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11Institut d’Astrophysique de Paris, Université Pierre et Marie Curie – Paris 6, 98 bis Boulevard Arago, F-75014 Paris, France
12Department of Physics, Oxford University, Keble Road, Oxford OX1 3RH
13Institute of Astronomy and Astrophysics, Academia Sinica, PO Box 23-141, Taipei 10617, Taiwan
14Key Lab for Astrophysics, Shanghai Normal University, 100 Guilin Road, 200234 Shanghai, China
15Canadian Institute for Theoretical Astrophysics, University of Toronto, ON M5S 3H8, Canada
16Department of Physics, University of Toronto, ON M5S 1A7, Canada
17Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada
18Perimeter Institute for Theoretical Physics, 31 Caroline Street N, Waterloo, ON N2L 1Y5, Canada
19Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT
20California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA
21Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305-4060, USA

Accepted 2012 November 26. Received 2012 November 26; in original form 2012 September 4

ABSTRACT
Dark energy may be the first sign of new fundamental physics in the Universe, taking either
a physical form or revealing a correction to Einsteinian gravity. Weak gravitational lensing
and galaxy peculiar velocities provide complementary probes of general relativity, and in
combination allow us to test modified theories of gravity in a unique way. We perform such an
analysis by combining measurements of cosmic shear tomography from the Canada–France–
Hawaii Telescope Lensing Survey (CFHTLenS) with the growth of structure from the WiggleZ
Dark Energy Survey and the Six-degree-Field Galaxy Survey, producing the strongest existing
joint constraints on the metric potentials that describe general theories of gravity. For scale-
independent modifications to the metric potentials which evolve linearly with the effective
dark energy density, we find present-day cosmological deviations in the Newtonian potential
and curvature potential from the prediction of general relativity to be ��/� = 0.05 ± 0.25
and ��/� = −0.05 ± 0.3, respectively (68 per cent confidence limits).
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2250 F. Simpson et al.

1 IN T RO D U C T I O N

Einstein’s original formulation of general relativity (GR) provides
a remarkably precise prescription for the motions of particles in
our Solar system (Einstein 1916). It has survived close to a century
of experimental scrutiny, beginning with the precession of Mer-
cury’s orbit and the gravitational deflection of starlight, progressing
to ground-based tests with atomic clocks. Recent spaceborne tests
now confirm certain predictions of GR to better than one part in
10 000 (Bertotti, Iess & Tortora 2003). However when we consider
the behaviour of gravity on cosmological scales, which are over 14
orders of magnitude greater than the interplanetary distances, there
is much greater scope for uncertainty. Observational evidence of
an accelerating universe has called Einstein’s laws into question.
The underlying cause for this ‘dark energy’ phenomenon may lie
within our current understanding of gravitational physics, the lead-
ing candidate being the cosmological constant. Another possibility
is that a new regime of gravitational physics has been exposed. It
is this prospect which has led to a recent flurry of activity in con-
straining the cosmological nature of gravity (Bean & Tangmatitham
2010; Daniel et al. 2010; Reyes et al. 2010; Zhao et al. 2010, 2012;
Song et al. 2011; Tereno, Semboloni & Schrabback 2011; Hudson
& Turnbull 2012; Rapetti et al. 2012; Samushia et al. 2012; Zuntz
et al. 2012).

Much like in the Solar system, we are able to study the cos-
mological trajectories of both relativistic and non-relativistic parti-
cles, at least in a statistical sense. The peculiar motions of galaxies
falling towards overdense regions generate an illusory anisotropy
in their clustering pattern (Kaiser 1987), known as redshift-space
distortions (RSDs). This effect has been observed with heightened
precision over the past decade (Peacock et al. 2001; Hawkins et al.
2003; Guzzo et al. 2008; Blake et al. 2011; Beutler et al. 2012; Reid
et al. 2012) permitting inferences of the rate at which cosmological
structure forms. The peculiar velocities of galaxies can also be ob-
served directly, and the inferred measurements of the growth rate
are consistent with those from RSDs (see Hudson & Turnbull 2012,
and references therein).

For gravitational experiments, relativistic test particles are of
particular interest since their motions are not only sensitive to the
effects of time dilation but also to the curvature of space. In the
classical test of GR, the deflection of starlight was observed during
a solar eclipse (Dyson, Eddington & Davidson 1920). In our experi-
ment, distant galaxies replace nearby stars as the source of photons,
our relativistic test particle. When imaging these distant galaxies,
instead of measuring their gravitational deflection angles, which are
unknown, we can study their shapes which appear correlated as a re-
sult of the gravitational deflection of light (Bartelmann & Schneider
2001).

One important caveat is that we are required to convert an-
gles and redshifts into physical distances when interpreting ob-
servations of RSDs and gravitational lensing. We therefore require
additional information on the geometry of the universe. Geomet-
ric measurements of dark energy such as supernovae and baryon
acoustic oscillations (BAO), conventionally used to determine the
equation of state for dark energy, w(z), are crucial for this pur-
pose. However their measurements alone cannot distinguish mod-
ified gravity models, which are in general capable of reproduc-
ing any given w cold dark matter (wCDM) expansion history.
The cosmic microwave background (CMB) is also used to fur-
ther break degeneracies, and provides a high-redshift anchor for
the amplitude of density perturbations (see e.g. Komatsu et al.
2011).

Gravitational lensing is not unique in its ability to probe both
metric potentials. CMB photons gain or lose energy as the potentials
evolve, a phenomenon known as the Integrated Sachs–Wolfe (ISW)
effect, leaving a significant anisotropy on the largest angular scales.
In the context of a flat �CDM background, the expected signal
strength from GR is modest, while many alternative theories of
gravity can readily generate very large ISW signals, something
which is not seen in the data (Lombriser et al. 2009; Zuntz et al.
2012).

While we currently lack a specific model which can compete with
GR in terms of simplicity and physical motivation, there exist broad
families of models such as f(R) which provide useful test cases. For
a recent review of the full menagerie of models, see Clifton et al.
(2012). In this work we do not aim to constrain the parameter space
of a particular family of models, or explicitly perform Bayesian
model selection, but instead simply address the question of whether
our data appear consistent with the predictions of GR. In addition to
the cosmic shear data from the Canada–France–Hawaii Telescope
Lensing Survey (CFHTLenS), we make use of RSDs from WiggleZ
Dark Energy Survey (WiggleZ) and the Six-degree-Field Galaxy
Survey (6dFGS).

In Section 2 we outline our choice of parametrization for depar-
tures from GR. Our data sets are summarized in Sections 3 and 4,
followed by our methods and main results in Sections 5 and 6. A
comparison with alternative parametrization schemes is presented
in Section 7, and we briefly review the status of theoretical mod-
els of modified gravity in Section 8, with concluding remarks in
Section 9.

2 PA R A M E T R I Z I N G T H E M O D I F I C AT I O N

Given the lack of a compelling model to rival GR, we choose to
parametrize deviations from GR in a phenomenological manner. In
effect, we simply wish to ask: Is the strength of gravity the same on
cosmological scales as it is here on Earth? If not, this may modify
the motions of both relativistic and non-relativistic particles, but
not necessarily in the same manner. Fig. 1 illustrates why we are
seeking a modified gravity signal on cosmological scales; it is the
regime in which the classical Newtonian attraction is overwhelmed
by the repulsive force associated with dark energy.

