
HAL Id: hal-03645537
https://hal.science/hal-03645537

Submitted on 11 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bayesian physical reconstruction of initial conditions
from large-scale structure surveys

Jens Jasche, Benjamin D. Wandelt

To cite this version:
Jens Jasche, Benjamin D. Wandelt. Bayesian physical reconstruction of initial conditions from large-
scale structure surveys. Monthly Notices of the Royal Astronomical Society, 2013, 432, pp.894-913.
�10.1093/mnras/stt449�. �hal-03645537�

https://hal.science/hal-03645537
https://hal.archives-ouvertes.fr


MNRAS 432, 894–913 (2013) doi:10.1093/mnras/stt449
Advance Access publication 2013 April 24

Bayesian physical reconstruction of initial conditions from large-scale
structure surveys

Jens Jasche1‹ and Benjamin D. Wandelt1,2,3,4

1CNRS, UMR7095, Institut d’Astrophysique de Paris, F-75014 Paris, France
2UPMC Univ Paris 06, UMR7095, Institut d’Astrophysique de Paris, F-75014 Paris, France
3Department of Physics, 1110 W Green Street, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
4Department of Astronomy, 1002 N Gregory Street, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Accepted 2013 March 11. Received 2012 October 29; in original form 2012 March 19

ABSTRACT
We present a fully probabilistic, physical model of the non-linearly evolved density field,
as probed by realistic galaxy surveys. Our model is valid in the linear and mildly non-
linear regimes and uses second-order Lagrangian perturbation theory to connect the initial
conditions with the final density field. Our parameter space consists of the 3D initial density
field and our method allows a fully Bayesian exploration of the sets of initial conditions
that are consistent with the galaxy distribution sampling the final density field. A natural
by-product of this technique is an optimal non-linear reconstruction of the present density and
velocity fields, including a full propagation of the observational uncertainties. A test of these
methods on simulated data mimicking the survey mask, selection function and galaxy number
of the Sloan Digital Sky Survey Data Release 7 main sample shows that this physical model
gives accurate reconstructions of the underlying present-day density and velocity fields on
scales larger than ∼6 Mpc h−1. Our method naturally and accurately reconstructs non-linear
features corresponding to three-point and higher order correlation functions such as walls
and filaments. Simple tests of the reconstructed initial conditions show statistical consistency
with the Gaussian simulation inputs. Our test demonstrates that statistical approaches based
on physical models of the large-scale structure distribution are now becoming feasible for
realistic current and future surveys.

Key words: methods: numerical – methods: statistical – large-scale structure of Universe.

1 IN T RO D U C T I O N A N D M OT I VAT I O N

Ongoing and planned large-scale structure (LSS) surveys will mea-
sure the distribution of galaxies at an unprecendented level of ac-
curacy in the coming decade. These surveys are expected to vastly
enhance our constraints on the physics of cosmogenesis, neutrino
physics and dark energy phenomenology.

How do we compare cosmological models to these surveys? We
have an observationally well-supported physical model of the initial
conditions. According to this model, a homogeneous and isotropic
density field with small, very nearly Gaussian and nearly scale-
invariant correlated density perturbations arose from quantum per-
turbations in the very early Universe. Gravitational evolution in
an expanding background processed these initial conditions into
an evolved density field, at first through linear transfer and then
through non-linear structure formation. LSS surveys catalogue the
positions of observed tracers of this evolved density field in redshift
space.

� E-mail: jasche@iap.fr

It is now standard to model the initial Gaussian density pertur-
bations statistically in terms of the early universe processes that
created them, such as the physics of inflation, the change from mat-
ter to radiation-dominated universe, neutrino free-streaming and the
acoustic oscillations of photon–baryon plasma. Within the standard
cosmology, the evolution and growth of the initial perturbations in
an expanding Universe is well understood in principle, and directly
linked to its dominant constituents such as dark matter and dark
energy. It therefore seems natural to analyse LSS surveys directly
in terms of the simultaneous constraints they place on the initial
density field and the physical evolution that links the initial density
field to the observed tracers of the evolved density field.

For a variety of good reasons the current state of the art of statis-
tical analyses of LSS surveys is far removed from this ideal. There
are some areas where significant progress seems very difficult. In
particular, a detailed physical model of the way galaxies arise in
response to the spatial fluctuations in the dark matter distribution is
not computationally tractable (the ‘bias’ problem). Even for the dark
matter alone, reversing the non-linear evolution that link the initial
and evolved density field is a fundamentally ill-posed problem (see
e.g. Nusser & Dekel 1992; Crocce & Scoccimarro 2006).

C© 2013 The Authors
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As a consequence, the state of the art in the analysis of galaxy
surveys addresses these problems in isolation. In the standard ap-
proach, the link between theory and observation is made through
the power spectrum. This requires solving two separate problems:
the data analysis problem of inferring the power spectrum from an
observed sample of tracers given a survey mask and selection func-
tion (see e.g. Feldman, Kaiser & Peacock 1994; Eriksen et al. 2004;
Tegmark et al. 2004; Wandelt, Larson & Lakshminarayanan 2004;
Percival 2005; Jasche et al. 2010a; Elsner & Wandelt 2012); and
the much more difficult theoretical problem of modelling the power
spectrum and the form of its likelihood for the non-linearly evolved
and biased galaxy density field (see e.g. Baugh, Gaztanaga & Efs-
tathiou 1995; Peacock & Dodds 1996; Smith et al. 2003; Jeong &
Komatsu 2006; Heitmann et al. 2010, and references therein).

Three-dimensional inference of the matter distribution from ob-
servations requires modelling the statistical behaviour of the mildly
non-linear and non-linear regime of the matter distribution. The
exact statistical behaviour of the matter distribution in terms of a
probability distribution for the fully evolved density field is not
known. Previous approaches therefore relied on phenomenological
approximations such as multivariate Gaussian or log-normal distri-
butions incorporating a cosmological power spectrum to accurately
account for the correct two-point statistics of the density fields.
Both of these distributions can be considered as maximum entropy
prior on a linear and logarithmic scale, respectively, and are there-
fore well justified for Bayesian analysis. However, these priors only
parametrize the two-point statistics of the matter distribution. Since
LSS formation through gravitational clustering is essentially a de-
terministic process described by Einstein’s equations and since the
only stochasticity in the problem enters in the generation of initial
conditions, it seems reasonable to account for the increasing statis-
tical complexity of the evolving matter distribution by a dynamical
model.

In this paper we describe progress towards such an approach
that uses data to constrain a set of a priori possible dynamical,
three-dimensional histories. We use second-order Lagrangian per-
turbation theory (2LPT) as a physical model of the gravitational
dynamics that link the initial three-dimensional Gaussian density
field to the observed, non-Gaussian density field. In Bayesian par-
lance our prior for the evolved density is the initial Gaussian den-
sity field evolved by a 2LPT model. Using the powerful sampling
techniques recently developed by Jasche & Kitaura (2010) we can
use this model as prior information and explore the range of initial
Gaussian density fields that are statistically consistent with the data,
modelled as a Poisson sample from evolved density fields.

Our method will also automatically generate reconstructions of
the large-scale velocity field since our model incorporates dynamics.
Since the approach is implemented in a fully Bayesian framework
we do not produce unique reconstructions, but a set of samples
which can be interpreted as a probabilistic representation of the
information the observations contain about the underlying density
(initial and evolved) and the velocity field. In particular, the vari-
ations between samples represent the uncertainties that remain in
the reconstruction owing to the modelled statistical and systematic
errors in the data.

1.1 Comparison to prior work

In the recent past several papers have pointed out the promise of the
log-normal model in fitting to observations of the non-linear density
field (see e.g. Jasche & Kitaura 2010; Jasche et al. 2010b; Kitaura,
Jasche & Metcalf 2010). While the log-normal approach provides a

good model of the one-point and two-point functions of the field we
will show that Gaussian statistics evolved by 2LPT reproduces those
successes but, in addition, reproduces features naturally that are
associated with the higher order n-point functions such as filaments
and walls. This is not surprising since it is well known that 2LPT
reproduces the exact one- and three-point statistics of fully non-
linear density fields at large scales, and also approximates higher
order statistics very well (see e.g. Moutarde et al. 1991; Buchert,
Melott & Weiss 1994; Bouchet et al. 1995; Scoccimarro 2000;
Bernardeau et al. 2002; Scoccimarro & Sheth 2002).

The field of velocity field reconstructions has a long history
(see e.g. Bertschinger et al. 1990; Nusser & Dekel 1992; Dekel
et al. 1999; Frisch et al. 2002; Brenier et al. 2003; Lavaux 2008;
Mohayaee & Sobolevskiı̆ 2008; Kitaura et al. 2012). The con-
tribution of our approach is the imbedding of a non-Gaussian
model in a probabilistic framework. Zel’dovich and Monge–
Ampère–Kantorovitch (MAK) are, respectively, perturbative and
non-perturbative attempts to reconstruct the displacement field link-
ing the initial conditions from tracers of LSS and as such also gener-
ate estimates of the velocity field. Our approach goes beyond these
works in several ways: we combine the inference with a detailed
non-Gaussian model of realistic survey features (mask, selection
function and shot noise); we implement explicitly a Gaussian prior
for the initial density field and the Bayesian exploration gives a
quantitative characterization of the uncertainties in our inferences.

Significant effort has also been invested in establishing accurate
representations of the observed Universe in numerical simulations,
by constraining simulations by observations (see e.g. Kravtsov,
Klypin & Hoffman 2002; Klypin et al. 2003; Dolag et al. 2005;
Martinez-Vaquero et al. 2009; Gottloeber, Hoffman & Yepes 2010;
Lavaux 2010; Libeskind et al. 2010). Many of these approaches
rely on integrating the observed present-day density field back-
wards in time to the initial state. Such an approach is generally
hindered due to incomplete observations of the final state and by
spurious erroneous enhancement of decaying mode power in the
initial conditions during backward integration (Nusser & Dekel
1992). The fully probabilistic approach, proposed in this work,
naturally accounts for uncertainties of only partially observed fi-
nal states, by exploring physical reasonable solutions, filtered by
the 2LPT model, for the initial conditions which can all lead to
the same or similar final observations. Furthermore, our method
solely depends on forward evaluations of the model, which there-
fore accurately handles the issue of decaying mode power. Also
note that unique recovery of initial conditions is generally not pos-
sible on all scales due to the chaotic nature of the dynamical LSS
formation process on small scales (see e.g. Nusser & Dekel 1992;
Crocce & Scoccimarro 2006). These uncertainties will also be ac-
curately accounted for by our method while exploiting information
on the initial conditions on all scales accessible to the 2LPT model.

