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ABSTRACT
This paper describes the definition of a typical next-generation space-based weak gravitational
lensing experiment. We first adopt a set of top-level science requirements from the literature,
based on the scale and depth of the galaxy sample, and the avoidance of systematic effects in
the measurements which would bias the derived shear values. We then identify and categorize
the contributing factors to the systematic effects, combining them with the correct weighting,
in such a way as to fit within the top-level requirements. We present techniques which permit
the performance to be evaluated and explore the limits at which the contributing factors can
be managed. Besides the modelling biases resulting from the use of weighted moments, the
main contributing factors are the reconstruction of the instrument point spread function, which
is derived from the stellar images on the image, and the correction of the charge transfer
inefficiency in the CCD detectors caused by radiation damage.

Key words: gravitational lensing: weak – methods: statistical – space vehicles: instruments –
cosmological parameters – cosmology: observations.

1 IN T RO D U C T I O N

In the current ‘Concordance Model’ of cosmology, approximately
three quarters of the energy density of the Universe consists of
dark energy, and one fifth of dark matter. If this model is correct,
the implications are significant, because the nature of both these
dark components is unknown. If some other explanation for the
appearance of the Universe is to be sought, then the implications
are also momentous for our current understanding of physics and
cosmology.

Dark energy is a relatively new entity in our understanding of
cosmology. It has been known since the 1920s that the typical sep-
aration between galaxies is growing with time – the Universe is
expanding. But it might be supposed that in a Universe made up of
only matter, this expansion is decelerating: the galaxies will move
apart at a decreasing rate owing to their mutual gravitational in-
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teraction. However, a little more than a decade ago, observations
comparing different distance measures for supernovae (Riess et al.
1998; Perlmutter et al. 1999) revealed that this is not the case, and
the expansion is in fact speeding up. The cause of this accelera-
tion is unseen, but has the characteristics of an extra energy density
in the Universe; hence we label the entity as ‘dark energy’. The
importance of dark energy can scarcely be exaggerated. Most im-
mediately, it represents the largest source of energy density in the
Universe, ∼75 per cent. It is expected to dominate the future dy-
namics of the Universe, so the origins and nature of the Universe
cannot be understood without some assessment of what dark energy
is and what its physical characteristics are.

The next most significant constituent of the Universe, dark matter,
exceeds the normal baryonic matter in a ratio of four or five to
one. As dark matter structures form under gravitational collapse,
baryonic matter follows. Hence, the dark matter drives the formation
and evolution of the structures we observe directly, because the
behaviour of stars, galaxies and gas depends on the underlying
gravitational potential created by it. While dark matter apparently
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interacts gravitationally in the same way that normal baryonic matter
does, it seems not to interact through the electromagnetic force.
Observations must therefore rely on inferring its presence through
the gravitational effect it has on light or baryonic matter, by which
means it has been inferred on a range of scales, galactic and larger.

That it is critical to achieve an understanding of the nature of
dark energy and of dark matter, and of the examining and testing
the alternative conceptual structures for the observed characteris-
tics of the Universe, has been recognized for some time. Summaries
are available in the Dark Energy Task Force and ESA/ESO reports
(Albrecht et al. 2006; Peacock et al. 2006), the ASTRONET Infras-
tructure Roadmap (Bode, Cruz & Molster 2009) and most recently
by the US Decadal Survey report (Blandford et al. 2010).

Initiatives are under way to further the accuracy and precision of
the observations in order to address these questions, using facili-
ties on ground (for example, BOSS – Schlegel, White & Eisenstein
2009; BigBOSS – Schlegel et al. 2011; KiDS – de Jong et al. 2012;
DES – DES Collaboration 2005, HSC,1 LSST – Tyson et al. 2003
and SKA – Blake et al. 2007) and in space (Euclid– Laureijs et al.
2011 and WFIRST – Green et al. 2012). These employ a combi-
nation of techniques, including weak gravitational lensing, galaxy
clustering (which incorporates baryonic acoustic oscillations) and
supernovae, among others, both to distinguish between possible
cosmologies and to ensure that systematic effects in the measure-
ments are identified and quantified at the required level of accuracy.
Control of systematic effects is critical. Because of the inherently
stable conditions that can be achieved, space missions provide the
best opportunities for controlling systematics, and payloads can be
designed also to include the capability to make observations using
several techniques.

Weak gravitational lensing uses statistical measurements of the
distortions of galaxy shapes to study the clustering of matter in the
Universe. Early studies were made by Wittman et al. (2000), van
Waerbeke et al. (2000), Mellier et al. (2000), Bacon, Réfrégier &
Ellis (2000) and Kaiser, Wilson & Luppino (2000). Reviews can be
found in Hoekstra & Jain (2008) and Munshi et al. (2008), while
more recent work includes that by Schrabback et al. (2010) and
Heymans et al. (2012). The rate at which the large-scale structure
has grown depends on the expansion rate of the Universe, so the
nature of the acceleration can be characterized by making these
shear measurements at different redshifts, looking back in time
(Hu 1999).

In this paper, we develop a framework by which weak lensing
measurements in particular can be realized in a space mission, and
its likely performance anticipated (many of these considerations ap-
ply also to ground-based weak lensing surveys). The formalism for
the critical systematic effects has been developed in a series of pa-
pers (Vale et al. 2004; Mandelbaum et al. 2005; Huterer et al. 2006;
Stabenau et al. 2007; Amara & Réfrégier 2007, 2008; Kitching,
Taylor & Heavens 2008a; Paulin-Henriksson et al. 2008; Amara,
Réfrégier & Paulin-Henriksson 2010) with the most contemporary
development given in Massey et al. (2013, hereafter MHK13), and
we use these here as a basis.

The work was carried out in the framework of the Euclid mission,2

under the auspices of the European Space Agency Cosmic Vision
programme. An overview of its capabilities can be found in the
Euclid Red Book (Laureijs et al. 2011; this a consolidated summary
of the mission at the end of the Definition Phase) and Amendola

1 http://anela.mtk.nao.ac.jp/hypersuprime/proposal/hs050626.pdf
2 http://www.euclid-ec.org

et al. (2012). With respect to its weak lensing capabilities, Euclid
can be considered an example of a next-generation cosmic shear
survey mission. Euclid is designed to carry out both weak lensing
and galaxy clustering cosmological measurements, using a payload
comprising a visible imager, with which the weak lensing mea-
surements are made, and a near-infrared spectrograph-imager. For
visible measurements, CCD detectors are the currently leading tech-
nology for large focal planes, and they are assumed for this paper.
However, the methodology by which we address the realization of a
successful experiment is general, and although we will sometimes
use Euclid as an example, the purpose of this paper is to set out the
applicable principles.

Section 2 of this paper sets the requirements and describes how
an allocation can be made to the main factors contributing to the
performance degradations. Section 3 briefly describes simulations
and data processing. How the weak lensing performances may be
evaluated is set out in Section 4.

2 SE T T I N G T H E R E QU I R E M E N T S

2.1 Mission driving parameters

The power of a weak lensing survey depends on five main factors:

(i) the size of the survey;
(ii) the limiting magnitude of the survey;
(iii) the size and shape of the instrument point spread function

(PSF);
(iv) how well this PSF is known and
(v) how well we can correct for the sources of systematics.

Parameters (i) and (ii) set the total number of galaxies that may
be available for the weak lensing shear measurements, and their
range in redshift. Hence, they set the maximum achievable statistical
precision. This drives the area of the sky that should be observed, and
consequently the field of view of the instrument, and the mission
duration. A wide survey is required to ensure the measurements
are representative of the observable Universe. A deeper limiting
magnitude, by providing increased signal-to-noise ratios on each
individual galaxy measurement, also determines the size of the
sample, and enables higher redshifts to be accessed. Given that
most of the cosmic acceleration has taken place in more recent
epochs, the emphasis of most lensing surveys is on galaxies with
redshifts z � 2 which makes them sensitive to structure at z ∼ 0.5–
1, halfway between source and observer. Mitigating the confusing
effects of intrinsic alignments between galaxies (resulting from the
flows of material during the formation of structure in the Universe)
also requires a sufficient survey depth (Joachimi & Bridle 2010).
Because the lensing signal is cumulative along a line of sight, the
more distant sources contain information about dark energy at low
redshift as well as the information about the growth of structure at
high redshift. More distant galaxies generally are, however, fainter
and smaller, which makes the measurement of their shear from the
weak gravitational lensing more difficult for a given instrumental
PSF. Measuring their redshift is, in addition, more difficult.

The depth of the survey drives the collecting aperture of the
telescope, its throughput, the width of the observational bandpass,
and the sensitivity of the detectors. Achieving a desirable size and
shape of the PSF drives all of these contributors: a larger telescope
reduces the size of the PSF, the optical design drives its shape, the
stability of the satellite pointing modifies the PSF and the need for
adequate sampling of the PSF drives the detector pixellization to be
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small. This, in combination with the need for a large field of view,
requires a large detector matrix.

The overall ‘system’ PSF is a combination of PSFs produced by
the optical system, satellite pointing stability, detector pixellization
and detector effects. The detector effects arise as a result of the phys-
ical realization of the detectors (for example, charge spreading in
the pixel grid) and because of damage effects in space, particularly
radiation damage (Holland et al. 1990). The first three contributions
to the total PSF can be modelled by convolutions, while the fourth,
generated by the detector, generally has a combination of charac-
teristics, only some of which can be modelled by a convolution.

Limitations on the number of detector pixels may drive the ob-
serving strategy, for example, requiring multiple exposures to re-
cover spatial resolution from undersampled images (Section 4.2.1).
This also has the benefits of allowing cosmic rays to be detected and
removed in the data processing. If there are small displacements
between the different exposures, then additionally, the impact of
cosmetic defects in the detectors can be minimized, and the gaps
between the individual detectors can be filled in. Because of the
detector gaps, some galaxies will have more exposures than others,
and the effect of this on the best-fitting cosmological parameters
requires evaluation. With somewhat larger displacements, perhaps
up to half of a detector, a further benefit is obtained in that the ra-
diation damage effects (Section 3.5), which increase with distance
from the CCD readout node, are formally separable from the cos-
mic shear. Typically, therefore, more than one exposure is taken of
each field, and these will be combined to reach the depth required
for the survey. The multiple exposures, however, impact operational
considerations negatively, require more fuel for the spacecraft re-
pointing and require more telemetry bandwidth.

For a typical advanced weak lensing survey (such as that dis-
cussed in Laureijs et al. 2011), ∼2π sr will be covered to a depth
AB ∼25 at 10σ , yielding ∼30 galaxies arcmin−2 with suitable char-
acteristics for the survey – a total exceeding 109 galaxies. The survey
will generally be limited to Galactic latitudes |l| � 30◦, and will
concentrate at least initially on regions furthest from the ecliptic
plane, in order to minimize the Zodiacal background light. The pat-
tern with which the fields are exposed will generally be constrained
in order to maintain stable conditions within the payload.

The survey and instrumentation must also be planned to minimize
the systematic biases in the weak lensing measurements. Factors (iii)
and (iv) strongly impact these systematic biases, and therefore on
the accuracy (as opposed to the precision) of the measurements. The
size and shape of the PSF influence which fraction of the observed
galaxies may be useful for shear measurements. The PSF blurs
images: the shape of galaxies with smaller sizes relative to the PSF
will be measurable with reduced accuracy and hence smaller PSFs
are desirable. For a given encircled energy width, a PSF with broad
wings and narrow core will have a different effect on the shape
measurement from one with narrower wings and a broader core. In
addition, the detection limit of the survey will depend on the PSF,
which influences the sample to some extent.

Within these general constraints, the typical PSFs normally
achieved with standard astronomical instrumentation in space-borne
observatories will be acceptable (and certainly smaller and more
stable than through a turbulent atmosphere). The particular and
stringent aspect of the weak lensing measurements is contained in
the fourth and fifth main factors: the knowledge of this PSF, and
how the biases can be corrected. The ultimate power of the weak
lensing measurements will depend on the level with which the PSF
is known, and future generation weak lensing surveys such as those
considered in MHK13 require this to be known to an unprecedented

level of accuracy. Included in this knowledge is the way the PSF
will change with time, with position on the focal plane and with
source galaxy characteristics.

MHK13 provides the top-level context for this investigation,
while this paper provides a more detailed examination of the mul-
tiple contributing effects for each bias, and how they might be
combined in a practical experiment.

2.2 Quantifying the biases

In a typical future generation weak lensing survey from space (for
example, Laureijs et al. 2011), with observations of >109 galaxies,
the errors on the linearly varying dark energy equation of state
(Chevallier & Polarski 2001; Linder 2003) w(z) = wp + wa(z −
zp)/[(1 + zp)(1 + z)] are wp � 0.05 and wa � 0.2, to give a figure
of merit (FoM) 1/[�wp�wa] � 100 from lensing only (zp is the
redshift at which the error on w(z) minimizes).3 As the precision
increases as a result of combining such large samples of galaxies, the
control of the systematic effects becomes more and more important.