The perturbed Friedmann–Robertson–Walker metric may be ex-
pressed in terms of the scale factor a(t), the Newtonian potential �

and the curvature potential �:

ds2 = (1 + 2�) dt2 − a2(t) (1 − 2�) dx2. (1)

In GR each of the two gravitational potentials � and �, which carry
implicit spatial and temporal dependencies, may be determined
from the distribution of matter in the Universe. In Fourier space this
is given by

k2�GR = −4πGa2ρ̄δ, (2)

where we have introduced the wavenumber k, the mean cosmic
density ρ̄ and the fractional density perturbation δ ≡ ρ/ρ̄ − 1. In
the absence of anisotropic stress the two potentials are identical,
�(x, t) = �(x, t). Relativistic particles collect equal contributions
from the two potentials, since they traverse equal quantities of space
and time, such that

k2 (�GR + �GR) = −8πGa2ρ̄δ. (3)

We wish to investigate deviations from GR with a general
parametrization. Hereafter, each of the two probes, the Newtonian
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CFHTLenS: testing the laws of gravity 2251

Figure 1. The shaded triangle represents the vast regime over which the
gravitational acceleration of a test particle in the proximity of a mass M is
thought to be well described by the Newtonian prescription a = GMr−2.
While torsion balance (laboratory) and space-based (Solar system) tests of
gravity offer superior accuracy, cosmological methods push the boundaries
of our understanding of gravity. For clarity we truncate the mass axis at
the Planck mass (red edge), while the upper bound (black edge) denotes
the Schwarzschild radius. The grey slope illustrates the amplitude of the
negative contribution arising from dark energy, which scales in proportion
to r, and surpasses the conventional Newtonian force at cosmological scales.

potential � experienced by non-relativistic particles and the lens-
ing potential (� + �) experienced by relativistic particles, is now
modulated by the parameters 	 and μ:

�(k, a) = [1 + μ(k, a)] �GR(k, a), (4)

[�(k, a) + �(k, a)] = [1 + 	(k, a)] [�GR(k, a) + �GR(k, a)] ,

(5)

where we have adopted notation similar to that of Amendola, Kunz
& Sapone (2008), as used more recently by Zhao et al. (2010)
and Song et al. (2011). This parametrization has the advantage of
separating the modified behaviour of non-relativistic particles, as
dictated by μ(k, a), from modifications to the deflection of light,
as given by 	(k, a). By being able to reproduce a wide range of
observational outcomes, in terms of the two-point weak lensing
correlation functions and the growth of large-scale structure, we
ensure a broad sensitivity to different types of deviations from GR.
There is some flexibility in how we choose to parametrize the scale
and time dependence of these two parameters, much like the dark
energy equation of state w(z). Previous works have often chosen
a scale-independent model with a parametrized time variation of
these functions such that 	(a) = 	sas and μ(a) = μsas. How-
ever given that our primary motivation for modified gravity is to
seek an explanation of the dark energy phenomenon, we model the
time evolution to scale in proportion with the effective dark energy
density implied by the background dynamics, such that

	(a) = 	0

�(a)


�

, μ(a) = μ0

�(a)


�

, (6)

where we have defined 
� ≡ 
�(a = 1); this normalization was
chosen such that μ0 and 	0 reflect the present day values of μ(a)
and 	(a), respectively. Note that for the case of GR, 	0 = μ0 =

0. One advantage of this parametrization is that it permits a trivial
mapping between μ0 and the popular growth index γ (Wang &
Steinhardt 1998; Linder 2005). It also reduces the total number of
degrees of freedom, thereby allowing us to maintain a manageable
error budget. The disadvantage is that we become less sensitive to
deviations from GR whose time evolution differs significantly from
the adopted model. The lack of scale dependence in this model may
seem questionable given the stringent Solar system tests which must
be satisfied. However the length scales probed by our cosmological
data sets are over 14 orders of magnitude greater, leaving ample
opportunity for a transition at scales smaller than those studied
here. Furthermore, any significant departure from scale-independent
growth is more readily apparent from studies of the shape of the
galaxy power spectrum.

With our modified potentials in equations (4) and (5) the growth
of linear density perturbations is now given by

δ′′(a) +
(

2

a
+ ä

ȧ2

)
δ′(a) − 3
m

2a2

[
1 + μ(a)

]
δ(a) = 0, (7)

while the cosmic shear power spectrum P i,j
κ (
) correlating redshift

bins i and j takes the form

P i,j
κ (
) = 9

4

2

m

(
H0

c

)4 ∫ ∞

0

gi(χ )gj (χ )

a2(χ )
Pδ

(



fK (χ )
, χ

)

× [1 + �(χ )]2 dχ, (8)

where the terms not present in the equations’ conventional form are
highlighted in bold. Here χ denotes the radial coordinate distance,
while fK is the comoving angular diameter distance. Note also that
Pκ (
) possesses an implicit dependence on μ via the time evolution
of the Pδ term. The lensing efficiency gi is determined by the ra-
dial distribution of source galaxies ni(χ ) and the comoving angular
diameter distance fK(χ ):

gi(χ ) =
∫ ∞

χ

dχ ′ni(χ
′)

fK (χ ′ − χ )

fK (χ ′)
. (9)

Note that our parameters μ0 and 	0 are only modulating the
gravitational potentials in equation (1), but not the evolution of the
expansion a(t). The standard cosmological model, in the form of
a flat �CDM universe, is known to provide a good description of
the cosmic geometry, therefore for most of this paper we work on
the assumption of this global expansion, and focus on exploring the
less well determined behaviour of the gravitational perturbations.
We shall also explore the consequences of adding further degrees
of freedom to the expansion history, in the form of an effective dark
energy equation of state w and the global curvature 
K.

3 G E O M E T R I C DATA

When considering the prospect of modified gravity, we must relax
the assumption that light deflection and structure formation fol-
low the predictions of GR. This significantly exacerbates the task
of constraining all of our unknown cosmological parameters. For
example, without knowing how mass bends light on cosmological
scales, we cannot hope to use gravitational lensing to measure the
geometry of the Universe. We therefore require auxiliary data to as-
sist in measuring the conventional cosmological parameters, those
which govern the cosmic expansion history and shape of the matter
power spectrum, before we can attempt to tackle the gravitational
parameters μ0 and 	0.
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2252 F. Simpson et al.

3.1 Hubble parameter

The current rate of cosmological expansion has long been a source
of great uncertainty, largely due to the inherent difficulty in per-
forming distance measurements. Considerable improvements have
been made in the past decade, and we make use of a recent re-
sult obtained from combining observations of local supernovae,
Cepheid variables and the megamaser at the centre of NGC 4258
(Riess et al. 2011). Where stated, we include a Gaussian prior H0 =
73.8 ± 2.4 km s−1 Mpc−1 from Riess et al. (2011). In de Sitter space
this would correspond to the distance between any two comoving
points doubling every 13 billion years.

Since it is common practice to assume GR in most astronomical
and cosmological studies, extra care must be taken when adopting
quoted results from previous studies. For example, the determina-
tion of the distance to water masers is based on the assumption
of Keplerian motions. Furthermore, the pulsation of Cepheids re-
lies on the star’s self-gravitation, therefore, unusual gravitational
behaviour could lead to a modification of their period–luminosity
relation. However there are currently no signs of anomalous be-
haviour in the data (Jain, Vikram & Sakstein 2012).

3.2 Baryon acoustic oscillations

Encoded within the distribution of galaxies is a useful comoving
ruler, a modest excess of galaxy pairs at ∼150 Mpc, relating to the
distance sound waves were able to propagate prior to recombination.
In Fourier space this feature is referred to as the BAO. For a given
BAO observation, the relevant cosmological information can often
be distilled to a single data point, that of DV(z)/rs, where rs is the
sound horizon at the baryon drag epoch, and the volume element
DV(z) is defined in terms of the angular diameter distance DA(z)
and Hubble parameter H(z):

DV(z) ≡
[

(1 + z)2D2
A(z)

cz

H (z)

]1/3

. (10)

The most conservative treatment of BAO data would be to treat rs as
an unknown quantity, and eliminate it by taking the ratio of DV(z)
at two separate redshifts. However since the CMB provides us with
a good understanding of the conditions in the early Universe, we
have the opportunity to determine rs for a given set of cosmological
parameters. For our purposes this quantity is derived using equat-
ion (6) from Eisenstein & Hu (1998).

