most appropriate comparison study in the literature is a
Bayesian analysis of the core dominance distribution for a sam-
ple of powerful FR II radio sources including both broad and
narrow-line objects at z < 1 (Mullin & Hardcastle 2009). This
gave Γ = 10+3

−7 with a dispersion of 0.62 in log R assuming a sin-
gle value of Γ and a dispersion in intrinsic core dominance. A
value of Γ = 10, would also be fully consistent with the present
data. The jet/counter-jet ratio on kpc scales provides an indepen-
dent estimate of orientation. This can be measured adequately
only for nearby, low-luminosity radio galaxies, for which Laing
et al. (1999) found Γ = 2.4 and a dispersion of 0.45 in log R.

Various lines of argument suggest that parsec-scale jets have
velocity gradients and that the single-velocity model used here is
oversimplified. If this is the case, then our analysis is sensitive to
the slowest-moving component which makes a significant contri-
bution to the rest-frame emission. Faster material will dominate
only at smaller angles to the line of sight.

We conclude that the relation between core dominance and
inclination for the present sample of high-redshift radio galaxies
is fully consistent with their cores being the bases of relativistic
jets, as inferred for radio-loud AGN at lower redshift, but that
we can set only a lower bound on the Lorentz factor, Γ >∼ 1.3
without additional data.

6. Summary and conclusions

We have examined the relative inclinations of jets and tori in
powerful radio-loud AGN at z > 1. To estimate the orienta-
tion of the radio jets, we have introduced a new definition of
the radio core dominance R as the ratio between high-frequency,
anisotropic core emission and low-frequency, isotropic extended
emission, both measured in the rest frame. To estimate the orien-
tation of the dusty torus, we fit optically-thick radiative transfer
models to existing and new Spitzer 3.6–24 μm photometry. To
isolate the hot dust emission in the torus from non-thermal and
host galaxy contributions, we subtract an evolved stellar popula-
tion in the type 2 sources, and restrict to the 2 μm< λrest < 8 μm
region.

Using this method, we derive radio core dominance and torus
inclination values for 42 type 2 and 11 type 1 AGN. This mid-IR
determination of the inclination allows us to draw the following
conclusions:

1. The significant correlation between R and i implies that ra-
dio jets are indeed approximately orthogonal to the equato-
rial plane of the torus as predicted by the orientation-based
AGN unified scheme. A similar result in the plane of the sky
has been reported using polarimetric measurements, but our
results provide additional evidence in the complementary di-
rection, i.e. along the line of sight.

2. The R–i correlation is consistent with the radio cores being
the bases of relativistic jets with Lorentz factors Γ >∼ 1.3.

3. Assuming our torus geometry is representative, we can es-
timate inclinations for larger samples of type 2 AGN using
the relation (Eq. (1)) between inclination and the obscura-
tion AV as derived from a simple reddening of a mean type 1
template.

The present study characterises the anisotropic component of
the dust IR SED in type 2 AGN. The remaining more isotropic
dust emission, dominating at longer wavelenghts, is powered by
a combination of AGN and starbursts. Our new Projet HeRGÉ
aims to disentangle these two contributions by adding Herschel
70–500 μm photometry (Seymour et al. 2012) to our sample of
71 radio galaxies at 1 < z < 5.2.
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Appendix A: Notes on individual sources

B3 J2330+3927 This galaxy has the highest core dominance in
the SHzRG sample (R = 0.004). The radio emission is complex
(Pérez-Torres & De Breuck 2005).

6C 0140+326 This source (the second highest redshift source
in the SHzRG sample) has been removed from this study, as a
foreground object contaminates the galaxy image in the IRAC
bands.

4C 60.07, 3C 356, MRC 2048−272, 7C 1756+5620. These
four objects have double components in the IRAC maps, but only
one of each pair coincides with a radio core.

MRC 2025−218, MRC 0156−252, MRC 1017−220, TXS
1113−178, MRC 1138−262, MRC 1558−003, MRC 0251−273
These galaxies show broad permitted lines (Nesvadba et al.
2011; Humphrey et al. 2008).

6C 0032+412 This galaxy exhibits a very hot dust compo-
nent in its mid-IR SED (De Breuck et al. 2010).