The paper is structured as follows. In Section 2 we discuss the
design of posterior distributions for LSS inference and show that
the complex problem of modelling accurate prior distributions for
the evolved non-Gaussian matter distribution can be recast as an
initial conditions problem once a physical model for LSS forma-
tion is specified. Furthermore, we will present the resultant 2LPT–
Poissonian posterior distribution for the inference of the three-
dimensional matter distribution from galaxy surveys. Section 3
provides a brief overview over the Hamiltonian sampling approach
employed in the inference framework described in this work, and
in Section 4 we present the relevant derivations of the Hamiltonian
forces required for an efficient numerical implementation of the hy-
brid Monte Carlo (HMC) sampler. In the following Section 6, we
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describe the generation of an artificial galaxy survey, inspired by the
Sloan Digital Sky Survey Data Release 7 main sample (Abazajian
et al. 2009). In Section 7, we describe the application of our method
to this simulated data in order to provide a proof of concept and
to estimate the behaviour of the algorithm in a realistic setting. We
will conclude the paper with a summary and a discussion of the
results in Section 8.

2 TH E 2 L P T– P O I S S O N I A N P O S T E R I O R

2.1 The non-Gaussian density prior

As already pointed out in the Introduction, inferring the three-
dimensional LSS from observations requires the design of suitable
prior distributions for the fully gravitationally evolved density field.
Standard approaches such as Wiener filtering employ Gaussian pri-
ors, which are assumed to be suitable for the inference of the largest
scales (see e.g. Lahav 1994; Zaroubi 2002; Erdoğdu et al. 2004; Ki-
taura & Enßlin 2008; Kitaura et al. 2009; Jasche et al. 2010a). For
the inference of the density field in the non-linear regime log-normal
priors have been proposed and successfully applied to LSS infer-
ence problems (Jasche & Kitaura 2010; Jasche et al. 2010b; Kitaura
et al. 2010). More recently, Kitaura (2012) proposed to use Edge-
worth expansions to construct prior distributions incorporating also
third-order moments of the distribution. All of these approaches are
based on heuristic approximations to the full problem. Currently, a
closed form description of the present day density field in terms of
a multivariate probability distribution does not exist.

While there exist considerable difficulties in constructing a suit-
able probability distribution for the present day density field, the
initial seed fluctuations at redshifts z ∼ 1000 obey Gaussian statis-
tics to great accuracy, in agreement with theories of inflation and
observations (see e.g. Linde 2008; Komatsu et al. 2011). Therefore,
the complicated nature of the present matter distribution solely orig-
inates from deterministic physical processes during structure forma-
tion. Generally, gravitational interactions introduce mode coupling
and phase correlations, such that the statistical behaviour of the
present day density strongly deviate from a Gaussian distribution
(see e.g. Peacock 1999).

Since initial and final conditions are linked via deterministic
structure formation processes, it seems reasonable to formulate the
inference problem in terms of simpler statistics at the initial condi-
tions, rather than approximating the complex statistical behaviour of
the non-linear matter distribution. More specifically, given a suitable
model of LSS formation G(a, δi) we can obtain a prior distribution
for the final density contrast δf for a given cosmic scale factor a by
marginalizing over the initial conditions:

P(
{
δf
l

}
) =

∫
d
{
δi
l

} P(
{
δf
l

}
,
{
δi
l

}
)

=
∫

d
{
δi
l

} P ({δi
l

}) P(
{
δf
l

} |{δi
l

}
), (1)

where, for a deterministic structure formation model, the conditional
probability is given by Dirac delta distributions:

P
({

δf
l

} ∣∣∣ {δi
l

}) =
∏

l

δD
(
δf
l − G(a, δi)l

)
. (2)

Given a model G(a, δi) for structure formation, a prior distribution
for the present-day density field can be obtained by a two-step sam-
pling process, by first generating an initial conditions realization
from the prior distribution P({δi

l}) and then propagating the ini-
tial state forward in time with a suitable model of LSS formation.

This process amounts to generating samples from the joint prior
distribution of the final and initial conditions:

P(
{
δf
l

}
,
{
δi
l

}
) = P ({δi

l

}) ∏
l

δD
(
δf
l − G

(
a, δi

)
l

)
. (3)

By discarding the initial density realization, one obtains a realization
from the prior distribution for the non-linear final state. Assuming, a
multivariate Gaussian process with zero mean and covariance matrix
S to generate the initial density field δi the joint prior distribution is
given as

P
({

δi
l

}
,
{
δf
l

} ∣∣∣S) = P
({

δi
l

} ∣∣∣S) ∏
l

δD
(
δf
l − G

(
a, δi

)
l

)

= e− 1
2
∑

lm δi
lS

−1
lm δi

m

det (2πS)

∏
l

δD
(
δf
l − G

(
a, δi

)
l

)
.

(4)

In this work, we will employ a 2LPT model to approximately
describe gravitational LSS formation (also see Appendix B for an
overview over the 2LPT model). By employing a Lagrangian model
of structure formation, we particularly account for non-local effects
of gravitational mass transport from initial to final positions. 2LPT
is able to recover the exact one-, two- and three-point statistics
at large scales, and also approximates higher order statistics very
well (see e.g. Moutarde et al. 1991; Buchert et al. 1994; Bouchet
et al. 1995; Scoccimarro 2000; Scoccimarro & Sheth 2002). The
2LPT model therefore naturally reproduces physically reasonable
higher order statistics in the matter inference problem without re-
quiring the introduction of additional parameters for the description
of higher order statistics. Our approach therefore provides a physi-
cally meaningful way of matching the higher order statistics of the
evolved density field while requiring no further knowledge other
than the initial two-point statistics.

2.2 The large-scale structure likelihood

Above we demonstrated that the task of modelling accurate prior
distributions for the statistical behaviour of the present-day matter
distribution can be recast into an initial conditions inference problem
once a model for LSS formation is specified.

The methods described in this work are general and can be
adapted for the inference from any particular probe of the three-
dimensional LSS. We will illustrate our method for the case of
optical galaxy redshift surveys.

Galaxies tend to follow the gravitational potential of the cosmic
matter distribution and thus can be considered as matter tracers.
The statistical uncertainty due to the discrete nature of the galaxy
distribution can be modelled as an inhomogeneous Poisson process
(see e.g. Layzer 1956; Peebles 1980; Martı́nez & Saar 2002). Also
note that Poissonian likelihoods have already been successfully
employed for non-linear density field inference (see e.g. Jasche &
Kitaura 2010; Jasche et al. 2010b; Kitaura et al. 2010, for details).
Following this approach, the corresponding Poissonian likelihood
distribution can be expressed as

P
({

N
g
k

} ∣∣∣ {λk}
)

=
∏

k

(λk)N
g
k e−λk

N
g
k !

, (5)

where N
g
k is the observed galaxy number at position xk in the sky

and λk is the expected number of galaxies at this position. The mean
galaxy number is related to the final density field δf

k via

λk = λk (δ) = RkN̄
(
1 + B(δf )k

)
, (6)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/432/2/894/1020272 by guest on 11 August 2022



Bayesian reconstruction of initial conditions 897

where Rk is a linear response operator, incorporating survey geome-
tries and selection effects, N̄ is the mean number of galaxies in the
volume and B(x)k is a non-linear, non-local, bias operator at position
xk (also see Jasche & Kitaura 2010; Jasche et al. 2010b, for further
discussions).

The joint posterior distribution for the initial conditions δi
l and the

final density field δf
l given the galaxy observations is then obtained

by the multiplying equation (4) and (5):

P
({

δi
l

}
,
{
δf
l

} ∣∣∣ {Ni} ,S
)

= e− 1
2
∑

lm δi
lS

−1
lm δi

m

det (2πS)

∏
l

δD

× (δf
l − G(a, δi)l

)∏
k

×
(
λk

(
δf
))Ng

k e−λk(δf )

N
g
k !

. (7)

We see that given a model of structure formation G(a, δi), the
final density field δf

l is a free by-product of the inference process.
Consequently, marginalizing equation (7) over δf

l yields the desired
target posterior distribution for LSS inference:

P
({

δi
l

} ∣∣∣ {Ni} ,S
)

= e− 1
2
∑

lm δi
lS

−1
lm δi

m

det (2πS)

×
∏

k

(λk (G(a, δi)))N
g
k e−λk(G(a,δi))

N
g
k !

. (8)

This result requires several remarks. First, A nearly trivial, but nev-
ertheless important, conclusion to draw from equation (8) is that
LSS inference depends solely on the initial conditions δi

l . Conse-
quently, the complex task of designing suitable prior distributions
for the inference of the evolved density field can be recast into an
initial value problem by modelling a suitable physical model to
account for the complexity of the final state.

Secondly, note that inferring the initial density field does not
involve backward in time integration of the physical model. The
inference process exclusively requires model evaluations in the for-
ward time direction, counter to the widely held notion that inference
of initial conditions requires backward integration of the equations
of motion. Nevertheless, traditional approaches of initial conditions
inference, also known as ‘time machines’, rely on the inversion of
the flow of time in the model equations (see e.g. Nusser & Dekel
1992). As pointed out by Nusser & Dekel (1992), the disadvantage
of backward integration is that it may lead to artificial increase of
decaying modes amplitudes introducing erroneous artificial density
and velocity fluctuations in the initial conditions. Also note that
LSS surveys only provide limited information on the full final state
due to survey geometries and statistical uncertainties. These prob-
lems generally hinder a unique backward integration of the partially
observed final state to the initial conditions.

To alleviate this problem, and to ensure physical meaningful
backward integration of non-linear models, one has to augment
unobserved regions in the data with statistically meaningful infor-
mation mimicking the unobserved part of the evolved density field.
This in turn requires accurate knowledge on the multivariate proba-
bility distribution for the evolved final state δf

l , which is not known
at present.

Such problems are naturally prevented by casting the reconstruc-
tion of initial conditions as the statistical inference problem ex-
pressed in equation (8). Since the proposed method solely depends
on forward model evaluations, unobserved regions and statistical
uncertainties can be easily dealt with in the initial conditions, which

amounts to modelling simple, uncorrelated Gaussian processes. Fur-
ther, the posterior distribution proposed in equation (8) accounts for
systematics, such as survey geometry, selection effects and biases
but also for statistical uncertainties such as the noise of the galaxy
distribution and cosmic variance.

We therefore see that statistical uncertainties do not allow a
unique inference of the initial conditions from partially observed fi-
nal states. Consequently, our approach aims at exploring the highly
non-Gaussian and non-linear posterior distributionP ({δi

l}|{Ni},S
)

of the initial density field δi
l conditional on galaxy observations Nl

in order to quantify the uncertainty and significance of the inferred
initial conditions. The overall inference process is numerically non-
trivial. It is made possible by sophisticated non-linear analysis meth-
ods, which will be described in the following.