Where stated, we utilize measurements of DV(z)/rs at two dif-
ferent redshifts. Anderson et al. (2012) present BAO constraints
from the Baryon Oscillation Spectroscopic Survey (BOSS), and
we also include a measurement from the Sloan Digital Sky Survey
(SDSS) luminous red galaxies (Padmanabhan et al. 2012). Both
studies present results before and after a reconstruction method has
been applied, a technique which increases the prominence of the
BAO by partially reversing the effects of gravitational infall. We
conservatively adopt the BAO results prior to reconstruction, since
we wish to avoid making assumptions relating to the growth of
density perturbations. The change in our results is negligible, how-
ever, when the reconstructed values are included. For the BOSS
CMASS sample, the ‘consensus’ result (Anderson et al. 2012) av-
erages the power spectrum and correlation function analyses, giving
DV/rs(z = 0.57) = 13.67 ± 0.22. The SDSS data point is given by
DV/rs(z = 0.35) = 8.89 ± 0.31. We neglect any covariance in the
two data points generated by the small overlap between the SDSS
and BOSS volumes, which spans less than 9 per cent of the BOSS
volume (Anderson et al. 2012).

It should be noted that when combined with Wilkinson Microwave
Anisotropy Probe 7-year (WMAP7) data, recent BAO results sug-
gest values of H0 which are in mild tension with the measurement
from Riess et al. (2011). For example Anderson et al. (2012) find
H0 = 68.4 ± 1.3 km s−1 Mpc−1, while studies from 6dFGS and
SDSS measure 67 ± 3.2 and 69.8 ± 1.2 km s−1 Mpc−1, respec-
tively (Beutler et al. 2011; Mehta et al. 2012). We present separate
results generated using the H0 and BAO data in Section 6.

3.3 Cosmic microwave background (� > 100)

We utilize the temperature CT T

 and polarization CT E


 spectra from
the WMAP7 data (Larson et al. 2011). This serves two purposes, first
it offers strong constraints on a number of cosmological parameters,
but it also serves to directly assist in the measurement of the growth
of structure. Our current position in space and time, z = 0, acts as
the benchmark from which all cosmological distance measurements
are made. However when mapping the growth of structure, it is
the epoch of recombination at z � 1100 which effectively acts as
our starting point. The CMB provides a precise measure of the
amplitude of density fluctuations in the early Universe. Combining
this with a measure of the clustering amplitude at low redshift
provides a strong lever for constraining the growth rate between
these two epochs.

Large angular scales of the CMB are sensitive to modified grav-
ity models, and these are treated separately in Section 4.3. The
implications for modified gravity have already been studied (see for
example Zuntz et al. 2012), and here our primary focus is to ex-
plore the constraints available from lensing. For the range of values
considered in this study, μ0 and 	0 were found to impose negli-
gible change in either CT T


 or CT E

 beyond the 
 = 100 multipole

(see Section 4.3). Unless otherwise stated we simply truncate the
largest angular scales, such that only 
 ≥ 100 are included in our
analysis. In doing so we negate the impact of the ISW, and utilize
WMAP7 only to assist in measuring the conventional cosmological
parameters. For further details of our treatment of the CMB, see
Appendix A.

4 G R AV I TAT I O NA L DATA

4.1 Cosmic shear

Gravitational lensing by large-scale structures in the Universe co-
herently distorts the observed shapes of distant galaxies. This cos-
mic shear distortion can be used to directly probe dark matter, and,
when analysed in tomographic redshift bins, can also reveal the
growth of structure. It also acts as a useful tool for testing the
laws of gravity (White & Kochanek 2001; Doré et al. 2007). We
use tomographic cosmic shear data from CFHTLenS, published in
Benjamin et al. (2012). CFHTLenS is a 154 deg2 deep multicolour
survey optimized for weak lensing analyses, where the data were
obtained as part of the CFHT Legacy Survey on the 3.6-m CFHT.
Weak gravitational lensing is widely recognized as one of the most
powerful probes of cosmology, but also one of the most technically
challenging, as the weak cosmic shear distortion must be separated
from other sources of image distortion induced by the atmosphere,
telescope and detector. The CFHTLenS analysis represents the cur-
rent state-of-the-art in weak lensing data processing (Erben et al.
2009), weak lensing measurement (Miller et al. 2013), photometric
redshift measurement (Hildebrandt et al. 2012) and systematic er-
ror analysis (Heymans et al. 2012). Benjamin et al. (2012) also use
an angular cross-correlation analysis to verify the accuracy of the
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CFHTLenS: testing the laws of gravity 2253

Figure 2. The cosmic shear data from CFHTLenS. Each panel contains the two lensing correlation functions, ξ+(θ ) (filled) and ξ−(θ ) (empty) with the ξ−(θ )
points slightly offset for clarity. The source galaxies are divided into two redshift bins, a ‘low’-redshift bin with 0.5 < z ≤ 0.85 and a ‘high’-redshift bin with
0.85 < z ≤ 1.3. The left-, middle and right-hand panels display data from the low–low, low–high and high–high correlations. In each case, the black lines
are the set of theoretical curves corresponding to ξ+(θ ) (upper) and ξ−(θ ) (lower) for the best-fitting �CDM cosmology. The dashed lines correspond to a
cosmological model with the same expansion history H(z) as the best-fitting model, but with a boost in the effective gravitational constant (μ0 = 0.5; 	0 =
0). The dot–dashed lines demonstrate the signal one expects if the present-day (z = 0) gravitational potentials are associated with Newtonian gravity (μ0 = 0;
	0 = −0.5).

measured redshift distributions that we use in this analysis. These
results, in combination with the cosmology insensitive joint shear–
redshift systematic test presented in Heymans et al. (2012), allow
us to conclude that the analysis of the survey data is robust within
our uncertainties and residual systematics levels and can therefore
be used to test the laws of gravity.

Benjamin et al. (2012) analyse two high-redshift bins with 0.5 <

z ≤ 0.85 and 0.85 < z ≤ 1.3, presenting the autocorrelation and
cross-correlations of the angular two-point shear correlation func-
tions ξ

ij
± (θ ) over scales 1 < θ < 40 arcmin, as shown in Fig. 2.

The choice to use only two broad high-redshift bins in this tomo-
graphic analysis was motivated by the desire to mitigate the impact
of intrinsic galaxy alignments on the tomographic measurements
(see for example Heymans et al. 2006; Joachimi et al. 2011, and
references therein). For this combination of high-redshift bins, the
contamination to the signal is expected to be at the per cent level
and so we follow Benjamin et al. (2012) by neglecting this source
of error in our analysis. We use a covariance matrix between the
resulting correlated data points as estimated from N-body lensing
simulations (Harnois-Déraps, Vafaei & Van Waerbeke 2012), dis-
cussed and verified in Kilbinger et al. (2012) and Benjamin et al.
(2012).

Theoretical predictions for these correlation functions are gener-
ated using the relation

ξ
i,j
± (θ ) = 1

2π

∫ ∞

0
P i,j

κ (
) J0/4(
θ ) 
 d
, (11)

where P i,j
κ (
) is given in equation (8) and J0/4 are the zeroth- and

fourth-order Bessel functions.
On the smallest angular scales studied by cosmic shear it is

likely that baryonic physics will disturb the density perturbations
(Semboloni et al. 2011). This is also the regime where our prescrip-
tion for modelling the non-linear correction to the matter power

spectrum (see below) begins to break down. Because of the very
different nature of the zeroth and fourth Bessel functions, the ξ−(θ )
correlation function is sensitive to considerably smaller scales than
ξ+(θ ) for a given θ value. For the ξ− statistic we therefore only
include the larger angular scales θ > 10 arcmin. These data points
are presented in Fig. 2, alongside theoretical predictions from the
best-fitting �CDM cosmology and two illustrative modified gravity
scenarios. From left to right, the three panels in Fig. 2 relate to the
correlations of the low–low, low–high and high–high redshift bins.
A more detailed justification for the angular cuts and their implica-
tions are discussed in Benjamin et al. (2012); in any case we find
no significant change in our results when the small angular scales
of ξ−(θ ) are included due to the high correlation between the points
and their relatively low signal-to-noise ratio. We further investigate
the impact of truncating smaller length scales in Kitching et al. (in
preparation).

