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ABSTRACT
We present a new classification method for quasar identification in the EROS-2 and MACHO
data sets based on a boosted version of a random forest classifier. We use a set of variability
features including parameters of a continuous autoregressive model. We prove that continuous
autoregressive parameters are very important discriminators in the classification process. We
create two training sets (one for EROS-2 and one for MACHO data sets) using known quasars
found in the Large Magellanic Cloud (LMC). Our model’s accuracy in both EROS-2 and
MACHO training sets is about 90 per cent precision and 86 per cent recall, improving the
state-of-the-art models, accuracy in quasar detection. We apply the model on the complete,
including 28 million objects, EROS-2 and MACHO LMC data sets, finding 1160 and 2551
candidates, respectively. To further validate our list of candidates, we cross-matched our list
with 663 previously known strong candidates, getting 74 per cent of matches for MACHO and
40 per cent in EROS.

The main difference on matching level is because EROS-2 is a slightly shallower survey
which translates to significantly lower signal-to-noise ratio light curves.

Key words: methods: data analysis – Magellanic Clouds – quasars: general.

1 I N T RO D U C T I O N

Given the immense amount of data being produced by current deep-
sky surveys such as Pan-STARRS (Kaiser et al. 2002), and Ivezic
2008 future surveys such as LSST (Ivezic 2008) and SkyMapper
(Keller et al. 2007), astronomy is facing new challenges in how to
analyse big data and thus in how to search or predict events/patterns
of interest.

The size of the data has already exceeded the capability of manual
examination or the capability of standard data analysis tools. LSST
will produce 15 terabytes of data per night, which is even beyond
the capacity of typical data storage today.

Thus, in order to analyse such a huge amounts of data and detect
interesting events or patterns with minimum false positives, inno-
vative and novel data analysis methods are crucial for the success
of such surveys.

In our previous works (Kim et al. 2011a, 2012), we developed
classification models for the selection of quasars from large pho-
tometric data bases using variability characteristics as the main
discriminators. In particular, we used a supervised classification
model trained using a set of variability features calculated from

�E-mail: kpb@ing.puc.cl

MACHO light curves (Alcock et al. 2000). We applied the trained
model to the entire MACHO data base of ∼40 million light
curves and selected a few thousand quasar candidates. In this pa-
per, we present an improved classification model used to detect
quasars on MACHO (Alcock et al. 2000) and EROS-2 data set
(Tisserand et al. 2007). The new model, which works over an ex-
tended set of variability features, substantially decreases false pos-
itive rate and increases efficiency.

The actual model improvement is a result of an improvement in
the machine learning classification model and the light-curve fea-
tures we use. Machine learning classification methods have been
very popular for many decades. These methods are data analysis
models that learn to predict a categorical variable from a set of
other variables (of any type). Most known classification models are
decision trees (Quinlan 1993), naive Bayes (Duda & Hart 1973),
neural networks (Rumelhart, Hinton & Williams 1986), support
vector machines (SVMs; Cortes & Vapnik 1995) and random for-
est (RF; Breiman 2001). There are some meta-models to improve
classification results such as boosting methods (Freund & Schapire
1997) and mixtures of experts (Jordan 1994), among others. In
general, more recent classifiers are a result of research focused on
building models able to search for patterns within high-dimensional
data sets, where the combinatorial number of possible projections
of data is large.
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Many machine learning classifiers have been applied to the analy-
sis of astronomical data, in particular to classify transients and vari-
able stars from time series data (Debosscher et al. 2007; Wachman
et al. 2009; Wang, Khardon & Protopapas 2010; Bloom & Richards
2011; Bloom et al. 2011; Kim et al. 2011a,b; Richards et al. 2011).
Wang et al. (2010) proposed an algorithm to fit phase-shifted peri-
odic time series using a mixture of Gaussian processes. Debosscher
et al. (2007) used many machine learning classifiers to learn a model
that classifies variable stars in a sample from Hipparcos and OGLE
data bases. Richards et al. (2011) used an RF classifier to classify
between pulsational variables and eclipsing systems used in Milky
Way tomography. In Bloom et al. (2011), machine learning algo-
rithms are used to classify transients and variable stars from the
Palomar Transient Factory survey (Rau et al. 2009). Wachman et al.
(2009) used cross-correlation as a phase-invariant feature to be used
as a similarity indicator in a kernel function.