3 H AMI LTO NI AN SAMPLI NG

As described in the previous section, exploration of the initial con-
ditions posterior distribution requires numerically efficient Markov
chain Monte Carlo (MCMC) methods to accurately account for all
non-linearities and non-Gaussianities involved in the inference pro-
cess. Unfortunately, unlike as in the Gibbs sampling approach for
LSS proposed in Jasche et al. (2010a), direct sampling from this
posterior is not possible. One therefore has to rely on a sampling
procedures with an accept–reject step for the exploration of the high
dimensional parameter space encountered in this problem. A major
drawback of traditional algorithms of this type, e.g. Metropolis–
Hastings, is their dominant random walk behaviour and a possible
high rejection rate if no suitable proposal distribution can be de-
signed. In this work, we usually deal with about 106, or more, free
parameters δi

l which correspond to the initial density contrast am-
plitudes at the volume elements of the analysed volume. Because
of this high dimensionality of the problem, a low acceptance rate
of the Metropolis–Hastings algorithm would result in a prohibitive
computational cost for the method. Given this situation, we propose
to use a HMC method, which in the absence of numerical errors,
would yield an acceptance rate of unity. The HMC method exploits
techniques developed to follow classical dynamical particle motion
in potentials (Duane et al. 1987; Neal 1993, 1996). In this fashion
the Markov sampler follows a persistent motion through the param-
eter space, suppressing the random walk behaviour. This enables
us to sample with reasonable efficiency in high dimensional spaces
(Hanson 2001). Furthermore, the HMC has already been success-
fully applied to non-linear LSS inference problems (see e.g. Jasche
& Kitaura 2010; Jasche et al. 2010b).

In the following, we will just briefly outline the basic idea of the
hybrid Hamiltonian sampling algorithm. More detailed description
of the algorithm and its application in LSS inference and in general
can be found in Duane et al. (1987), Neal (1993), Hanson (2001),
Jasche & Kitaura (2010) and Jasche et al. (2010b).

3.1 The HMC

Suppose, we wish to generate samples from a probability distribu-
tion P({xi}), where {xi} is a set consisting of the N elements xi. If
we interpret the negative logarithm of this posterior distribution as
a potential

ψ(x) = − ln(P(x)), (9)

and by introducing a ’momentum’ variable pi and a ’mass ma-
trix’ M, as nuisance parameters, we can formulate a Hamiltonian
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describing the dynamics in the multidimensional phase space. Such
a Hamiltonian is then given as

H =
∑

i

∑
j

1

2
pi M

−1
ij pj + ψ(x). (10)

As can be seen in equation (10), the form of the Hamiltonian is such
that the joint distribution is separable into a Gaussian distribution
in the momenta {pi} and the target distribution P({xi}) as

e−H = P({xi}) e− 1
2
∑

i

∑
j pi M−1

ij pj . (11)

For this reason, marginalization over all momenta will again yield
the original target distribution P({xi}).

In order to generate a random variate from this joint distri-
bution, being proportional to exp (−H), one first draws a set
of momenta from the distribution defined by the kinetic energy
term that is an N dimensional Gaussian with a covariance ma-
trix M. Then one follows the deterministic dynamical evolu-
tion of the system, given a starting point ({xi}, {pi}) in phase
space for some fixed pseudo-time τ according to Hamilton’s
equations:

dxi

dt
= ∂H

∂pi

, (12)

dpi

dt
= ∂H

∂xi

= −∂ψ(x)

∂xi

. (13)

The integration of this equations of motion yields the new position
({x ′

i}, {p′
i}) in phase space. This new point is accepted according to

the usual acceptance rule:

PA = min
[
1, exp(− (H ({x ′

i}, {p′
i}) − H ({xi}, {pi}))

)]
. (14)

Since the equations of motion provide a solution to a Hamilto-
nian system, energy or the Hamiltonian given in equation (10) is
conserved, and therefore the solution to this system provides an
acceptance rate of unity. In practice, numerical errors can lead to a
somewhat lower acceptance rate. Samples of the desired target dis-
tribution are then obtained by simply discarding the auxiliary mo-
menta {pi}, which amounts to marginalization over these nuisance
parameters. The particular implementation of the hybrid Hamilto-
nian Monte Carlo sampler for the problem described in this work
will be discussed below.

4 EQUATI O N S O F M OT I O N F O R LS S
I N F E R E N C E

As described above, the HMC approach permits to explore the non-
linear LSS posterior by following Hamiltonian dynamics in the high
dimensional parameter space. The corresponding forces required to
evaluate these Hamiltonian trajectories can be derived from the
LSS posterior given in equation (8). Consequently, the Hamiltonian
potential �({δi

l}) can be written as

�
({

δi
l

}) = −ln
(
P
({

δi
l

} ∣∣∣ {Ni} ,S
))

= �prior

({
δi
l

}) + �likelihood

({
δi
l

})
, (15)

with the potential �prior({δi
l}) is given as

�prior({δi
l}) = 1

2

∑
lm

δi
lS

−1
lm δi

m, (16)

and �likelihood({δi
l}) is given as

�likelihood

({
δi
l

}) =
∑

k

RkN̄gal

(
1 + G

(
a, δi

)
k

)
−Nkln

(
RkN̄gal

(
1 + G(a, δi)k

))
. (17)

Given the above definition of the Hamiltonian potential �({δi
l}) one

can obtain the required Hamiltonian forces by differentiating with
respect to δi

p:

∂�
({

δi
l

})
∂δi

p

= ∂�prior

({
δi
l

})
∂δi

p

+ ∂�likelihood

({
δi
l

})
∂δi

p

. (18)

Here the prior term is given by

∂�prior

({
δi
l

})
∂δi

p

=
∑

j

S−1
pj δi

j . (19)

In contrast the likelihood term cannot be derived as trivially. A de-
tailed derivation for the likelihood term can be found in Appendix D.
The likelihood term �likelihood({δi

l})) can be expressed as

∂�likelihood

({
δi
l

})
∂δi

p

= −D1 Jp + D2
∑
a>b

(
τ aabb

p + τ bbaa
p − 2τ abab

p

)
,

(20)

where the vector Jp and the tensor τ abcd
p are defined in Appendix D.

Finally, the equations of motion for the Hamiltonian system given
in equations (12) and (13) can be written as

dδi
n

dt
=
∑

j

M−1
nj pj , (21)

and

dpn

dt
=−
∑

j

S−1
nj δi

j +D1 Jn+D2
∑
a>b

(
τ aabb

n − τ bbaa
n − 2τ abab

n

)
.

(22)

New samples from the LSS posterior can then be obtained by fol-
lowing the dynamical evolution of the Hamiltonian system in phase
space.

5 N U M E R I C A L I M P L E M E N TAT I O N

We named our numerical implementation of the initial conditions
sampler Bayesian Origin Reconstruction from Galaxies (BORG).
It utilizes the FFTW3 library for fast Fourier transforms (FFTs) and
the GNU Scientific Library (GSL) for random number generation
(Frigo & Johnson 2005; Galassi et al. 2009). In particular, we use the
Mersenne Twister MT19937, with 32-bit word length, as provided
by the GSL_RNG_MT19937 routine, which was particularly designed
for MCMC simulations (Matsumoto & Nishimura 1998).

5.1 The leapfrog scheme

The numerical implementation of the HMC sampler employed in
this work largely follows the implementation described in Jasche
& Kitaura (2010). Generally the numerical integration scheme is
required to meet some conditions in order to achieve optimal effi-
ciency of the sampler. High acceptance rates require the numerical
integration scheme to be highly accurate in order to conserve the
total Hamiltonian. Low accuracy in the integration scheme will
generally lower the acceptance rate. Additionally, the integrator
must be symplectic, meaning exactly reversible, in order to ensure
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the Markov chain satisfies detailed balance (Duane et al. 1987).
For this reason, we implemented the leapfrog scheme to integrate
the Hamiltonian system. It is also numerically robust, and allows
for simple propagation of errors. In particular, we implement the
kick–drift–kick scheme. The equations of motions are integrated by
making n steps with a finite step size ε, such that τ = nε:

pm

(
t + ε

2

)
= pm(t) − ε

2

∂ψ({δi
k})

∂δi
l

∣∣∣∣
δi
m(t)

, (23)

δi
m (t + ε) = δi

m(t) − ε

mi

pm

(
t + ε

2

)
, (24)

pm (t + ε) = pm

(
t + ε

2

)
− ε

2

∂ψ({δi
k})

∂δi
l

∣∣∣∣
δi
m(t+ε)

. (25)

We iterate these equations until t = τ . Also note that it is impor-
tant to vary the pseudo-time interval τ to avoid resonant trajec-
tories. We do so by drawing n and ε randomly from a uniform
distribution.

5.2 Hamiltonian mass

The HMC possesses a large number of tunable parameters contained
in the ’mass’ matrix M which have an important effect on the
performance of the sampler. The Hamiltonian mass defines the
inertia of individual parameters when moving through the parameter
space. Consequently, too large masses will result in slow exploration
efficiency, while too light masses will result in large numerical errors
of the integration scheme leading to high rejection rates.

Generally, if the individual δi
l would be Gaussian distributed, a

good choice for HMC masses is to set them inversely proportional to
the variance of that specific δi

l (Taylor, Ashdown & Hobson 2008).
For non-Gaussian distributions it is reasonable to use some measure
of the width of the distribution (Taylor et al. 2008). For example,
Neal (1996) proposes to use the curvature at the peak. A suitable ap-
proach to define Hamiltonian masses is to perform an approximate
stability analysis of the numerical leapfrog scheme (see e.g. Taylor
et al. 2008; Jasche & Kitaura 2010). Following this approach, we
will expand the Hamiltonian forces, given in equation (18), around
a mean signal ξ i

l , which is assumed to be the mean initial den-
sity contrast once the sampler moved beyond the burn-in phase. As
described in Appendix F approximating the Hamiltonian forces to
linear order amounts to approximating the target distribution by a
Gaussian distribution. According to the discussion in Appendix F,
the Hamiltonian masses should be set as

Mmj = S−1
mj − δK

mj D1 ∂Jj (s)

∂sj

∣∣∣∣
sj =ξj

, (26)

where Jj is defined in Appendix D. Calculation of the leapfrog
scheme requires inversions of M. Considering the high dimension-
ality of the problem, inverting and storing M−1 is computationally
impractical. For this reason, we construct a diagonal ‘mass matrix’
from equation (26). We found that choosing the diagonal of M,
as given in equation (26), in its Fourier basis yields faster con-
vergence for the sampler than a real space representation since
it accounts for the correlation structure of the underlying density
field.

6 G E N E R ATI N G MO C K O B S E RVAT I O N S

In the previous sections we presented the derivation and the im-
plementation of our method. Here we will describe the generation

of mock data sets that will be used to test our method. Following
closely the description in Jasche & Kitaura (2010), we will first
generate a realization for the density contrast δi

l from a normal dis-
tribution with zero mean and a covariance matrix corresponding to
a cosmological power spectrum in a three-dimensional Cartesian
box with Nside = 128, corresponding to Nvox = 2097 152 volume
elements, and a comoving box length of L = 750 Mpc h−1. The den-
sity field will then be scaled back to an initial time corresponding
to a cosmological scale factor ainit = 0.001 by multiplication with
a cosmological growth factor D+(ainit), described in Appendix A.
In particular, we use a cosmological power spectrum for the un-
derlying matter distribution, with baryonic wiggles, calculated ac-
cording to the prescription described in Eisenstein & Hu (1998,
1999). We assume a standard 
 cold dark matter (
CDM) cos-
mology with a set of cosmological parameters (�m = 0.22, �
 =
0.78, �b = 0.04, h = 0.702, σ 8 = 0.807 and ns = 0.961). The
Gaussian initial conditions are then propagated forward in time
using 2LPT as described in Appendix B. From the resultant par-
ticle distribution the final density contrast field δf

l is constructed
via the cloud in cell (CIC) method (see e.g. Hockney & Eastwood
1988).