4.2 Redshift-space distortions

Doppler distortions of the galaxy clustering pattern provide an in-
dependent probe of gravitational physics, by revealing the coher-
ent flows of galaxies which trace the growth of cosmic structure.
The principal effect on large scales is an amplification of appar-
ent galaxy clustering along the line-of-sight, breaking the statistical
isotropy. This anisotropy can be extracted from the two-point clus-
tering statistics of a galaxy redshift survey, yielding a measurement
of f(z)σ 8(z). Here f is the growth rate of structure, expressible in
terms of the growth factor D (a) as f ≡ d ln D/d ln a, where the
growth factor describes the evolution of the amplitude of a sin-
gle linear density perturbation δ(a) = D(a)δ(1). The function σ 8(z)
quantifies the amplitude of the linear clustering of matter at a given
redshift, and is defined as the rms density variation in spheres of co-
moving radius 8 h−1 Mpc. The degeneracy between f and σ 8 arises
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due to the unknown galaxy bias factor b: the observables are the
anisotropy in the galaxy clustering pattern which depends on β ≡
f/b, and the galaxy clustering amplitude which depends on bσ 8(z).

Measurements of RSDs from a galaxy redshift survey are de-
generate with a second isotropy-breaking mechanism: the Alcock–
Paczynski distortion (Alcock & Paczynski 1979), which arises if
the fiducial cosmological model we adopt for converting redshifts
and angles to physical distances differs from the true cosmologi-
cal model (Ballinger, Peacock & Heavens 1996; Matsubara & Suto
1996; Seo & Eisenstein 2003; Simpson & Peacock 2010). The am-
plitude of Alcock–Paczynski anisotropy depends on the quantity

F (z) = (1 + z)DA(z)H (z)/c, (12)

in terms of the angular diameter distance DA(z) and Hubble expan-
sion parameter H(z). Although measurements of F and fσ 8 from a
galaxy redshift survey are strongly correlated, the angular distor-
tions imprinted in the clustering pattern by these two effects are
sufficiently different that the degeneracy can be broken.

The measurements of (fσ 8, F) that we use in this study are derived
from the WiggleZ published in Blake et al. (2012) and from 6dFGS,
as presented in Beutler et al. (2012). Fig. 3 compares the measure-
ments of fσ 8 from WiggleZ (squares) and the 6dFGS (diamond)
to the best-fitting �CDM cosmology and two examples modified
gravity scenarios with μ0 = 0.5 and 1.0 (dashed).

The WiggleZ (Drinkwater et al. 2010) at the 3.9-m Anglo-
Australian Telescope has mapped a cosmic volume ∼1 Gpc3 over
the redshift range 0 < z < 1. By covering a total of ∼800 deg2 of sky
the WiggleZ mapped about 100 times more effective cosmic vol-
ume in the z > 0.5 Universe than previous galaxy redshift surveys.
Target galaxies were chosen by a joint selection in ultraviolet (UV)
and optical wavebands, using observations by the Galaxy Evolu-
tion Explorer (GALEX) satellite (Martin et al. 2005) matched with
ground-based optical imaging from the SDSS (York et al. 2000)
in the Northern Galactic Cap, and from the Red Sequence Cluster
Survey 2 (RCS2; Gilbank et al. 2011) in the Southern Galactic Cap.
A series of magnitude and colour cuts (Drinkwater et al. 2010) was
used to preferentially select high-redshift star-forming galaxies with

Figure 3. The growth data from WiggleZ (Blake et al. 2012) and 6dFGS
(Beutler et al. 2012). The black line is the corresponding theoretical curve
for the best-fitting �CDM cosmology. The dashed lines correspond to the
same cosmology but with a boost in effective gravitational constant μ0.

bright emission lines that were then observed using the AAOmega
multiobject spectrograph (Sharp et al. 2006) in 1-h exposures.

The 6dFGS is a near-infrared selected combined redshift and
peculiar velocity survey covering nearly the entire southern sky with
Galactic latitude |b| < 10◦. It was undertaken with the Six-degree
Field (6dF) multifibre instrument on the UK Schmidt Telescope
from 2001 to 2006 (Jones et al. 2004, 2009). The redshift survey
covers 125 000 galaxies with 8.75 ≤ K ≤ 12.75 and median redshift
z = 0.052.

In this study we use the WiggleZ joint measurements of (fσ 8, F)
in three different redshift slices with effective redshifts z = 0.44,
0.60 and 0.73. The marginalized measurements of the growth rate in
these redshift slices are fσ 8(z) = (0.41 ± 0.08, 0.39 ± 0.06, 0.44 ±
0.07). The marginalized measurements of the Alcock–Paczynski
distortion parameter are F = (0.48 ± 0.05, 0.65 ± 0.05, 0.86 ±
0.07). The correlation coefficients between these pairs of values
are (0.73, 0.74, 0.85). These measurements were derived by fitting
the non-linear clustering model provided by Jennings, Baugh &
Pascoli (2011) to the 2D WiggleZ power spectrum over the range of
wavenumbers 0 < k < 0.2 h Mpc−1, marginalizing over the linear
galaxy bias factor and a small-scale velocity dispersion σv . Blake
et al. (2011) carried out a suite of systematics tests to demonstrate
that the derived results did not depend on either the fitting range or
the non-linear model of RSDs adopted; we refer the reader to this
paper for further details. There is some overlap (∼500 deg2) between
the sky areas surveyed by WiggleZ and the SDSS/BOSS surveys that
are used in our results which are stated to include BAO. However,
based on the nature of the geometric BAO data being very different
to that used for the RSD gravitational measurements we assume
that any covariance in these derived results is negligible. In essence,
when considering the redshift-space galaxy power spectrum, the
location of the acoustic peak bears little connection to the power of
the quadrupole.

We also include the single data point fσ 8(z = 0.067) = 0.423 ±
0.055 (Beutler et al. 2012) from the 6dFGS. Because of its low
redshift, this result benefits from having negligible sensitivity to the
Alcock–Paczynski distortion, and a large sensitivity to our mod-
ified gravity parameter μ0, as can be seen in Fig. 3. The 6dFGS
measurement was derived using the non-linear model of Jennings
et al. (2011), including wide-angle corrections, fit to the 2D galaxy
redshift-space correlation function for transverse separations rp >

16 h−1 Mpc. The growth-rate measurements obtained, marginalized
over bias, were consistent with fitting an empirical streaming model
to the results (see Beutler et al. 2012, for further details). While the
WiggleZ and 6dFGS analyses differ in their utilization of the power
spectrum and correlation function, respectively, their approach to
modelling non-linear corrections and galaxy bias remains consis-
tent.

4.3 Cosmic microwave background (� < 100)

When in the presence of a time-dependent gravitational potential, a
particle may extract or lose energy from its surroundings. It is this
mechanism which space probes exploit when passing close to plan-
ets for a gravitational slingshot. For CMB photons, the gravitational
source is associated with large-scale density perturbations. In GR,
if the photon passes through a high-density region of the Universe,
the dark-energy-induced decay of the gravitational potentials �(x,
t) and �(x, t) results in a net energy gain, with a blueshifting effect.
Conversely, passing through a void result in a net loss of energy.
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Figure 4. Modifications to the temperature (upper panel) and temperature–
polarization (lower panel) power spectra of the CMB. In each panel the
black line is the corresponding theory curves for the best-fitting �CDM
cosmology. The dashed and dash–dot lines represent the same modifica-
tions to our modified gravity parameters as seen in Fig. 2. Superposed on
these theoretical predictions are the binned data points from the WMAP7
observations (Larson et al. 2011).

The resulting temperature perturbation may be expressed by the line
integral:

�T

T
= −

∫
d

dη
[�(x, t) + �(x, t)] dη, (13)

where η is the conformal time defined by dη ≡ dt/a, and the
integral follows the path of the photon. We can see from equat-
ion (13) that this ISW effect is another probe which, like gravi-
tational lensing, retains sensitivity to both gravitational potentials.
However the ISW signal within the temperature anisotropies is only
expected to be significant on large angular scales, 
 < 100 as il-
lustrated by Fig. 4 which compares the temperature (upper) and
temperature–polarization (lower panel) GR power spectra of the
CMB (solid) with data points used in this analysis, from the WMAP7

observations (Larson et al. 2011). The dashed and dash–dot lines
represent the same modifications to our modified gravity parame-
ters as seen in Fig. 2 with μ0 = 0.5, 	0 = 0 (dashed) and μ0 =
0, 	0 = −0.5 (dot–dashed). These modified gravity models of the
CMB power spectrum deviate from GR only on the largest angular
scales. Observational ISW studies are therefore heavily restricted
by cosmic variance, and future experiments cannot be expected to
improve upon WMAP, unless we begin to include cross-correlations
with large-scale structure. Note that throughout this work, we use
the term ISW to refer to the phenomenon which arises in the CMB
power spectrum, not the cross-correlation between the CMB and
the distribution of galaxies.