Effective control of the systematic effects requires first an under-
standing of what effects may be present, and how they combine with
each other to introduce biases. Then it is important to understand
how significant each effect may be in the overall performance. Some
effects can be minimized by better design of the instrument and sur-
vey, and by better calibrations, others by alternative approaches in
the data processing and analysis. Each of these carries implications
for the viability of the experiment and for the cost and duration of
the mission. For example, improved control of some biases may be
achieved through newer technologies which carry more risk. Al-
ternatively, more conventional technologies could be used and the
gains sought in the data analysis algorithms.

In this section, we first summarize how the biases affect the de-
rived cosmological parameters. Then, we identify the factors which
contribute to these biases and quantify their relative importance.
Each factor generally has contributions from other sources. We
organize these into a structure which allow the effect of each to
be assessed; this attempts also to clarify the relationships of the
contributing factors. In respect of each lowest level factor, an ini-
tial analysis may suggest that a certain level of knowledge can be
reached, but these may require revision in order to remain below
the permitted total bias, which will lead to further more detailed
analyses. The purpose of this section is not to identify the values
of the factors for any particular experiment, but to rather illustrate
a structure by which the performance of an experiment in terms of
the control of systematic effects can be assessed, and the effects
of changes in any aspect can be propagated to the top level. This
allows the optimization of the experiment to be achieved.

The procedure for quantifying the biases is as follows. MHK13
and references therein consider that the true shear γ of a galaxy will
differ from that actually measured, γ̂ , by additive and multiplicative
biases c and m (in the survey, instrument and measurement process)
as

γ̂ = (1 + m)γ + c. (1)

3 It should be recalled that the FoM is only one of the measures used for the
effectiveness of dark energy investigations and the linear parametrization
in w also is limiting. The form of the structure growth factor (Laureijs
et al. 2011) and other measures to be tested for the cosmology are also
relevant. However, the FoM is a standard generally used for the comparison
of surveys.
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The two-point ellipticity correlation function is

ξij (θ ) ≡
∑
A,B

γ A
i γ B

j (θ ) = 〈
γ A

i γ B
j

〉
(θ )

, (2)

where θ is the angular scale and i, j refer to redshift bin pairs
averaged over all pairs of galaxies A, B. This can be used (Hu
1999) to constrain a set of cosmological parameters usually through
the corresponding Fourier transform power spectrum Cij(�) in the
spherical harmonic � ≡ 2π/θ . As a consequence of the biases c and
m in equation (1), Cij(�) will be modified (Kitching et al. 2012) by
additive A and multiplicative M biases into an observed

̂Cij (�) = (1 + M(�))Cij (�) + A(�). (3)

Kitching et al. (2012) and MHK13 find that

A(�) = 〈c〉2
(�) usually written σ 2[|c|]

M(�) = 2 〈m〉(�) + 〈m〉2
(�) , (4)

where the angular brackets 〈 〉(�) are the Fourier transform of the
ensemble average in real space over galaxy pairs separated by angle
θ in equation (2):

〈f 〉(�) =
∫

〈f 〉(θ ) ei�θ dθ. (5)

The subscripts are usually suppressed for brevity. We will include
them here explicitly to ensure clarity.

Non-zero A and M lead to a bias in the maximum likelihood
values of measured cosmological parameters (see MHK13) and
a decrease in the FoM (through an increase in the covariance).
As noted above, the contributors to σ [|c|] and m must be derived
through a careful process of identifying all of the biases, including
the imperfections in the galaxy modelling and other effects.

We adopt the formulation in section 3.3 of MHK13, based on that
in Paulin-Henriksson et al. (2008), Paulin-Henriksson, Réfrégier &
Amara (2009):

A(�) = 1

P 2
γ P 2

RP 2
εC

〈
R4

C

R4
gal

〉
σ 2[|εC |]

+ 1

P 2
γ P 2

εNC

〈
1 + 2

PR

R2
C

R2
gal

+ 1

P 2
R

R4
C

R4
gal

〉
σ 2[|εNC |]

+ 〈|εC |2〉
P 2

γ P 2
RP 2

εC

〈
R4

C

R4
gal

〉 (〈
δ(R2

C
)
〉2〈

R4
C

〉 + σ 2[R2
C
]

R4
C

)

+ 4
〈|εC |2〉

P 2
γ P 2

RP 2
εC

〈
R4

C

R4
gal

〉 (〈
δ(RNC )

〉2〈
R2

NC

〉 + σ 2[RNC ]

R2
NC

)

+ 〈|εC |2〉
P 2

γ P 2
RP 2

εC

〈
R4

C

R4
gal

〉
α2, (6)

where

α2 =
〈
δ(R2

obs)
〉2〈

R4
obs

〉
+

〈
R4

gal

R4
C

〉 〈(
PRR2

gal

PRR2
gal + R2

C

)2〉 〈δPR〉2〈
P 2

R

〉 (7)

and then also

M(�) = 2

PR

〈
R2

C

R2
gal

〉 ⎧⎨⎩
〈
δ(R2

C
)
〉〈

R2
C

〉 + 2

〈
δRNC

〉
〈Robs〉

⎫⎬⎭
+ 1

P 2
R

〈
R4

C

R4
gal

〉 ⎧⎨⎩σ 2[R2
C
]

〈R4
C
〉 + 4

σ 2[RNC ]

〈R2
obs〉

⎫⎬⎭
+ 2

PR

〈
R2

C

R2
gal

〉
μ, (8)

where

μ = −
〈

δ(R2
obs)

Robs(Robs − RNC )

〉

− PR

〈
R2

gal

R2
C

〉 {〈
δPγ

Pγ

〉
+

〈
R2

gal

PRR2
gal + R2

C

δPR

PR

〉}
. (9)

R refers to the size of the PSF or galaxy image and the ε to
the polarization, generally referred to as the ‘ellipticity’, defined
in terms of the unweighted second-order moments in the image
of the galaxy (Bonnet & Mellier 1995; Seitz & Schneider 1995).
Explicitly, for a PSF �(xi, xj) and a weight function w(xi, xj) these
moments are

Qij =
∫∫

�(xi, xj )w(xi, xj )(xi − x̄i)(xj − x̄j )dxidxj∫∫
�(xi, xj )w(xi, xj )dxidxj

. (10)

Then, size

R2 = Q11 + Q22 (11)

and, ellipticity

ε = [ε1, ε2] =
[

Q11 − Q22

R2
,
Q12 + Q21

R2

]
;

|ε| =
√

ε2
1 + ε2

2 . (12)

Returning to equations (6) and (8), the subscript C refers to those
components of the PSF which can be combined by convolution, and
NC to those that cannot. MHK13 use the subscript PSF rather than
C, but we use C to distinguish the convolutive part of the system
PSF clearly, and as a reminder that we consider the term PSF here
to refer to the end-to-end system PSF. The system PSF properties
change with wavelength, the spectral energy distribution (SED) f (λ)
and the transmission as a function of wavelength T(λ). Taking into
consideration the integrated flux in the band of measurement, the
size and ellipticity of the convolutive components of the PSF are
given by

R2
C

= 1

ftot

∫
dλT (λ)λf (λ)R2

C
(λ) (13)

and

εC = 1

ftot

∫
dλT (λ)λf (λ)εC (λ), (14)

where ftot = ∫
dλT (λ)λf (λ) is the total number of photons. Note

the extra factor λ converts from energy to photons.
Rgal and Robs refer to the original and observed size of the galaxy,

relating as (MHK13)

Robs ≡
√

(R2
gal + R2

C
) + RNC . (15)
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The ‘shear polarizability’

Pγ = 2 − 〈|ε2|〉 (16)

relates the ellipticity to the shear in the galaxy image caused by the
weak lensing, and, although to some extent dependent on the galaxy
sample and wavelength range used for the survey, when aggregated
over galaxy samples out to z > 2 is found to be approximately a
constant factor 1.86 (Leauthaud et al. 2007).

The quantities PR, PεC and PεNC are compensations for the ne-
cessity of using weighted quadrupole measurements rather than the
unweighted moments that would be ideal in theory (see MHK13 for
details). The weighting function w(xi, xj) is introduced inside the
integrals in equation (10) to control the increasing noise fraction
as the integration moves outwards from the centre of the galaxy or
star image. Indeed, the use of weighted moments is the origin of the
additional α2 and μ terms in equations (6) and (8) by comparison
with equation (4). We define

R2
unweighted = PRR2

weighted

εunweightedC = PεCεweightedC

εunweightedNC = PεNCεweightedNC. (17)

In general PεC and PεNC � 1 while PR is larger (in the Euclid case,
PR � 2).

In equations (6) and (8), 〈|δ|2〉 terms have been decomposed into
a systematic bias of a model value away from the truth 〈δ〉2, and
uncertainties σ 2 in this. To elaborate this important point, many bi-
ases in the measurements will be corrected by detailed modelling:
an example may be the change in the size of the PSF resulting from
out-of-band leakage, which may be calculated from the measured
characteristics of the bandpass and the SED of the particular source.
This model calculation will not, of course, produce exactly the true
value. From uncertainties in the inputs to the modelling (in the
example above this might include the uncertainties in the transmis-
sion at each wavelength), and inadequacies in the physical model
(again in this example, this might arise from codes used to predict
a stellar spectrum), the modelling will produce a slightly incorrect
prediction 〈δ〉, and an associated uncertainty on this prediction σ .

We can write equations (6) and (8) as follows:

A(�) = a1

(〈
δεC

〉2 + σ 2
[|εC |])

+ a2

(〈
δεNC

〉2 + σ 2
[|εNC |])

+ a3

(〈
δ(R2

C
)
〉2〈

R4
C

〉 + σ 2[R2
C
]

R4
C

)

+ a4

(〈
δ(RNC )

〉2〈
R2

NC

〉 + σ 2[RNC ]

R2
NC

)

+ a5

(〈δ(α)〉2 + σ 2[α]
)

(18)

and

M(�) = m1

〈
δ(R2

C
)
〉〈

R2
C

〉
+ m2

〈
δ(RNC )

〉〈
RNC

〉
+ m3

σ 2[R2
C
]

R4
C

+ m4
σ 2[RNC ]

R2
NC

+ m5 (〈δ(μ)〉 + σ [μ]) . (19)

To reiterate, the last terms of equations (6) and (8) relate to
the modelling error for the galaxies resulting from the fact that
weighted, rather than unweighted quadrupole moments are used in
practice. We have swept up all of the additive galaxy modelling
errors in equation (6) into a model error α, split into bias and
knowledge errors 〈δ(α)〉2 and σ 2[α]. We have done the same for the
multiplicative errors in equation (8), with the model error μ split
into 〈δ(μ)〉 and σ [μ], so that〈
α2

〉 → 〈δ(α)〉2 + σ 2[α]

and

〈μ〉 → 〈δ(μ)〉 + σ [μ]. (20)

In practice, the σ terms in equation (20) can be reduced to insignif-
icant levels by ever-larger simulations, but these are ineffective in
correcting for the δ terms. Hence, we will ignore the σ 2[α] and
σ [μ] terms in carrying forward any allocations for imperfections in
the modelling.

Also, we should note at this point that the first term in equation
(9)〈

δPγ

Pγ

〉
→ 0

for a sufficiently large survey. The third term captures the error
which will arise from the use of the weighting function in the
quadrupole moment integral (equation 10) as a result of the absence
of perfect knowledge of higher order multipoles, while the second
term is a knowledge error arising from imperfect measurements,
and hence is dependent on signal-to-noise ratios.

Note also that equation (18) differs slightly from equation (6)
to the extent that we introduce δ terms in the first two lines. This
accommodates the biases that will, in practice, occur in a weak
lensing experiment which employs the use of bright stars to define
the PSF used for faint galaxies, with the associated non-linearity
and wavelength mismatching.

So, equations (18) and (19) contain terms for knowledge bias 〈δ〉2

and knowledge uncertainties σ 2 in the following categories: con-
volutive, and non-convolutive errors in the PSF sizes; convolutive,
and non-convolutive errors in the ellipticities; and bias errors α and
μ on the transformation from ellipticity to shear resulting from the
fact that we use weighted moments of the PSF. The coefficients ai

and mi are now seen to be weighting factors, whose values depend
on the characteristics of the instrument and the galaxies being mea-
sured. Equations (18) and (19) provide the prescription by which
these contributing effects can be combined.

We are now in a position to quantify the impact on the cosmology
from systematic effects in the weak lensing measurements given
the knowledge biases 〈δ〉, knowledge uncertainties σ and weighting
functions ai and mi.

2.3 Quantifying requirements

To simplify the requirements for a practical experiment, and to make
them less dependent on the assumption of a cosmological model,
we will integrate over the range of spatial scales of interest taking
into account the density of the sampling of the modes available from
the survey to recover the discrete nature of the summation over the
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modes sampled by it. Under the assumption of isotropy, an integral
over two dimensional spatial scales reduces to a single dimension,
�, as∫

�(� + 1)ρsurvey2π�d�. (21)

The sampling is set by the largest angular scale �θ in the survey,
and this gives the density of modes ρsurvey = (�θ/2π)2. Factors of
2π partially cancel. The factor �θ2 is effectively the solid angle for
the survey and is by convention subsumed into the definition of the
Cij(�) (see for example Kitching, Heavens & Miller 2011, equation
A6) and therefore all of the following is conditional on the assumed
area of the fiducial survey. We then construct integrated quantities
over �2d ln � because

1

2π

∫
�2(� + 1)d� � 1

2π

∫
�3d� → 1

2π

∫
�2d ln �.

