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ABSTRACT

We present the tools to optimally extract the lensing-integrated Sachs Wolfe (L-ISW) bispectrum signal from future cosmic microwave
background (CMB) data. We implemented two different methods to simulate the non-Gaussian CMB maps with the L-ISW signal:
a non-perturbative method based on the FLINTS lensing code and the separable mode-expansion method. We implemented the
Komatsu, Spergel, and Wandelt (KSW) optimal estimator analysis for the L-ISW bispectrum and tested it on the non-Gaussian
simulations for realistic CMB experimental settings with an inhomogeneous sky coverage. We show that the estimator approaches
the Cramer-Rao bound and that Wiener filtering the L-ISW simulations slightly improves the estimate of f L-ISW

NL by ≤10%. For a
realistic CMB experimental setting that accounts for anisotropic noise and masked sky, we show that the linear term of the estimator
is highly correlated to the cubic term and it is necessary to recover the signal and the optimal error bars. We also show that the
L-ISW bispectrum, if not correctly accounted for, yields an underestimation of the f local

NL error bars of �4%. A joint analysis of the
non-Gaussian shapes and/or L-ISW template subtraction is needed to recover unbiased results of the primordial non-Gaussian signal
from ongoing and future CMB experiments.

Key words. cosmic background radiation

1. Introduction

One of the most relevant mechanisms that can generate non-
Gaussianity from secondary cosmic microwave background
(CMB) anisotropies is the coupling between weak lensing and
the integrated Sachs Wolfe (ISW, Sachs & Wolfe 1967) and the
Rees Sciama (RS) effects (Rees & Sciama 1968). This correla-
tion gives in fact the leading contribution to the CMB secondary
bispectrum with a blackbody frequency dependence (Goldberg
& Spergel 1999; Verde & Spergel 2002; Giovi et al. 2005).
Weak lensing of the CMB is caused by gradients in the matter
gravitational potential that distorts the CMB photon geodesics.
The ISW and the RS effects, on the other hand, are related to
the time variation of the gravitational potential wells. The rel-
evant mechanism is given by the late ISW, owing to the action
of dark energy, which causes the decay of the gravitational po-
tential wells as the Universe expands. Both the lensing and the
ISW effect are therefore related to the matter gravitational po-
tential and thus are correlated phenomena. This gives rise to a
non-vanishing three-point correlation function or, analogously, a
non-vanishing bispectrum, its Fourier counterpart. The RS (also
referred to as the non-linear ISW) arises when the growth of
structure in the evolving universe becomes non-linear. Because
it is a second-order effect, the RS gives a smaller contribution
to the signal than the ISW. The CMB bispectrum arising from
the cross-correlation between lensing and ISW/RS (from now
on referred to as L-ISW) is expected to have a high signal-to-
noise ratio from ongoing and future CMB experiments so that
it will be detectable in the near future with a high statistical

significance (Verde & Spergel 2002; Giovi et al. 2005; Mangilli
& Verde 2009; Lewis et al. 2011). A detection would open the
possibility to exploit the cosmological information related to the
late-time evolution encoded in the L-ISW signal. It is useful
to stress that a significant detection of the L-ISW signal from
ongoing CMB experiments such as Planck would be a power-
ful probe of dark energy from the CMB alone and would be a
complementary probe of the late-time Universe with respect to
the large scale structure and the CMB power spectrum analysis.
Moreover, Mangilli & Verde (2009) and Hanson et al. (2009)
showed that the L-ISW bispectrum can be a serious contami-
nant for estimating the primary local non-Gaussianity from fu-
ture data. Ongoing CMB experiment such as Planck (Planck
Collaboration 2011) and future experiments such as COrE (The
COrE Collaboration et al. 2011) will therefore require a detailed
reconstruction of the L-ISW bispectrum either to be able to cor-
rectly remove the L-ISW contribution when estimating the local
primary non-Gaussian parameter fNL, or to exploit the cosmo-
logical information encoded in the signal; therefore it becomes
extremely important to know how to model and simulate it.