For any metric theory of gravity, density fluctuations on scales
beyond the horizon are subject to a stringent consistency relation.
Since material cannot be transported at superluminal velocities, su-
perhorizon perturbations are destined to evolve along a path deter-
mined by the global expansion (Bertschinger 2006). Therefore the
constraints presented which incorporate the ISW should be treated
with this in mind, as the ISW involves scales very much larger than
those studied by gravitational lensing, a regime where there is a
stronger expectation that the values of μ0 and 	0 are close to zero.

5 M E T H O D S

Using a combination of geometric data (presented in Section 3)
and gravitational data (presented in Section 4), we use a maximum
likelihood analysis to constrain our phenomenological modified
gravity parameters μ0 and 	0.

To generate the likelihood values we modified COSMOPMC
(Kilbinger et al. 2011), an adaptive importance sampling code,
to incorporate the alterations to the growth of structure (equation
7) and cosmic shear signal (equation 8). A customized version
of MGCAMB (Lewis, Challinor & Lasenby 2000; Hojjati, Pogosian
& Zhao 2011) was used to evaluate the CMB anisotropies for a
given set of cosmological parameters, which are then assessed with
the WMAP likelihood code.1 Our analysis spans the parameter set
{
m, 
b, h, τ, ns, ASZ, �2

R, μ0, 	0}, where τ is the optical depth,
ns the spectral index, ASZ the amplitude of the Sunyaev–Zel’dovich
template for the CMB (Komatsu & Seljak 2002; Spergel et al. 2007)
and �2

R controls the primordial amplitude of matter perturbations.
Where specified we also marginalize over a time-independent ef-
fective equation of state for dark energy w and global curvature 
K,
in addition to the aforementioned set of parameters. We adopt flat
priors throughout, spanning the following parameter ranges: 
m ∈
[0.05; 1], 
b ∈ [0.01; 0.1], h ∈ [0.5; 1], τ ∈ [0.02; 0.3], ns ∈ [0.8;
1.2], ASZ ∈ [0; 2], �2

R ∈ [1.8; 3.5] × 10−9, μ0 ∈ [−4.0; 4.0], 	0 ∈
[−4.0; 4.0], w ∈ [ − 1.5; −0.3] and 
K ∈ [ − 0.1; 0.1]. In most cases
these boundaries extend well beyond the regions of high likelihood,
except for ASZ which is not well constrained, however, its impact
on the other parameters is negligible. In order to generate visualiza-
tions of the generated samples we make use of code adapted from
COSMOLOGUI.2

In generating the matter power spectrum, the COSMOPMC pack-
age makes use of the Eisenstein & Hu (1998) transfer function. The
growth factor is determined in accordance with the modified equa-
tion (7), before adding a non-linear correction using the prescription
of Smith et al. (2003). To compensate for cosmologies where w �=
−1, a further modulation of the non-linear power is required, as

1 http://lambda.gsfc.nasa.gov
2 http://www.sarahbridle.net/cosmologui
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presented in McDonald, Trac & Contaldi (2006). We make use of
the scaling correction provided in Schrabback et al. (2010) to apply
this formalism across our full range of parameter space. However it
should be noted that our results only have a weak dependence on this
correction. The mean values of μ0, 	0 and w all change by less than
0.02 when the prescription from Schrabback et al. (2010) is omit-
ted, which is well within our statistical errors. The value of the 	0

parameter has no impact on structure formation, and while we may
expect non-zero values of μ0 to alter the non-linear correction to
the matter power spectrum, we do not attempt to correct it here. We
expect the prescription of Smith et al. (2003) to remain a reasonably
good approximation in the presence of a simple scale-independent
modification to the growth of structure such as that induced by μ0.
To first order the correction associated with non-linear power is
simply a function of the ambient linear power at that epoch; how
quickly it arrives at this state is of less importance. In any case,
modified behaviour on non-linear scales would still weaken the fit
to the data achievable within the framework of GR.

6 R E SULTS

6.1 �CDM

We begin with the simple case of a flat �CDM geometry. In this sce-
nario we are making a strong assumption about the form of the cos-
mic expansion history H(z), but in doing so make significant gains
in the precision of our likelihood contours. Any apparent deviation
from GR witnessed at this stage must be interpreted with caution
due to the strong assumptions of this relatively simple model.

The left-hand panel of Fig. 5 illustrates the variety of 1 and 2σ

confidence intervals for different combinations of data sets. Each

of these contours include the auxiliary data of WMAP7 (
 ≥ 100)
and a prior on H0. The horizontal (green) contours reflect the pure
μ0 measurement established with the WiggleZ data. The 	0 pa-
rameter is unconstrained since the peculiar motions of galaxies are
slow (v 
 c), and are therefore insensitive to the spatial curvature
�(x, t). The near-vertical (red) contours correspond to the cosmic
shear data from CFHTLenS. Unsurprisingly, this is predominantly
a measure of 	0 due to its direct influence on the lensing potential.
The mild sensitivity to μ0 arises from the amplitude of the matter
power spectrum entering in equation (8). A positive value of μ0

enhances the growth of structure and thus strengthens the cosmic
shear signal (for a given primordial amplitude). This can be offset
with a negative value of 	0, weakening the deflection of light and
leading to the negatively sloped degeneracy direction seen in the
red contours of Fig. 5. When combined (blue), the near-orthogonal
degeneracy directions of WiggleZ and CFHTLenS produce a con-
siderable reduction in the permitted area of parameter space. The
tightest constraints (white) emerge from adding in BAO from BOSS
and the ISW large-scale anisotropies (
 < 100) from WMAP7. None
of these combinations shows any preference for non-zero values of
either μ0 or 	0, suggesting that GR remains a successful model
of gravitation on cosmological scales, for both relativistic and non-
relativistic particles.

The mean and 1σ errors in the modified gravity parameters are
found to be μ0 = 0.05 ± 0.25 and 	0 = 0.00 ± 0.14. The results
for other combinations of data sets can be found in Table 1.

How sensitive are we to the choice of auxiliary data? The right-
hand panel of Fig. 5 contains the same data sets and layout as the
left-hand panel, except here we have replaced the prior on H0 with
the BAO data summarized in Section 3.2. The BAO prefer a higher
value of 
m (or equivalently, a lower value of H0), and this does

Figure 5. Left: constraints on the modified gravity parameters in a flat �CDM background from RSDs (green), weak lensing (red) and combined (blue). (68
and 95 per cent CL). The dashed and solid contours represent the 68 and 95 per cent confidence intervals, respectively. Two auxiliary data sets are used here
to break degeneracies with the conventional cosmological parameters. These are the small-angle anisotropies from WMAP7 (
 ≥ 100), and a prior on H0 from
(Riess et al. 2011). The cross positioned at the origin denotes the prediction of GR. Right: the red, green and blue contours are the same as the left-hand panel,
except the prior on H0 has been replaced by measurements of the BAO as detailed in Section 3.2. The yellow contours signify the constraints derived from the
full WMAP7 power spectra, including the large angular scales (
 < 100). The white contours in the left-hand panel show the constraints when all data sets are
analysed in combination.
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Table 1. Parameter constraints for different combinations of data set and parameter space. The three different backgrounds we explore are flat �CDM, flat
wCDM and the non-flat wCDM which we denote as owCDM. All constraints make use of the small-scale anisotropies from WMAP7 (
 ≥ 100), while those
marked ISW also utilize the larger angular scales.

