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The cosmological power spectrum of the coherent matter flow is measured exploiting an improved

prescription for the apparent anisotropic clustering pattern in redshift space. New statistical analysis is

presented to provide an optimal observational platform to link the improved redshift distortion theoretical

model to future real data sets. The statistical power as well as robustness of our method are tested against

60 realizations of 8 h�3Gpc3 dark matter simulation maps mocking the precision level of upcoming wide-

deep surveys. We showed that we can accurately extract the velocity power spectrum up to quasilinear

scales of k� 0:1 hMpc�1 at z ¼ 0:35 and up to k� 0:15 hMpc�1 at higher redshifts within a couple of

percentage precision levels. Our understanding of redshift space distortion is proved to be appropriate for

precision cosmology, and our statistical method will guide us to a righteous path to meet the real world.

DOI: 10.1103/PhysRevD.87.123510 PACS numbers: 98.65.Dx, 98.80.Es

I. INTRODUCTION

The emergence of a standard model for the Universe
dominated by dark materials has revolutionized our under-
standing of the Universe. Since the first firm evidence of
dark energy in 1998 [1,2], there has been substantial ob-
servational and theoretical research aimed at understand-
ing the true nature of this phenomenon. In recent years,
many authors have started exploring the possibility that
dark energy, and the observed acceleration of the expan-
sion of the Universe, could be the consequence of an
incomplete theory of gravity on cosmological scales and
may require modifications to Einstein’s theory of General
Relativity [3–6]. The information of underlying science
about the Universe is given by looking at structure forma-
tion on large scales.

Several authors have shown that by combining various
probes of the large-scale structure in the Universe, it is
possible to test the relationship between these quantities
which, in the linear regime, can generally be described by
two functions of time and scale [7–12]. Those can be
constrained through a combination of weak lensing and
an independent probe of matter-energy fluctuations. This is
motivated by the fact that the weak lensing experiments
probe the geometrical potential of combination between
curvature perturbation and Newtonian force, which deter-
mines the trajectories of photons through the Universe,
while matter fluctuation measurements probe the
Newtonian force alone determining local inhomogeneities
of matter-energy.

The coherent motion of the galaxies opens a unique
opportunity to access the fluctuations of the underlying
matter density field [13–28]. This technique relies on the
redshift space distortions seen in galaxy surveys. Even

though we expect the clustering of galaxies in real space
to have no preferred direction, galaxy maps produced by
estimating distances from redshifts obtained in spectro-
scopic surveys reveal an anisotropic galaxy distribution.
The anisotropies arise because galaxy recession velocities,
from which distances are inferred, include components
from both the Hubble flow and peculiar velocities driven
by the clustering of matter [29–31]. Measurements of the
anisotropies allow constraints to be placed on the rate of
growth of clustering.
Measurements of coherent motion field from redshift

distortion maps have been plagued by systematic uncer-
tainties which have made their cosmological constraints
uncompetitive compared to other probes of the Universe.
The cosmological density and velocity field couple
together and evolve nonlinearly. In addition, the mapping
formula between the real and redshift space is intrinsically
nonlinear. These nonlinearities prevent us from inferring
the linear coherent motion from the redshift space cluster-
ing straightforwardly. Recently, an accurate theoretical
model for the redshift distortion was proposed in [32].
They take into account the fact that the linear squeezing
and nonlinear smearing effects on distorted maps are not
separable to each other and develop a more elaborate
description than simple factorized formulation. The de-
rived correction terms at leading higher orders assist us
to achieve better fit to simulated data of dark matter. They
also include nonlinear corrections formulated using the
closure approximation to predict the nonlinear growth in
density-density, density-velocity and velocity-velocity
spectra. In this paper, we assume a perfect cross correlation
between density and velocity fields at linear level to de-
compose the coherent motion spectra. Thus we have the
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following two spectra to be decomposed: the linear density
power spectrum and its velocity counterpart.

Despite all theoretical efforts, the exact form of the FoG
effect is unknown. We adopt the most common functional
form of FoG effect, such as Gaussian or Lorentzian, and
parameterize FoG effect using one-dimensional velocity
dispersion representing the randomness of the motion
which erases the correlation structure on small scales.
The parameter space is extended to include this uncertainty
of FoG effect in addition to the linear spectra of density and
velocity fields, which were originally proposed by [33,34].
We run MCMC routine to find best set of spectra and FoG
parameter, and we find that coherent motion spectra are
measurable to an accuracy of a couple of percent. Coherent
motion spectra are measured at a couple of percentage
accuracy with appropriate k cutoff.