Using this formalism, we redefine (again) the angular brackets
〈 〉 as expectation values over such integrals, for example

〈f 〉(
∫
�) = 1

2π

∫
〈f 〉(�) �

2d ln �. (22)

Then, the integrals of each of the terms on the right-hand sides of
the requirements equations (i.e. equations 6 to 9) will contribute to
an integral over the systematic contribution of the power spectrum
̂Cij (�) − Cij (�) (equation 3). And now we also need to integrate
the left-hand side of the �-dependent equations consistently. For the
additive term (setting M(�) = 0), this gives

1

Nij

∑
ij

1

2π

∫
[̂Cij (�) − Cij (�)]�2d ln �

= 1

Nij

∑
ij

1

2π

∫
A(�)�2d ln �

≡ 1

Nij

∑
ij

A′, (23)

where Nij is the number of redshift bin pairs ij. Similarly, for the
multiplicative term (setting A(�) = 0):

1

Nij

∑
ij

1

2π

∫
[̂Cij (�) − Cij (�)]�2d ln �

= 1

Nij

∑
ij

1

2π

∫
M(�)Cij (�)�2d ln �

≡ 1

Nij

∑
ij

M′. (24)

The next step is to assign values for A and M by which the
impact on ̂Ci,j (�) (equation 3) remains within acceptable values.
From the definition of Ā in MHK13, but considering it per redshift
bin, we see that

A′ = Ā 1

2π

∫
�2d ln � ≤ 2.6 × 10−7, (25)

where the requirement on Ā from MHK13 of 1.8 × 10−12 has been
multiplied by its denominator

∫
�2d ln �/2π which has a value of

1.43 × 105 for the range 10 ≤ � ≤ 5000, a fiducial survey of 15 000
square degrees and 30 galaxies per square arcminute. This is per
redshift bin pair, and there are 55 power spectra used in setting the
requirements in MHK13; an integrated requirement over all power

spectra would further multiply the above value by 55. Next, from
MHK13

M̄ =
1

2π

∫ M(�)�2d ln �
1

2π

∫
�2d ln �

where again we consider it per redshift bin pair. Consequently
(MHK13 appendix B)

M′ = 1

2π

∫
M(�)C(�)�2d ln � � M̄ 1

2π

∫
C(�)�2d ln �. (26)

Substituting, the mean-weighted power spectrum C̄

C̄ =
∫

C(�)�2d ln �∫
�2d ln �

, (27)

then

M′ = M̄C̄
1

2π

∫
�2d ln � � 1.4 × 10−2, (28)

where the requirement on M̄ of 4.0 × 10−3 from MHK13 has
been multiplied by C̄

∫
�2d ln �/2π � 3.58 (this value is somewhat

cosmology dependent) for the range 10 ≤ � ≤ 5000.4

MHK13 calculated these requirements over scales 10 ≤ � ≤ 5000
in order to avoid non-linear scales that may be potentially difficult
to model as a result of non-linear effects (e.g. Smith et al. 2003) or
baryon feedback (e.g. Semboloni et al. 2013). This is the main factor
in the relaxation of the requirement values in MHK13 compared to
those in the previous analyses by Amara & Réfrégier (2008) and
Kitching et al. (2008a), which extended to � ≤ 20 000. In order
to allow for a future potential increase of scope in the use of the
non-linear modes, in this paper we will retain the more stringent
requirements of A′ ≤ 1 × 10−7 and M′ ≤ 4 × 10−3 from Amara
& Réfrégier (2008) and Kitching et al. (2008a), respectively.

In a practical experiment, we will be working with angular mea-
sures θ rather than the Fourier transform variable �. We therefore
take the Fourier transform of both sides of equations (6)–(9) in-
tegrated over � (equations 23 and 24), replacing A′ and M′ with
A and M to indicate this. In the interests of clarity, we retain the
notation on the right-hand side of these equations, noting that now
these values are effectively integrated over θ and that they still relate
redshift pairs (ij) (equation 2). Angular brackets now refer to the
Fourier transforms in equations (23) and (24) which are constants:

〈f 〉F(
∫
�) = 1

2π

∫
〈f 〉(

∫
�) e−i�θ d� = 〈f 〉(

∫
�)

2π

∫
e−i�θ d�

= 〈f 〉(
∫
�) . (30)

4 Alternatively, adapting the definition ofM̄ from MHK13 so that it includes
Cij(�):

M̄ =
∫ M(�)C(�)�2d ln �∫

C(�)�2d ln �
,

where again we consider M̄ per redshift bin pair. Then,

M′ = M̄ 1

2π

∫
C(�)�2d ln � � 1.4 × 10−1, (29)

where the requirement on M̄ of 3.9 × 10−2 (recalculated for this definition
of M̄ as in MHK13) has been multiplied by

∫
C(�)�2d ln �/2π � 3.58 for

the range 10 ≤ � ≤ 5000. Note that this is a factor of 10 larger than the
calculation in equation (29). Comparing to the GREAT10 results, as is done
in MHK13 section 5.1, these updates result in previous statements on the
performance of methods relative to the requirement to be improved by a
factor of 10 in the case of M. In GREAT10 the best methods achieved
Ā = 7.4 × 10−11 and M̄ = 5.6 × 10−3 at S/N = 10.
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Hence, the values used for the requirements in equation (31) are
unaffected, and now refer equally also to A and M. We will therefore
use

A′ = A ≤ 10−7 ⇒ σ 2[|c|] ≤ 10−7

M′ = M ≤ 4.0 × 10−3 ⇒ 2 〈m〉 � 4.0 × 10−3. (31)

2.4 A hierarchical structure by which systematic effects
may be identified, evaluated and controlled

We start by identifying lower level contributing factors which might
contribute to the knowledge biases and uncertainties. These may be
grouped into categories, such as the imperfect knowledge of the
source characteristics, calibration errors, residual effects in correct-
ing for detector effects and the imperfect modelling of the PSF itself.
Some categories will pertain to the instrument design and others to
the data processing. In order to minimize the interconnectedness
of the different factors, and hence to maximize the visibility and
control of the bias effects introduced by each, some thought is re-
quired as to this categorization of factors, and to the organizational
hierarchy relating the categories.

Within each of these categories there are several factors to be
considered: for example, within the PSF modelling there are fun-
damental imperfections of the model, and then inaccuracies in the
parameters derived for the model resulting from photon statistics
and pixelization effects (which need to take account of multiple
exposures, if these are used). In the category of calibrations, an
example may be imperfect subtraction of the electronic reference
level, an allowance for the effect of imperfect identification of cos-
mic rays and so on. In the category of detector effects, an example
may be the imperfect correction for radiation damage effects or
detection chain non-linearity. This process must be continued to
lower levels: in the last example, the further contributing factors
may include the output node linearity of the CCD, the linearity of
the analogue electronics associated with that node, the characteris-
tics of the analogue-to-digital conversion and so on. In addition, it
may be necessary to consider the stability of these different parts,
and the accuracy with which any factor can be established – this is
also connected to the calibrations.

As the level of accuracy required from the experiment increases,
more and more factors must be considered, each of which will
contribute to a degradation in performance. At some level, however,
the factors become negligible, or can be made so by design or
through operational strategies. For example, the flat fielding of the
detector can be made unimportant by combining a large number
of flat-field calibration exposures. In practice, these less significant
effects may not be fully evaluated, at least in the early stages of a
programme.

We must now quantify the weighting functions ai and mi. The first
thing to notice is that we will want to calculate these in real space,
because directly measured values will be used for Rgal, RC , etc. To
relate these to the limits derived in Fourier space, the simple scal-
ing from A′ → A = σ 2[|c|] and M′ → M = 2 〈m〉 using equation
(31) is used. The ai weighting functions will remain unchanged,
while the mi can simply be halved. We will therefore make this
adjustment, and from this point work in real space, using primes to
designate the real space a′

i = ai and m′
i = mi/2.

If we assume a limiting magnitude mAB = 24.5, then we can
adopt Rgal = 0.20 arcsec (MHK13). The value for RC and RNC

will depend on the experiment: here we will use RC = 0.22 and
RNC = 0.05 arcsec as in the Euclid mission. Then, Rgal/RC = 0.91
and Robs/RC = 1.6. If we further set |εC | < 0.1, which is gen-

erally achievable in practice, then 〈|εC |2〉1/2 < 0.1. We will use
〈|εC |2〉1/2 = 0.1 and fix Pγ = 1.86, PR = 2.0 and PεC = PεNC = 1.0.
We can now calculate the ai and mi:

a′
1 = 1

P 2
γ P 2

RP 2
εC

〈
R4

C

R4
gal

〉
= 0.10

a′
2 = 1

P 2
γ P 2

εNC

〈
1 + 2

PR

R2
C

R2
gal

+ 1

P 2
R

R4
C

R4
gal

〉
= 0.74

a′
3 = 〈|εC |2〉

P 2
γ P 2

RP 2
εC

〈
R4

C

R4
gal

〉
= 1.0 × 10−3

a′
4 = 4a′

3 = 4.2 × 10−3

a′
5 = a′

3 = 1.0 × 10−3

and

m′
1 = 1

PR

〈
R2

C

R2
gal

〉
= 0.60

m′
2 = 2

PR

〈
R2

C

R2
gal

〉 〈
RNC

Robs

〉
= 0.17

m′
3 = m′2

1 /4 = 9.0 × 10−2

m′
4 = m′2

2 /4 = 7.5 × 10−3

m′
5 = m′

1 = 0.60.

It is evident that the dominant weighting factors to σ [|c|] are a′
1 and

a′
2, and these act through the PSF ellipticity. The lower values of a′

3
and a′

4 allow the knowledge error of the PSF size to be more relaxed
than the knowledge error of the ellipticity. For 〈m〉, m′

1, acting
through the PSF size, and m′

5 are dominant, with a contribution
from m′

2. Hence, for the additive bias, the ellipticity error will need
the closest attention, while for the multiplicative bias, the size is
more important.

Having identified contributing factors and a way of organizing
them, together with their combinatorial rules and weightings, val-
ues must now be assigned to these terms in equations (18) and
(19) in order to quantify their effects and to identify which are
the more significant. Initially, any values can be assigned in order
to verify the combinatorial rules in the hierarchical structure. The
next step is then to include reasonable values for the factors. Many
different considerations will bear on the values adopted for each fac-
tor, including the mission and instrument design, cost, calibration
strategies, data analysis techniques, risk, organizational resources
and many others. Once an approach is identified, the factor values
will typically be established though calculations and simulations. In
some cases, the tools may not be available to realize a value directly
and a judgement must be made on the basis of experience as to what
reasonable allocations should be made for each factor, until at some
later stage the value can be established more quantitatively. These
calculations may indicate that some factors have disproportionate
effects, while others are easily realized. This generally leads to a
rebalancing with measures introduced to address the disproportion-
ate effects (for example, by a change in the technology used) and
to simplify the approach in respect of those factors that are easily
realized, until a viable functioning point is achieved.

In order to illustrate this process with an example, we have pro-
vided a hierarchical structure in Table 1. This identifies how the
terms in equations (18) and (19) could be related to a model of
instrumental or data-processing biases and uncertainties. Table 1
contains numerical factors for most of the categories (we provide
example values from the Euclid case).
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Table 1. Potential contributors to the knowledge error terms in equations (18) and (19). Where the allocations are preceded by Q
they are added quadratically to generate the next level up and where they are preceded by L they are added linearly. In the higher
levels (if there are no Q or L designators) they are weighted as in equations (18), (19), (32) and (33) to provide final values for√A′ and M′/2. See the text for details. Certain entries contain references to figures in later sections, where there is an evaluation
of their feasibility.

There are three broad categories in Table 1 reflecting those in
equations (18) and (19): convolutive contributions, non-convolutive
contributions and model bias knowledge, with a final direct contri-
bution of the residual spatial distortion. Horizontal lines indicate
that there is no allocation in this category in this example, though in

general an allocation should be made. Their indentation in the table
indicates the organization of the contributing terms. The penulti-
mate of the broad categories contains the allocations within α and
μ of method errors, reflecting the final lines in equations (18) and
(19). However, we have not included bias error allocations σ 2[α]
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and σ [μ] as these can be minimized by simulations. The simulations
will not reflect reality at some level, so there are residual knowl-
edge biases, the remaining terms 〈δ(α)〉2 and 〈δ(μ)〉, for which an
allocation is assigned.

It is easiest to follow the combination rules in Table 1 by starting
from the rightmost values. In the absence of any other information,
the factors can be combined to calculate the next value in the hier-
archy: quadratically if they are independent, or linearly if they are
not. They have therefore been prefixed with a Q or an L. Moving
leftwards, eventually the combinations will lead to a row labelled
as a δ or a σ , depending on whether categories of knowledge bias or
knowledge uncertainty have been combined. Now these knowledge
errors must be combined with the weighting factors a′

i and m′
i in

equations (18) and (19), so the σ and δ values are multiplied by
their corresponding a′

i and m′
i to produce the values in the second

column. These are then added, as prescribed in equations (18) and
(19), together with the residual distortion after correction factor, to
provide the final values for σ [|c|] and 〈m〉. Note that because the
values are in real space, the total multiplicative bias is halved in
converting from 〈m〉 to M′, as prescribed by equation (31), and
also that because the table propagates σ rather than σ 2, due regard
is required in calculating A′.