Background Data (+ CMB + H0) μ0 	0 
m H0 σ 8 w 
K

�CDM CFHTLenS 1.2 ± 2.2 −0.17 ± 0.28 0.260 ± 0.024 71.3 ± 2.3 0.96 ± 0.24 ··· ···
�CDM RSD 0.08 ± 0.25 ··· 0.254 ± 0.023 71.8 ± 2.2 0.801 ± 0.024 ··· ···
�CDM CFHTLenS + RSD 0.05 ± 0.25 0.00 ± 0.14 0.256 ± 0.023 71.6 ± 2.2 0.804 ± 0.023 ··· ···
wCDM CFHTLenS + RSD + BAO −0.59 ± 0.34 −0.19 ± 0.11 0.272 ± 0.015 71.7 ± 1.8 0.820 ± 0.025 −1.19 ± 0.10 ···
owCDM CFHTLenS + RSD + BAO −0.65 ± 0.34 −0.26 ± 0.12 0.289 ± 0.021 71.6 ± 1.8 0.833 ± 0.028 −1.16 ± 0.10 0.0096 ± 0.0087

Background Data (+ CMB + BAO) μ0 	0 
m H0 σ 8 w 
K

�CDM CFHTLenS 1.0 ± 2.2 −0.31 ± 0.24 0.305 ± 0.018 67.2 ± 1.4 0.95 ± 0.24 ··· ···
�CDM RSD −0.13 ± 0.23 ··· 0.300 ± 0.017 67.5 ± 1.4 0.807 ± 0.023 ··· ···
�CDM ISW −0.62 ± 0.64 0.34 ± 0.22 0.294 ± 0.015 68.2 ± 1.2 0.768 ± 0.068 ··· ···
�CDM CFHTLenS + RSD −0.12 ± 0.23 −0.17 ± 0.10 0.300 ± 0.017 67.6 ± 1.4 0.807 ± 0.023 ··· ···
�CDM CFHTLenS + RSD + ISW + H0 −0.06 ± 0.21 −0.010 ± 0.068 0.273 ± 0.010 70.10 ± 0.97 0.803 ± 0.022 ··· ···

push the lensing data to predict a lower value of σ 8, which pushes
the bulk of the likelihood towards negative values for 	0. This
results in constraints of μ0 = −0.12 ± 0.23 and 	0 = −0.17 ±
0.10. The combination of CFHTLenS and RSD data (blue) can be
compared with the constraints derived from the full WMAP7 power
spectra, including the ISW, and BAO (yellow).

6.2 wCDM

The dangers of confusing the signatures of modified geometry and
modified gravity have previously been highlighted in the literature
(see e.g. Simpson & Peacock 2010). In order to claim that we are
testing GR and not simply �CDM we must therefore allow greater
freedom in the cosmic expansion history H(z). This is inevitably ac-
companied by some loss of precision, so we shall restrict ourselves
to adding one extra parameter. In Fig. 6 we utilize both H0 and BAO,
in combination with CFHTLenS, RSD and the small angular scales
of WMAP7, conservatively omitting the ISW information for the
reasons outlined in Section 4.3. While the green contour in the left-
hand panel corresponds to the standard flat �CDM background, the
blue contours presented in the left-hand and centre panels allow the
effective dark energy equation of state w to deviate from −1. The
centre panel illustrates a degeneracy which causes the confidence
contours to broaden. More positive values of w lead to a greater

prevalence of dark energy at higher redshift (for a given value of

m) and thus a slowing of the growth of structure. This can be com-
pensated by enhancing the value of μ, which accelerates the growth
of structure, leading to a similar growth history f(z) to GR. For a
wCDM cosmology the mean and 68 per cent confidence intervals
are given by μ0 = −0.59 ± 0.34, 	0 = −0.19 ± 0.11 and w =
−1.19 ± 0.1. More detailed results are presented in Table 1.

6.3 owCDM

We further generalize the expansion history by allowing for non-
zero values of the global curvature 
k, using the same combination
of data sets as in Section 6.2. The red contours in all three pan-
els of Fig. 6 demonstrate the relatively small impact that non-flat
geometries have on our confidence limits. The mean and 68 per
cent confidence intervals are given by μ0 = −0.65 ± 0.34, 	0 =
−0.26 ± 0.12, 
k = 0.096 ± 0.087 and w = −1.16 ± 0.10.

7 A LT E R NAT I V E PA R A M E T R I Z AT I O N S

In this section we consider the relationship between the (μ, 	)
parametrization adopted in this work, and three other popular
parametrizations.

Figure 6. In this figure we extend our analysis to more general expansion histories. All of the above contours use a combination of cosmic shear and RSDs,
combined with the geometric constraints from H0, BAO and WMAP7 (
 ≥ 100). The green set of contours in the left-hand panel corresponds to the background
expansion of flat �CDM. For the blue contours in the left-hand and centre panels we allow the effective dark energy equation of state to deviate from w = −1,
highlighting a significant degeneracy in the w–μ0 plane. Finally, the red contours appearing in each of the panels allow non-zero curvature in addition to the
wCDM background.
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Figure 7. Confidence limits in the γ –
m plane, as derived from RSDs
(WiggleZ + 6dFGS) in green, and cosmic shear (CFHTLenS) in red (68 and
95 per cent CL), using small-angle anisotropies from WMAP7 (
 ≥ 100),
and a prior on H0 as auxiliary data sets. Note that here γ is the only modified
gravity parameter, as we have set 	(a) = 0.

7.1 γ Parameter

A widely adopted parametrization for quantifying anomalous struc-
ture growth is the growth index γ (Wang & Steinhardt 1998; Linder
2005):

f (z) � 
γ
m(z), (14)

where setting γ = 0.55 offers an estimate of the growth factors
in wCDM cosmologies with sub-per cent accuracy. Equation (23)
from Linder & Cahn (2007) gives us the relation

γ =
3

[
1 − w − μ(a)

1−
m(a)

]
5 − 6w

(15)

for a constant equation of state w. In a flat �CDM Universe, this
parameter may be expressed as a simple function of μ0 and 
�,

γ = 6

11

[
1 − μ0

2
�

]
. (16)

Applying the prescription for the growth rate in equation (14) with
a constant value the γ parameter does not offer a perfect reproduc-
tion of the growth of density perturbations in GR. This relationship
provides a useful means to derive constraints in terms of γ without
compromising the precision of the calculation. Constraints on this
quantity are presented in the γ –
m plane in Fig. 7. Gravitational
lensing is not uniquely defined when using the γ parameter alone,
so here we have simply set 	0 = 0 such that the lensing potential is
unaltered from its conventional form. We find a value of γ = 0.52 ±
0.09 for the case of a �CDM background. In Fig. 8, we then let 	0

vary, presenting constraints in the γ –	0 plane.

7.2 EG parameter

Proposed by Zhang et al. (2007), the EG parameter encompasses
contributions from both gravitational lensing and the motions of
galaxies. This is in the form of a ratio which by construction nullifies
contributions from both linear galaxy bias and the amplitude of the

Figure 8. The same combinations of data as the left hand panel of Fig. 5,
except we have replaced the μ0 parameter with γ using the relation given
by equation (16).

matter power spectrum. The result is a quantity which is sensitive
to both the lensing potential and the rate of structure formation:

EG ≡ ∇2(� + �)

3H 2
0 (1 + z)βδ

, (17)

where β ≡ f/b. This technique has been applied to SDSS data
in Reyes et al. (2010). We cannot directly measure EG with the
CFHTLenS and WiggleZ data sets, since they do not overlap in
sky coverage. However, we can perform a direct mapping of the
result from Reyes et al. (2010) on to the (μ, 	) plane, utilizing the
relationship

EG � 
m [1 + 	(z̄)]

f (z̄)
, (18)

where the dependence on μ arises through its influence on f (z̄),
the linear growth rate at the mean redshift of the survey. The results
are presented in Fig. 9, where the red contours correspond to the
confidence limits, in the μ0–	0 plane, arising from a combination
of the measurement EG(z = 0.32) = 0.392 ± 0.065 (Reyes et al.
2010) with the BAO data from Section 3.2 which provide a con-
straint on 
m. The CMB does not provide further assistance in this
case because the EG parameter is insensitive to the amplitude of
perturbations. For comparison, the inner blue contours match those
in the right-hand panel of Fig. 5. We note that GR can readily gen-
erate departures from the conventional EG value. For example in
equation (18) the ratio 
m/f (z̄) changes when 
k �= 0 or w �= −1.
Similarly, radically different modified gravity models can generate
an EG value which appears consistent with the �CDM value. This
is apparent from the degeneracy contour seen in Fig. 9, where large
values of both μ and 	 enhance the growth rate and lensing signal,
leaving their ratio in equation (17) unchanged.