TNJ2007−1316 The previously quoted flux density at
5.6 μm has been replaced with a 3σ upper limit of F5.6 μm <
146.0 μJy.
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Fig. 11. Mid-IR SEDs for the sSHzRG sample. Black points: photometric data. Green points: measurements used to normalise the contribution
from an old stellar population. Red points: results after subtraction of the stellar contribution. Dashed green line: model stellar emission. Dashed
red line: best-fitting torus model. Full black line: sum of stellar and torus models.
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Fig. 12. Mid-IR SEDs for the s3CR sample. The symbols are the same than in Fig. 11.
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Table 1. Radio data for the SHzRG sample from the literature and core dominance calculated.

Name z log P500 MHz
extended S 8.4 GHz

core α8.4
4.8 core R Morph References

[W Hz−1] [mJy]
6C0032+412 3.670 28.75 0.25 ... 0.00020 T Blundell et al. (1998)
MRC0037-258 1.100 27.72 1.74 0.9 0.0012 T De Breuck et al. (2010); Kapahi et al. (1998)
6C0058+495 1.173 27.33 <0.00055 ... <0.00085∗ D Blundell et al. (1998)
MRC0114-211 1.410 28.66 1.60 ... 0.00018 T De Breuck et al. (2010); Kapahi et al. (1998)
TNJ0121+1320 3.516 28.49 ... ... ... D De Breuck et al. (2000)
6C0132+330 1.710 27.64 1.63 0.1 0.0027 T De Breuck et al. (2010)
6C0140+326 4.413 28.73 ... ... ... D Blundell et al. (1998)
MRC0152-209 1.920 28.20 <0.00008 ... <5.3e-05∗ D Pentericci et al. (2000)
MRC0156-252 2.016 28.46 6.58 –0.7 0.0026 T Carilli et al. (1997)
TNJ0205+2242 3.506 28.46 0.10 –0.6 0.00013∗ T De Breuck et al. (2000)
MRC0211-256 1.300 27.78 ... ... ... S De Breuck et al. (2000)
TXS0211-122 2.340 28.48 1.23 –1.0 0.00073 T Carilli et al. (1997)
3C65 1.176 28.63 0.52 –0.2 4.3e-05 T Carilli et al. (1997); Corbin et al. (1998)
MRC0251-273 3.160 28.54 1.35 –1.6 0.0020 T De Breuck et al. (2010); Kapahi et al. (1998)
MRC0316-257 3.130 28.95 0.28 –0.6 9.0e-05∗ T McCarthy et al. (1991); Athreya et al. (1997)
MRC0324-228 1.894 28.49 <0.00080 ... <0.00026 T De Breuck et al. (2010); McCarthy et al. (1991)
MRC0350-279 1.900 28.25 0.19 ... 0.00011∗ T De Breuck et al. (2010); Kapahi et al. (1998)
MRC0406-244 2.427 29.03 1.59 –0.8 0.00027 T Carilli et al. (1997)
4C60.07 3.788 29.20 0.21 –1.7 0.00012 T Carilli et al. (1997)
PKS0529-549 2.575 29.16 ... ... ... D Broderick et al. (2007)
WNJ0617+5012 3.153 28.02 ... ... ... D De Breuck et al. (2000)
4C41.17 3.792 29.18 0.27 –0.2 5.9e-05 T Carilli et al. (1994)
WNJ0747+3654 2.992 28.14 ... ... ... S De Breuck et al. (2000)
6CE0820+3642 1.860 28.28 0.29 –1.2 0.00016 T De Breuck et al. (2010); Law-Green et al. (1995b)