An artificial galaxy catalogue is then generated by simulating the
inhomogeneous Poisson process given by equation (5) on top of the
final density field δf

l . In order to set up a realistic testing environment,
we seek to emulate the main features of the Sloan Digital Sky survey
as closely as possible. We employ the survey geometry of the Sloan
Digital Sky Survey Data Release 7 depicted in the right-hand panel
of Fig. 1. The mask has been calculated using the MANGLE code
provided by Swanson et al. (2008) and has been stored on a HEALPix
map with nside = 4096 (Górski et al. 2005). Further, we assume
that the radial selection function follows from a standard Schechter
luminosity function with standard r-band parameters (α = −1.05,
M∗ − 5log10(h) = −20.44), and we only include galaxies within an
apparent Petrosian r-band magnitude range 14.5 < r < 17.77 and
within the absolute magnitude ranges Mmin = −17 to Mmax = −23.
The corresponding radial selection function f (z) is then obtained
by integrating the Schechter luminosity function over the range in
absolute magnitude:

f (z) =
∫ Mmax(z)

Mmin(z) �(M) dM∫ Mmax

Mmin
�(M) dM

, (27)

where �(M) is given in Appendix C. The resulting selection func-
tion for the simulated galaxy sample is depicted in the left-hand
panel of Fig. 1. The survey response operator Ri, required to sim-
ulate the Poisson process, can be calculated as the product of the
survey geometry and the selection function at each point in the
three-dimensional volume:

Ri = Mi Fi = M(αi, δi)f
l(zi). (28)

Finally, we choose N̄ = 9.93, and perform the Poisson sampling on
the grid resulting in a total number of galaxies Ntot = 484 227.

7 TESTI NG

In this section, we describe the application of our method to the
artificial data set described in Section 6. The primary intention of
the following tests is to evaluate the performance of our method
in realistic situations, taking into account observational systematics
and uncertainties.
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900 J. Jasche and B. D. Wandelt

Figure 1. Selection function f (z) as a function of redshift z (left-hand panels) and the two-dimensional completeness map for the SDSS DR7 (right-hand
panel).

7.1 Testing convergence and correlations

The Metropolis–Hastings sampler in general and the HMC in par-
ticular are designed to have the target distribution, in our case the
LSS posterior distribution, as its stationary distribution (see e.g.
Metropolis et al. 1953; Hastings 1970; Neal 1993). For this rea-
son, the sampling process will provide us with samples from the
specified LSS posterior distribution after an initial burn-in phase.
The length of this initial burn-in phase has to be assessed using
numerical experiments.

Generally, burn-in manifests itself as a systematic drift of the
sampled parameters towards the true parameters from which the
artificial data set was generated. This behaviour can be monitored
by following the evolution of parameters in subsequent samples
(see e.g. Eriksen et al. 2004; Jasche et al. 2010a). To test this initial
burn-in behaviour we will arbitrarily reduce the power of the random
initial density field δi

l by a factor of 0.1, and observe the drift towards
the true underlying values by following successive power spectra
measured from the samples. In Fig. 2 successive power spectra of
the first 800 samples are presented. The plot nicely demonstrates the
systematic drift towards the true underlying solution by successive
restoration of the true power in the initial density field.

More specifically, we can quantify the initial burn-in behaviour
by comparing the ith power spectrum measurement Pi(k) in the
chain to its true underlying value P0(k) via

ξ (Pi(k)) = 1. − Pi(k)

P 0(k)
. (29)

The results for this exercise are presented in the lower panel of
Fig. 2. It can be nicely seen that the algorithm restores the correct
power an all scales and drifts towards preferred regions in parameter
space to commence exploration of the LSS posterior. It is also im-
portant to remark that in this test, we do not observe any particular
hysteresis for the poorly constrained large-scale modes, meaning
they do not remain at their initially set values but efficiently explore
the parameter space. This already indicates the ability of our algo-
rithm to account for artificial mode coupling as introduced by the
survey geometry.

Burn-in also manifests itself in the initial acceptance rate as
shown in the left-hand panel of Fig. 3. The dip in the initial ac-

Figure 2. The plot demonstrates the initial burn-in drift of successive power
spectra, measured from the initial density fields, towards the true underlying
solution. Successive samples are colour coded corresponding to their sample
number as indicated by the colour bar on the right. Black dashed lines
correspond to the true underlying values. Lower panels depict the successive
deviation ξ from the true values, as described in the text, for the measured
power spectra. The sequence of 800 successive samples, visualizes how
the sampler approaches the true underlying values and starts exploring the
parameter space around them.

ceptance rate function corresponds to the point when the sampling
algorithm restored the full power of the initial density field. This
has a simple explanation. Initially, since the power was reduced by
a factor of 10, the system behaved more or less linear since the
displacement of 2LPT particles is small. Once the correct power is
restored the displacement of particles increases, leading to a higher
non-locality of the system. When the dip in the acceptance rate
occurs, the sampler starts exploring physically more reasonable
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Bayesian reconstruction of initial conditions 901

Figure 3. Acceptance rates for successive samples (left-hand panel) and the execution time per sample (right-hand panel). It can be seen that the acceptance
rates drops during the initial burn in phase and finally stabilizes at about 84 per cent. The left-hand panel demonstrates the scatter in the execution times of
individual samples. The average execution time is about 300 s as indicated by the solid blue line.

states in the initial conditions which can explain the observa-
tions. This process is accompanied by an initially lower acceptance
rate. Once the sampler moves to a reasonable region in parame-
ter space the acceptance rate approaches asymptotically a rate of
about 84 per cent. This high acceptance rate, combined with the fast
de-correlation properties, we will demonstrated next, shows that
our sampler makes sampling from this multimillion dimensional,
non-linear posterior numerically feasible.

In particular, these tests show that the algorithm requires an initial
burn-in phase of on the order of 600 samples before providing
samples from the target distribution. Also note that the initial burn-
in period can be shortened by initializing the algorithm with an
initial density field which is closer to the true solution.

Another important issue to study when dealing with MCMC
methods is the mixing efficiency of the algorithm. Generally, suc-
cessive samples in the chain will not be independent but correlated
with previous samples. Consequently, the correlation between suc-
cessive samples determines the amount of independent samples
which can be drawn from the chain. We study this effect by fol-
lowing a similar approach as described in Eriksen et al. (2004) or
Jasche et al. (2010a).

Assuming all parameters in the Markov chain to be independent
of one another one can estimate the correlation between subsequent
density samples by calculating the autocorrelation function:

C(δ)n =
〈

δi − 〈δ〉√
Var (δ)

δi+n − 〈δ〉√
Var (δ)

〉
, (30)

where n is the distance in the chain measured in iterations (also see
e.g. Eriksen et al. 2004; Jasche et al. 2010a, for a similar discussion).
The results for this analysis are presented in Fig. 4, where we plot the
correlation coefficients for individual density amplitudes selected
by their signal-to-noise ratio. It can be generally seen that the mixing
efficiency is a little lower in regions with low signal-to-noise ratio
but the mixing efficiency of the algorithm is very good overall.

We can further define a correlation length of the Markov sam-
pler as the distance in the chain nc beyond which the correlation
coefficient C(δ)n has dropped below a threshold of Cth(δ)n = 0.1.
As can be seen in Fig. 4 the correlation length is about 200 sam-
ples, demonstrating the high mixing efficiency of the algorithm.
Despite the high dimensionality of the problem considered here,
these tests demonstrate that exploring LSS posterior for the initial

Figure 4. Correlation length for different signal-to-noise ratio values
√

N ,
as indicated in the legend.

conditions from observations exhibiting systematic uncertainties
and uncertainties are numerically feasible with our method.

7.2 Large-scale structure inference

In this section we will discuss the results obtained from the applica-
tion of our MCMC algorithm to the artificial data set, as described
in Section 6.

7.2.1 Inferred three-dimensional density fields

We performed our analysis in 1283 cubic Cartesian box with side
length of 750 Mpc h−1, yielding ∼2 × 106 parameters to infer.
In the course of the sampling process, our algorithm, therefore,
provides matter field realizations for the initial and final 2LPT
density fields, with a grid resolution of about ∼6 Mpc h−1, con-
strained by observed data. Also note that by employing a 2LPT
model, initial density fields are naturally inferred at their initial La-
grangian coordinates, while final density fields are recovered at their
corresponding final Eulerian coordinates. Our analysis resulted
in ∼2 × 104 samples for initial and final density fields, which
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902 J. Jasche and B. D. Wandelt

Figure 5. Three slices through a sample of the initial density field (top panels), the final density field (middle panels) and through the corresponding data cube
represented by the galaxy number counts (lower panels). The plots nicely demonstrate the correlation between the final density field and the data. To some
extent, one can observe the connection between large structures in the initial conditions and the final density field.

can be considered as full physical density fields, at least to the de-
gree as permitted by the validity of the 2LPT model. In particular, as
indicated by the inferred power spectra in Fig. 2, the individual sam-
ples possess correct power, and do not show any sign of attenuation
due to survey characteristics such as survey geometry and selection
effects. In Fig. 5 we show slices from three different sides through
samples of the initial and corresponding final density fields as well
as through the data. It is immediately visible that the statistics of the
initial and final matter fields differ greatly. While the initial density
field appears to be very Gaussian, the final density field is clearly
non-Gaussian. This demonstrates how the physical 2LPT model for
structure formation is able to account for the growing statistical
complexity of the density distribution during the evolution from
the initial to the final state. Furthermore, comparison of the final
density field (middle panels of Fig. 5) to the data (lower panels of
Fig. 5) demonstrates the recovered structures from the data. One
can nicely see that the algorithm tries to extrapolate unobserved
filaments between clusters based on the physically reasonable as-
sumptions provided by the 2LPT model. In general, the algorithm
nicely recovers the filamentary structure of the matter distribution.

More importantly, Fig. 5 also illustrates that the algorithm accu-
rately accounts for survey geometry and selection effects by aug-

menting unobserved or poorly observed regions with statistically
correct information. Consequently, inferred initial and final den-
sity fields possess equal power throughout their entire domains and
are not affected by selection or mask artefacts, thus representing
physical matter field realizations. It is particularly interesting that
unobserved and observed regions in the inferred final density fields
do not appear visually distinct, a consequence of the excellent ap-
proximation of the 2LPT not just to the first but also higher order
moments (Moutarde et al. 1991; Buchert et al. 1994; Bouchet et al.
1995; Scoccimarro 2000; Scoccimarro & Sheth 2002). This is a
great advantage over previous methods based on Gaussian or log-
normal models where the assumption of a cosmological power spec-
trum only specifies the two-point statistics correctly. In particular,
the reader may want to compare with fig. 2 in Jasche et al. (2010b),
where unobserved regions are augmented with a log-normal model
unable to represent filamentary structures.