In this work, we used an RF classifier (Breiman 2001) boosted
with the AdaBoost algorithm (Freund & Schapire 1997). The RF
classifier comes from the well-known decision tree model (Quinlan
1993) and bagging techniques (Breiman 1996), where the model
randomly explores several subsets of features while analysing sam-
ples of training data. This model performs very well in many ma-
chine learning domains (Breiman 2001). The AdaBoost algorithm
(Freund & Schapire 1997) is a boosting technique which fits a se-
quence of classification models (in this case a sequence of many
RFs) to different subsets of data objects (in our case light curves),
generating a mixture of classifiers, each one specialized in smaller
areas of the feature space. We call these classifiers ‘weak classi-
fiers’ or ‘simpler classifiers’. This is a nice property for quasar clas-
sification, given that there are only a few known training quasars
compared with the amount of non-quasars light curves. Having
some weak classifiers that take care of some areas with no training
quasars helps us to filter out many non-quasars, while other spe-
cialized classifiers perform well near the quasar areas in the feature
space.

Besides improving the classification model, we added new fea-
tures as descriptors of light curves. These features correspond to
the parameters of the continuous autoregressive [CAR(1)] model
(Belcher, Hampton & Wilson 1994) fitted to the light curves. Pre-
vious work shows that describing quasars using CAR(1) fitting
parameters gives suitable results to differentiate them from other
classes of light curves (Kelly, Bechtold & Siemiginowska 2009).
Kelly et al. (2009) did not use machine learning classifiers to au-
tomatically detect quasars; they use a CAR(1) model to fit 100
quasar light curves in order to find correlations between CAR(1)
parameters and luminosity characteristics.

In our work, we show that by adding CAR(1) features to our
previous set of features (used in Kim et al. 2011a), we can learn
more accurate models for quasar detection. Given that our model
is built to find quasars over dozens of millions of stars, we need
to be very efficient in the estimation of the optimal parameters in
order to make the process feasible within a considerable amount of
time. Unfortunately, methods such as Metropolis–Hastings or Gibbs
sampling are not suitable for our purposes, given the computational
cost they involve.

To gain efficiency, we reduce the problem by approximating one
of the parameters (the mean value of the light curve) and opti-
mizing the remaining parameters (the amplitude and time-scale
of the variability) using a multidimensional unconstrained non-
linear minimization (Nelder & Mead 1965). Once we get the
optimal parameters, we use them as features of the object cor-
responding to the light curve. Besides the CAR(1) features, we

also used time series features as in our previous work (Kim et al.
2011b); in Section 4 we give details about all the features we
extracted.

To check the fitting accuracy of our model, we first calculate
the training accuracy of our classifier using 10-fold cross-validation
over a training set, which consists of about 6000 known light curves
corresponding to different kinds of variable stars, non-variable stars
and confirmed quasars, one set corresponding to the MACHO data
base and another to the EROS-2 data base. In the MACHO case, we
substantially improve our training accuracy compared with our pre-
vious work (Kim et al. 2011b), increasing 14.3 per cent in precision
and 3.6 per cent in recall for the MACHO data base. In the EROS-2
training data base, we get about the same training efficiency as in
the MACHO case but we could not compare it to our previous work
because this is the first time we attempt to classify in the EROS-
2 data base. As an extra test for our candidates, we cross-match
them with the previous set of strong candidates found in Kim et al.
(2011b); details are presented in Section 5.

Using parallel computing, we decrease the processing time to
allow us to select quasar candidates from the entire data base within
three days. Note that the data analysis schema used in this work can
be applied to any of the ongoing and future synoptic sky surveys
such as Pan-STARRS, LSST and SkyMapper, among others.1

If confirmed, the selected quasars from the MACHO data base
will provide critical information for galaxy evolution, black hole
growth, large-scale structure, etc. (Heckman et al. 2004; Bower
et al. 2006; Trichas et al. 2009, 2010). Moreover, the resulting quasar
light curves will be a valuable data set for quasar time variability
studies (e.g. time-scale, black hole mass, type I and II variability)
since MACHO (Alcock et al. 2000) and EROS light curves are well
sampled over 7.4 years after the poineering search for QSO with
the EROS-1 data set (Beaulieu et al. 1996).