We present the formalism and numerical implementation i)
to generate simulated CMB maps containing the L-ISW signal
and ii) to build and test the optimal estimator for the L-ISW
bispectrum, accounting for both the cubic and the linear parts.
The linear part for this specific kind of signal has been calcu-
lated and tested here for the first time. We implemented and
tested the L-ISW signal with two methods for the CMB non-
Gaussian simulations: the separable mode-expansion method
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(Fergusson et al. 2010; Smith & Zaldarriaga 2011) and the non-
perturbative approach described in Sect. 2.1.

It is important to have an optimal estimator for the L-ISW
bispectrum to extract the signal optimally from future data and
to separate it from other types of non-Gaussianities, i.e. the local
primary bispectrum, with which it is degenerated. Here, follow-
ing Komatsu (2010) and Munshi et al. (2011), we implemented
the KSW bispectrum estimator (Komatsu et al. 2005) for the
L-ISW signal of a full sky, cosmic-variance-limited CMB exper-
iment and a more realistic instrumental setting, similar to that of
a space-based experiment. Furthermore, for this realistic case,
we investigated the statistical detection significance and the im-
pact that the L-ISW bispectrum has on the estimation and on the
variance of the primary local non-Gaussian parameter fNL.

The outline of this paper is as follows. In Sect. 2 we present
the methods for simulating the non-Gaussian CMB maps that
contain the L-ISW bispectrum signal by using both the separa-
ble mode-expansion method and the non-perturbative covariance
method. Section 3 provides the basics for building and imple-
menting the optimal estimator for the L-ISW signal, including its
linear part. It also includes a discussion of the implementation of
the Wiener-filtered simulation algorithm. In Sect. 4 we present
the relevant tests and results. In Sect. 5 we quantify the statistical
detection significance of the L-ISW bispectrum and the impact
on the error of primary non-Gaussianity fNL due to the presence
of the ISW signal. Finally, in Sect. 6, we discuss the results and
summarize the conclusions. Details on the simulations built with
the covariance method and on the L-ISW cross-correlation coef-
ficients are given in the appendix.

2. Simulated non-Gaussian CMB maps

In this section, we present the formalism for creating simu-
lated CMB maps for the L-ISW bispectrum. We used two differ-
ent methods: a non-perturbative approach, here named the “co-
variance method”, and the separable mode-expansion method
(Fergusson et al. 2010 and Smith & Zaldarriaga 2011). The lat-
ter provides an efficient and easy to handle way of generating
L-ISW maps, while the former method provides better insights
into the physics related to the L-ISW bispectrum. In this case,
in fact, the L-ISW signal is generated starting from the covari-
ance matrix that represents the expected correlation between the
lensing and the ISW/RS effects.

2.1. Covariance method

The L-ISW correlation is defined by the covariance matrix,

CL-ISW =

(
Cφφ
�

CTφ
�

CTφ
� CTT

�

)
(1)

and the cross-correlation coefficient,

rTφ =
CTφ
�√

CTT
�

√
Cφφ
�

· (2)

Here, CTT
� δ��′δmm′ = 〈aP

�maP∗
�′m′ 〉 and Cφφ

�
δ��′δmm′ = 〈φL

�mφ
L∗
�′m′ 〉 are

the CMB primary temperature power spectrum and the lensing
power spectrum, where the lensing potential φ (the gravitational
potential projection along the line of sight) is defined by

φ(n̂) = −2
∫ rls

0
dr

r(zls) − r(z)
r(z) r(zls)

Φ(r, n̂r). (3)

Fig. 1. L-ISW power spectrum from the covariance method simulation.
The plot shows that the temperature power spectrum of the L-ISW sim-
ulations generated with the method described in Sect. 2.1 is compatible
with the input theoretical power spectrum from CAMB and that the non-
Gaussian contribution is always subdominant. The temperature power
spectrum from one simulated L-ISW realization is shown in black, the
red line refers to the theoretical input from CAMB while the blue refers
to the non-Gaussian L-ISW contribution from the same realization.