The paper is organized as follows. In Sec. II, we begin by
introducing suggested theoretical models of redshift dis-
tortions. We then describe the statistical method to extract
the coherent motion spectra. Using this method, Sec. III
presents our main results on the measurements of linear
density and velocity spectra. In Sec. IV, the impact of
incorrect prior assumption on the decomposition of power
spectra is discussed. Finally, we conclude in Sec. V.

II. METHODOLOGY

We first highlight analytical models for the redshift-
space power spectrum. We then show our methodology
of reconstructing the linear density and velocity power
spectra from the two-dimensional power spectrum ob-
served in redshift space.

A. Analytical models for the power spectrum
in redshift space

At large scale, we expect that the density field as well as
the velocity field are small perturbations to the homoge-
neous universe. When the higher-order contributions are
negligibly small, the two-dimensional power spectrum in
redshift space, ~Pðk; �Þ, can be expressed as [29]

~Pðk;�Þ ¼ Plin
��ðkÞ þ 2�2Plin

��ðkÞ þ�4Plin
��ðkÞ; (1)

where we denote by � and � the density contrast and
the velocity divergence, with the latter defined by � �
�ð1þ zÞrv=H. The auto- and cross-power spectra of the
two fields in linear theory are expressed as Plin

ij ðkÞ, with i

and j being either � or�. This formula describes the effect
of coherent velocity flow towards overdensity at large scale
(Kaiser effect). Because of this effect, the clustering pat-
tern in redshift space is enhanced along the line-of-sight
direction. If the gravitational law follows the general rela-
tivity, the three spectra are not independent, but related as

Plin
��ðkÞ ¼ fðzÞPlin

��ðkÞ; (2)

Plin
��ðkÞ ¼ f2ðzÞPlin

��ðkÞ; (3)

where fðzÞ ¼ d lnDþðzÞ=d ln a is the growth rate parame-
ter withDþ being the linear growth rate. In this case, all the
velocity information is contained in the parameter, fðzÞ,
which is constant over wave number k.
However, the planned or ongoing galaxy redshift sur-

veys as well as the existing large surveys mainly target
weakly nonlinear scale, where the feature of BAOs is
prominent. Moreover, by appropriately modeling this
regime, we can in principle enlarge the range of wave
number to be taken into account in the analysis, and
improve the constraints on the gravitational law. Thus,
we have to somehow incorporate nonlinearity to make
maximum use of these surveys.
First of all, the cross- and auto-power spectra of the

density and the velocity fields are naturally expected to
receive nonlinear corrections. These corrections comes
from the coherent motion, and mainly affects the Kaiser
terms, leading to an enhancement of the power spectrum
amplitude. Another important source for nonlinearity is the
random motion of galaxies, which results in the damping
effect of the power spectrum amplitude. Based on the exact
expression of the redshift-space power spectrum,
Scoccimarro [31] proposed the following formula,

~Pðk;�Þ¼fP��ðkÞþ2�2P��ðkÞþ�4P��ðkÞgGXðk�Þ; (4)

where the damping effect due to the random motion is
described by the factor GXðk�Þ. Note that we have re-
placed the three linear spectra in Eq. (1), Plin

ij ðkÞ, with their
nonlinear counterparts, PijðkÞ. In the original paper by

Scoccimarro [31], the factor GXðkÞ is designed so that it
accounts for the random motion of the galaxies at large
scale, and he considers the Gaussian shape for this factor,

GXðk�Þ ¼ GGAUðk�Þ ¼ exp f�ðk��vÞ2g; (5)

where �v denotes the dispersion of the one-point PDF of
the velocity in one-dimension. At smaller scale, inside the
cluster of galaxies, the virial motion of galaxies also give a
suppression of the power spectrum in redshift space.
This effect is called Finger-of-God (FoG) and can also be
approximately described by multiplication of the factor
GXðk�Þ. A Lorentzian form of this factor has been
frequently adopted based on the results of N-body
simulations,

GXðk�Þ ¼ GLORðk�Þ ¼ 1

1þ ðk��vÞ2
: (6)