5C7.269 2.218 27.82 ... ... ... D De Breuck et al. (2010)
USS0828+193 2.572 28.44 2.81 –0.7 0.0020 T Carilli et al. (1997)
6CE0901+3551 1.910 28.19 0.14 ... 9.4e-05 T De Breuck et al. (2010)
B20902+34 3.395 28.78 8.90 –0.1 0.0037 T Carilli et al. (1994)
6CE0905+3955 1.883 28.17 0.33 ... 0.00022 T Law-Green et al. (1995a)
TNJ0924-2201 5.195 29.51 ... ... ... D De Breuck et al. (2000)
6C0930+389 2.395 28.41 0.29 –0.8 0.00020 T Pentericci et al. (2000)
USS0943-242 2.923 28.62 <0.00008 ... <5.3e-05∗ D Carilli et al. (1997)
3C 239 1.781 29.00 0.44 ... 3.9e-05 T Best et al. (1997)
MG1019+0534 2.765 28.57 2.02 –1.0 0.0015 T Pentericci et al. (2000)
MRC1017-220 1.768 27.94 ... ... ... S Pentericci et al. (2000)
WNJ1115+5016 2.540 27.82 ... ... ... D De Breuck et al. (2000)
3C 257 2.474 29.16 <0.00090 ... <0.00012∗ D van Breugel et al. (1998)
WNJ1123+3141 3.217 28.51 0.93 ... 0.00098 T White et al. (1997)
PKS1138-262 2.156 29.07 1.98 –1.3 0.00027 T Carilli et al. (1997)
3C 266 1.275 28.54 <0.00018 ... <2.1e-05 D Best et al. (1997)
6C1232+39 3.220 28.93 0.35 –0.2 0.00010 T Carilli et al. (1997)
USS1243+036 3.570 29.23 0.70 –1.0 0.00020 T van Ojik et al. (1996)
TNJ1338-1942 4.110 28.71 0.16 –1.0 0.00021 T Pentericci et al. (2000)
4C24.28 2.879 29.05 0.51 –0.6 0.00011 T Carilli et al. (1997)
3C 294 1.786 28.96 ... ... ... T McCarthy et al. (1990)
USS1410-001 2.363 28.41 2.27 –0.7 0.0015 T Carilli et al. (1997)
8C1435+635 4.250 29.40 1.31 –1.3 0.00049 T Carilli et al. (1997)
USS1558-003 2.527 28.82 0.97 –0.1 0.00022 T Pentericci et al. (2000)
USS1707+105 2.349 28.63 ... ... ... D Pentericci et al. (2001)
LBDS53W002 2.393 27.78 ... ... ... S Fomalont et al. (2002)
LBDS53W091 1.552 27.04 ... ... ... D Rigby et al. (2007)
3C 356 1.079 28.35 0.22 ... 2.7e-05 T Best et al. (1997)
7C1751+6809 1.540 27.46 ... ... ... D De Breuck et al. (2000)
7C1756+6520 1.416 27.40 ... ... ... D Rigby et al. (2007)
3C 368 1.132 28.52 0.16 –0.5 1.5e-05 T Best et al. (1997)
7C1805+6332 1.840 27.78 0.15 –1.2 0.00025 T De Breuck et al. (2010)
4C40.36 2.265 28.79 <0.00008 ... <2.0e-05 D Carilli et al. (1997)
TXSJ1908+7220 3.530 29.12 4.80 –1.3 0.0021 T Pentericci et al. (2000)
WNJ1911+6342 3.590 28.14 ... ... ... S De Breuck et al. (2000)
TNJ2007-1316 3.840 29.13 1.60 ... 0.00060 T De Breuck et al. (2010)
MRC2025-218 2.630 28.74 0.38 –0.9 0.00016 T Carilli et al. (1997)
MRC2048-272 2.060 28.72 <0.00008 ... <1.9e-05 D Pentericci et al. (2000)
MRC2104-242 2.491 28.84 0.19 –1.6 7.2e-05 T Pentericci et al. (2000)
4C23.56 2.483 28.93 4.95 –0.9 0.0012 T Carilli et al. (1997)
MG2144+1928 3.592 29.08 <0.00008 ... <2.9e-05∗ D Carilli et al. (1997)

A45, page 16 of 19



G. Drouart et al.: AGN configuration in HzRG

Table 1. continued.