To further illustrate the degree of information which can be ex-
tracted from observations, subject to selection effects and survey
geometry, in Fig. 6 we show ensemble mean density fields estimated
from 1.5 × 104 samples. The plot reveals that on average highly
detailed structures can be recovered. In comparison with Fig. 5, one
can see that in poorly or not observed regions, the ensemble mean
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Figure 6. Three slices from different perspectives through three-dimensional ensemble mean fields estimated from 1.5 × 104 samples. Upper and lower panels
show slices through the initial and final mean density fields, respectively.

density field approaches the cosmic mean density. This is expected,
since regions which do not provide any observational information
should on average reflect the cosmic mean. Note, however, that the
uncertainty in these regions is accurately accounted for in the infer-
ence process, by augmenting these regions with statistically correct
information as demonstrated by Fig. 5.

Next, we will discuss the statistical behaviour of inferred ini-
tial and final density fields. In Fig. 7 we compare the one-point
distribution of the inferred initial and final density field measured
from the corresponding samples. It can be seen that while the initial
density contrast follows Gaussian statistics, the final distribution
is highly skewed and represents the expected log-normal like be-
haviour. These results therefore supports our initial claim that the
complex problem of modelling a prior distribution for the present
fully non-linear density field can be exchanged for an initial con-
ditions inference problem when assuming a physical model which
accounts for the increasing statistical complexity of the matter dis-
tribution during structure formation.

7.2.2 Testing accuracy of inferred initial conditions

An important task of the present work is to test the accuracy of in-
ferred initial conditions from galaxy observations. In particular, not
only survey characteristics such as survey geometry and selection
effects but also noise have to be accurately translated to the initial
conditions. This is a non-trivial task, since gravitational structure
formation is a non-local and non-linear process. As a consequence,
also the information content of the observed data will be distributed
differently in initial and final fields. Although, the total amount of
information is conserved, by following for example tracer parti-
cles from high density, and thus high signal-to-noise ratio, regions

backward in time, one sees that the same amount of information is
distributed over a larger region in the initial conditions. The ana-
logue result applies to underdense regions. This means in particular
that the signal-to-noise ratio for a given comoving Eulerian volume
is a function of time. In our approach, we account for these non-
local processes by incorporating a 2LPT model into the inference
process.

In general it is important to estimate the accuracy of inferred
initial conditions, in particular to test for possible biases. However,
note that the agreement between the recovered and true initial den-
sity fields will crucially depend on the signal-to-noise ratio at the
various regions of the initial conditions. To estimate a proxy for
the signal-to-noise ratio in the initial conditions we calculate the
ratio � between the absolute value of the ensemble mean and the
ensemble variance given as

� = |〈δinitial〉|√
〈(δinitial − 〈δinitial〉)2〉

. (31)

To test whether our method is biased with respect to the true
underlying initial density field δtrue

initial we analyse the scatter
�δinitial = δtrue

initial − δinitial between the true underlying and inferred
density fields. In particular, we estimated the posterior distribution
P (�δinitial|�) of deviations from the true values, conditional on
the signal-to-noise ratio parameter �. The result of this exercise
is demonstrated in Fig. 8. As can be clearly seen, the distribution
P (�δinitial|�) is centred on the vertical zero axis and thus demon-
strates our method to be unbiased with respect to the true underlying
initial density field. Moreover, the plot also quantifies the accuracy
by which the initial density field can be inferred depending on the
signal-to-noise ratio parameter �. In particular, as expected regions
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904 J. Jasche and B. D. Wandelt

Figure 7. One-point distributions for the density contrast in the initial field (left-hand panel) and for the final field (right-panel) measured from the samples.
It can be seen that, while the inferred initial density field follows a Gaussian distribution, the final field exhibits the highly skewed log-normal like behaviour.

Figure 8. Posterior distribution for the deviations �δinitial = δtrue
initial − δinitial of the inferred initial density amplitudes from their true underlying values

conditional on the signal-to-noise ratio parameter �. As expected the accuracy of inferred δinitial values depends on �. In particular, regions with higher �

also yield higher accuracy for inferred density amplitudes δinitial. Also note that the plot shows no bias, demonstrating that posterior results are unbiased with
respect to the true underlying initial density field.

of higher signal-to-noise ratio can be recovered with greater accu-
racy compared to regions with low �.

To further quantify the accuracy of the recovered density field,
we estimate the correlation coefficient r (x) between density samples
and the true underlying solution as a function of some parameter x.
The correlation coefficient is given as

r(kx) =
〈
δx

0 〈δ〉x〉√〈(
δx

0

)2
〉√〈

(〈δ〉x)2
〉 , (32)

where we will choose x to be the signal-to-noise ratio
√

N for the
final density field and a specific smoothing scale kth for the ini-
tial density field. We also present the correlation coefficient r (x)
of inferred and true initial density fields for various values of the
signal-to-noise ratio parameter �. The results for these tests are
demonstrated in Fig. 9. The left-hand panel of Fig. 9 depicts
the correlation between the true underlying final density field and
the final density samples as a function of the signal-to-noise ratio√

N . It can be seen that the correlation with the truth is generally
higher for higher signal-to-noise ratios. Even in zones that contain
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Figure 9. Cross-correlation coefficient between the true final density field and a sample as a function of signal-to-noise ratio
√

N (left-hand panel) and the
cross-correlation between the true underlying initial density field and the inferred ensemble mean initial density field as a function of smoothing scale kth for
different values of the signal-to-noise ratio parameter � (right-hand panel). It is interesting to remark that the correlation between true underlying and samples
of the density field still amounts to about 55 per cent in regions where only a single galaxy has been observed. Also note that the accuracy of inferred initial
density fields depends on survey characteristics through the signal-to-noise ratio parameter �. Particularly regions with high � can be inferred with more than
90 per cent accuracy on all scales considered in our analysis.

just a single galaxy we still get a correlation of about 55 per cent.
It is also remarkable that the algorithm still provides a 10 per cent
correlation with the true underlying density field in regions which
have not been sampled by galaxies such as centres of voids or
masked regions. The right-hand panel of Fig. 9 demonstrates the
cross-correlation between the true underlying initial conditions and
the inferred ensemble mean initial density field as a function of filter
scale kth, for various values of �, when smoothed with a spherical
top hat filter in Fourier space. These results clearly demonstrate
that the accuracy of inferred structures in the initial conditions
strongly depends on survey characteristics through the signal-to-
noise ratio value �. In particular, Fig. 9 reveals that for the highest
signal-to-noise ratio regions, the method recovers structures in the
initial conditions with an accuracy of about 90 per cent throughout
all scales considered in this analysis. Note that even for the lowest
signal-to-noise ratio regime we still yield a 30 per cent correlation
between the true and inferred initial density fields on a scale of
about ∼6 Mpc h−1. In general, even though only roughly half of the
analysed volume has been observed, the large scales of the initial
conditions can be much easier recovered than small-scale features.
This is in agreement with expectations, since the largest scales be-
have more linearly than the smaller scales and hence are easier to
recover and also because the Lagrangian dynamics involve the grav-
itational potential which carries information on the largest scales.
Particular the shot noise contribution at the smallest scales in the
final galaxy observation will smear out features in the initial con-
ditions, since the 2LPT displacement vector for the particles will
fluctuate on these scales.

7.2.3 Inferred dynamics

Importantly, the algorithm provides dynamical information on the
LSS given the 2LPT model. In Fig. 10, we show the comparison
between the true underlying velocity field and the velocity field
inferred by a randomly selected sample. It can be seen that the algo-
rithm is able to recover the true underlying velocity field in detail.
This is expected, since as demonstrated by Fig. 9, our method yields
on average an accuracy of about 90 per cent at recovering the largest
scales in the initial conditions, and since bulk velocities are mostly

sensitive to the largest scales by being related to the gravitational
potential. As a consequence our inference is able to accurately infer
the velocity field in noisy or even completely masked regions. This
clearly demonstrates the strength of this approach in extrapolat-
ing physically reasonable states of the matter distribution even into
poorly observed regions.

8 D I S C U S S I O N A N D C O N C L U S I O N

We describe a new method to perform dynamical LSS inference
from galaxy redshift surveys employing a 2LPT model. In Section 2
we demonstrated that the problem of constructing suitable prior
distributions for the non-linear density field is directly linked to the
problem of inferring initial conditions, once a dynamical model for
LSS formation is given. In this approach the evolved non-linear
density field acts as a mere nuisance parameter in the inference
process, which shifts the problem of designing prior distributions
to physical modelling of the matter evolution dynamics.

Since the method we propose provides an approximation to the
non-linear dynamics the algorithm automatically provides infor-
mation on the dynamical evolution of the large-scale matter dis-
tribution. By exploring the space of dynamical histories compat-
ible with both data and model our approach therefore marks the
passage from Bayesian three-dimensional density inference to full
four-dimensional state inference.

Particularly, in this work we have employed a 2LPT model
as an approximate dynamical description of the LSS evolution
on the large scales. As described in the literature, the 2LPT
model describes the one-, two- and three-point statistics cor-
rectly and represents higher order statistics very well (see e.g.
Moutarde et al. 1991; Buchert et al. 1994; Bouchet et al. 1995;
Scoccimarro 2000; Scoccimarro & Sheth 2002). Hence, the al-
gorithm proposed in this work can exploit higher order statistics,
modelled through the 2LPT model, to provide physically reason-
able matter field realizations conditional on the observed galaxy
distribution.

It is also important to remark that the inference process described
in Section 2 requires at no point the inversion of the flow of time
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Figure 10. Three slices through the true underlying density field from three different sides overplotted with the two-dimensional projection of the true velocity
(left-hand panels) and a sample velocity field (right-hand panels). It can be seen that the algorithm is able to infer the true underlying dynamics of the system
to great detail in noisy and even unobserved regions, when compared to the corresponding data panels in Fig. 5.

in the dynamical model. The inference process therefore solely
depends on forward propagation of the model, which consequently
alleviates many of the problems encountered in previous approaches
to the reconstruction of initial conditions, such as spurious decaying
mode amplification. Rather than inferring the initial conditions by
backward integration in time our approach builds a non-linear filter
using the dynamical forward model as a prior. This prior singles
out physically reasonable LSS states from the space of all possible
solutions.

The resultant inference procedure is numerically highly non-
trivial, since the LSS posterior distribution has to be evaluated in
very high dimensional space. Typically we are dealing with 106–

107 parameters, corresponding to the voxels used to discretize the
domain. In Section 3, we described an efficient HMC implementa-
tion for the LSS inference problem when employing a dynamical
model for LSS formation. Further, we discussed some details of the
numerical implementation in Section 5.

To provide a proof of concept we test the algorithm in an ar-
tificial scenario, based on the characteristics of the Sloan Digital
Sky Survey Data Release 7. In particular, as described in Section 6,
we use the SDSS DR7 completeness map and realistic selection
functions based on the Schechter luminosity function to generate a
realistic testing environment essentially emulating the SDSS DR7
main sample.
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The major aim of testing the algorithm, described in Section 7,
was to estimate the method’s performance in a realistic scenario.
An important issue to test when dealing with MCMC methods is the
question of how many independent samples can be drawn from the
chain. The high efficiency of our HMC scheme permits to explore
the posterior distribution with a typical acceptance rate of about
84 per cent while maintaining the correlation length of the chain at
or below 300 steps. We estimate the length of the burn-in phase to
be about 600 steps. In summary, our tests reveal that the proposed
analysis approach is not only within numerical reach but is efficient
enough to work well with present-day computational resources.