The paper is organized as follows. In Section 2, we present details
about the EROS-2 data base. In Section 3, we describe in detail the
classification model we use, including the RF model and AdaBoost.
In Section 4, we describe the features we use to describe the light
curves, and in Section 5 we describe the experimental results for
the MACHO and EROS-2 data sets.

2 ERO S-2 DATA SET

The EROS-2 collaboration made use of the MarLy telescope, a
1-m diameter Ritchey–Chrétien (f /5.14) instrument dedicated to
the survey. It was operated between 1996 July and 2003 March
at La Silla Observatory (ESO, Chile). It was equipped with two
wide-angle CCD cameras which are located behind a dichroic
beam splitter. Each camera is a mosaic of eight CCDs, two along
right ascension and four along declination. Each CCD has 2048 ×
2048 pixel of 15 × 15 μm2 individual size, corresponding to a
0.6 × 0.6 arcsec2 pixel surface on the sky. The size of the field
of view is 0.◦7 along right ascension and 1.◦4 along declination. The
dichroic beam splitter allowed simultaneous imaging in two broad
non-standard passbands, BE in the range 4200–7200 (the so-called
‘blue’ channel) and RE in the range 6200–9200 (the so-called ‘red’
channel). The blue filter is intermediate between the standard V and
R standard passbands, while the red filter is analogous to Ic. The
normalized transmission curve of these filters, compared to stan-
dard ones, is given by Hamadache (2004, their fig. 3.3)2. Tisserand

1 Our main computer resource is the Odyssey cluster supported by the FAS
Research Computing Group at Harvard.
2 Available at http://tel.archives-ouvertes.fr.
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et al. (2007, equation 4) give the equations to transform EROS-2
magnitudes into V and Ic ones within an accuracy of 0.1 mag.

The light curves of individual stars were constructed from fixed
positions on templates using PEIDA, a software specifically devel-
oped for the photometry of EROS-2 images (Ansari 1996). The
nomenclature of objects is as defined in Derue et al. (2002).

3 M E T H O D O L O G Y

To train a model that learns to detect quasars, we propose to use a
combination of classifiers. Combination of multiple classifiers was
first proposed by Xu, Krzyzak & Suen (1992). In that work, they
proved that combining multiple classifiers overcomes many of the
individual classifier limitations. In many pattern recognition prob-
lems, such as character recognition, handwritten text recognition
and face recognition (Plamondon & Srihari 2000; Zhao et al. 2003),
a combination of multiple classifiers obtains much better classifi-
cation performance. One effective way to combine classifiers is the
AdaBoost algorithm, proposed in Freund & Schapire (1997).

The AdaBoost algorithm consists of a set of base classifiers that
are trained sequentially, such that each classifier is trained on the
instances where the previous classifier obtained a bad performance
(learn what your partners could not learn). Freund & Schapire
(1997) show that if the training set used for each classifier depends
on the goodness of fit of the previous classifier, then the perfor-
mance of the whole system improves. To make the base classifiers
focus on different subsets of the training set, we assign weights to
training data instances. The lower the weight for an instance, the
less the classifier focuses on it (see Section 3.1 for further details).

One of the advantages of boosting methods is that after the model
fitting phase is completed, each of the base classifiers becomes an
expert in some subset of data objects. This is one of the main reasons
that motivates us to use a previous boosting step. Given that we have
a very small amount of known quasars in our training set compared
with the amount of non-quasars, training a set of base classifiers that
just learned how to filter out some of the non-quasars would be very
helpful for the next base classifier used in the sequential process. We
now present a detailed description of the boosting method we use
in this work, the AdaBoost algorithm (Freund & Schapire 1997).