We will evaluate the values in Table 1 in the subsequent sections
of this paper to examine whether they are reasonable to use as
a basis for the knowledge bias and knowledge uncertainties that
may be achievable in a practical experiment. The values assigned
to the different factors will be different for different experiments,
and we emphasize that the purpose of Table 1 is not directly to
prescribe any values in particular, nor primarily to justify the values
used, but rather to provide a conceptual structure for a weak lensing
experiment in space.

2.5 Absolute characteristics of the PSF and further
breakdown within subsystems

Recall that the PSF characteristics [factor (iii) in the discussion in
Section 2.1] must be suitable. In particular, this applies to the PSF
size in R2 terms, and its ellipticity ε. In addition to R, F, the full width
half-maximum (FWHM) is also often used to provide an additional
constraint on the PSF, specifying the width of its core. This is
primarily to guard against PSFs which might be problematic in some
characteristics while nevertheless conforming with the requirement
on R (for example annular PSFs, resulting from an out-of-focus
condition). The PSFs can be evaluated using standard procedures
to examine whether they meet the requirements. The only non-
standard component in the breakdown is the contribution of the
detector radiation damage effects to size and ellipticity, as these are
not generally rendered in size and ellipticity terms. However, they
can be calculated using equations (10)–(12).

When further breaking down contributions within the system, for
example, to constrain the individual contributors of different sub-
systems within the experiment to the overall system PSF, care is
required in their combination. In particular, the ellipticities must be
weighted taking into account the values of the FWHM Fi for that
particular contribution to the PSF: this is because a contributing fac-
tor may be intrinsically strongly elliptical, but with small associated
Fi it will be relatively unimportant. A reasonable approximation by
which to combine the ellipticities is as

εtot =
∑

i

(
F 2

i /F 2
tot

)
εi (34)

for the terms that can be represented by a convolution and

εtot =
∑

j

εj (35)

for those that cannot. The knowledge residuals in Table 1 should be
similarly combined

σ 2[εtot] =
∑

i

(
F 2

i /F 2
total

)2
σ 2[εi] (36)

for the terms that can be represented by a convolution and

σ 2[εtot] =
∑

j

σ 2[εj ] (37)

for those that cannot. While all εi in equations (34) and (35) have
equivalent Fi categories, this may not be the case for the σ [εi]
ellipticity knowledge residuals in equations (36) and (37). In this
case, an appropriate mapping must be assigned, possibly through
experience.

2.6 Recapitulation

To recap, the area covered by the survey, and its limiting magnitude,
together with the overall characteristics of the PSF, will set the num-
ber of galaxies that can be used for the weak lensing measurements.
This will provide a level of random error. In order to achieve a sys-
tematic error which is some moderate fraction of this random error
set by the Poisson noise, a requirement then arises for the control
of systematic effects. This can be apportioned between additive and
multiplicative effects, the impact of each of which depends on lower
level uncertainties – the weighted individual knowledge bias 〈δ〉 and
knowledge uncertainties σ of the convolutive, non-convolutive and
model error size and ellipticity.

For the practical experiment, an evaluation must be carried out
for these individual component factors, to establish whether they are
achievable using techniques at hand, or from reasonable projections
of what techniques may become available in the timeframe of the
mission. The most significant factors must be quantified through
an appropriately detailed assessment, for which Table 1 may be
used as a starting point. The evaluation is likely to entail large-scale
simulations and evaluations. These will establish whether the value
assigned to the different factors can be reached in any concrete
design or procedure. If not, the values can be adjusted to relax the
constraint on any one contributing factor, but then others must be
tightened accordingly, in order to remain within the required levels
of A′ and M′. In this way, a balance may or may not be achieved,
depending on the characteristics of the mission, with implications
for its feasibility.

So far we have provided the rationale by which the systematic
biases can be identified, organized and their combined effects eval-
uated, and provided an example hierarchical structure in Table 1.
Table 1 contains example numerical values for the different factors,
derived from the Euclid programme. We will examine in Section 4
and beyond some of the methods by which these values can be
calculated, with the aim of illustrating the process, rather than pro-
viding a justification for any particular case. To do this, we first
need to create simulated data, and process these in a representative
manner, so we discuss briefly how these may be done, concentrating
on aspects of particular importance to a weak lensing experiment.
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3 SI M U L ATI O N S A N D DATA P RO C E S S I N G

3.1 Procedure

To quantify the impact of biases, we must create simulated data
with the appropriate level of fidelity, incorporating information from
laboratory and prototype tests. The simulations typically proceed
as follows.

(i) The telescope optical model is used to produce many differ-
ent instances of the optical PSF at different locations on the field
of view and at different wavelengths (to explore the wavelength de-
pendence). The PSFs should be supersampled by a sufficient factor
compared to the detector grid. The imperfections in the alignments
of the optical elements and also the manufacturing errors for the
optical elements are generally included via perturbations to the op-
tical model: these can be generated by Monte Carlo sampling over
the likely range of the misalignments and manufacturing errors. For
part of the field of view, a finer sampling of field-of-view points
may be used to explore variations on smaller spatial scales until no
further variation is found. The aim is to sample the instrument states
and the spatial and spectral variation of the PSF at many points on
the field of view in a representative fashion.

(ii) Photons incident on a pixel will generally be recorded in that
pixel, but there is a finite possibility that they will be recorded in
an adjacent pixel owing to charge spreading within the CCD. This
effect is characterized from laboratory measurements as a function
of wavelength, using an optical spot which is as small a fraction of
the pixel size as possible. The charge spreading is then added as a
convolution to the PSF for each wavelength.

(iii) The pointing of the satellite will not be completely stable,
blurring the PSF slightly. A sequence of optical PSFs are displaced
slightly in the focal plane according to a time series of simulated
pointings from the satellite attitude control system, and then inte-
grated over the exposure duration. This completes the generation of
the system PSF at any point in the field of view, for any particular
pointing displacement time series and for each wavelength.

(iv) These system PSFs represent stellar images, and they are
then pixelized on to the detector grid with the appropriate intensity,
spectral and positional distribution according to real-sky data (or an
appropriate Galactic model) and the expected instrumental through-
put. If real-sky data are used for the simulations, then the optical
distortion map should be applied, and the star positions displaced
to take account of the individual CCD positions and rotations in the
focal plane (as derived from simulations or engineering measure-
ments).

(v) Galaxy images are produced using galaxy models, or from
real data from deep field observations, and then scaled and rotated
individually and with a number distribution consistent with ob-
served number counts. Weak lensing shears are also added at this
stage if required. Each image is convolved with the system PSF de-
rived from the steps above, again taking account of the instrument
throughput. They should be distorted using the telescope optical
model. These images are also pixelized on to the detector grid.

(vi) The internal and external (cosmic) background, and the CCD
thermal (dark) noise are modelled and added. Poisson noise is added
to the accumulated signals and backgrounds for each pixel. The
pixel–pixel non-uniformity is then applied through multiplication
by the flat-field map. Detector cosmetic effects (hot and dead pixels)
are then included. Saturation ceilings appropriate to the full-well
capacity of the CCD are applied and the associated pixel bleeding
calculated.

(vii) CCD radiation damage models are then applied to reproduce
the radiation damage effects, again using representative laboratory
data from radiation testing to ensure their fidelity. Readout noise for
each CCD readout node is finally added, together with its electronic
bias level.

Some aspects of the performance evaluation may not require all of
these stages, and, in particular, subfields of view are often sufficient
to examine many effects.

The survey strategy may also require simulation to impose the
correct displacements between successive exposures and to ensure
that the anticipated mission samples the sky adequately to allow the
information about the galaxy shears to be recovered to the required
level of accuracy.

3.2 Radiation damage effects

While most of the procedures above are relatively standard, the
modelling of the radiation damage effects in the CCDs requires
particular attention, as this is where most of the non-convolutive
effects in the system arise.

The radiation environment above the Earth’s atmosphere will
gradually degrade the performance of all electronics. The principal
impact for a CCD-based weak lensing experiment will be changes
to image shapes as a result of radiation-induced lattice damage in
the CCDs. This will introduce inefficiencies in the charge transfer
during readout (charge transfer inefficiency; CTI). As electrons are
transferred to an amplifier at the edge of the device, they can be
temporarily captured by lattice defects (traps) and released only
after a time delay (e.g. Holland et al. 1990). These electrons then
appear in pixels subsequently read out, as a spurious trail behind
the image in both the column (parallel) and row (serial) directions.
The degradation is negligible in pixels adjacent to the readout node,
because electrons undergo few transfers before being read out, and
worst at the positions furthest from a node. The effect will modify
the size and introduce a spurious elongation of galaxies (Massey
et al. 2010), dependent on flux and its position on the CCD, directly
modifying the cosmological weak lensing signal if not accounted
for. CTI trailing is particularly troublesome because the trailed flux
is a non-linear function of the total flux (signal plus sky background)
and of the size and shape of a source, and therefore contributes as a
non-convolutive effect.

There are two main types of CTI models used in the simulations.
In the first, the charge transfer process is modelled statistically
in detail, including the interactions between the charge cloud and
the electric field structure within the pixels, by Monte Carlo tech-
niques (e.g. Seabroke, Holland & Cropper 2008; Prod’Homme et al.
2011). These potentially offer the highest fidelity description of the
radiation damage effects. However, because the parameters in the
model (mainly the capture and release times, and the capture cross-
sections) are determined by iterative fitting to laboratory data, these
parameters are in practice not well constrained, as the models are
computationally intensive. The other approach is to capture as well
as possible in a simplified model the essential physical interactions
while modelling the statistical effects: this enables rapid iterative
parameter fitting at the cost of a reduced fidelity. Examples include
the model developed for the Hubble Space Telescope (HST) Ad-
vanced Camera for Surveys (Massey et al. 2010) and the Charge
Distortion Model (CDM03) (Short et al. 2010) used in the Gaia pro-
gramme, both of which have variants explicitly tailored for weak
lensing surveys. Unfortunately, the approaches are currently suf-
ficiently different that some of the parameters determined in the
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second approach are not yet directly useful for the Monte Carlo
approach.

The radiation environment to be experienced by the detectors is
mainly parametrized by the mission duration, as well as the flu-
ence and energy spectrum at the orbital location. All laboratory test
data should be as representative of the flight condition as possible.
Because lattice damage effects are different at ambient and cold
temperatures, irradiations of test devices should be made at oper-
ational temperature, and the devices should be maintained at that
temperature for the subsequent characterization: this is logistically
difficult. The main operational dependences are the temperature and
the CCD parallel and serial transfer rates, and these will be the main
parameter space to be explored in the testing. Both are affected by
the shape of and voltage levels used in the actual waveforms to read
out the device, and generally this will be explored beforehand and
should be agreed and standardized for all further tests, to permit the
intercomparison of results. The results will also be different for dif-
ferent device types, because of the different physical pixel structure,
manufacturing procedures and raw Si characteristics. In particular,
different doping regimes will lead to different trap populations.

Once the parameters are determined by fitting to laboratory test
data, the models are used to include the radiation effects in the sim-
ulated images in step (vii) above. Generally, the test data improve as
the programme proceeds, partly because actual flight-design CCDs
may not initially be available. Consequently, these simulations will
evolve.

3.3 Cosmic rays

The effect of high-energy ionizing particle fluxes (electrons, protons
and ions) on the detectors in terms of induced transient tracks on the
images must be included in the simulations because they effectively
reduce survey area when they are excised, or the local exposure
duration if there are multiple exposures of each field. There is also
an allocation made to any systematic effects this may induce in
Table 1. The fluxes can be simulated using Monte Carlo codes
such as the STARDUST code (Rolland et al. 2007). These are able to
compute realistic samples of images and the statistical properties
of the induced particle tracks. They incorporate solutions of the
diffusion equation and take into account the nuclear reactions, the
shield anisotropy description, the propagation of energetic electrons
and the generation of delta electrons.

The main input data are the information about the detector struc-
ture, the environment particle spectra and a thickness table describ-
ing the shield around the detector. Generally, a particle travelling
inside the detector is assumed to lose energy along its trajectory
according to the continuous slowing down approximation or via the
production of delta electrons or by nuclear reactions (for the protons
and the ions). The number of deposited electron–hole pairs can be
obtained by dividing the deposited energy by the energy necessary
to create a thermalized electron–hole pair (3.6 eV in Si). Charges,
primary or secondary, deposited in depleted zones must be directly
collected; otherwise, they are subject to diffusion.

3.4 Normal processing steps

The raw data from a weak lensing experiment are not used directly.
A data processing sequence is carried out to reach the required data
quality from which the galaxy shears can be measured. This incor-
porates external information (such as parameters from laboratory
tests, or astrometric source parameters) and internal calibration data.
The information can be used either directly, or through a model. This

adds to the information content of the data, but very great care must
be taken in the quality of the external information, and in the ac-
quisition of the calibration data to ensure that these are taken in a
representative manner. At the extreme level of accuracy required
for the weak lensing measurements, this incorporation procedure
will always, at some level, introduce bias effects feeding into A′

and M′, and this is reflected in the need for an allocation for in-
correct values in Table 1. Other calibrations of, for example, dense
star fields can potentially be used to examine PSF spatial variability
on small scales, if these exposures can be considered sufficiently
representative in order not to introduce spurious biases. Wherever
possible, the calibration information should be from within the data
frames themselves.