Name z log P500 MHz
extended S 8.4 GHz

core α8.4
4.8 core R Morph References

[W Hz−1] [mJy]
USS2202+128 2.706 28.54 0.14 –2.5 0.00020 T Carilli et al. (1997)
MRC2224-273 1.679 27.52 ... ... ... S Pentericci et al. (2000)
B3J2330+3927 3.086 28.33 3.98 –0.1 0.0040 T Pérez-Torres & De Breuck (2005)
4C28.58 2.891 28.91 0.70 –0.2 0.00017 T Cai et al. (2002); Chambers et al. (1996)
3C 470 1.653 28.79 1.20 ... 0.00014 T Best et al. (1997)

Notes. (∗) Mark the core flux recalculated in this paper, see Sect. 2.2. The letters S, D and T refer to the morphology of the radio source, with 1, 2
or 3 indentified components, respectively. Names in bold are the sSHzRG sample.
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Table 2. 3CR sample, Spitzer observations.

Name Type z 3.6 μm 4.5 μm 5.8 μm 8 μm 16 μm 24 μm
[ μJy] [ μJy] [ μJy] [ μJy] [ μJy] [ μJy]

3C 002 Q 1.04 283 ± 42 330 ± 50 530 ± 80 809 ± 121 1550 ± 233 2970 ± 446
3C 009 Q 2.01 884 ± 133 1080 ± 162 1590 ± 239 2220 ± 333 3330 ± 500 3470 ± 520
3C 013 G 1.35 133 ± 20 133 ± 20 147 ± 22 283 ± 42 375 ± 56 2060 ± 309
3C 014 Q 1.47 1040 ± 156 1710 ± 257 2740 ± 411 4150 ± 623 7070 ± 1061 10300 ± 1545
3C 036 G 1.30 163 ± 24 205 ± 31 256 ± 38 360 ± 54 560 ± 84 874 ± 131
3C 043 Q 1.47 193 ± 29 270 ± 41 356 ± 53 445 ± 67 1010 ± 152 1610 ± 242
3C 065 G 1.18 202 ± 30 233 ± 35 299 ± 45 418 ± 63 798 ± 120 1700 ± 255
3C 068.1 Q 1.24 967 ± 145 1430 ± 215 2040 ± 306 2780 ± 417 3800 ± 570 7760 ± 1164
3C 068.2 G 1.58 105 ± 16 129 ± 19 137 ± 21 112 ± 17 1340 ± 201 1170 ± 176
3C 119 G 1.02 802 ± 120 878 ± 132 1280 ± 192 1850 ± 278 4820 ± 723 8260 ± 1239
3C 124 G 1.08 144 ± 22 120 ± 18 188 ± 28 310 ± 47 1840 ± 276 3560 ± 534
3C 173 N 1.03 163 ± 24 172 ± 26 197 ± 30 227 ± 34 374 ± 56 710 ± 107
3C 181 Q 1.38 348 ± 52 485 ± 73 722 ± 108 1110 ± 167 2180 ± 327 4260 ± 639
3C 186 Q 1.06 791 ± 119 1020 ± 153 1410 ± 212 1960 ± 294 3660 ± 549 6660 ± 999
3C 190 Q 1.20 739 ± 111 908 ± 136 1290 ± 194 1740 ± 261 3310 ± 497 6690 ± 1004
3C 191 Q 1.96 333 ± 50 399 ± 60 655 ± 98 1010 ± 152 2270 ± 341 3810 ± 572
3C 194 G 1.78 201 ± 30 176 ± 26 164 ± 25 208 ± 31 509 ± 76 885 ± 133
3C 204 Q 1.11 917 ± 138 1250 ± 188 1920 ± 288 2540 ± 381 4730 ± 710 7360 ± 1104
3C 205 Q 1.53 1460 ± 219 2080 ± 312 2920 ± 438 4090 ± 614 7320 ± 1098 12800 ± 1920
3C 208 Q 1.11 660 ± 99 803 ± 120 1160 ± 174 1620 ± 243 2980 ± 447 5870 ± 881
3C 208.1 N 1.02 331 ± 50 430 ± 65 656 ± 98 954 ± 143 1360 ± 204 2110 ± 317
3C 210 G 1.17 256 ± 38 336 ± 50 489 ± 73 1090 ± 164 3410 ± 512 4430 ± 665
3C 212 Q 1.05 925 ± 139 1430 ± 215 2340 ± 351 3400 ± 510 6710 ± 1007 10800 ± 1620
3C 220.2 Q 1.16 592 ± 89 870 ± 131 1330 ± 200 2000 ± 300 4150 ± 623 6720 ± 1008
3C 222 G 1.34 83 ± 12 91 ± 14 73 ± 11 65 ± 10 331 ± 50 229 ± 34