3.1 AdaBoost algorithm

AdaBoost, short for adaptive boosting, is a machine learning algo-
rithm proposed by Freund & Schapire (1997). It is a meta-algorithm
because it combines many learning algorithms to perform classifi-
cation. AdaBoost is adaptive in the sense that subsequent classifiers
built are tweaked in favour of those instances misclassified by pre-
vious classifiers. Although AdaBoost is sensitive to noisy data and
outliers, it is less susceptible to overfitting (Dietterich 1995) than
most learning algorithms.

In the context of light-curve classification, suppose we have a
training (labelled) set of n light curves and q features describing
each light curve. Each light curve in the training set has a known
given label (e.g. quasar or non-quasar). Let [x1, . . . , xn] be a set of
n descriptors, where each xi , i ∈ [1, . . . , n], is a vector associated
with the light curve i where its descriptor (features) values are {xi1,
. . ., xiq}, where q is the number of features. Let {y1, . . ., yn} be the
labels such that yi = 1 if the light curve i is a quasar and yi = −1
otherwise.

Let H be the set of m classifiers {h1, . . ., hm}, where hi: X → Y ,
and D(t) be the distribution of weights on classifiers at iteration t.

Define m to be the number of classifiers and a constant T to be the
number of times to iterate in the AdaBoost algorithm.

Initialization:

X = [x1, x2, . . ., xn]
Y = [y1, y2, . . ., yn]

D(1) =
[
d

(1)
1 , d

(1)
2 , . . . , d

(1)
n

]
:= [ 1

n
, 1

n
, . . . , 1

n

]
T ≤ n

Algorithm:

for t = 1 to T do
for j = 1 to m do

εj := ∑n
i=1 d

(t)
i (1 − δyi ,hj (xi ))

end for
εt := min εj

if εt ≥ 0.5 then
break

end if
ht := argmin

hj ∈H

{εj }

αt := 1
2 ln((1 − εt )/εt )

for i = 1 to n do
d

(t+1)
i := d

(t)
i exp(−αt yi ht (xi ))/Zt

end for
end for
H(X) := [H(x1),H(x2), . . . ,H(xn)], such that

H(xi ) = sign

(
T∑

t=1

αt ht (xi )

)
.

Notes:

(i) δi,j is the Kronecker delta;
(ii) Zt is a normalization factor

Zt =
n∑

i=1

d
(t)
i exp(−αt yi ht (xi)).

The equation to update the classifier weight distribution is con-
structed so that −α yi ht(xi) < 1 when yi = ht(xi) and −α yi ht(xi)
> 1 when yi 	= ht(xi). Thus, after selecting an optimal classifier ht,
for the distribution Dt, the objects xi that classifier ht classified cor-
rectly are given less weight and those that it identified incorrectly
are given more weight. Hence, when the algorithm proceeds to test
the classifiers on D(t+1), it is more likely to select a classifier that
better classifies the objects that ht missed. AdaBoost minimizes the
training error (exponentially fast) if each weak classifier performs
better than random guessing (εt < 0.5).

The base classifier we used in this work is the RF classifier
(Breiman 2001), a very strong classifier that has shown very good
results in many different domains. The following section shows
details about the RF classifier.

3.2 Random Forest classifier

RF is a popular and very efficient algorithm based on decision
tree models (Quinlan 1993) and bagging for classification problems
(Breiman 1996, 2001). It belongs to the family of ensemble meth-
ods, appearing in machine learning literature at the end of the 1990s
(Dietterich 2000), and has been used recently in the astronomical

C© 2012 The Authors, MNRAS 427, 1284–1297
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journals (Carliles et al. 2010; Richards et al. 2011). The process of
training or building an RF given training data is as follows.

(i) Let P be the number of trees in the forest and F the number
of features on each tree; both values are model parameters.

(ii) Build P sets of n samples taken with replacement from the
training set; this is called bagging. Note that each of the P bags has
the same number of elements from the training set but fewer differ-
ent examples, given that the samples are taken with replacement.

(iii) For each of the P sets, train a decision tree using a random
sample of F features from the set of q possible features.