For convenience, we do not distinguish between these
damping effects, and simply call them FoG in this paper,
although, strictly speaking, the former one at large scale
has a different origin.
Recently, Taruya et al. [32] proposed a more accurate

model for the redshift-space distortion. Motivated by
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the fact that the Kaiser and the FoG effects can not be
separated, and should not be described as a factorizable
form as in Eq. (4), they derived correction terms which
have long been overlooked. Their formula reads

~Pðk;�Þ ¼ fP��ðkÞ þ 2�2P��ðkÞ þ�4P��ðkÞ þ Aðk;�Þ
þ Bðk;�ÞgGXðk�Þ; (7)

where the full expressions for the terms Aðk;�Þ and
Bðk;�Þ based on perturbation theory can be found in
Appendix A of that paper [32]. Let us note some important
features in the new terms. First, they include higher-order
polynomials in� and f: the A term has a term which scales
as f3�6, while we have a f4�8 contribution in the B term.
Thus, they become relatively important at � ’ 1. Another
point is that as these terms arise as a nonlinear coupling
between the density and the velocity fields; they are of the
order OðfPlin

ij ðkÞg2Þ. We thus may able to omit them on

linear scales.

B. Decomposition strategy

We now describe how we decompose the power
spectrum in redshift space into spectra of density and
velocity. Before that, let us introduce two useful quantities
controlling the amplitude of the linear power spectra.
We define

Plin
��ðk; zÞ ¼ g2�ðk; zÞPlin

��ðk; zlssÞ; (8)

Plin
��ðk; zÞ ¼ g2�ðk; zÞPlin

��ðk; zlssÞ; (9)

where zlss stands for the redshift at the time of the last
scattering. The parameters, g� and g�, describe the growth
rate of the density and the velocity fields from that epoch.
Since the spectrum Plin

��ðk; zlssÞ is well constrained by

observations of the CMB temperature anisotropy, the pa-
rameters solely capture the properties of the gravitational
law, and are expected to be free from the assumptions in
the initial condition.

In reconstructing the spectra, we first bin the power
spectrum measured from simulations into bins of k and
�. Then, for the ith bin of wave number k, which we
denote ki, we estimate Plin

��ðkiÞ, Plin
��ðkiÞ and Plin

��ðkiÞ based
on the� dependence. We assume that linear � and linear�

are perfectly correlated, Plin
�� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Plin
��P

lin
��

q
, and treat two

parameters, g�ðkiÞ and g�ðkiÞ, as free parameters for the ki
bin. In fitting ~Pðki; �Þ, we scale the spectra according to
the parameters g� and g�,

Plin
ij ðkÞ ¼

giðkÞ
gfidi ðkÞ

gjðkÞ
gfidj ðkÞP

fid;lin
ij ðkÞ; (10)

where quantities with subscript ‘‘fid’’ are computed for the
fiducial cosmological model.

When we restrict the analysis to the linear regime, the
above procedure is expected to work properly. We further
elaborate the procedure to correctly handle the nonlinearity.
We adopt the closure approximation (Taruya and
Hiramatsu [35]) to predict the nonlinear growth in the three
spectra, PijðkÞ. In doing so, we simply assume the fiducial

GR cosmology used in running the simulations. We pre-
compute the nonlinear corrections to the three spectra up to
the second order in the Born approximation,

�Pfid
ij ðkÞ ¼ Pfid

ij ðkÞ � Pfid;lin
ij ðkÞ; (11)

while we allow the linear part to vary according to Eq. (10).
By adding up linear and nonlinear parts, we have

PijðkÞ ¼ giðkÞ
gfidi ðkÞ

gjðkÞ
gfidj ðkÞP

fid;lin
ij ðkÞ þ �Pfid

ij ðkÞ: (12)

Strictly speaking, the second term depends on the cosmo-
logical model as well as the gravitational law. As a first
trial, however, we simply let this term unchanged from its
fiducial value. In Sec. IV, we will relax the assumption to
execute a more general analysis: we adopt a wrong cos-
mological model as the fiducial model and see how well we
can recover the true spectra.
We also scale the correction terms, Aðk;�Þ and Bðk;�Þ,

as follows. In every step of the fitting, given set of g�ðkÞ
and g�ðkÞ, we compute their simple arithmetic means,

�g� ¼ 1

Nbin

X
i

g�ðkiÞ; �g� ¼ 1

Nbin

X
i

g�ðkiÞ; (13)

where the subscript i runs over k bins up to a maximum
wave number, kmax , and we denote the number of the bins
by Nbin. Again, we precompute the correction terms for the
fiducial cosmology using the standard perturbation theory,
which we denote Afid and Bfid, and scale them according to
the average values of g� and g�,

Aðk;�Þ ¼ Afid

�
k;�;

�g�
�gfid�

;
�g�
�gfid�

�
;

Bðk;�Þ ¼ Bfid

�
k;�;

�g�
�gfid�

;
�g�
�gfid�

�
:

(14)

In the above, the terms originated from � (�) are multi-
plied by �g�= �g

fid
� ( �g�= �g

fid
� ).