3C 225A G 1.56 47 ± 7 49 ± 7 71 ± 11 108 ± 16 321 ± 48 <1070
3C 230 G 1.49 1040 ± 156 672 ± 101 438 ± 66 317 ± 48 1150 ± 173 1560 ± 234
3C 238 G 1.40 65 ± 10 77 ± 12 84 ± 12 <92 <283 266 ± 40
3C 239 G 1.78 96 ± 14 111 ± 17 130 ± 20 142 ± 21 651 ± 98 1450 ± 218
3C 241 G 1.62 92 ± 14 101 ± 15 116 ± 17 161 ± 24 389 ± 58 591 ± 89
3C 245 Q 1.03 1420 ± 213 1900 ± 285 3350 ± 503 5270 ± 790 10400 ± 1560 20400 ± 3060
3C 249 G 1.55 54 ± 8 52 ± 8 42 ± 6 47 ± 7 194 ± 29 <516
3C 250 G 1.26 61 ± 9 59 ± 9 46 ± 7 29 ± 4 162 ± 24 <147
3C 252 G 1.10 225 ± 34 382 ± 57 787 ± 118 1390 ± 209 3900 ± 585 7000 ± 1050
3C 255 G 1.36 85 ± 13 86 ± 13 57 ± 9 22 ± 3 <116 <241
3C 256 G 1.82 34 ± 5 37 ± 6 43 ± 7 75 ± 11 743 ± 111 1900 ± 285
3C 257 G 2.47 85 ± 13 111 ± 17 194 ± 29 322 ± 48 ... 1360 ± 204
3C 266 G 1.27 68 ± 10 73 ± 11 45 ± 7 102 ± 15 370 ± 56 980 ± 147
3C 267 G 1.14 153 ± 23 218 ± 33 414 ± 62 739 ± 111 2370 ± 356 3730 ± 560
3C 268.4 Q 1.40 1060 ± 159 1560 ± 234 2220 ± 333 3330 ± 500 7580 ± 1137 11600 ± 1740
3C 270.1 Q 1.52 606 ± 91 944 ± 142 1430 ± 214 2260 ± 339 3910 ± 587 5470 ± 821
3C 280.1 Q 1.66 378 ± 57 512 ± 77 777 ± 116 1170 ± 176 1680 ± 252 2160 ± 324
3C 287 Q 1.05 613 ± 92 735 ± 110 1050 ± 157 1560 ± 234 3430 ± 515 5820 ± 873
3C 294 G 1.79 <93 <103 68 ± 10 67 ± 10 ... 348 ± 52
3C 297 N 1.41 119 ± 18 126 ± 19 122 ± 18 121 ± 18 <288 432 ± 65
3C 298 Q 1.44 1600 ± 240 2390 ± 359 3710 ± 556 5510 ± 827 9160 ± 1374 12600 ± 1890
3C300.1 G 1.16 148 ± 22 158 ± 24 133 ± 20 220 ± 33 751 ± 113 1220 ± 183
3C 305.1 G 1.13 181 ± 27 282 ± 42 495 ± 74 972 ± 146 2410 ± 362 2490 ± 374
3C 318 Q 1.57 343 ± 51 427 ± 64 571 ± 86 806 ± 121 1960 ± 294 3400 ± 510
3C 322 G 1.68 128 ± 19 135 ± 20 94 ± 14 120 ± 18 411 ± 62 804 ± 121
3C 324 G 1.21 165 ± 25 160 ± 24 178 ± 27 450 ± 68 2580 ± 387 2820 ± 423
3C 325 G 1.13 472 ± 71 565 ± 85 708 ± 106 1200 ± 180 1990 ± 299 3030 ± 455
3C 326.1 G 1.83 29 ± 4 34 ± 5 26 ± 4 72 ± 11 829 ± 124 1430 ± 215
3C 356 G 1.08 108 ± 16 110 ± 16 122 ± 18 434 ± 65 2270 ± 341 4060 ± 609
3C 368 G 1.13 126 ± 19 112 ± 17 112 ± 17 210 ± 32 1370 ± 206 3250 ± 488
3C 418 Q 1.69 1130 ± 170 1630 ± 245 2470 ± 371 3900 ± 585 6680 ± 1002 13600 ± 2040
3C 432 Q 1.80 420 ± 63 526 ± 79 857 ± 129 1490 ± 224 2710 ± 407 3940 ± 591
3C 437 G 1.48 82 ± 12 85 ± 13 97 ± 15 80 ± 12 384 ± 58 941 ± 141
3C 454.1 G 1.84 77 ± 12 76 ± 11 112 ± 17 135 ± 20 612 ± 92 1500 ± 225
3C 454.0 Q 1.76 339 ± 51 481 ± 72 811 ± 122 1220 ± 183 2490 ± 374 4150 ± 623
3C 469.1 G 1.34 160 ± 24 244 ± 37 509 ± 76 1090 ± 164 3270 ± 491 1970 ± 296
3C 470 G 1.65 50 ± 7 75 ± 11 72 ± 11 266 ± 40 1510 ± 227 2650 ± 398
4C 13.66 G 1.45 24 ± 4 24 ± 4 21 ± 3 18 ± 3 <260 276 ± 41
4C 16.49 Q 1.88 329 ± 49 420 ± 63 573 ± 86 743 ± 111 1070 ± 161 1830 ± 275