The RF classifier creates many linear separators inside many
feature subsets until it gets suitable separations between objects
from different classes. Linear separations come from each decision
tree and each of the feature subsets comes from the random feature
selection process on each tree. The bagging procedure is very useful
to estimate the error of the classifier during the training process.
This error can be estimated using out-of-the-bag procedure, which
means ‘evaluating the performance of each tree using the objects
not selected in the bag which belong to the tree’ (see Breiman 2001,
for further details).

After training the RF, to classify a new unknown light-curve
descriptor, one uses each of the decision trees already trained with
the RF to classify the new unknown instance and the final decision is
the most voted class among the set of P decision trees (see Breiman
2001, for more details). Breiman (2001) show that as the number
of trees tends to infinity the classification error of the RF becomes
bounded and the classifier does not overfit the data.

4 F E AT U R E E X T R AC T I O N

We extracted 14 features per band for each light curve. These fea-
tures correspond to 11 time series features used in our previous
work (Kim et al. 2011b) and three features corresponding to the
CAR(1) process.

4.1 Time series features

Here we very briefly summarize the 11 time series features used in
our previous work (Kim et al. 2011b).

(i) Nabove, Nbelow: the number of points above/below the up-
per/lower bound line calculated as points that are ±4σ over the
average of the autocorrelation functions.

(ii) Stetson KAC: the variability index derived based on the au-
tocorrelation function of each light curve (Stetson 1996).

(iii) Rcs: the range of the cumulative sums (starting from 1 to the
number of observations) of each light curve (Ellaway 1978).

(iv) σ/m̄: the ratio of the standard deviation, σ , to the mean
magnitude, m̄.

(v) Period and period S/N: using the Lomb–Scargle algorithm
(Lomb 1976; Scargle 1982) we used the period with the highest
value in the periodogram along with the signal-to-noise ratio of the
best period.

(vi) Stetson L: a variability index (Stetson 1996) that describes
the synchronous variability of different bands.

(vii) η: the ratio of the mean of the square of successive differ-
ences to the variance of data points.

(viii) B − R: average colour for each light curve.
(ix) Con: the number of three consecutive data points that are

brighter or fainter than 2σ , normalized by N − 2.

4.2 Continuous autoregressive process features

We use continuous time autoregressive model [CAR(1)] to model
irregular sampled time series in MACHO and EROS-2 light curves.
CAR(1) process has three parameters, and it provides a natural and
consistent way of estimating a characteristic time-scale and vari-
ance of light curves. CAR(1) process is described by the following

Figure 1. Quasar light curves (red circles) fitted with optimal CAR(1)
model (grey lines) using the Nelder–Mead algorithm.
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Figure 2. Projections on different pairs of CAR(1) features for EROS-2 training data.

stochastic differential equation (Brockwell & Davis 2002):

dX(t) = − 1

τ
X(t)dt + σC

√
dt ε(t) + b dt,

for τ, σC, t ≥ 0 ,
(1)

where the mean value of the light curve X(t) is b τ and the variance
is τ σ 2

C/2. τ is the relaxation time of the process X(t), and it can be
interpreted as describing the variability amplitude of the time series.
σ C can be interpreted as describing the variability of the time series
on time-scales shorter than τ . ε(t) is a white noise process with
zero mean and variance equal to 1. The likelihood function of a
CAR(1) model for a light curve with observations x = {x1, . . . , xn}
observed at times {t1, . . ., tn} with measurement error variances
{δ2

1, . . . , δ
2
n} is

p(x|b, σC, τ ) =
n∏

i=1

1

[2π(	i + δ2
i )]1/2

exp

{
−1

2

(x̂i − x∗
i )2

	i + δ2
i

}
, (2)

x∗
i = xi − b τ , (3)

x̂0 = 0 , (4)

	0 = τσ 2
C

2
, (5)

x̂i = ai x̂i−1 + ai	i−1

	i−1 + δ2
i−1

(x∗
i−1 + x̂i−1) , (6)

	i = 	0

(
1 − a2

i

)
+ a2

i 	i−1

(
1 − 	i−1

	i−1 + δ2
i−1

)
,

(7)

ai = e−(ti−ti−1)/τ . (8)