We finally explain our strategy for the FoG factor. We try
both Gaussian and Lorentzian functions, and we treat�v as
a free parameter. This parameter is determined by fitting
globally the broadband shape of ~Pðk;�Þ.
In summary, our reconstruction strategy is as follows.

We model the redshift-space power spectrum, ~Pðk;�Þ, as
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~Pðk;�Þ ¼
���

g�ðkÞ
gfid� ðkÞ

�
2
Pfid;lin
�� ðkÞ þ �Pfid

��ðkÞ
�

þ�2

�
g�ðkÞ
gfid� ðkÞ

g�ðkÞ
gfid� ðkÞP

fid;lin
�� ðkÞ þ �Pfid

��ðkÞ
�

þ�4

��
g�ðkÞ
gfid� ðkÞ

�
2
Pfid;lin
�� ðkÞ þ �Pfid

��ðkÞ
�

þ Afid

�
k;�;

�g�
�gfid�

;
�g�
�gfid�

�
þ Bfid

�
k;�;

�g�
�gfid�

;
�g�
�gfid�

��

�GXðk�;�vÞ; (15)

where factors with the subscript ‘‘fid’’ are precomputed for
the fiducial cosmology, and g�ðkiÞ and g�ðkiÞ as well as�v

are free parameters. We show results for various cases in
what follows. We include or exclude Aðk;�Þ and Bðk;�Þ,
we adopt Gaussian and Lorentzian for the FoG damping
factor, and we vary the maximumwave number included in
the analysis, kmax .

III. MEASUREMENTS OF LINEAR SPECTRA

A. The observed spectra ~Pðk;�Þ from mock catalogues

For subsequent analysis, we use the dark matter distri-
butions created by the simulations in Ref. [36]. The vol-
ume size of the N-body simulations is ð2048 h�1MpcÞ3,
and we have 60 independent snapshots at each of the four
output redshifts, z ¼ 0:35, 1, 2 and 3. The fiducial cosmo-
logical parameters of the simulation are given by (�m ¼
0:279, �b ¼ 0:165, �k ¼ 0, h ¼ 0:701, �8 ¼ 0:816,
ns ¼ 0:96). The distribution of dark matter particles
is modified according to their peculiar velocity to
incorporate the redshift distortion effect. We adopt the
distant-observer approximation and measure the power
spectrum in ðk?; kkÞ space, where subscripts ‘‘?’’ and

‘‘k’’ denote perpendicular and parallel components to the
line-of-sight.

The density fluctuation field is constructed by assigning
the dark matter particles to 10243 grids for the fast Fourier
transformation (FFT) using the cloud-in-cell (CIC)
method. We use bins in k and � for the following analysis.
k is divided in �k ¼ 0:01 hMpc�1 linearly equally spaced
bins from k ¼ 0:01 hMpc�1 to 0:2 hMpc�1 and � is in 20
linear-bins from 0 to 1 with equal spacing. The averages of
measured two-dimensional power spectra in ðk;�Þ coor-
dinate are shown in Fig. 1. We employ 10243 particles in a
periodic cube with 2048 hMpc�1 a side for each of the 60
realizations. The particle mass is 6:2� 1011 h�1M�, and
we confirmed that the measured power spectrum is well
converged against the mass resolution on the scale of our
interest, i.e., k < 0:2 hMpc�1, by comparing with higher-
resolution simulations.

We find best-fit parameter space of Plin
ggðkiÞ, Plin

��ðkiÞ and
�v by minimizing [33],

�2 ¼ Ximax

i¼imin

X20
p¼1

X20
q¼1

½ ~Pobðki; �pÞ � ~Pfitðki; �pÞ�

� Cov�1
pq ðkiÞ½ ~Pobðki; �qÞ � ~Pfitðki; �qÞ�; (16)

where kmin is fixed to be kmin ¼ 0:01 hMpc�1, and best
kmax is determined in the following subsections.
Of-diagonal elements of the covariance matrix are nearly
negligible and those diagonal elements are written as

Cov�1
pp ðkiÞ ¼ 1

�½ ~Pobðki; �pÞ�2
: (17)

We repeat this procedure for each 60 realization, and report
the averages of best-fit values.