Notes. Q = quasars, G = radio galaxies, N = undefined, Names in bold correspond to the s3CR sample.
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Table 6. Results for the s3CR sample, from Sects. 4.3 and 4.4.

Name Type Av i log νPAGN
ν (5 μm)

[◦] [W]
3C 002 Q –1.5 5 38.25
3C 009 Q –3.1 30 39.36
3C 013 G 6.2 67 37.92
3C 014 Q –1.5 31 39.27
3C 036 G 1.5 59 38.07
3C 043 Q –3.1 7 38.45
3C 065 G 6.2 75 38.08
3C 068.1 Q –4.7 22 38.93
3C 068.2 G 68.2 89 38.35
3C 124 G 38.8 86 38.09
3C 173 N –10.8 12 37.79
3C 181 Q –1.5 7 38.68
3C 186 Q –3.1 5 38.73
3C 190 Q –4.7 5 38.81
3C 191 Q –1.5 14 39.00
3C 204 Q –3.1 5 38.87
3C 205 Q –3.1 14 39.37
3C 208 Q –3.1 5 38.68
3C 208.1 N –1.5 11 38.26
3C 210 G 21.7 82 38.56
3C 212 Q 0.0 31 38.79
3C 220.2 Q 0.0 5 38.76
3C 225A G 15.5 82 37.89
3C 239 G 27.9 86 38.33
3C 241 G 13.9 79 38.03
3C 245 Q 1.5 31 38.92
3C 252 G 18.6 82 38.59
3C 257 G 6.2 67 38.96
3C 267 G 20.1 82 38.38
3C 268.4 Q –1.5 5 39.21
3C 270.1 Q –1.5 22 39.02
3C 280.1 Q –3.1 30 38.84
3C 287 Q –1.5 5 38.61
3C 297 N –10.8 7 37.92
3C 298 Q –1.5 31 39.37
3C 300.1 G 29.4 86 37.86
3C 305.1 G 17.0 82 38.44
3C 318 Q –3.1 5 38.77
3C 324 G 41.8 86 38.30
3C 325 G 6.2 75 38.46
3C 356 G 48.0 86 38.05
3C 368 G 31.0 86 38.01
3C 418 Q –1.5 22 39.39
3C 432 Q –1.5 30 39.01
3C 437 G 38.8 86 37.79
3C 454.1 G 23.2 82 38.32
3C 454.0 Q –1.5 31 38.97
3C 469.1 G 15.5 79 38.75
3C 470 G 37.2 86 38.39
4C 16.49 Q –4.7 30 38.82

Notes. Results for the s3CR sample. Types: Q = quasar, G = radio
galaxy and N = unidentified.
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