The processing follows a process of electrical bias (zero light
level) subtraction, correction for linearity, correction for CTI ef-
fects, flat-fielding, correction for detector cosmetic defects, cosmic
ray subtraction and astrometric correction. Scattered light contribu-
tions may be removed and the background modelled. Because the
knowledge of the PSF is one of the most critical aspects in a weak
lensing experiment, the steps requiring the most attention are those
that impact the PSF.

3.5 Correction for radiation damage

The absolute density of charge traps will gradually increase dur-
ing the mission as radiation damage accumulates. Laboratory tests
indicate that there are different species of charge traps. While all
of these species contribute to the total CTI, not all of the species
equally degrade weak lensing measurements. Following Rhodes
et al. (2010), charge traps with a characteristic release time much
shorter than the charge transfer speed at which rows and columns of
pixels are read out move electrons by at most one pixel, and hence
affect astrometry. Charge traps with long characteristic release times
remove electrons entirely from a source, and degrade photometry.
As shown by Massey et al. (in preparation), charge traps with char-
acteristic release times a few times the charge transfer speed move
electrons from the core of an astrophysical source into its wings,
and primarily affect its size and ellipticity, and these have the most
negative effects on the weak lensing measurements.

As noted above, one of the early steps in the data processing is to
minimize as far as possible the radiation damage CTI effects in the
data. This is a critical step, as the residuals from this process will be
the largest non-convolutive knowledge contributor in Table 1: the
effects modify the magnitude, ellipticity and position of the object
in a intensity- and size-dependent manner. In this respect, the CTI
also creates non-linearity which is in addition to that caused by the
detection chain (Section 4.4.1).

Ideally, the trailed electrons should be returned back to the pixel
to which they belong. Fortunately, the trailing is typically a small
perturbation around the true image, so an inverse operation can be
achieved via a rapidly converging iteration of the forward algorithm
(Bristow & Alexov 2002; Massey et al. 2010). This is done by tak-
ing the real data, passing them through the best model available for
CTI effects – generally those used in the simulations in Section 3.2
– to create double and higher multiples of the damage. Linear com-
binations of these images are subtracted from the original data to
remove the effects to the required level. The procedure is shown in
table 1 of Massey et al. (2010).

The level of correction that is possible depends upon the accu-
racy of the CCD CTI model and the level of readout noise. Readout
noise places a fundamental, hardware limit on the correction ac-
curacy because it is added to an image after the charge transfer,
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and is therefore not trailed (Anderson & Bedin 2010; Massey et al.,
in preparation). This effect leads to correlated noise in the final
corrected image.

Note that during charge transfer, charge capture and release are
stochastic events, the exact location of each trailed electron cannot
be accurately predicted. Individual galaxies on individual expo-
sures may not be perfectly corrected, but statistical measurements
of an ensemble galaxy population can be corrected to an unbiased
level (Rhodes et al. 2007; Massey et al., in preparation). However,
with advanced calibration techniques known as pocket-pumping in
which an image is shifted forwards and backwards by a small num-
ber of pixels, the location and characteristics of each trap may be
ascertained (Janesick 2001).

4 MODELLING THE SYSTEM PSF

4.1 Overview

After the data processing, including the calibrations and the CTI
correction, a set of optimized images containing stars and galaxies
is available for each part of the sky. We are now in a position to
calculate the shear maps to determine the cosmological parameters.

In order to reach the accurate measurement of galaxy shape
needed for reconstructing the shear maps, classical deconvolution
approaches do not deal adequately with the effects of noise and finite
sampling by the detector. There has been continuous progress over
the past decade in the accuracy with which shear can be measured
(for example, Heymans et al. 2006; Massey et al. 2007; Bridle et al.
2010; Kitching et al. 2010, 2012). In one approach, for each particu-
lar galaxy shape measurement, a galaxy model is constructed from
a combination of intensity profiles. These profiles are convolved
with the model PSF, and compared in a model-fitting process to
the observed galaxy, the true image of which has been convolved
with the true (but not fully known) instrument PSF (for example,
Miller et al. 2007, 2012; Kitching et al. 2008b). In another, the ellip-
ticity is computed more directly using the quadrupole moments as
in equation (12) (for example, Kaiser, Squires & Broadhurst 1995;
Luppino & Kaiser 1997; Hoekstra et al. 1998).

An allocation for the uncertainty in this model-fitting process is
in the model bias knowledge 〈δ(α)〉2 and 〈δ(μ)〉 lines of Table 1 and
some of these aspects are discussed briefly further in Section 4.4.
We continue in this section with the error arising from the fact
that the instrument PSF is not fully known: calculated or estimated
values are in the lines of Table 1. Stars provide measures of the
PSF at different points on the field of view, which will enable the
PSF for any particular galaxy to be calculated. Each exposure will
also have been taken under slightly (perhaps minutely) different
conditions, for example, changed payload temperatures resulting
in different optical alignments. The PSF model for each galaxy
must be reconstructed from the stellar PSFs in the field of view,
and the task is to model the PSF to reach a level of fidelity to the
true PSF such that the biases in the shear measurements must be
within the levels in equation (31) for the cosmological goals to be
met.

As already related in respect of Table 1, this modelling process
has several categories. Some are related to the amount of infor-
mation that is available to reconstruct the PSF for any particular
galaxy. For example, the spatial sampling must be adequate (Sec-
tion 4.2.1). Another is the precision available in the calibrating PSFs
simply from their photon shot noise. Other categories include the
mathematical form of the model used to characterize the PSF, the
accuracy with which the coefficients of the model can be derived in

order to construct any particular PSF and the accuracy with which
calibrations can be transferred to the particular stellar PSF being
modelled.

We now examine the main categories of convolutive effects, non-
convolutive effects and galaxy modelling in Table 1 in sequence.

4.2 Convolutive effects in the PSF modelling

4.2.1 Sampling issues

Assuming a central wavelength of λ for the instrument bandpass and
a primary mirror of diameter D, all images are fundamentally band
limited at a spatial frequency of umax = D/λ even in the presence of
spatial blurring in the remainder of the instrument. The telescope
PSF can contain no modes at higher frequency than this value, and
thus no higher frequency signal remains in images after convolution
with this PSF. A band-limited image can fully be recovered as
a continuous function, without loss of information or accuracy,
using Sinc function interpolation between a discrete set of samples,
provided these samples are spaced at a greater spatial frequency than
the critical sampling rate, or Nyquist rate, 2umax. An output image
must therefore be constructed at a resolution of <1/(2umax) radian
per sample in order to be fully sampled and allow full reconstruction
of the sky.

In general, for a given optical system, and number of pixels in
the focal plane, there is a tradeoff between maximizing the survey
area (more arcseconds per pixel) and maximizing the PSF sampling
(fewer). If the system PSF is fully sampled by the detector pixel
grid, then it is not degraded by the sampling. If on the other hand
some compromise is made to enlarge the field of view, with the
expectation that some spatial resolution can be regained through
multiple exposures, which are often required for other reasons in
any case, then an analysis of the effect of this undersampling is
required. Furthermore, while undersampling is an important con-
sideration in the modelling of the PSF, aliasing also affects galaxy
shape measurement for methods which do not directly fit parametric
models to the data.

We start by examining the effect of moderate undersampling
with three or four exposures, as such a sequence may be typical to
recover gaps in the detector matrix. The full system PSF should be
used to test the sampling characteristics and these sampled on the
detector pixel grid, with successive exposures offset to mimic the
multi-exposure survey strategy. We use an optical PSF based on the
Euclid example with an input focal plane sampled at 0.688 of the
Nyquist rate. We then convolved this PSF with an additional circular
Gaussian of standard deviation 0.196/(2umax), to approximate the
dispersive effects of charge diffusion within the CCD pixels. Finally,
we add an additional jitter component to the combined PSF using a
time series of 216 jitters of displacement 0.145/(2umax) (Gaussian
rms).

We use the optimal linear image combination formalism of Rowe
et al. (2011), sampling the output at the Nyquist rate. This formalism
aims to minimize two contributions to imperfect image reconstruc-
tion: the leakage objective Uρ and the output noise variance �ρρ .
The former measures the fidelity of the output image to the target
PSF: in this test, a low value for Uρ indicates that unwanted changes
to the PSF from the linear combination process have been small.
To set an absolute tolerance on this quantity, it is useful to consider
the normalized leakage objective Uρ/Cρ , where Cρ is a measure of
the integrated PSF autocorrelation (see Rowe et al. 2011). A tol-
erance value for a normalized leakage objective of Uρ/Cρ < 10−8

approximately corresponds to controlling unwanted changes to the
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Figure 1. Maps of normalized output leakage objective Uρ/Cρ (left-hand column) and noise variance �ρρ (relative to a unit input variance; right-hand
column) after linear image combination from single realizations of a four (upper row) and three (lower row) random dither configuration. These output maps
are taken from the central regions of large images, showing the central regions of primary interest (see Rowe, Hirata & Rhodes 2011).

PSF to better than one part in 104 and ensures that such changes are
a minimal contribution to the PSF uncertainty budget in Table 1.
The output noise variance �ρρ is specified in units of the variance
of noise in the input images. An output �ρρ < 1 therefore demon-
strates that the noise variance in the output pixels is reduced relative
to the noise in the inputs, and this can be taken as an indication of
stable control of noise in the reconstructed, fully sampled output
image. Following the methodology of Rowe et al. (2011), we can
test to see whether the PSF and multiple-exposure strategies will
allow linear combination of input images to generate output images
that are unbiased at the Uρ/Cρ < 10−8 level while simultaneously
keeping output noise to an acceptable level.

In the upper panels of Fig. 1, we show maps of normalized Uρ/Cρ

and �ρρ (given in units of the input noise variance) for a single
realization of a four randomly offset exposure system (dithers) in
which the sampling is 0.688 of the Nyquist rate. This realization
was one of 30 realizations tested, and results were typical. Uρ/Cρ

is found to be <10−8 everywhere. The output maps shown come
from the central regions of the input images, where data coverage is
good and edge effects do not impair results. As discussed in Rowe
et al. (2011), the effects in edge regions can be mitigated in real data
by tessellating many small regions of reconstructed output such as
those shown.

For the ensemble of 30 realizations tested, the average Uρ/Cρ in
the reconstructed output was 9.95 × 10−9, in the very centre of the
specified tolerance range, demonstrating a desired level of control
over unwanted distortions in the output image. The average noise
variance �ρρ in the reconstructed output was 0.663 (in units of the
input variance). Because there is no background in the images, this
variance will be an upper limit with respect to real-sky exposures.
This demonstrates that for a PSF sampled at 0.688 of Nyquist, with
four input exposures, a linear combination of images can be used to
generate fully sampled output while maintaining acceptable levels
of noise in the output.
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Figure 2. Histograms of normalized leakage objective Uρ/Cρ (left-hand
panel) and noise variance �ρρ (in units of input variance; right-hand panel)
for a total of 38 880 output pixels from 30 realizations of the three input
exposure scenario.

The lower panels of Fig. 1 show the normalized Uρ/Cρ and �ρρ

for a single realization of a three exposure pattern. Here, the optimal
linear combination produces Uρ/Cρ > 10−8 at some points in the
output image: these can be seen as red squares. It can also be seen
that output noise variance for this reconstruction is significantly
greater than was the case for four input exposures.

As for the four exposure case, a total of 30 realizations of the
three exposure scenario were investigated. The average Uρ/Cρ in
the reconstructed output pixels across this ensemble was 1.0583 ×
10−8, slightly larger than the desired maximum for reconstruction,
and the average �ρρ was 1.4405 (in units of the input variance).
The results from a single realization shown in Fig. 1 are typical
of these tests, but the variation in reconstruction quality between
realizations was noticeably greater than in the four exposure case.

In Fig. 2, we plot histograms showing the distribution of Uρ/Cρ

and �ρρ output pixel values for the full ensemble of 30 realizations
of the three exposure random dither pattern. As each output region
of the type shown in Fig. 1 consists of 36 × 36 output pixels, there
are 38 880 total output pixel locations making up the full sample
for each of these histograms. We also provide some statistics of
the distributions, showing that in the three exposure case, only
�18 per cent of the reconstructed output had Uρ/Cρ > 10−8, but
nowhere did this quantity exceed 3 × 10−8. Nearly two thirds of the
output pixels have a noise variance smaller than the noise variance
on input pixels, and for less than 10 per cent of the output is the
variance greater than a factor of 3 times the input.

Because both Uρ/Cρ and �ρρ are squared metrics of the quality
of reconstruction (Rowe et al. 2011), these results suggest that
while the three exposure case does not meet stated requirements in
this 0.688 Nyquist-sampled case, it comes close. Fig. 1 shows that

this failure to meet the tolerance is spread regularly over the survey
regions. It is not clear to what extent this regularity, and the failure to
meet Uρ/Cρ will effect weak lensing measurements for this 800 nm
PSF. We also note that for shorter wavelengths within the bandpass
the Nyquist frequency is correspondingly increased, exacerbating
the situation. On the other hand, the analysis in Section 4.3 (where
the three exposure case including CTI is propagated into the shear
power spectrum) indicates that such a variation has a limited impact
on the dark energy FoM.