B. Decomposition of linear density-density spectra

We present the result of decomposition of Plin
��. Linear

spectra of Plin
�� are determined at a few first bins about�¼0

in which the orientation of correlated two point pairs is
transverse. The observed ~Pob at those � bins are nearly
equivalent to density-density spectra itself. The procedure
to decompose Plin

�� is immune from all line-of-sight con-

tamination described in Sec. II. Therefore density-density
spectra are measured in high precision at arbitrary scale of
k. But what we are interested in is measuring linear spectra
of Plin

��. Unless the non-linear contribution in the decom-

posed P�� are separated, cross-correlation between density
and velocity fields is not guaranteed to be perfect.

FIG. 1 (color online). The observed spectra of ~Pðk;�Þ are
presented at scales 0:03 hMpc�1 < k< 0:11 hMpc�1. Each set
of points shows the � dependence of the power spectrum
averaged over 60 realizations with error bars being the 1=

ffiffiffiffiffiffi
60

p
of the Gaussian errors at each point.
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The closure approximation in Eq. (11) is applied for
extracting linear information out of measured P��. This
approximation breaks down at specific scale of k. The
upper bound of k is investigated to uncover the limit of
the closure approximation for density fields.

We use measured ~Pobðk;�Þ up to k ¼ 0:2 hMpc�1 at
z ¼ 0:35. Then there are 400 measured ~Pobðk;�Þ at each
realization of dark matter simulation. Those measured data
are fitted by the parameter space of (20Plin

��, 20P
lin
��,�v). In

order to handle a large parameter space, we adapt Markov
chain Monte Carlo (MCMC) methods which are a class of
algorithms for sampling from probability distributions
around equilibrium points.

Dashed curve in Fig. 2 represents the fiducial Plin
��ðkÞ.

Black circle points in the top panel represent measured
P��ðkiÞ when non-linear correction terms of �Pij in

Eq. (11) are nullified. Fractional errors against linear spec-
tra of density fields are shown in the bottom panel of Fig. 2.
Nonlinearity of density fields in measured P��ðkiÞ is ob-
served from k ¼ 0:1 hMpc�1. Measured Plin

��ðkiÞ deviates
from Pfid

��ðkÞ by 10% at k ¼ 0:2 hMpc�1. Blue triangle

points represent measured P��ðkiÞ including �Pij. Seen

at fractional error bars in the bottom panel, linear spectra
of Plin

��ðkÞ are well reproduced within a couple of percent-

age uncertainties through k ¼ 0:2 hMpc�1 [22,31]. The
closure approximation in Eq. (11) for density fields is
proved to be trustable at least by this limit of k.

The cross-correlation coefficient between density and
velocity fields is not parametrized in this paper. Instead,
we claim to probe linear spectra of density and velocity
fields using this closure approximation. Our test for line-
arity of measured density spectra in this subsection is
important to proceed next step of probing coherent motion
spectra.

C. Decomposition of coherent motion spectra

Results of Plin
�� decomposition are presented in this

subsection. The running of ~Pob along the � direction is
caused by Plin

��, and pivoted from ~Pob at � ¼ 0. The

observed ~Pob are maximally affected by peculiar velocity
when the orientation of correlation is radial, while mini-
mally affected at transverse orientation of correlation. In
the limit of � ! 1, ~Pob is significantly contaminated by
all nonlinear smearing effects described in Sec. II. Hence,
we develop an appropriate statistical tool to bridge the
improved theoretical model to real data sets.
The statistical methodology to treat nonlinear correction

terms is described in Sec. II B in detail. In this method, the
higher order loop correction terms are given theoretically,
but the uncertainty due to FoG effect is phenomenologi-
cally parametrized. At scales in which the first order term
of FoG dominates, the assumption of FoG effect is valid
through fitting �v with data sets. But beyond this quasi-
linear cut-off, our statistical model is broken down. The
decomposition of Plin