The properties of the inferred LSS fields were studied in Sec-
tion 7.2. It is clear upon visual inspection that our approach re-
turns far more physical reconstructions than previous methods based
solely on two-point information (see e.g. Lahav 1994; Zaroubi 2002;
Erdoğdu et al. 2004; Kitaura & Enßlin 2008; Kitaura et al. 2009,
2010; Jasche & Kitaura 2010; Jasche et al. 2010a,b). This is partic-
ularly obvious for unobserved regions which are augmented with
statistically correct information, in order to account for survey ge-
ometry and cosmic variance. In the present approach augmented
regions are visually indistinguishable from regions containing data.
Also note, that measurements of the posterior power spectra do not
show any sign of attenuation due to survey geometry or selection ef-
fects, indicating that the posterior density fields possess equal power
throughout their entire domains. Therefore, the individual density
field samples can be regarded as full physical matter field realiza-
tions conditional on observations, at least to the degree represented
by the 2LPT model.

By studying the one-point distributions of the inferred initial and
final density fields we demonstrated that the algorithm correctly
recovers the Gaussian initial conditions from a galaxy observation
which does not exhibit Gaussian but highly skewed log-normal-like
statistics. This demonstrates that the algorithm correctly accounts
for the mode coupling and phase correlations originally introduced
to the matter distribution by gravitational structure formation. In
addition, it supports our initial claim that the approach of searching
for phenomenological approximations to the full probability distri-
bution for the non-linear matter field can be efficiently reformulated
as an initial condition problem once a physical model for LSS is
employed.

In general, the accuracy of inferred initial density fields crucially
depends on survey characteristics, such as survey geometry, selec-
tion effects and noise. All these quantities are only given at the
epoch of observations but not at the initial conditions. Our method
therefore has to account for the non-linear and non-local transfer
of information from the observations to the initial conditions. Since
this is a complex approach, it is important to test the accuracy of
inferred initial density fields. To demonstrate that our method is
unbiased with respect to the true underlying initial density field we
estimated the posterior distribution P (�δinitial|�) of the deviations
of inferred initial conditions from their true values conditional on
a signal-to-noise ratio parameter �. This test clearly demonstrated
that the inferred results are unbiased with respect to the underlying
density field, since the distribution is centred on the vertical zero
axis. Also, as expected, the accuracy of inferred initial conditions
depends on the signal-to-noise ratio value �. In particular, inferred
density fields in high signal-to-noise ratio regions have higher ac-
curacy compared to regions of lower signal-to-noise ratio values.

To further evaluate the accuracy of recovered density fields, we
studied the correlation between the true underlying and samples of
the final density field as a function of the signal-to-noise ratios. As
expected, the correlation can reach more than 90 per cent in the

high signal-to-noise ratio regime, where signal-to-noise ratio ∼7.
In addition, the algorithm still provides a correlation of about 55 per
cent between the true underlying final density field and the samples
in regions where only a single galaxy has been observed. Also note
that in regions where the signal-to-noise ratio is zero, which are
either centres of voids or unobserved regions, the algorithm still
provides a 10 per cent correlation. This is a clear manifestation of
improved inference due to the incorporation of a physical model of
LSS formation, which exploits additionally three-point and higher
moment statistics of the density distribution. These tests further
demonstrate that the algorithm correctly accounts for systematics
such as the survey geometry and selection effects.

We also tested the average accuracy of recovered structures in the
initial conditions by estimating the cross-correlation between the
inferred ensemble mean initial density field and the true underlying
initial density field as a function of filter scale and for various signal-
to-noise ratio values. This test revealed that structures in the highest
signal-to-noise ratio regimes can be recovered with about 90 per cent
accuracy throughout the entire range of scales considered in our
analysis. Even for the lowest signal-to-noise ratio regime we still
observe about 30 per cent correlation between the true underlying
and the inferred ensemble mean initial density field. Also note that
on average the largest scales can be recovered with an accuracy of
about 90 per cent, even though only roughly half of the analysed
volume has been observed.

Along with the inferred density fields the algorithm also provides
dynamical information on the large-scale flows. By comparing the
true underlying velocity field to the inferred velocity field of an
arbitrary sample we demonstrated that the algorithm accurately re-
covers large-scale flows, even in noisy or even unobserved regions.
This feature can be easily explained by the notion that our method
accurately infers the large-scale initial density field and the fact that
bulk velocities depend predominantly on the largest scales through
the gravitational potential. This clearly demonstrates the strength
of the method in extrapolating physically reasonable states into
poorly observed regions. Nevertheless, it should be remarked that
the 2LPT model, as an approximation, does not capture the exact
physical behaviour of the actual structure formation processes and
thus introduces model errors. Note that since 2LPT and true struc-
ture formation both describe deterministic processes, the model
error is not stochastic but deterministic. Describing the model error
as a stochastic process will decouple the inference process from
observations by wiping out information in the data which cannot
be accurately represented by the model. In turn, this only means
that information on the initial density field should only be extracted
in regions where the 2LPT model is applicable, which amounts
to large scales or low-density regions. This, however, can also be
done in post-processing. Note that our method is generally able to
deal with deterministic and stochastic model errors, by exchanging
the Dirac delta distribution in equation (2) with the corresponding
statistics. We are currently exploring various approaches to deal
with deterministic model errors and to improve the accuracy of the
2LPT model in the inference framework. The results of this work
will be subject to a future publication.

The method we describe forms the basis for a sophisticated and
extensible dynamical LSS inference framework. In future work we
will demonstrate the application of the algorithm to a real galaxy
survey accounting for additional systematics such as luminosity or
colour-dependent bias. Note that the algorithm as described in this
work can be easily extended to account for any kind of non-linear
and non-local bias. In particular, the 2LPT model, as employed
in this work, can already be interpreted as a non-local, non-linear
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bias model between the initial conditions and the galaxy observa-
tions. It would also be possible to incorporate a halo-model-based
galaxy bias model in the fashion as described by Scoccimarro &
Sheth (2002). The combination of the algorithm described in this
work and the photometric redshift sampling method proposed in
Jasche & Wandelt (2012) will lead to immediate improvements for
the inferred photometric redshifts, since the combination of both
algorithms will exploit higher order statistics, whereas the algo-
rithm described in Jasche & Wandelt (2012) is solely based on
two-point statistics. In a similar fashion, dynamical velocity infor-
mation provided by the 2LPT model can be used to correct for
redshift uncertainties in spectroscopic surveys.

Since the algorithm is fully Bayesian, it provides inferred initial
and final density fields and also the means of estimating their signif-
icance and uncertainties by a sampled representation of the initial
conditions posterior distribution. The algorithm will therefore pro-
vide accurate information on the initial conditions from which the
observed LSS originates. These initial density fields may be useful
for a variety of scientific projects such as constrained simulations
(see e.g. Kravtsov et al. 2002; Klypin et al. 2003; Dolag et al. 2005,
2012; Martinez-Vaquero et al. 2009; Gottloeber et al. 2010; Lavaux
2010; Libeskind et al. 2010). Since the 2LPT model reconstructs
the initial tidal field it may also open up a new way to study the
angular momentum build-up of galaxies through tidal torque theory
(see e.g. the review by Schäfer 2009, and references therein). Also
note that the validity of the 2LPT model improves with increasing
redshift. Therefore, the proposed method may also be of interest
for density field inference from 21-cm surveys at redshifts of about
z ∼ 6 (see e.g. Lidz et al. 2007).

In conclusion, we presented a new Bayesian dynamical LSS in-
ference algorithm which will provide the community with accurate
measurements of the three-dimensional initial density field as well
as estimates of the dynamical behaviour of the LSS.
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Górski K. M., Hivon E., Banday A. J., Wandelt B. D., Hansen F. K., Reinecke
M., Bartelmann M., 2005, ApJ, 622, 759

Gottloeber S., Hoffman Y., Yepes G., 2010, arXiv:e-prints
Hanson K. M., 2001, in Sonka M., Hanson K. M., eds, Proc. SPIE Conf. Ser.

Vol. 4322, Medical Imaging 2001: Image Processing. SPIE, Bellingham,
p. 456

Hastings W. K., 1970, Biometrika, 57, 97
Heitmann K., White M., Wagner C., Habib S., Higdon D., 2010, ApJ, 715,

104
Hockney R. W., Eastwood J. W., 1988, Computer Simulation Using Particles.

Taylor & Francis, Bristol, PA
Jasche J., Kitaura F. S., 2010, MNRAS, 407, 29
Jasche J., Wandelt B. D., 2012, MNRAS, 425, 1042
Jasche J., Kitaura F. S., Ensslin T. A., 2009, arXiv:e-prints
Jasche J., Kitaura F. S., Wandelt B. D., Enßlin T. A., 2010a, MNRAS, 406,

60
Jasche J., Kitaura F. S., Li C., Enßlin T. A., 2010b, MNRAS, 409, 355
Jenkins A., 2010, MNRAS, 403, 1859
Jeong D., Komatsu E., 2006, ApJ, 651, 619
Kitaura F.-S., 2012, MNRAS, 420, 2737
Kitaura F. S., Enßlin T. A., 2008, MNRAS, 389, 497
Kitaura F. S., Jasche J., Li C., Enßlin T. A., Metcalf R. B., Wandelt B. D.,

Lemson G., White S. D. M., 2009, MNRAS, 400, 183
Kitaura F.-S., Jasche J., Metcalf R. B., 2010, MNRAS, 403, 589
Kitaura F.-S., Angulo R. E., Hoffman Y., Gottlöber S., 2012, MNRAS, 425,
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A P P E N D I X A : LI N E A R ST RU C T U R E
F O R M ATI O N

In the linear regime structure formation is governed by a homo-
geneous growth function D+(a) acting on the density contrast
δ(x, a) = D+(a) δ(x, a = 1). For a general cosmology the growth
factor D+(a) can be obtained by numerical solution of the lin-
ear growth equation (see e.g. Turner & White 1997; Wang &
Steinhardt 1998; Linder & Jenkins 2003):

d2D+(a)

da2
+ 1

a

(
3+ d lnH

d lna

)
dD+(a)

da
− 3

2

�m(a)D+(a)

a2
=0. (A1)

A P P E N D I X B: LAG R A N G I A N PE RT U R BAT I O N
T H E O RY

In the following we will give a brief summary of 2LPT to the
degree required for the present work. More detailed discussion of
Lagrangian perturbation theory in general and its application can be
found in the literature (see e.g. Moutarde et al. 1991; Buchert et al.
1994; Bouchet et al. 1995; Scoccimarro 1998, 2000; Bernardeau
et al. 2002; Scoccimarro & Sheth 2002). Also see Bernardeau et al.
(2002) for a general overview of Eulerian and Lagrangian cosmo-
logical perturbation theory.