4.2.2 Construction of the PSF

Because the PSF will be derived from the stars in the field of view
surrounding each galaxy, a fundamental limit on the fidelity of this
model is set by the photon statistical error in each pixel containing
the PSF. If there are sufficient bright stars in the field, then the form
of the PSFs in each exposure can be modelled to the necessary
level of fidelity, exposure by exposure: in their analysis, Paulin-
Henriksson et al. (2008, 2009) found that ∼50 stellar PSFs at a
signal-to-noise ratio of 500 were sufficient to determine the PSF to
the accuracy required for the particular PSF that they were using.
The surface density of stars which both are not nearly saturated
(i � 18.3) and which would have signal-to-noise ratio greater than
500 is expected to be about 950 deg−2 in a survey such as Euclid, for
fields with Galactic latitude b ∼ 30◦ near the North Ecliptic Pole.
If the system is stable between slews, then measurements of stars
from successive fields may be combined appropriately to improve
the PSF model. This approach is shown in Fig. 3. However, this
stability is not strictly necessary, if the modelling can take into
account the variation of the PSF with time, capturing all of the
possible states of the system. The PSF can then be reconstructed
for a particular position on the field of view, and for a particular
instrument state.

The instrument state is defined through a (large) number of pa-
rameters, for example mirror separations and alignments in the

Figure 3. The PSF is expected to vary as a function of spatial position in
the field of view and with time, resulting from changes in the instrument
state. The instrument state may be that, for example, characterized by the
primary–secondary mirror separation, or the temperature difference between
certain optical elements. These individual contributions may substituted for
the ‘time’ column. An additional parameter will be the effective wavelength
of the light producing the PSF.
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Figure 4. Components (left) and residuals (right) depending on number of components used for modelling a PSF (top). The intensity scales are logarithmic,
with a colour table which enhances lower image levels.

optical train. Hence, the ‘time’ dimension in Fig. 3 can be replaced
with a separate dimension for each parameter. Some of these (such
as the primary–secondary mirror separation in the telescope, lead-
ing to focus changes, examined by Ma et al. 2008) will, however, be
dominant, and not all physical changes will induce ellipticity, so in
practice the additional dimensionality should be constrained. The
additional dimensionality beyond the two dimensions of the focal
plane reduces the accuracy with which the PSF can be constructed,
but with typically >109 suitable stars in a long survey duration,
even a large number of additional dimensions can be accommo-
dated. Then in principle all of the exposures in the survey can be
used, and a multitude of PSFs will be available to construct the PSF
for any galaxy.

4.2.3 Principal component analysis of the PSF

Any PSF can be modelled through a combination of functional
forms. Which functional forms are optimal will depend on the cri-
teria by which this is assessed. One simple criterion may be that
each of the components making up the PSF should be orthogonal;
another may be that a minimal set should be used, requiring that the
series of components should converge rapidly.

Principal component analysis (PCA) is a general statistical
method that enables variation in data to be identified in a way
that makes minimal assumptions about the nature of the underlying
variation. More formally, the PCA methodology is a mathemati-
cal procedure that uses orthogonal transformations to convert a set
of correlated variables into a set of uncorrelated variables called
principal components. PCA also determines the coefficients which
describe how much of each component should be used.

PCA makes the assumption that modes of variation are additive.
This may be restrictive when changes in PSF result from, for ex-
ample, focus variation, so other, more physically described models,

such as those directly coupled to the optical modes (e.g. Schechter
& Sobel Levinson 2011), may be more efficient.

In applying PCA, we may consider the input data to be the PSFs
provided by stars, and the input (correlated) variables to be the
position of the PSF in the field of view, the SED of the photons
in the bandpass and the parameters describing the instrument state
(such as the focus). Each component of the PCA basis set derived
from the PSF is an image, and the components together generate
an orthogonal set of two-dimensional images. This is illustrated in
Fig. 4. As there is a coefficient for each component to instruct how
much of that coefficient should be used in the construction of a PSF,
the coefficients are vector functions, with length corresponding to
the numbers of PCA components. The dependences in the derived
component functions are the positions in the focal plane, the SED
and the instrument state.

PCA PSF reconstruction has been successfully implemented on
space-based weak lensing data from the HST (Jee et al. 2007) (see
also Rhodes et al. 2007 and Schrabback et al. 2007, 2010 who used
PCA to characterize the variation of the two-component ellipticity,
rather than the PSF pixel values). We could use the stellar (noisy,
pixellized) images themselves to generate the PCA components and
coefficients. As described in Section 4.2.1, the problem with under-
sampled data is that Fourier modes above the Nyquist sampling
limit are not only lost, but are aliased to lower frequencies, result-
ing in corruption of all Fourier modes. The apparent shape of the
PSF depends on the subpixel location with respect to the detector
pixel grid, and no linear interpolation scheme can allow us to pre-
dict the PSF at one location, given its form at another. The effect
of undersampling is to corrupt the PCA component calculation to
make them no longer orthogonal, and the presence of noise results
in spuriously high coefficients, particularly at higher order eigen-
modes. While this may be mitigated by the use of multiple, dithered
exposures, in the presence of noise, it may not be possible to make a
unique, method-independent reconstruction of a fully sampled PSF.
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Figure 5. Procedure for using simulated PSFs to generate the basis set of
two-dimensional images which are fitted to the simulated image data. In our
simulations, one of the optical PSFs not used for the basis-set construction is
used to generate 144 realizations of realistic stars, including realistic levels
of noise, AOCS and detector response.

One approach to estimating the high-frequency modes, beyond
the sampling limit of an individual observation, is to create a super-
resolution model of the PSF, fitted to the data. We illustrate this
approach here by creating basis-set models based on simulated
supersampled PSFs as a function of focal plane position and SED for
each state of the instrument. PSF variation is created using a Monte
Carlo approach to vary the instrument’s optical characteristics. The
eigenmodes of those PSF variations are found, and the coefficients
for this basis set are calculated by fitting to simulated observations.
This process is illustrated schematically in Fig. 5. In this way,
we can test the accuracy to which a super-resolution PSF may be
reconstructed provided we have accurate PSF models: such a test
investigates the information limit of the data, but does not probe our
ability to generate accurate models.

In Miller et al. (in preparation), the fitting procedure is treated
as a Bayesian estimation problem, in which we use our prior in-
formation about the statistical distribution of the eigenmodes from
the simulations, together with measurements of the likelihood of
the models fitted to the data, to obtain the statistically most-likely
PSF reconstructions. Such a procedure has significant advantages:
it makes full use of the available information about the system;
it places the problem in a rigorous statistical framework; being a
forward-modelling process, we may include all effects that we be-
lieve are present in the real system; the Bayesian approach prevents
overfitting of noise. In the case that the model PSFs are too far from
the actual ones in orbit, we expect that the model basis set may be
updated in-orbit as more information becomes available from star
measurements.

4.2.4 Characteristics of the basis set

Before we perform the Bayesian fitting to the noisy pixellated data,
we first examine the characteristics of the eigenmode basis set, and
investigate how many components may be required to adequately
model the PSF. In detail, the results of this analysis will depend on
the nature of the optical system, the pointing performance and the
detector characteristics, but the procedure would be similar for any
realistic system.

To test this, we first generate end-to-end simulations as described
in Section 3 above, using the Euclid case. In summary, we first deter-
mined the optical system behaviour from simulations of the optics,
with variations imposed on the optical system over agreed ranges,
and then with the simulated system being perturbed as expected in
orbit by convolving the optics PSF with the charge spread within
the detector and with a kernel arising from guiding errors. The PSFs
are oversampled by a factor of 12 compared with the Euclid visible
detector sampling. There are no noise sources in this test.

After this, we measure the ellipticity of the PSF using equation
(10) with a wide Gaussian weighting function with σ (w) = 4 times
the FWHM. We first examine the required number of components
needed to model the spatial variations of the PSF accurately over
the full field of view for a monochromatic PSF at 800 nm (Fig. 6).
For the Euclid case, we find that ∼18 components are enough to
describe the PSF spatial variations with sufficient accuracy. This will
be similar for other systems in practice. We now examine the number
of components to encompass the variations in the optomechanical
system post-launch and in the space environment, for a single field
point (derived from a Monte Carlo tolerancing analysis) and again
find that ∼20 components are adequate. If we combine both, the
number of components required to model correctly both spatial
variations of the PSF and variations corresponding to the instrument
state rises to ∼38.

4.2.5 PSF wavelength dependence

So far the PSF we have been modelling is monochromatic. In re-
ality, the PSF will be different, depending on the spectrum of the
star generating that PSF multiplied by the instrument end-to-end
throughput as a function of wavelength. The largest contributor to
this effect is the diffraction in the optical system, which increases
linearly with wavelength. This is generally counteracted slightly
by the inverse wavelength dependence of the charge spread in the
CCDs because photons of redder wavelengths travel deeper into the
pixel and closer to the electrode structure before they are absorbed.
The other contributions (the attitude control system pointing varia-
tion and the radiation damage effects) do not have any wavelength
dependence.

We have examined the number of principal components that will
be required to model a multiwavelength PSF. In a new analysis,
we have added the wavelength dependence effect by considering a
set of monochromatic PSFs at 550 and 800 nm. Because the size
of the core of the PSF changes approximately linearly with the
wavelength, this affects significantly the ability of the eigenmodes
to represent the wavelength dependence. To reduce the number of
components, a spatial rescaling by a factor of 800/550 of the PSFs
at 550 nm has been applied. With this simple measure the number
of components required to model the PSF correctly including the
wavelength dependence effect, the spatial variations and the tele-
scope stability, rises to ∼70. This result is shown in the right-hand
panel of Fig. 6.

This analysis suggests that the eigenmode approach indeed en-
ables the full range of PSF to be modelled in a representative fashion,
albeit at the price of potentially needing a large number of eigen-
modes in the analysis. However, this analysis does not take into
account the relative importance of the modes at 550 and 800 nm in
actual data: for realistic spectra, the long-wavelength parts of the
spectrum dominate the PSF, and thus the actual modes needed in
practice may be fewer than would be implied by Fig. 6.
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Figure 6. Left: the difference between the known ellipticity and the modelled one as a function of the number of principal components used for the modelling.
The diamonds represent the standard deviation of the residual error considering the spatial variations of the PSF over the field of view, the triangles represent
the standard deviation of the residual error considering the variations of the PSF arising from variations in the instrumental state and the squares represent the
standard deviation of the residual error considering both together. Right: as, for the left-hand panel, but with the diamonds representing the standard deviation
of the residual error considering simultaneously the wavelength dependence together with all of the variations of the PSF over the field of view and the stability
of the telescope. The dashed line indicates the value assigned in Table 1.

4.2.6 Bayesian model fitting

Having explored the approximate number of eigenmodes that
may be required to construct the PSF, we now examine whether
the Bayesian approach discussed above can provide sufficient
information on the coefficients of this component set for re-
constructing the PSF in realistic simulations, to meet the al-
locations in Table 1. For this purpose, a conservative assump-
tion is to limit the amount of temporal stability required and
hence to analyse each set of exposures of a region of sky in-
dependently of any other field. The aim is to investigate the
extent to which the underlying, fully sampled PSF may be re-
constructed from noisy data in a single field. We do, however,
assume that each field is observed with three dithered exposures,
and that the PSF is invariant during those dithered exposures.

The first step of this reconstruction is to define the set of basis
model components that characterize the system using normal mode
decomposition as described in earlier sections. We then fit these
components to noisy realizations of stars. The star profiles are taken
in turn from the set of model PSFs, but excluding that profile from
the determination of the components of the models above. As before,
the PSF used in this analysis is the Euclid system PSF taking into
account the optomechanical, detector and attitude control system
pointing variation contributions. Provided the information on the
pointing variation is telemetered by the spacecraft, the effect of
this uncertainty on the PSF may be corrected, to a certain level
of accuracy. On the other hand, we could proceed without this
information, and then the guiding errors would need to be included
as additional fit parameters. For this test, it is assumed that the CTI
has been fully corrected in prior data processing (e.g. Massey et al.
2010): the efficacy of this is described in Section 4.3.