7.3 Gravitational slip

Rather than modulating the sum of the two potentials using 	(a),
it is often convenient to work in terms of the ratio of the potentials.
One definition in this form is known as the gravitational slip ζ ,

ζ ≡ 1 − �

�
, (19)
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Figure 9. Confidence limits on the 	0 and μ0 parameters derived from the
measurement EG(z = 0.32) = 0.392 ± 0.065 (Reyes et al. 2010). The inner
blue contours are the same as those in Fig. 5. Here we assume a �CDM
cosmology.

Figure 10. The same combinations of data as the left-hand panel of Fig. 5,
except here we have replaced the 	0 parameter with the gravitational slip
ζ 0 as defined in equation (19).

which we expect to be zero in GR, in the absence of anisotropic
stress. This has been the focus of much theoretical exploration, for
example Ferreira & Skordis (2010) demonstrate that for second-
order theories we generally expect to find this value scales with the
Newtonian potential and its time derivative.

Recasting ζ in terms of (μ, 	) using equations (4) and (5):

ζ (a) = 2 [	(a) − μ(a)]

1 + 2	(a) − μ(a)
. (20)

As an illustration in Fig. 10 we reformulate the x-axis from Fig. 5
in terms of ζ 0, the gravitational slip evaluated at z = 0. One striking
feature of these contours are the long tails out to negative values of
ζ and μ, corresponding to where the denominator � ventures close
to zero. This suggests that the slip parameter may possess a patho-
logical likelihood surface, and so for the purposes of performing

Figure 11. Here we explore fractional deviations in the two gravitational
potentials, the Newtonian potential � and the curvature potential �, from
the GR value at z = 0.5. The prescription for this is given by equation
(21). The contours represent the same combinations of data as those in the
left-hand panel of Fig. 5.

Monte Carlo evaluations these contours are more safely generated
as a derived parameter.

7.4 Gravitational potentials

The RSD data, used in this analysis, exhibit a peak sensitivity to
a modified gravity scenario at approximately z � 0.5 (see Section
8). In Fig. 11 we therefore consider fractional deviations in the
two gravitational potentials at this redshift, relative to their GR
prediction for the same mass distribution. These are given by

��

�
= μ(z),

��

�
= 2	(z) − μ(z), (21)

where �� ≡ � − �GR. For our conservative combined lensing,
RSD, H0 and high 
 WMAP7 data analysis we find cosmological
deviations in the Newtonian potential and curvature potential from
the prediction of GR to be ��/� = 0.05 ± 0.25 and ��/� =
−0.05 ± 0.3, respectively [68 per cent confidence limits (CL)].

8 T H E O R E T I C A L M O D E L S

Below we briefly review some of the theoretical models which could
generate a departure from μ0 = 	0 = 0, and interpret the impli-
cations of our results. There is such a plethora of modified gravity
models, that no single choice of parametrization can adequately
encompass all of them. This is a situation reminiscent of the dark
energy equation of state, w(z), except here we are faced with uncer-
tainty not only in the functional form of the time dependence but
also in its scale dependence. So how can we relate a given (μ, 	)
constraint to a specific model? The observed parameters μ̂0 and 	̂0

may be interpreted as a weighted integral over the true functional
form μ(k, z), such that

μ̂0 =
∫∫

φ(k, z) μ(k, z)

�


�(z)
dk dz. (22)

If we perform a scale- and time-dependent principal component
analysis (see e.g. Zhao et al. 2009), then the weight function φ(k, z)
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Figure 12. The redshift sensitivity of the modified gravity parameter μ0.
The weight function φ(z) is defined in equation (22) and evaluated with
equation (23).

may be expressed in terms of the principal components ei(k, z) and
the errors associated with their corresponding eigenvalues σ (αj)
(Simpson & Bridle 2006), such that

φ(k, z) =
∑

i ei(k, z)
∫∫

ei(k′, z′) dk′ dz′/σ 2(αi)∑
j

[∫∫
ej (k′′, z′′) dk′′ dz′′]2

/σ 2(αj )
. (23)

The analysis of RSDs in Blake et al. (2012) includes information
from the galaxy power spectrum up to a maximum wavenumber
kmax = 0.2 h Mpc−1, corresponding to the regime over which the
density and velocity fields are sufficiently linear for our theoret-
ical models to remain valid. Since the number of Fourier modes
increases towards higher k, the scale-dependent component of φ(k,
z) peaks close to this value of kmax, and φ(k, z) = 0 for k > kmax.
We evaluate the redshift dependence of the weight function φ(z)
associated with the combined WiggleZ and 6dFGS data of Fig. 3,
following the prescription of Simpson & Bridle (2006), and this is
shown to peak at z ∼ 0.5 as illustrated in Fig. 12. In the following
subsections we utilize the weight function φ(z) presented in Fig. 12
to map specific examples of theoretical models on to our parameter
space, by evaluating equation (22). However as stressed earlier, we
do not aim to place rigorous parameter constraints on any particular
family of models.

8.1 f (R)

A more general form of the Einstein–Hilbert action replaces the
Ricci scalar R with an arbitrary function f(R) such that

S =
∫

f (R)
√−g d4x, (24)

where g is the determinant of the metric tensor. This defines the
broad class of f(R) models. One of the most difficult tasks for
any modified gravity model attempting to replace dark energy is
to satisfy the stringent Solar system constraints, and most natural
choices of the function f(R) fail to do so. The subset of f(R) models
which have attracted interest are those which employ the so-called
chameleon mechanism, where departures from GR are strongly
suppressed in regions where R is large, only emerging when R is

sufficiently small. Our location within the potential well of the Sun
and the Milky Way halo may be sufficient to shield us from this
unusual gravitational behaviour.

For a particular subset of f(R) models which are capable of satisfy-
ing Solar system tests, the departure from GR may be characterized
as (Zhao et al. 2012)

μ(k, a) = 1

3 + 3(aM/k)2
, (25)

where the scalaron mass M(a) = 1/
√

3 d2f /dR2. For any given
redshift and wavenumber, the value of μ lies in the range 0 ≤ μ < 1

3 .
This generically enhances growth, so we expect this family of mod-
els to lie vertically above the point (0, 0) in Fig. 5. We parametrize
M = M0a−σ and take as an example M0 = 0.02 h Mpc−1 and σ = 3,
corresponding to the type of model explored in Zhao et al. (2012).
In f(R) models the lensing potential for a given mass distribution is
unchanged from the case of GR, and so 	

f (R)
0 = 0. Our measure

of μ is dominated by the RSD data and by evaluating equation
(22) this model ought to map on to our (μ, 	) plane at a value
of μ

f (R)
0 = 0.81. This is despite μ(a) never rising above 1/3, but

the stronger deviation from GR at high redshift compared to our
parametrization allows a higher effective value of μ0 to be gener-
ated. Our data therefore disfavour the more aggressive f(R) models,
in agreement with the findings of Zhao et al. (2012).

8.2 DGP

The higher dimensional model proposed by Dvali, Gabadadze &
Porrati (2000) has proved one of the most popular gravitational
models for theoretical and experimental exploration. It is of partic-
ular interest due to its physical motivation and specific observational
prediction, namely a value of the growth index γ = 11

16 , or equiv-
alently μ0 = − 25

48 
�, 	0 = 0. However in its most natural form
there appears significant disparity with observational data (see e.g.
Lombriser et al. 2009). This can be bypassed by introducing a
cosmological constant, although this somewhat compromises the
motivation of the DGP model.