�� in our analysis is limited by the

uncertainty of FoG effect at higher orders.
Using the dark matter simulation at z ¼ 0:35, we find

this upper bound of k scales in which our assumption is
valid. We test two different upper bounds of kmax ¼
0:11 hMpc�1 and 0:15 hMpc�1. The blue triangle points
in Fig. 3 represent the decomposed Plin

�� using kmax ¼
0:11 hMpc�1. The fiducial spectra are well decomposed.
The best fit �v is 3:7 h�1Mpc with kmax ¼ 0:11 hMpc�1

which corresponds to about 10% nonperturbative contri-
bution to ~Pob at � ¼ 1. The detailed functional form of
FoG is not crucial in our statistical method, because most
FoG functions agree at the first order approximation.
The decomposed Plin

��ðkiÞ is not much dependent on types

of FoG function, such as Gaussian or Lorentzian, in this
test. Hereafter, Gaussian function is chosen for describing
FoG effect.
When we increase kmax beyond kmax ¼ 0:11 hMpc�1,

the measured Plin
��ðkÞ becomes underestimated [34]. The

black circle points in Fig. 3 represents decomposed Plin
��ðkÞ

with kmax ¼ 0:15 hMpc�1. This test indicates that the un-
known higher order terms of FoG effect become dominat-
ing above k¼0:11hMpc�1. Beyond kmax ¼ 0:11 hMpc�1,
the first order approximation of FoG effect is not valid, and
the decomposed Plin

�� start to be biased.

We compare fractional errors of decomposed Plin
��ðkÞ

with the theoretical estimation using Fisher matrix analysis
[17]. We do not marginalize the Fisher matrix with FoG

FIG. 2 (color online). Decomposed Plin
�� are presented with

kmax ¼ 0:2 hMpc�1. (upper panel) Dashed curve represents
fiducial Plin

��. Blue triangles represent fitting results using theo-

retical formulation in Eq. (15), and black circles represent fitting
results without nonlinear correction terms in Eq. (15). (bottom
panel) The fractional errors are presented for measured Plin

�� in

the upper panel.
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effect. The estimated errors using kmax ¼ 0:11 hMpc�1 are
presented as thin blue curves in Fig. 3. When Plin

��ðkÞ is not
correlated much with FoG effect at smaller k of k <
0:05 hMpc�1, the observed and estimated errors agree to
each other. But when Plin

��ðkÞ is affected much by FoG

effect at k ! 0:1 hMpc�1, the observed fractional errors
increase. The correlation between Plin

��ð �k ¼ 0:10 hMpc�1Þ
and �v is presented in Fig. 4 using one realization of dark
matter simulation out of 60. This high correlation causes
the increasing fractional errors about a factor of 3.

Results in Fig. 5 present the contribution of higher-order
polynomials in Eq. (15). The decomposed Plin

�� will be

overestimated or underestimated without A or B. The frac-
tional errors in the bottom panel of Fig. 5 show the results,
when higher-order polynomials are not considered at all. It
is the case of common practice using the nonlinear version
of the Kaiser formula multiplied by a FoG factor [31]. We
show that it is not sufficient for the future precision wide-
deep surveys.

Additionally, we test our method against higher redshift
data at z ¼ 1, 2 and 3 in Fig. 6. The upper bounds of kmax

for these redshifts are larger than the low redshift of z ¼
0:35 as expected, since the damping scale of FoG effect
becomes rather milder at higher redshift. We found that the
linear velocity spectra Plin

�� are precisely measured up to

kmax ¼ 0:12, 0.14 and 0:18 hMpc�1 at z ¼ 1, 2 and 3,
respectively.

FIG. 3 (color online). Decomposed Plin
�� are presented with

varying kmax . (upper panel) Solid curve represents fiducial Plin
��.

Blue triangles represent fitting results using kmax ¼
0:11 hMpc�1, and black circles represent fitting results using
kmax ¼ 0:15 hMpc�1. (bottom panel) The fractional errors are
presented for measured Plin

�� in the upper panel. Thin blue curves

represent the estimated errors using the Fisher matrix analysis.

FIG. 4. Correlation between Plin
�� and �v is presented at the

bin of k ¼ 0:10 hMpc�1, using one realization of simulated
catalogue out of 60. The upper bound of k is kmax ¼
0:11 hMpc�1. It corresponds to the last bin of blue triangle
points in Fig. 3.