To find the optimal parameters, we maximize the likelihood with
respect to σ C, b and τ . Given that the likelihood does not have an an-
alytical solution, we can solve it with a statistical sampling method
such as Metropolis–Hastings (Metropolis et al. 1953). Because we
extract features for all the light curves in EROS-2 and MACHO data
sets (about 28 and 40 millions of stars, respectively), performing
a statistical sampling process to determine the optimal parameters
would be feasible only in cases where stable solutions are found in
a reasonable amount of time. We consider that less than 3 s is rea-
sonable given our hardware resources. Unfortunately, we could not
get stable solutions considering that restriction. To overcome this
situation, we simplify the optimization problem by reducing the
number of parameters to be estimated. Instead of estimating σ C, b
and τ , we just estimate σ C and τ and then we calculate b as the mean
magnitude of the light curve divided by τ . To check that this estima-
tion works well, we use a sample of 250 light curves and compare
the reduced χ2 error using two- and three-parameter optimization,
getting differences smaller than 2.5 per cent in average.

This approximation allows us to perform a two-dimensional op-
timization which can be solved with a regular numerical method
in less than 1 s per light curve. We used the Nelder–Mead
multidimensional unconstrained non-linear optimization (Nelder &
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Figure 3. Projections on different pairs of features, combining CAR(1) features with time series features for EROS-2 training data.

Mead 1965) to find the optimal parameters. Fig. 1 shows the fitting
of three quasar light curves with the resulting CAR(1) coefficients
using the Nelder–Mead algorithm. Note that instead of using b di-
rectly as a feature, we use the mean magnitude of the light curve
(m), in order to have a cleaner feature (b is calculated from τ , which
is already used as a feature).

5 Q S O C A N D I DAT E S O N E RO S - 2 A N D M AC H O
DATA SETS

5.1 EROS-2 data set

To train a model capable of finding quasars in EROS-2, we create
a training set composed of 65 known quasars, 67 Be stars, 330

long periodic stars, 5829 non-variable stars, 1727 RR Lyrae, 406
Cepheids and 488 EB stars. We get these stars by cross-matching
the EROS-2 data set with MACHO known stars using positional
matching with 3 arcsec of accuracy. We extracted features in bands
R and B. Figs 2 and 3 show projections of the training set on
different sets of features containing CAR(1) features. In many
cases it is easy to get a natural separation between quasars and the
variable stars, but usually quasars overlap many of the non-variable
stars (e.g. σ C with B − R, σ C with τ , m with τ ). Fortunately, there
are many projections where quasars and non-variable stars are
mostly separated (e.g. σ C with Con, σ C with m, σ C with Stetson
KAC, τ with Rcs, τ with Stetson KAC).

To compare the distribution of the objects predicted as quasars
with the training quasars and other variable stars, we plot our

C© 2012 The Authors, MNRAS 427, 1284–1297
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Figure 4. Predicted quasar and training star distributions projected on different pairs of CAR(1) features for EROS-2 data.

Figure 5. Predicted quasar and training star distributions for τ combined with three time series features for EROS-2 data.

C© 2012 The Authors, MNRAS 427, 1284–1297
Monthly Notices of the Royal Astronomical Society C© 2012 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/427/2/1284/975904 by guest on 06 June 2022



Quasar detection method in EROS-2 and MACHO 1291

Table 1. F-score for the EROS-2 training set using 10-fold cross-validation
for different classification models. Each classifier is tuned with the optimal
set of parameters. We can see that the boosted version of RF with CAR
features outperforms other classification models. In all cases, using CAR
features improves the result of the corresponding classifier.

SVM SVM RF RF AB+RF AB+RF
No CAR CAR No CAR CAR No CAR CAR

0.74 0.855 0.787 0.813 0.81 0.868

EROS-2 training data plus the predicted quasars projected on many
different pairs of features (Figs 4 and 5). We can see that in most of
the cases predicted quasars and training quasars have very similar
distributions regardless of the small amount of training quasars we
use. The main differences between both distributions are in general
because of the big difference in size of the training and testing data,
resulting in a set of predicted quasars ∼20 times bigger than the
training quasars set.