In an expanding Robertson–Friedman space–time the equations
of motion for particles solely interacting through gravity are given
as (see e.g. Scoccimarro 2000; Bernardeau et al. 2002)

d2x
dτ 2

+ Hdx
dτ

− ∇xφ = 0, (B1)

where φ is the gravitational potential and ∇x is the gradient with
respect to the Eulerian coordinates x, H = d ln a/dτ and the con-
formal time τ defined by dτ = dt/a. In order to solve this set of

equations, Lagrangian perturbation theory introduces the following
ansatz for a solution:

x(τ ) = q + �(q, τ ), (B2)

where �(q, τ ) defines the mapping from the particles initial po-
sition q into its final Eulerian position x (see e.g. Scoccimarro
2000; Bernardeau et al. 2002). Equation (B2) together with equa-
tion (B1) yields a non-linear equation for the displacement field
�(q, τ ) which can be solved perturbatively by expanding around its
linear solution (Bernardeau et al. 2002). To linear order, this pertur-
bative approach yields the famous Zel’dovich approximation given
as (Doroshkevich 1970; Zel’Dovich 1970; Buchert 1989; Moutarde
et al. 1991; Bernardeau et al. 2002)

∇q�
(1)(q, a) = −D+(a) δ (q, a = 1) . (B3)

Adding second-order terms to the perturbative expansion remark-
ably improves the results of the first order Zel’dovich approxima-
tion. In particular, second-order terms account for the fact that grav-
itational instability is non-local by introducing corrections due to
gravitational tidal effects (Bernardeau et al. 2002). The second-order
displacement field � (2)(q, a) is then defined by (see e.g. Bernardeau
et al. 2002; Scoccimarro & Sheth 2002)

∇q�
(2)(q, a) = 1

2
D2(a)

∑
i 
=j

(
�

(1)
i,i �

(1)
j,j − �

(1)
i,j �

(1)
j,i

)
, (B4)

with �
(1)
i,j ≡ ∂�

(1)
i /∂qj and D2(a) is the second-order growth factor

given as

D2(a) ≈ −3

7

(
D+(a)

)2
�−(1/143)

m , (B5)

which holds for a flat model with non-zero cosmological constant

 and for 0.01 ≤ �m ≤ 1 to better than 0.6 per cent accuracy (see
e.g. Bouchet et al. 1995; Scoccimarro 1998; Bernardeau et al. 2002,
for details).

As has been previously shown, 2LPT recovers correctly the two-
and three-point statistics at large scales and further approximates
higher order statistics very well (Moutarde et al. 1991; Buchert et al.
1994; Bouchet et al. 1995; Scoccimarro 2000; Scoccimarro & Sheth
2002). Also note that second-order corrections to the Zel’dovich
approximation are essential to accurately describe the departure
of the large-scale density field from Gaussian initial conditions
(Scoccimarro & Sheth 2002; Tatekawa & Mizuno 2007; Jenkins
2010).

Lagrangian solutions up to second order are curl-free, as they fol-
low potential flows (see e.g. Buchert et al. 1994; Scoccimarro 1998;
Bernardeau et al. 2002). Therefore, it is convenient to introduce
the Lagrangian potentials �(1) and �(2), such that the approximate
solution to equation (B1) can be expressed as (see e.g. Buchert et al.
1994; Scoccimarro 1998; Bernardeau et al. 2002)

x(τ ) = q − D+(a)∇q �(1) + D2(a)∇q �(2), (B6)

where the time-independent potentials �(1) and �(2) are solutions
to the following Poisson equations (Buchert et al. 1994):

∇2
q �(1)(q) = δ (q, a = 1) (B7)

and

∇2
q �(2)(q) =

∑
i>j

[
�

(1)
,ii (q) �

(1)
,jj (q) −

(
�

(1)
,ij (q)

)2
]

. (B8)

For an excellent guide to the numerical implementation of the 2LPT
model the reader is referred to appendix D of Scoccimarro (1998).
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A P P E N D I X C : TH E S C H E C H T E R L U M I N O S I T Y
F U N C T I O N

The Schechter luminosity function is given as (Schechter 1976)

�(M) dM = 0.4 �∗ln(10)
(

100.4 (M∗−M)
)α+1

e−100.4 (M∗−M)
dM.

(C1)

Note that for the purpose of calculating selection functions the
normalization �∗ is not required.

A P P E N D I X D : H A M I LTO N I A N F O R C E S FO R
T H E LI K E L I H O O D T E R M

In this section we will discuss the derivation of the Hamiltonian
forces for the 2lpt–Poissonian process. To prevent confusion be-
tween the variables describing the physical 2LPT model and the
variables describing the Hamiltonian inference framework we will
re express the 2LPT model in the following form for the purpose of
the derivations in this section:

xp = xp(δi) = qp − D1 K 1
p(δi) + D2 K 2

p(δi), (D1)

where K 1
p(δi) and K 2

p(δi) are the first- and second-order displace-
ments fields, respectively.

As described in Section 4 the likelihood term of the Hamiltonian
potential is given as

�likelihood({δi
j }) =

∑
l

RlN̄gal

(
1 + G(a, δi)l

)
−Nl ln

(
RlN̄gal (1 + G(a, δi)l)

)
, (D2)

with G(a, s) given via the kernel estimate as

G(a, s)l =
∑

p

W (xp(a, s) − xl)

N̄
− 1, (D3)

and xp(a, s) is described by equation (D1) and W (x) is a CIC
kernel (see e.g. Hockney & Eastwood 1988; Jasche, Kitaura &
Ensslin 2009). Furthermore, the Lagrangian displacement vectors
are given as

Kn
p =

∑
j

V ′(qp − xj )�n
j , (D4)

where V ′(x) is the gradient of the kernel W (x). With these defi-
nitions we can write the Hamiltonian forces corresponding to the
likelihood term as

∂�likelihood({δi
j })

∂sm

=
∑

i

(
1 − 1

Ri N̄ (1 + G(a, δi)l)

)

× Ri N̄
∂G(a, δi)i)

∂δi
m

. (D5)

The notation can be simplified by introduce the quantity Ai as

Ai =
(

1 − 1

Ri N̄ (1 + δi(s)

)
Ri N̄. (D6)

We can then write

∂�likelihood({δi
j })

∂δi
m

=
∑

i

Ai

∂G(a, δi)i
∂δi

m

=
∑

i

Ai

N̄

∑
p

∂W (xp − xi)

∂δi
m

=
∑

i

Ai

N̄

∑
p

W ′(xp − xi)
∂xp

∂δi
m

=
∑

i

Ai

N̄

∑
p

W ′(xp − xi)

(
−D1

∂K1
p(δi)

∂δi
m

+ D2
∂K2

p(δi)

∂δi
m

)
, (D7)

where we made use of equations (D1) and (D4). It can be seen that
the Hamiltonian force is the sum of two vectors. In the following
we will therefore discuss each term independently. The first term
is exactly the Hamiltonian force expected from a pure Zel’dovich
approximation without higher order correction terms. We will start
by evaluating the Hamiltonian force for the Zel’dovich approxima-
tion:

∂�1
likelihood({δi

j })
∂δi

m

=
∑

i

−D1 Ai

N̄

∑
p

W ′(xp − xi)

(
∂K 1

p(δi)

∂δi
m

)

=
∑

p

∑
i

−D1 Ai

N̄
W ′(xp − xi)

×
∑

j

V ′(qp − xj )
�1

j

∂δi
m

=
∑

j

∑
p

∑
i

−D1 Ai

N̄
W ′(xp − xi)

× V ′(qp − xj )
�1

j

∂δi
m

. (D8)

The notation can be further simplified by introducing

Fj =
∑

p

∑
i

Ai

N̄
W ′(xp − xi)V ′(qp − xj ). (D9)

We can then write

∂�1
likelihood({δi

j })
∂δi

m

= −D1
∑

j

Fj

�1
j

∂δi
m

. (D10)

The Zel’dovich approximation potential was calculated using the
FFT approach, which can be written as

�1
j =

∑
k

−1

k2
k

e2πj k
√−1
N

∑
n

sn e−2πn k
√−1
N . (D11)

Using this expression in equation (D8) we yield

∂�1
likelihood({δi

j })
∂δi

m

= −D1
∑

j

Fj

∑
k

−1

k2
k

e2πj k
√−1
N

∑
n

δK
nm e−2πn k

√−1
N

= −D1
∑

j

Fj

∑
k

−1

k2
k

e2πj k
√−1
N e−2πmk

√−1
N

= −D1
∑

k

−1

k2
k

e−2πmk
√−1
N

∑
j

Fj e2πj k
√−1
N .

(D12)

This result looks remarkably similar to equation (D18) and at first
sight one might be inclined to straightforwardly solve this equation
with FFT techniques. However, it is important to note that the
signs have changed in the exponents, and hence equation (D8)
cannot directly be solved with FFTs. In Appendix E, we show
what procedures must be followed in order to apply FFTs to this
problem. To further simplify the notation in the following steps we
will introduce the quantity Jm, defined as

Jm =
∑

k

−1

k2
k

e−2πmk
√−1
N

∑
j

Fj e2πj k
√−1
N . (D13)
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With this definition the Zel’dovich approximation term of the
Hamiltonian force can be written as

∂�1
likelihood({δi

j })
∂δi

m

= −D1 Jm. (D14)

Next, we will discuss the second-order Lagrangian term in equa-
tion (D7):

∂�2
likelihood({δi

j })
∂δi

m

=
∑

i

D2 Ai

N̄

∑
p

W ′(xp − xi)

(
∂K 2

p(δi)

∂δi
m

)

=
∑

p

∑
i

D2 Ai

N̄
W ′(xp − xi)

×
∑

j

V ′(qp − xj )
�2

j

∂δi
m

= D2
∑

j

Fj

�2
j

∂δi
m

. (D15)

The second-order Lagrangian potential �2
j can be calculated as

�2
j =

∑
k

−1

k2
k

e2πj k
√−1
N

∑
n

φn e−2πn k
√−1
N , (D16)

with φn given as

φn =
∑
a>b

φaa
n φbb

n − (φab
n

)2
, (D17)

where the individual potentials φab
n are related to the signal δi

n via

φab
n =

∑
k

ka
k kb

k

k2
k

e2πn k
√−1
N

∑
l

δi
l e−2πl k

√−1
N . (D18)

With these definitions, we can write

∂ψ2
LH(δi)

∂δi
m

= D2
∑

j

Fj

∑
k

−1

k2
k

e2πj k
√−1
N

∑
n

∂φn

∂δi
m

e−2πn k
√−1
N

= D2
∑

j

Fj

∑
k

−1

k2
k

e2πj k
√−1
N

∑
n

e−2πn k
√−1
N

× ∂

∂δi
m

(∑
a>b

φaa
n φbb

n − (φab
n

)2

)

= D2
∑
a>b

∑
j

Fj

∑
k

−1

k2
k

e2πj k
√−1
N

∑
n

e−2πn k
√−1
N

× ∂

∂δi
m

(
φaa

n φbb
n − (φab

n

)2
)