The simulation uses the Besançon model of the Milky Way
(Robin et al. 2003) to predict the number–magnitude relation of
stars at the North Ecliptic Pole in the Canada-France-Hawaii Tele-
scope system i band.5 There are 3.5 stars arcmin−2 in the range

5 http://model.obs-besancon.fr/

18 < i < 23, and 6300 stars in a half square degree, corresponding
to the Euclid full field of view. The Besançon model also allows
the creation of a simulated catalogue of stars with magnitude and
spectral type, and to create the simulated Euclid observations, stars
were randomly selected from that catalogue. As the stellar PSFs
used in the PSF modelling are all moderate or high signal-to-noise
ratio, their colours will often be known from catalogues, such as
that which ESA’s Gaia mission will produce. Here, we assume that
their optical and near-infrared magnitudes can be measured from
the Euclid mission data alone. To model the PSF in the presence of
the varying colours of stars, a simple model was assumed for the
PSF wavelength dependence, in which the optics component alone
was assumed to scale in angular scale linearly with wavelength,
with respect to simulated PSFs calculated for wavelength 800 nm.
While this model is an oversimplification of the true wavelength
dependence, it serves to capture the basic effect and allows us to
test whether, in principle, the PSF could be reconstructed at the
required level of accuracy. Simulated stars were created by dividing
the Euclid visible instrument passband into small wavelength in-
tervals, evaluating the expected number of detected photoelectrons
in each wavelength interval, given the SED of each simulated star,
and coadding the wavelength-stretched PSFs across the bandpass
with wavelength-dependent weight given by that number of photo-
electrons. Star SEDs were obtain from the ‘UVK’ library of Pickles
(1998).6 In the measurement/fitting test, stars were assumed to have
noisy photometric measurements, from which an estimated SED
was evaluated using the same stellar library (i.e. assuming that star
SEDs may be obtained from broad-band photometry without sys-
tematic error), and PSF eigenmodes were adapted to the SED of
each star using the same SED-weighting procedure that was used to
create the simulated observations. The model PSFs and simulated
stars are not expected to match exactly because of the introduction
of photon shot noise in the simulated stars. It was further assumed

6 http://www.ifa.hawaii.edu/users/pickles/AJP/hilib.html
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Figure 7. Variation in the residuals in the knowledge of the PSF in terms of size σ [R2
C

] (left-hand panel) and a single component of the convolutive ellipticity

σ 2[εiC ] (right-hand panel) as a function of a range in PSF size and ellipticity, derived using the normal mode modelling of 4400 stars. The square and diamond
symbols correspond to the two ellipticity components. The dotted line in the right-hand panel is the level in Table 1 below which the ellipticity requirements for
a single ellipticity component allocated to this contribution is met. The equivalent level for the size in the left-hand panel is above the top of the plot, indicating
that the knowledge uncertainties for this contribution are easily met.

that 30 per cent of stars might not be measurable owing to the effects
of confusion with faint galaxies and image artefacts.

In this test, some account was taken also of the variation in PSF
across the Euclid field. The field was divided into five zones of equal
area, and PSF models were calculated at five locations (the four
corners and the centre of the field). When the PSF eigenmodes were
created, pixels were included from all five PSF models, so that the
normal mode analysis generated position-dependent modes, albeit
sampled only at five locations. The PSF was assumed to be spatially
invariant within each zone: a more advanced method should allow
interpolation as a function of position in the field.

Information from three dithered simulated exposures was used
by jointly fitting the PSF models to all three exposures. In this test,
the absolute positions of stars were assumed to be unknown, and
were marginalized over in the fitting, but the relative positions of
stars on each of the three exposures was assumed to be fixed and
known. In practice, the relative registration of multiple exposures
should be determinable to very high accuracy from joint analysis
of all the stars in the field. By assuming the star positions to be
unknown, we are discarding potentially useful information on the
field distortion, which also provides information on the optical path.
In practice, accurate absolute star positions may be available from
the Gaia mission data, which could also be included in the analysis.

Further description and evaluation of the above procedure will
be provided by Miller et al. (in preparation). In this initial eval-
uation, 40 modes were found to capture the PSF variation at an
adequate level. This number is fewer than expected from Fig. 6
because of the weighting of the contributions from differing wave-
lengths by the SED photon counts. In line with the formalism estab-
lished above, the PSF reconstruction is evaluated by the statistics
σ [R2

C
]/R2

C
and σ 2[εC ] of the differences between the input PSF

image and the reconstructed PSF, both quantities being measured
from the image-weighted second moments. The results are shown
in Fig. 7. In this preliminary evaluation, a systematic offset was
found in the value of ellipticity in some parts of the field, which
does not appear in the rms statistics shown in Fig. 7. While, in a
full PSF modelling system, such a systematic would need to be
eliminated, the exercise presented here nonetheless shows that, in
principle, sufficient information exists in simulated observations of
realistic stars fields to allow accurate PSF reconstruction to the lev-
els assigned in Table 1. For the full-field simulation of 4400 used
stars, the uncertainty σ [R2

C
]/R2

C
in size is <1.5 × 10−4 and that

in ellipticity, σ 2[|εiC |] < 1.0 × 10−4 per ellipticity component. The
allocations aggregated from several contributions in Table 1 are
σ [R2

C
]/R2

C
< 4.8 × 10−4 and σ 2[|εiC |] < 1.5 × 10−4 per ellipticity

component.
The results presented here show that it is possible in principle to

reconstruct the PSF to sufficient accuracy to meet the science re-
quirements set by equation (31) and organized in Table 1 by normal
mode model fitting to observations of stars in single fields with a
small number (three) of dithered exposures, even if no longer-time-
scale temporal information is used. The requirements and values in
Table 1 will be different for different experiments, so this will need
to be evaluated on a case-by-case basis. Should additional margin
be required, the temporal information could be exploited.

4.2.7 Flat fields

Because of manufacturing tolerances, all CCDs are subject to slight
variations in their pixel-to-pixel sensitivity. This is called photore-
sponse non-uniformity (PRNU). This is at least partially caused by
differences in pixel size in the photolithographic mask sets used to
manufacture the CCD, but the PRNU can also show colour depen-
dence, which indicates that other effects also contribute.

At low signal levels the pixel–pixel variations on typical CCD
exposures are dominated by the readout noise. At higher signal
levels, the Poisson noise, increasing as

√
N (where N is the number

of counts in the pixel) dominates. At even higher levels, the PRNU,
increasing as N, starts to dominate, even though the intrinsic PRNU
is typically only 2 per cent. Generally, stars (which fall on several
CCD pixels) will be used to calibrate the PSF and many of these
stars will be close to the saturation level, where PRNU dominates.

Typically, an onboard flat-field calibration source is used to pro-
vide an even illumination over the CCDs in order to measure this
PRNU. By accumulating several flat-field exposures, a high signal-
to-noise ratio normalized PRNU map can be accumulated. Dividing
science exposures by this map – flat fielding – can almost eliminate
the PRNU degradation. It is essential, however, to achieve accura-
cies in the accumulated flat-field which are sufficient, or else the
flat-fielding can instead add noise to the image. An approximate way
to minimize the effect of the flat-field calibration on A′ and M′ is
to ensure that it is smaller by a factor ζ compared to the Poission
noise, the effect of which has been calculated by Paulin-Henriksson
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et al. (2008). If a number nPSF of bright stellar PSFs are used, and
we assume the brightest pixels in these PSFs are filled to the same
level as that provided by the flat-field illumination, then the number
of flat-field exposures nf = ζ

√
nPSF (here we have used the fact that

the flat-field under each stellar PSF is different). For ζ = 3, nPSF =
50 (Paulin-Henriksson et al. 2008) then nf ∼ 20 flat-field exposures
are required to be combined in order to meet the levels in Table 1. In
practice, the frequency of flat-field exposures in order to achieve this
number (with consequential operational overheads) will be driven
by the time-scale of the temporal changes in the PRNU, which is
still unknown at this level.

4.2.8 Pointing accuracy issues

The imperfect operation of the satellite’s attitude control system
contributes to the PSF of an exposure because the telescope axis
is not perfectly stable, and the combination of pitch, yaw and roll
leads to field-dependent displacement of the images. In the analysis
in Section 4.2.6, we assumed that these pointing displacements are
provided by the spacecraft. These will not be noise free, but provided
prior information for the normal mode analysis which was used in
the forward modelling.

Even in the absence of this information, Ma et al. (2008) have
shown that when the pointing variation is much smaller than the
width of the Airy disc of the optics PSF, its effect on the observed
PSF is described by the mean displacement and the covariance ma-
trix of the displacements. In this case, the detailed pointing variation
history is not important, and in principle only two stars are needed
to describe this contribution anywhere in the field of view. In the
presence of noise more stars are needed, but in the typical case as dis-
cussed above, all ∼4000 stars in the field of view can be used in the
normal mode analysis to determine the pointing variation contribu-
tion for each exposure, requiring only a few additional components.
If the pointing variation amplitudes are comparable or larger than
the optics PSF, the mean and covariance of the displacements are
not sufficient and the pointing history is required.

4.3 Residuals in the correction for radiation damage

Having established the major convolutive effects, we now consider
the extent to which the non-linear CTI effects caused by radia-
tion damage can be corrected in the data processing described in
Section 3.5.

Fig. 8 shows the residual ellipticity in the galaxy images after the
image post-processing. This is plotted as a function of the readout
noise of the detection chain on the abscissa, because readout noise
is an important limiting factor, as discussed in Section 3.5. The
actual value on the ordinate will depend on a number of parameters,
for example the CCD characteristics, the fluence received by the
CCD, background levels, signal-to-noise ratios, etc. These will all
be inputs to the simulations discussed in Section 3.2. Here, we
assume a five year mission in a deep orbit, four of which are at solar
maximum. At the end of mission, taking account of a nominal focal
plane shielding and some margin, this accumulates to a fluence of
6 × 109 protons cm−2 (scaled to the effects of protons of energy
10 MeV) a typical value for such a mission. The example uses
small (minimally sampled) galaxies with a signal-to-noise ratio of
10, located far from the readout node (requiring ∼2000 transfers).
A readout noise <5 electrons (which is generally reachable with
careful design in a CCD detector matrix, as long as the readout
speed is not too high) enables a residual ellipticity knowledge of

Figure 8. The end-of-mission residual ellipticity |εNC| in a single compo-
nent induced by CTI effects in the detector system after correction during
image processing for the worse case configuration: faintest and smallest
galaxies located furthest from the readout node. The degree of correction is
limited by readout noise and the required level is met for a readout noise
of <4.8e−. The correction assumes a correct model of the CCD charge
transfer from pixel-to-pixel during read out.

σ [|εNC |] < 10−4. Because this analysis addresses the performance
for the faintest galaxies in the worst position for CTI effects, this
knowledge error will be smaller if the population ensemble of all
galaxies that will be studied for the weak lensing is substituted and
if they are placed randomly with respect to the readout node, and,
further, if the average value of the radiation damage is used, rather
than the end-of-mission level.

In this case, the CTI has been generated by a model in the simu-
lations, and corrected using the same model: hence, this conclusion
is reached using a perfect CTI model. Currently, the best that has
been achieved in practice is a factor 20 reduction by Massey et al.
(2010). In addition to the readout noise, the efficacy of image-level
CTI mitigation will therefore rely on the accuracy of the CTI model
compared to the solid-state physics taking place in the real instru-
ment, both in terms of the fidelity of the model and the accuracy of
the parameters used within it: these necessitate a substantial char-
acterization programme for the CCDs. The parameters include the
trap density and the release times of each trap species. This is ex-
plored more fully in Massey et al. (in preparation). In orbit, the
parameters could be determined from fits to injected charge lines
(during calibration exposures), to cosmic ray events, by the use of
pocket pumping and perhaps by direct analysis of stellar PSFs. The
algorithms to do this, used at the data processing stage, require
careful development.

While the requirements on the modelling and the determination
of the parameters for it turn out to be challenging with respect to
the allowed values of A′ and M′ in equation (31), any residual
shear effects in the detector coordinate system which are related to
position with respect to the readout nodes (as opposed to those in the
sky coordinate system) will be identified as inadequacies in the CTI
model, and can potentially be iteratively nulled to negligible levels.
The readout noise floor in Fig. 8 is therefore an important parameter.
While any final small residual errors in the CTI correction will not
be fully convolutive, in that they are magnitude and background
dependent, the contributions to the error that are linear could be
incorporated with the standard PSF modelling discussed above, and
modelled out.

Moreover, the CTI residuals will not contribute to errors in the
derived power spectrum on all spatial scales, but will be limited to
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Figure 9. Left: the effect of imperfect CTI correction on the power spectrum Cij(�), multiplied by �2 to show equal power for different spatial scales l. Here,
we use the autocorrelation power spectrum (i = j) and a mean redshift of the tomographic bin of zi = 1. We limit the power to � < 5000 as described in Laureijs
et al. (2011). The lines indicate progressive levels of CTI correction where δeCTI = xδCTI, uncorrected and we show 10 values of x logarithmically spaced between
1 and 100. The impact is reduced as the correction is improved and the effect is limited to spatial scales of the CCD and smaller (corresponding to l > 2000
in the Euclid case). Right: the absolute difference (the difference changes sign at � � 1200) in the C(�) power spectrum when the dark energy parameter is
changed from w0 = −1.0 to w0 = −0.95 (blue): this represents the cosmological sensitivity of the C(�). The dotted lines show the absolute difference between
an unaffected C(�), with no CTI and w0 = −1.0 and a power spectrum affected by CTI with various levels of correction (dotted lines).

Figure 10. The reduction in FoM with respect to perfect correction for the
progressive levels of correction. The blue vertical line with δεCTI = 0.0005
indicates the impact on the FoM achieved with HST data.

scales of the CCD and smaller (if the CCD is divided into sectors
with separate readouts). We have quantified this by analysing the ef-
fect on the power spectrum, and on the FoM. This analysis includes
the radiation damage effects assumed in the modelling above, in-
cluding a fluence of 6 × 109 protons cm−2, but with the galaxies
(all again small and minimally sampled and with a signal-to-noise
ratio of 10) now placed randomly with respect to the readout nodes.
We use three slightly displaced exposures as in the Euclid pattern
of ∼100 arcsec (1000 pixels) in the parallel direction, one of which
also has a 50 arcsec displacement (500 pixels) in the serial direc-
tion. The effect of a progressively improved correction on the power
spectrum is shown in Fig. 9. We also show in Fig. 10 the change in
the lensing-only FoM using the same parameters as those used in
MHK13 for the systematic evaluations (and the same as those used
in Laureijs et al. 2011). At all scales, the difference between the
corrected power and the unaffected power is less than the difference
in the power induced by a change in the dark energy parameter w0 =
−1.0 to w0 = −0.95 (start of Section 2.2). This encouragingly in-

dicates that a CTI-corrected power spectrum at this level will have
limited effect on the dark energy measurements.