To get an indicator of the accuracy in the training set on EROS-2
data set, we run a 10-fold cross-validation. This validation method

consists of partitioning the data set in 10 folds (subsets) of the same
size; we iterate 10 times and on iteration k we train the classifier
with all the folds but the fold k, and then we test the performance on
the fold k (the one which the model did not see during the training).
The process returns the model prediction for the entire data set (the
union of the 10 testing folds is equal to the original set). We measure
the accuracy using the F-score indicator. This indicator is calculated
as the harmonic mean of precision and recall:

F-score = 2 × precision × recall

precision + recall
,

where precision and recall are defined as

precision = tp

tp + fp
recall = tp

tp + f n
,

and tp, fp and fn are the number of true positives, false positives and
false negatives, respectively.

Table 1 shows the results for the boosted version of RF, regular
RF and SVM (classifier used in our previous work Kim et al. 2011b)
with and without CAR features.

Figure 6. Light curves of quasar candidates predicted on EROS-2 data set.
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Figure 7. Training set projected on different pairs of CAR(1) features for MACHO data.

We find 1160 candidates in the EROS-2 data set. To validate
our candidates, we cross-match them with the list of 663 MACHO
strong candidates in Kim et al. (2011b). From that list, only 332
objects exist in EROS-2 data set, and we find 191 matches between
our EROS-2 candidates and those 332 objects. Fig. 6 shows some
of the light curves of the quasar candidates for the EROS-2 data set.

Regarding the efficiency in the extraction of the CAR(1) features
and the time series features, we implemented parallel processing in
order to perform feature extraction and classification in a reason-
able amount of time. EROS-2 and MACHO data bases are stored
as a set of thousands of folders where each folder contains thou-
sands of light curves of a given field. The feature extraction process
runs as a set of parallel threads that run over different compressed
files at the same time, extracting them and processing the light
curves to get the features. Once the features are calculated, they are
written into a common file related to a particular folder, so each
compressed file has a corresponding data file that stores the feature
values of all the light curves within the folder. After the feature ex-
traction process, we run a classification process that runs in parallel
over the thousands of data feature files calculated in the previous
step.

5.2 MACHO data set

MACHO was a survey which observed the sky starting in 1992 July
and ending in 1999 to detect microlensing events produced by Milky
Way halo objects. Several tens of millions of stars were observed in

the Large Magellanic Cloud (LMC), the Small Magellanic Cloud
and the Galactic bulge (Alcock et al. 2000).

For the MACHO data set, we built a training set composed of 3969
non-variable stars, 127 Be stars, 78 Cepheids, 193 eclipsing binaries,
288 RR Lyrae, 574 microlensing, 359 long-period variables (LPVs)
and 58 quasars. We get the variable stars from the list of known MA-
CHO variable sources extracted from SIMBAD’s MACHO variable
catalogue3 (Alcock 2001) and also from several other literature
sources (Alcock et al. 1997a,b; Wood 2000; Keller et al. 2002;
Thomas 2005). To get the non-variable stars, we randomly chose
a subset of MACHO light curves from a few MACHO LMC fields
and removed all the known MACHO variables from the subset.

Each light curve is described as a feature vector which contains
28 features: 14 features for band B and 14 features for band R, as
described in Section 4.

Figs 7 and 8 show the training set projected on a two-variable
feature space. We can see that σ C and τ features show separa-
tions between two groups of classes: (i) non-variables, Cepheid and
eclipsing binaries stars and (ii) quasars, microlensings, LPVs and
Be stars. Combining m and τ , we can see a cluster of quasars, which
overlaps with some of the Be stars, non-variables, microlensing and
LPVs, but separates very well quasars from Cepheids, eclipsing
binary stars and most of the non-variables. Projecting on σ C and m,
we can see that quasars separate from LPVs, Cepheids, eclipsing
binaries, most of the Be stars, most of the microlensings and most
of the non-variables. The biggest overlap is with microlensings.

3 http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=II/247
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Figure 8. Projections on different pairs of features, combining CAR(1) features with time series features for MACHO training data.