FIG. 5. We test the contribution of higher order terms of
Aðk; �Þ and Bðk;�Þ in Eq. (15). The upper bounds of k is fixed
at kmax ¼ 0:11 hMpc�1. Black circles in the upper panel repre-
sents fitting results without bispectral higher-order terms of
Aðk; �Þ in Eq. (15), black circles in the bottom panel represents
fitting results without quadratic higher order terms of Bðk;�Þ in
Eq. (15).
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IV. DISCUSSION

The decomposition results shown in previous section rely
on an idealistic assumption that the nonlinear corrections to
the redshift-space power spectra, �Pij, A and B, are known

a priori for the fiducial cosmology. Since these corrections
must be computed for a given set of cosmological parame-
ters, theymight be sensitive to the underlying cosmological
model and the decomposed power spectra could be biased if
we adopt the wrong cosmological priors. In this section, we
discuss the impact of wrong cosmological assumption on
the decomposition of power spectra.

In principle, the on-going and upcoming CMB experi-
ments will provide a way to precisely determine a set of
cosmological parameters, from which we can compute the
nonlinear corrections. Because of the parameter degener-
acies, however, the CMB observation alone cannot fully
specify the cosmological model. This is indeed one of the
main reasons why the precision measurements of the
redshift-space distortions and/or baryon acoustic oscilla-
tions are highly desired to unlock the nature of late-time
cosmic acceleration. Hence, a large statistical error of the
cosmological parameters would cause an erroneous esti-
mation of the nonlinear corrections that potentially leads to
a biased decomposition of the coherent motion spectra. To
quantify the size of this, we consider wrong cosmological
models, in which the density parameter of the dark energy
�v differs from the fiducial value by 3, 5 and 10%, keeping
the equation-of-state parameter of dark energy fixed. To be
precise, we adopt slightly larger values of �v, while we
fix the spatial curvature �k, the spectral index ns, the
normalization of fluctuation amplitude at CMB scales As,

and some combinations of the parameters, �mh
2 and

�bh
2, since these are expected to be tightly constrained

by the CMB observations. Then, we compute the nonlinear
corrections to the redshift-space power spectrum, and
repeat the same analysis as examined in previous section.
Figure 7 shows the decomposition results of the coherent

motion spectra at z ¼ 0:35. Here, we plot the fractional
errors of the resultant spectra in the cases adopting larger
values of �v. As anticipated, there appears a clear system-
atic trend that as increasing�v, the coherent motion spectra
tend to deviate from the fiducial spectrum. Nevertheless,
apart from k� 0:1 hMpc�1, the resultant size of the bias is
rather small. This is because we are basically looking at the
scales where the contribution of the corrections terms is
small, and even the 10% change of the cosmological pa-
rameter gives a little effect on the nonlinear corrections.
Also, a slight mismatch of the nonlinear corrections can be
partly absorbed into the FoG damping factor, which further
reduces the impact of wrong prior assumptions. Since the
uncertainty of the future constraint on�vwill not be as large
as 10%, the results shown in Fig. 7may be regarded as a very
good news, suggesting that the coherent motion spectra
would be decomposed successfully in a less biased manner.

V. CONCLUSION

We have presented an improved prescription to recon-
struct coherent motion spectra from the matter power spec-
trum in redshift space, properly taking account of the
nonlinear effects of both the structure growth and redshift

FIG. 6 (color online). Measured spectra of Plin
��ðkiÞ are pre-

sented at higher redshift at z ¼ 1, z ¼ 2 and z ¼ 3 in the top,
middle and bottom panels, respectively.

FIG. 7. Fractional errors of measured spectra of Plin
��ðkiÞ are

presented at z ¼ 0:35 using diverse templates at different cos-
mological models. Results with templates of �v larger by 3%,
5% and 10% than true �v are shown at top, middle and bottom
panels respectively.
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distortions. Statistical analysis is presented to bridge theo-

retical models of redshift distortion to real data set. Based

on the perturbation theory treatment, nonlinear correction

terms of higher-order polynomials and nonlinear growth

functions are appropriately included in the reconstruction

analysis. Those contributions are proved to be influential

even at linear scales, and measurements of coherent motion

spectra are misled without it. On the other hand, the non-

perturbative correction terms such as the FoG effect are

parametrized. All the knowns and unknowns in our analysis

successfully reproduce fiducial spectra of coherent motion

up to some limited scales. Although it is still steps away to

achieve complete and practical observational tools measur-

ing coherent motion spectra, results show that our analysis

method righteous path to be developed to meet real world.
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