4.4 Model transfer-to-object and model bias knowledge errors

4.4.1 Linearity

The PSF model is inferred from the images of stars that are much
brighter than the faint galaxies used in the weak lensing analysis. If
the response of the detector is independent of flux then the model
can be applied directly. Real detectors, and their associated external
electronics, however, will have a non-linear response. This will lead
to systematic errors resulting from changes in the shape of the PSF,
which will either be more or less peaked than it should be. Note that
this concern regarding the non-linearity is particular to the field of
weak lensing measurements. The more usual concern with its effect
on the overall photometric accuracy of the measurement may also
be important, for example, in determining the SED of the star being
used for modelling the PSF.

There are two main effects which lead to the non-linearity. The
first is the classic effect of non-linearity and saturation in the detector
and external electronics. This is typically limited to approximately
a few per cent. It can be addressed by calibrating the detector using
multiple exposures of the same field with different exposure times.
In practice, this may place tight constraints on the repeatability
of any shutter or readout mechanism. The main difficulty of these
measurements is to obtain sufficient faint stars in order to calibrate
the linearity at lower signal levels. After calibration, residual non-
linearities from these effects can be constrained to extremely low
levels, especially as they are expected to vary only slowly with time,
depending on operating voltage levels within the electronics.

The second effect arises from the CTI in the detectors caused
by radiation damage. Those traps with long release times remove
photoelectrons from the PSF entirely. If the population density of
traps encountered by the charge cloud as it is transferred through
the CCD does not increase linearly with signal level, this effect
can induce non-linearities in the relationship between the optical
flux level and the charge arriving at the readout node of the CCD.
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Figure 11. The relative change in R2
C

(top panels) and εC (bottom panels) as
a function of the level of out-of-band transmission for a flat-spectrum source
for the Euclid reference. The left-hand panels show the impact without any
off-band information, while the right-hand panels show the impact if the
off-band information is used in the PSF modelling.

The effect also depends on the level of background light, mostly
Zodiacal, which has ameliorating effects particularly for these slow
traps, and on the prior history of PSFs read out ahead of the PSF
of interest. The effect can be corrected using the same model and
technique used to correct for the faster traps (Section 3.5), and again
the residuals will be identified from their amplitude in the detector
reference frames. This will be a monotonically increasing effect as
the mission progresses.

The residual of the linearity correction is included in different
categories in Table 1, mostly in the PSF modelling and in the trans-
fer of model to object (because of the use of bright star PSFs to

calibrate faint galaxy PSFs). These residuals are assumed to be
quasi-linear. CTI-induced non-linearity can be incorporated within
the non-convolutive category.

4.4.2 Bandpass and out-of-band transmission

The wavelength dependence of the PSF can be determined from the
data by comparing to stars that cover a range in colour for wave-
lengths where the transmission is high. Outside the nominal band,
where the transmission is low, no information can be recovered.

The flux that is transmitted out of band contributes to the galaxy
PSF, which is a concern. Ideally, in equations (13) and (14), T(λ) =
1 in-band and T(λ) = 0 out of band. The transition has a finite
width, and the level of out-of-band transmission is f out > 0. As a
result, the width of the transition region and the allowed (average)
level of out-of-band transmission need to be determined. Under the
assumption that the bias is small, the relative errors in the PSF size
and shape can be determined by taking the ratio of the in- and out-
of-band contributions to the integrals in equations (13) and (14), so
that this is an upper limit to the impact of the out-of-band leakage.

The most conservative approach is to assume no knowledge about
the out-of-band PSF. The left-hand panels in Fig. 11 shows how
the PSF size and shape change for a flat spectrum source (f (λ) =
constant) as a function of f out where we assumed R2

C
∝ λ0.55. This

is the case for the Euclid mission, but the results are relatively
insensitive to the assumed slope of the spectral dependence. In
practice, however, it is possible to extrapolate the observed PSF to
other wavelengths using a model to correct for the leakage more
accurately. The top panels of Fig. 12 show the out-of-band 400 nm
PSF size and ellipticity as a function of the in-band 800 nm values
for the Euclid mission for different parts of the field of view and for
different optical alignments. The residuals to linear fits are given
in the lower panels, which indicates that biases in the 400 nm
size and ellipticity (per component) as predicted from the 800 nm
values are (in this case) smaller than |δR2| = 0.015 and |δei| =
7.5 × 10−3, respectively (dashed lines in Fig. 12). With such an
analysis, a more relaxed out-of-band transmission requirement can
be permitted. This is evident in the different x-axis scale for the

Figure 12. The correlation between the PSF sizes at 400 and 800 nm (top left) and PSF ellipticity components (top right) as inferred from the Euclid
model PSFs. The drawn lines are linear fits to the measurements, with the results shown in the lower panels. The dashed lines indicate reasonable maximum
uncertainties. These can then be used to derive constraints on the out-of-band flux, and hence on the effect of the out-of-band transmission levels as shown in
the right-hand panel of Fig. 11.
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right-hand panels of Fig. 11 (calculated for these |δR2| = 0.015 and
|δei| = 7.5 × 10−3 values). The relaxation in the requirement is
particularly true for the PSF size.

4.4.3 Galaxy colours

In Sections 4.2 and 4.3, we described how the PSF can be con-
structed with high accuracy using observations of stars in the field
of view for any position in the focal plane and for any colour of star.
The PSF entries in equations (6) and (8) refer to the PSF with which
each galaxy has been convolved by the instrument. This requires an
estimate of the galaxy SED. A good estimate of the galaxy SED can
be inferred from broad-band data, which are typically available in
any case because of the need to determine photometric redshifts for
the source galaxies. The actual SED, however, depends on the star
formation history of the galaxy, its metallicity, redshift, etc. Hence,
it cannot be known perfectly, which inevitably leads to an error in
the estimate of the PSF to be used for the galaxy PSF.

The impact of uncertainties in the SED on the PSF size has
been studied by Cypriano et al. (2010). Within the assumptions of
Gaussian PSFs with fully sampled data, they find that the PSF size
can be recovered with a relative uncertainty of less than ∼2 × 10−4.
Spatially varying SEDs (spatial colour gradients within the galaxy)
resulting from a broad bandpass have been shown to cause M-like
biases at the level of �5 × 10−4 (see Voigt et al. 2012; Semboloni
et al. 2013). This is comparable to the allocation in Table 1.

5 SU M M A RY

We have set out with this paper to extend in a practical scheme
the more general treatments of weak lensing measurements in the
literature, and particularly that of MHK13. This can be used as a
framework to define a next-generation space-based weak lensing
experiment.

We have started with the main requirements. It is necessary to ob-
serve a large enough number of galaxies through a wide-area survey
with sufficient photometric sensitivity, range of redshift and spatial
resolution to ensure that the parameters in different cosmological
models can be tightly constrained (these parameters may be those
in the standard Concordance Model, or from alternative models).
The size of the next-generations survey must be very large, some
15 000 square degrees, observed to mAB > 24.5, in order to make
available more than 109 galaxies. With such a survey, the large
intrinsic variation within the galaxy population can be averaged to
produce very precise measurements of the cosmological parameters.
However, with such precision, systematic effects in the measure-
ments potentially become the limiting factor. This leads to the other
main requirement that the parameters used in the derivation of the
shear information, principally the shape of the PSF, are known with
sufficient accuracy. These, together with the biases introduced by
imperfect shear measurement methodologies, are constrained to be
less than a small factor (a bias-over-error ratio of ≤0.31; MHK13)
of the uncertainties arising from the finite size of the survey, thus
ensuring that the cosmological parameters will be derived with the
required accuracy.

The main requirements are therefore survey size, depth, spatial
resolution, the knowledge of the instrument characteristics and the
extent to which the biases can be corrected. The first three are
relatively conventional, although demanding: they drive the size
of the telescope, the field of view, the detector pixel scale and
noise levels, the survey duration and so on. The remaining two

constitute the different and particularly challenging aspect of a weak
lensing experiment. This requires a detailed cataloguing of all of the
potential effects which affect our knowledge of the instrument, and
particularly the PSF, the classification of these effects into different
categories, and the appreciation of how and to what extent each will
impact this knowledge.

We have therefore examined these effects, first following MHK13
in considering additive and multiplicative biases A′ and M′ in sep-
arating out the linear and non-linear contributions to each, together
with the biases introduced by the weight function in the modelling
(α2 and μ terms in equations 6 and 8). Linear contributions have
been represented by convolutions, while non-linear effects (which
generally arise in the detectors and electronics) are non-convolutive.
We then examined the different scale of the contributions in each,
and with the consequent weighting, combine them with a permitted
error in our knowledge of the ellipticity and size of the system PSF
to calculate the impact on the total A′ and M′. These knowledge
errors can be adjusted and balanced, based on feasibility consider-
ations, to arrive at a set of permitted values. Then, we marshalled
all of the individual contributing factors to these convolutive and
non-convolutive effects into categories, such as those arising from
imperfectly known source characteristics, satellite pointing errors,
calibration residuals, PSF modelling errors, detector imperfections
(especially arising from radiation damage), and calculated their
impact with example numerical values, again weighting these ap-
propriately. We noted that their aggregate contributions must equal
or be less than those allocated at the highest level, and again some
adjustment and re-balancing may be required. An example of these
factors was provided in Table 1.

We then know what is required to achieve the scientific goals
of the weak lensing survey. In order to have made the allocations
in the contributions to the overall PSF knowledge budget, we have
evaluated what is or may be feasible. We described briefly in Sec-
tion 3 the ingredients incorporated into the simulations. Because
the systematic effects we are controlling have to be known very
accurately, a deep understanding of the instrumental effects is re-
quired, from the range of variations of the telescope PSF, to the
pointing characteristics of the satellite and to subtle detector effects
of various types. Having made the simulations, we then explained
the main steps in the processing of the simulated data. We find that
standard processing will be adequate in the flat-fielding and linear-
ity corrections, while most of the other standard data processing
procedures (bias subtraction, etc.) contribute second-order effects
which do not feed directly into the ellipticity in most cases. The
correction for the CCD CTI caused by radiation damage is the prin-
cipal matter to be addressed at this stage. We noted the algorithm
in table 1 of Massey et al. (2010) by which the trailing in the image
can be largely corrected by linear combinations of the observed (or,
at this stage, simulated) data with copies of these same data passed
through a radiation damage model. At the end of this process, the
best image data which can be generated using the calibrations and
the radiation modelling is available for further analysis.

We then examined whether the performance we can obtain for
each constituent contribution remains reasonable. We check on the
effect of the sampling, and conclude that with only three slightly
displaced exposures, the slight undersampling at 0.688 Nyquist does
not meet the stringent sampling requirement criteria, but not by a
large amount. While it is not yet quantified how much these sam-
pling criteria can be relaxed without more noticeably impacting the
survey’s weak lensing systematic error budget, and further work is
needed, we found in Section 4.3 (where the three exposure case
including CTI is propagated into the shear power spectrum) that
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such variation appears to have a limited impact on the dark energy
FoM. We continued with the investigation of the level of knowl-
edge that can be reached in the PSF model. The aim here was not to
identify the ultimate PSF model to be used, but to show that with an
analysis of the modes of PSF variation combined with the Bayesian
model fitting, the performance allocated in equation (31) can be
achieved. Further modelling advances will provide additional mar-
gin. We generated the eigenmode basis set for the Euclid case, over
the full field of view, and over a range of optical system characteris-
tics, arising from misalignments and manufacturing errors, finding
that the number of modes required is in the range 20−70. We finally
examined how many stars would be required in order to retrieve the
PSF from the Bayesian model fitting of the normal modes to the
simulated data to the accuracy allocated in Table 1, given a basis
set with 40 components, and the actual pixellized, noisy PSFs. We
found that for a reasonable field of view the PSF can be recovered
on each field independently, without any reliance on the stability
of the optical system from field to field. If such variations can be
tracked, additional performance could be achieved.

We finally examined the residuals in the data caused by the im-
perfect correction of the CTI caused by radiation damage. We found
that the ultimate accuracy of the process is limited by the readout
noise of the CCD and detection chain, as this adds uncertainties
to the measurement of the charge trails. The lack of fidelity of the
radiation model, and limited knowledge of the parameters within
it contribute to the residuals, but because these are in the frame of
the detector, with particular orientations, they can be minimized by
iteration of the model. In addition, we found that the effect of the
imperfect CTI correction is limited to certain angular scales, of the
order of those subtended on the sky by the CCD.

We ended with a brief reference to factors affecting the galaxy
modelling itself, in particular the effects of imperfections in the lin-
earity correction, of spectral leakage outside of the defined bandpass
and of the spatially variable SEDs within the galaxies.
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A&A, 484, 67
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