= D2
∑
a>b

∑
j

Fj

∑
k

−1

k2
k

e2πj k
√−1
N

∑
n

e−2πn k
√−1
N

×
(

∂φaa
n

∂δi
m

φbb
n + ∂φbb

n

∂δi
m

φaa
n − 2φab

n

∂φab
n

∂δi
m

)
. (D19)

In the following we will discuss the individual terms. To simplify
the notation, we introduce the tensor τ abcd defined as

τ abcd
m =

∑
j

Fj

∑
k

−1

k2
k

e2πj k
√−1
N

∑
n

e−2πn k
√−1
N

∂φab
n

∂δi
m

φcd
n

=
∑

j

Fj

∑
k

−1

k2
k

e2πj k
√−1
N

∑
n

e−2πn k
√−1
N φcd

n

×
∑

p

ka
p kb

p

k2
p

e2πnp
√−1
N

∑
l

δK
lm e−2πl p

√−1
N

=
∑

j

Fj

∑
k

−1

k2
k

e2πj k
√−1
N

∑
n

e−2πn k
√−1
N φcd

n

×
∑

p

ka
p kb

p

k2
p

e2πnp
√−1
N e−2πmp

√−1
N

=
∑

p

ka
p kb

p

k2
p

e−2πmp
√−1
N

∑
n

e2πnp
√−1
N φcd

n

×
∑

k

e−2πn k
√−1
N

−1

k2
k

∑
j

Fj e2πj k
√−1
N

=
∑

p

ka
p kb

p

k2
p

e−2πmp
√−1
N

∑
n

e2πnp
√−1
N φcd

n Jn. (D20)

With these definitions the second-order Lagrangian contribution to
the Hamiltonian force can be calculated as

∂ψ2
LH(s)

∂δi
m

= D2
∑
a>b

(
τ aabb

m + τ bbaa
m − 2τ abab

m

)
. (D21)

This finally yields the Hamiltonian forces corresponding to the
likelihood term

∂�likelihood({δi
j })

∂δi
m

= −D1 Jm + D2
∑
a>b

(
τ aabb + τ bbaa − 2τ abab

)
.

(D22)

A P P E N D I X E : A D J O I N T F F T

The following operation can be performed via FFT methods, when
accounting for adjoining the operation:∑

j

aj e2πj k
√−1
N =

∑
j

∑
q

âq e2πj q
√−1
N e2πj k

√−1
N

=
∑

q

âq

∑
j

e2πj (q+k)
√−1
N

=
∑

q

âq δKq, −k

= â−k

= â∗
k , (E1)

where we made use of the fact that aj is a real quantity, and
the ∗ denotes complex conjugation. Therefore, equation (E1) sim-
ply describes the application of an FFT followed by a complex
conjugation. To solve the adjoint Poisson equation we calculate∑

k

â∗
k

k2
k

e−2πmk
√−1
N =

∑
k

b̂k e−2πmk
√−1
N

=
∑

k

∑
j

bj e−2πj k
√−1
N e−2πmk

√−1
N

=
∑

j

bj

∑
k

e−2π(j+m) k
√−1
N

=
∑

j

bj δ
K
j,−m

= b−m

= bN−m, (E2)

where in the last step we made use of the periodicity of the signal.
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APPENDIX F: H AMILTO NIAN MASSES

A good guess for the Hamiltonian masses can greatly improve the
efficiency of the hybrid Hamiltonian sampler. In order to derive
appropriate Hamiltonian masses for the 2LPT–Poissonian system
we will follow a similar approach as described in Taylor et al. (2008)
and Jasche & Kitaura (2010). Since the efficiency of the Hamiltonian
sampler depends on the accuracy of the leapfrog scheme, we will
perform an approximated stability analysis of the integrator. The
goal of this analysis is to find an expression for the Hamiltonian
masses which optimizes the stability of the integration scheme for
the 2LPT–Poissonian system.

According to the leapfrog scheme, given in equations (23)–(25),
a single application of the leapfrog method can be written in the
form

pm(t + ε) = pm(t) − ε

2

(
∂�(δi)

∂δi
i

∣∣∣∣
δi (t)

+ ∂�(δi)

∂δi
m

∣∣∣∣
δi (t+ε)

)
, (F1)

sm(t + ε) = sm(t) + ε
∑

j

M−1
mj pj (t) − ε2

2

∑
j

M−1
mj

∂�(δi)

∂δi
j

∣∣∣∣∣
δi (t)

.

(F2)

We will then expand the Hamiltonian forces given in equation (18)
around a fixed value (δi)0

m, which is assumed to be the mean signal
around which the sampler will oscillate once it left the burn-in phase.
Further, we will only expand up to linear order in the forces, which
amounts to second order in the potential and hence to a Gaussian
approximation of the 2LPT–Poissonian posterior distribution. For
simplicity we will also ignore the second-order Lagrangian term in
the forces. Thus, the Hamiltonian forces can be written as

∂�({δi
j })

∂δi
m

= ∂�prior({δi
i })

∂δi
m

+ ∂�likelihood({δi
i })

∂δi
m

=
∑

j

S−1
mj δi

j − D1 Jm

≈
∑

j

S−1
mj δi

j

−D1

(
Jm((δi)0) + ∂Jm(δi)

∂δi
m

∣∣∣∣
δi
m=(δi )0

m

(δi
m − (δi)0

m)

)

=
∑

j

⎛
⎝S−1

mj − δK
mj D1 ∂Jj (δi)

∂δi
j

∣∣∣∣∣
δi
j =(δi )0

j

⎞
⎠ δi

j

−D1

(
Jm((δi)0) − ∂Jm(δi)

∂δi
m

∣∣∣∣
δi
m=(δi )0

m

(δi)0
m

)
. (F3)

We will simplify the notation by introducing the matrix,

Amj = S−1
mj − δK

mj D1 ∂Jj (δi)

∂δi
j

∣∣∣∣∣
δi
j =(δi )0

j

, (F4)

and the vector,

Dm = −D1

(
Jm((δi)0) − ∂Jm(δi)

∂sm

∣∣∣∣
δi
m=(δi )0

m

(δi)0
m

)
. (F5)

Equation (F3) can then be written as

∂�({δi
j })

∂δi
m

=
∑

j

Amj δi
j + Dm. (F6)

Introducing this approximation into equations (F1) and (F2) yields

pi(t + ε) =
∑

m

⎡
⎣δK

im − ε2

2

∑
j

AijM
−1
jm

⎤
⎦ pm(t)

−ε
∑

j

Aij

∑
p

[
δK
jp − ε2

4

∑
m

M−1
jm Amp

]
rp(t)

− ε

2

∑
m

⎡
⎣δK

im − ε2

2

∑
j

AijM
−1
jm

⎤
⎦Dm (F7)

and

ri(t + ε) = ε
∑

j

M−1
ij pj (t)

+
∑

m

⎛
⎝δK

im − ε2

2

∑
j

M−1
ij Ajm

⎞
⎠ rm(t)

− ε2

2

∑
j

M−1
ij Dj . (F8)

This result can be rewritten in matrix notation as(
r(t + ε)

p(t + ε)

)
=T

(
r(t)

p(t)

)
− ε2

2

⎛
⎝ M−1 D

ε
[
I − ε2

2 A M−1
]
D

⎞
⎠ , (F9)

where the matrix T is given as

T =

⎛
⎜⎝

[
I − ε2

2 M−1A
]

εM−1

−ε A
[
I − ε2

4 M−1 A
] [

I − ε2

2 AM−1
]
⎞
⎟⎠ , (F10)

with I being the identity matrix. Successive applications of the
leapfrog step yield the following propagation equation:

(
rn

pn

)
=Tn

(
r0

p0

)
−ε2

2

[
n−1∑
i=0

Ti

]⎛⎝ M−1 D

ε
[
I − ε2

2 AM−1
]
D

⎞
⎠ . (F11)

This equation demonstrates that there are two criteria to be fulfilled
if the method is to be stable under repeated application of the
leapfrog step. First we have to ensure that the first term of equation
(F11) does not diverge. This can be fulfilled if the eigenvalues of
T have unit modulus. The eigenvalues λ are found by solving the
characteristic equation

det

[
I λ2 − 2 λ

(
I − ε2

2
AM−1

)
+ I

]
= 0. (F12)

Note that this is a similar result to what was found in
Taylor et al. (2008). Our aim is to explore the parameter space
rapidly, and therefore we wish to choose the largest ε still com-
patible with the stability criterion. However, any dependence
of equation (F12) also implies that no single value of ε will
ensure unit modulus for every eigenvalue. For this reason we
choose

A = M. (F13)

We then obtain the characteristic equation:[
λ2 − 2 λ

(
1 − ε2

2

)
+ 1

]N

= 0, (F14)
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where N is the number of voxels. This yields the eigenvalues

λ = ± i

√
1 −
[

1 − ε2

2

]2

+
[

1 − ε2

2

]
, (F15)

which have unit modulus for ε ≤ 2. The second term in equation
(F11) involves evaluation of the geometric series

∑n−1
i=0 Ti . The

geometric series for a matrix converges if and only if |λi| < 1 for
each λi eigenvalue of T. This clarifies that the non-linearities in
the Hamiltonian equations generally do not allow for arbitrary large
pseudo-time-steps ε. In addition, for practical purposes we usually
restrict the mass matrix to the diagonal of equation (F4). In practice
we choose the pseudo-time-step ε as large as possible while still
obtaining a reasonable rejection rate.

Given these assumptions we can assume the mass matrix to be

Mmj = S−1
mj − δK

mj D1 ∂Jj (δi)

∂δi
j

∣∣∣∣∣
δi
j =(δi )0

j

, (F16)

where

∂Jm(s)

∂sm

=
∑

k

−1

k2
k

e−2πmk
√−1
N

∑
j

∂Fj

∂δi
m

e2πj k
√−1
N

=
∑

k

−1

k2
k

e−2πmk
√−1
N

∑
j

e2πj k
√−1
N

×
∑

p

∑
i

(
1

N̄
W ′(xp − xi)V ′(qp − xj )

∂Ai

∂δi
m

× 1

N̄
W ′′(xp − xi)V ′(qp − xj ) Ai

∂xp

∂δi
m

)
, (F17)

where we used of equations (D9) and (D13). According to equation
(D6) ∂Ai

∂δi
m

can be expressed as

∂Ai

∂sm

= Ri N̄(
Ri N̄ (1 + G(a, δi)i)

)2

∂δi(δi)

∂δi
m

= Bi

∂G(a, δi)i
∂δi

m

, (F18)

where we introduced the quantity Bi = (Ri N̄
)
/(

Ri N̄ (1 + G(a, δi)i)
)2

to simplify notation. We then arrive at the
expression

∂Jm(δi)

∂δi
m

=
∑

k

−1

k2
k

e−2πmk
√−1
N

∑
j

∂Fj

∂δi
m

e2πj k
√−1
N

=
∑

i

∑
k

−1

k2
k

e−2πmk
√−1
N

∑
j

e2πj k
√−1
N

×
∑

p

1

N̄
W ′(xp − xi)

×V ′(qp − xj ) Bi

∂G(a, δi)i
∂δi

m

. (F19)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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