By examining these projections, we can see that quasars are clus-
tered in high values of τ , with higher values compared to eclipsing
binaries, Cepheids and RR Lyraes. σ C is very good for separating
quasars from non-variables, as well as from Cepheids, RR Lyraes
and eclipsing binary stars. σ C is not a good feature for separating
quasars from microlensings, Be stars and LPVs, but combining σ C

with B − R we get a strong separation between them.
Table 2 shows comparative results among different classification

models. We included an SVM, an RF and an RF boosted with
AdaBoost. In each case, the classifier is tuned with the optimal set of
parameters.

After we select and fit the model to the training set, we run the
whole MACHO data (about 40 million of light curves), from where

we get 2551 quasar candidates. We cross-match our candidates with
the 2566 and 663 strong candidates in our previous work (Kim et al.
2011b), getting 1148 and 494 matches, respectively.

Fig. 9 shows some of the new candidates we find that are not in
the previous list for MACHO candidates in Kim et al. (2011b).

There are some cases where the model confuses a periodic star
with a quasar. Fig. 10 shows one example of this case.

To analyse the distribution of predicted quasars in the feature
space, we show some projections of the training data plus the pre-
dicted quasars. Figs 11 and 12 show the distribution of predicted
quasars, training quasars and all the other classes of stars. As in
the EROS-2 case, we can see that in many cases the predicted
quasars show similar distributions compared with training quasars.
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Table 2. F-score for the MACHO training set using 10-fold cross-
validation for different classification models. Each classifier is
tuned with the optimal set of parameters. We can see that the
boosted version of RF with CAR features outperforms other clas-
sification models. In all cases, using CAR features improves the
result of the corresponding classifier.

SVM SVM RF RF AB+RF AB+RF
No CAR CAR No CAR CAR No CAR CAR

0.787 0.824 0.826 0.841 0.844 0.877

There are some cases where a big portion of the predicted quasars
is expanded out of the concentrated cluster of training quasars, for
example, combining σ C and B − R.

6 SU M M A RY

In this work, we present a new list of candidate quasars from MA-
CHO and EROS-2 data sets. This new list is obtained using a new
model that uses continuous autocorrelation features plus time series

Figure 10. Light curve of a wrongly predicted quasar in MACHO data set.

features to feed a boosted version of the RF classifier (Breiman
2001). With this model, we obtain a list of 1160 candidates for the
EROS-2 and 2551 candidates for the MACHO data set. From our
MACHO candidates, we cross-match them with the old list of can-
didates from Kim et al. (2011b) and we get 1148 matches. We also
cross-match our EROS-2 candidates with the list of 663 MACHO
strong candidates in Kim et al. (2011b). From that list, only 332
objects exist in the EROS-2 data set, and we find 131 matches

Figure 9. Light curves of new quasar candidates predicted from MACHO data set.
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Figure 11. Predicted quasar and training star distributions projected on different pairs of CAR(1) features for MACHO data.

Figure 12. Predicted quasar and training star distributions for σC and τ features combined with three time series features for MACHO data.
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Table 3. Table summarizing cross-matching results between different lists of quasars candidates.

Previous candidates Previous strong New list of MACHO List of EROS-2
MACHO (M1) candidates MACHO (M2) candidates (M3) candidates (E1)

2566 663 2551 1160

Matches between Matches between Objects from (M2) Matches between
(M3) and (M1) (M3) and (M2) catalogued in EROS-2 (ME) and (E1)

1148 491 332 (ME) 131

between our EROS-2 candidates and those 332 objects (see
Table 3). We prove that by using boosted RF with CAR(1) fea-
tures we improve the fitting of the model to the training set in both
EROS-2 and MACHO data sets.

We show that quasars are well separated from many other kinds
of variable stars using CAR(1) features combined with time series
features. We also proved that adding CAR(1) features, SVM, RF
and boosted RF improves their training accuracy. There are some
challenges to overcome in future work such as the confusion of
some periodic stars with quasars. We note that about 25 per cent
of false positives correspond to periodic stars. We believe that by
adding a dedicated module to filter periodic stars we can improve
the results.
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