In general the behaviour of DGP is a scale-independent suppres-
sion of the growth of structure. Like f(R), the lensing potential is
unaltered so 	DGP

0 = 0. Adopting a fiducial value 
� = 0.27 leaves
us with μDGP

0 = −0.38. This negative value of μ remains consistent
with our data.

8.3 Newtonian limit

The point at μ0 = 0, 	0 = −0.5 corresponds to a scenario where
the present-day cosmological gravity resembles Newtonian gravity.
That is, the angular deflection of light is half the value predicted
by Einstein at z = 0, while the forces experienced by galaxies
remain unchanged. This model was famously rejected in favour
of GR by Dyson et al. (1920). The difference here is that we are
performing this test on cosmological scales. Whether we combine
our gravitational data with either BAO or the H0 prior, the results
are the same, a value of 	0 = −0.5 is strongly disfavoured by the
data.

Another regime of interest is that of μ0 < −1, for this corre-
sponds to the antigravitational behaviour of galaxies, in that they
are repulsed from clusters and attracted towards voids. One might
naively expect that if dark energy is gravitational in origin, then
the repulsive nature of the expansion may also be seen within the
perturbations. This region is disfavoured by the data when assum-
ing a flat �CDM background, but this is no longer the case for
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more general backgrounds since the regime w < −1 permits more
negative values of μ0, as seen in the central panel of Fig. 6.

8.4 Interacting dark energy

When conducting cosmological tests of gravity, in this work and in
others (Bean & Tangmatitham 2010; Daniel et al. 2010; Reyes et al.
2010; Zhao et al. 2010, 2012; Song et al. 2011; Tereno et al. 2011;
Rapetti et al. 2012; Zuntz et al. 2012), we necessarily make certain
assumptions such as the lack of anisotropic stress. One assumption
not often made explicit is that dark energy exhibits negligible in-
teractions with dark matter, aside from their mutual gravitational
repulsion. If the two fluids were to exchange energy and momen-
tum, this readily alters the growth of structure (Amendola 2000;
Simpson 2010; Simpson, Jackson & Peacock 2011), and so could
generate a false signature of modified gravity.

In the simplest interacting models, we would expect to see an
alteration in the growth of large-scale structure, but no direct change
to the lensing potential. Thus detecting a non-zero value of 	0 is a
prerequisite for confirming a truly modified gravity scenario. That
is to say, we cannot perform a cosmological test of gravity without
gravitational lensing.

As an illustrative example, we consider the scenario of dark
energy decaying into a form of dark matter. If this results in the
dark matter density following a power law ρ = ρ0a−3+ε , the growth
rate of cosmic structure is subject to a constant decrement (Simpson
et al. 2011):

f (a) = 
γ
m(a) − 67

55
ε. (26)

Large values of ε lead to a significant quantity of dark energy in
the early Universe, and as such are disfavoured by observations of
the CMB. Taking ε = 0.01, which is small enough not to perturb
the primary anisotropies of the CMB, leads to an effective value
με

0 = −0.99 and 	ε
0 = 0, a region which is disfavoured by our

results.

9 C O N C L U S I O N S

In this work we find no indication of a departure from GR on cos-
mological scales, having explored the behaviour of non-relativistic
and relativistic particles in the WiggleZ, 6dFGS and CFHTLenS
data. Both the motions of galaxies and the deflection of their emit-
ted light conform to the predictions of Einstein’s theory, at the level
of precision permitted by current data. We place limits on our grav-
itational parameters μ0 = 0.05 ± 0.25 and 	0 = 0.00 ± 0.14 for
a flat �CDM expansion history. This corresponds to deviations in
the present-day time dilation and spatial curvature of ��/�GR =
0.05 ± 0.25 and ��/�GR = −0.05 ± 0.3, respectively. However,
these errors are significantly correlated, as shown in Fig. 11.

For ground-based and Solar system tests, where light-travel time
is short, it is relatively straightforward to conduct a geometric mea-
surement. Cosmological experiments do not share this luxury, and
considerable effort is required in order to determine the spatial po-
sitioning of the test subjects. The precision at which we map the
geometry of the Universe remains one of the limiting factors in de-
termining its gravitational potentials. This is particularly apparent
when increased freedom in the cosmic expansion history is allowed,
arising from a variable dark energy equation of state or non-zero
global curvature. Further geometric data could be included in the
analysis, such as those derived from the light curves of Type Ia
supernovae. However combining a large number of data sets leaves

us increasingly exposed to the effects of systematic errors. For the
purposes of gravitational lensing, another source of uncertainty is
the form of the matter power spectrum on non-linear scales, and
this is an issue which will likely become more acute with the advent
of surveys spanning a large fraction of the sky. Higher resolution
N-body simulations can help to a certain extent, but modelling the
influence of baryons may prove particularly problematic.

The absence of a compelling theoretical rival to GR makes a suit-
able choice of gravitational parameters rather uncertain. In order to
minimize the number of degrees of freedom, and to maintain sensi-
tivity to a broad range of models, we adopted a scale-independent
modification to the Newtonian and curvature potentials. The scale
dependence of our results is implicit in the wide range of sensitivi-
ties each probe possesses. The cosmic shear signal from CFHTLenS
is sourced by density perturbations of the order ∼5 h−1 Mpc, while
the RSDs from WiggleZ involve Fourier modes with wavelengths
over 30 h−1 Mpc. Furthermore, the ISW effect causes the largest
angular scales of the CMB to receive significant contributions from
gravitational perturbations in excess of ∼500 h−1 Mpc. If any in-
consistency were seen between these results this could have been an
indication of scale-dependent behaviour. Our reasons for focusing
on a time-dependent variation that mimics the dominance of dark
energy rather than using constant μ and 	 values are twofold. First
our motivation for seeking modification to GR stems from dark
energy, a phenomenon which only appears at late times. Further-
more, if we were to investigate constant μ and 	 parameters, our
constraints would be dominated by the primary anisotropies of the
CMB, which as shown in previous studies (Bean & Tangmatitham
2010; Zuntz et al. 2012) is consistent with a GR framework.

Solar system experiments have already eliminated many potential
modifications to GR which could have provided a natural explana-
tion for the accelerating Universe. Here we have begun to disfavour
some of those which remain. While the volume of parameter space
available to modified gravity models continues to shrink, the cos-
mological constant retains its position as the most viable solution
to the dark energy problem.
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A P P E N D I X A : TR E AT M E N T O F TH E C M B

In our analysis we use the 
 ≥ 100 WMAP7 data from the CT T

 and

CT E

 power spectra to constrain geometric cosmological parameters,

as well as a benchmark for the amplitude of matter perturbations.
In contrast, the 
 < 100 multipoles provide additional information
on the gravitational potentials through the ISW. Discarding the
low multipoles would severely compromise our ability to constrain
the primordial amplitude of density perturbations. This is because
on small angular scales there is a strong degeneracy between the
optical depth τ and the amplitude As, since both parameters induce
a simple scaling of the amplitude. To circumvent this problem we
first run a likelihood analysis on the low multipoles 2 ≤ 
 < 100,
marginalizing over our full parameter set including μ0 and 	0. This
establishes a prior on τ , which we then use in our analysis of the
data, except in those cases where the low multipoles are included.
Despite the addition of modified gravity parameters, we find little
degradation in the constraint on τ compared to the standard WMAP7

Figure A1. Constraints on our modified gravity parameters μ0 and 	0 from
RSDs (green), weak lensing (red) and combined (blue) for a flat �CDM
background. A prior on H0 is included, but there is no additional information
from the CMB. The dashed contours represent the 68 and 95 per cent
confidence intervals, while the cross denotes the prediction of GR.

result which assumes GR. This is due to the unique signature left
by τ at the large scales of the CT E


 spectrum, which cannot be
replicated by the other parameters.

To illustrate the impact of removing the WMAP7 data, we present
in Fig. A1 the results for CFHTLenS +H0 in red, and WiggleZ +H0

in green. The substantial degradation in these contours highlights
the importance of including the high-
 data.
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