The term in the numerator, CTφ
�

, is the power spectrum of the
cross-correlation between the lensing and the ISW/RS effect, see
Appendix B for details.

After a Cholesky decomposition of the L-ISW correlation
matrix CL-ISW, the two new variables t�m and z�m are defined by

t�m =
√

Cφφ
�

x�m ≡ φL
�m (4)

zlm =

√
CTT
�

[
x�mrTφ + y�m

√
1 − (rTφ)2

]
, (5)

where x�m and y�m are two independent random Gaussian fields.
By definition, the new fields are such that: 〈t2〉 = Cφφ

�
, 〈z2〉 =

CTT
� and they have the non-zero cross-correlation 〈zt〉 = CTφ

�
.

As described in Appendix A, the map that contains the de-
sired L-ISW bispectrum is given by the coefficients

aL-ISW
�m = z�m + aL

�m − aP
�m ≡ z�m + ΔaL

�m, (6)

where aP
�m and aL

�m are the unlensed primary and the lensing an-
gular coefficients, and ΔaL

�m = aL
�m − aP

�m corresponds to the lens-
ing expansion terms only. Note that by construction y�m has the

same phases as aP
�m ≡ y�m

√
CTT
�

and φL
�m ≡ x�m

√
Cφφ
�

the same

as x�m, which is necessary for building a map with the desired
bispectrum signal.

Figure 1 shows in black the temperature CMB power spec-
trum of one simulated L-ISW map, CL-ISW

� , built from Eq. (6).
The non-Gaussian contribution, in blue in the figure, is always
subdominant and the CL-ISW

�
are consistent with the theoreti-

cal input (CTT
� )th (red line) obtained with CAMB (Lewis et al.

2000)1. As throughout the paper, the reference cosmological
model used is the ΛCDM model with parameter values defined
in Komatsu et al. (2011).

1 http://camb.info
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2.2. Separable mode-expansion method

Following Fergusson et al. (2010) and Smith & Zaldarriaga
(2011), the non-Gaussian part of the CMB angular coefficients
can be defined starting from a given reduced bispectrum. For the
L-ISW signal, the method can be used because this kind of signal
is separable, so that

[aNG
�m ]L-ISW =

∫
d2 n̂

∑
�2m2�3m3

bL-ISW
�1�2�3

Ym
� (n̂)

× aG
�2m2

Ym2
�2

(n̂)

C�2

aG
�3m3

Ym3

�3
(n̂)

C�3
· (7)

From the expression of the L-ISW reduced bispectrum in
Eq. (13) and by factorizing the � dependence, the explicit form of
the non-Gaussian contribution to the a�m from the L-ISW cross
correlation is given by

[aNG
�m ]L-ISW =

1
6

∫
d2 n̂Ym

� (n̂)
[
�(� + 1)Q(n̂)E(n̂)

+C�
(
[δ2E](n̂)Q(n̂) − [δ2Q](n̂)E(n̂)

)
− (

[δ2P](n̂)Q(n̂) + [δ2Q](n̂)P(n̂)
)

− �(� + 1)Q(n̂)P(n̂) (8)

+ q�
(
[δ2E](n̂)P(n̂) − [δ2P](n̂)E(n̂)

)
+ �(� + 1)q�P(n̂)E(n̂)

]
.

Here,

P(n̂) ≡
∑
�m

a�mY�m(n̂),

Q(n̂) ≡
∑
�m

CTφ
� (C−1a)�mY�m(n̂), (9)

E(n̂) ≡
∑
�m

(C−1a)�mY�m(n̂).

The maps with a δ2 prefix are given by, e.g., δ2P = −∑
� �(� +

1)a�mY�m(n̂); they correspond to the maps of Eq. (10) multiplied
by the −�(� + 1) factor. The final solution containing the L-ISW
signal is

a�m = aG
�m + [aNG

�m ]L-ISW, (10)

where aG
�m is the Gaussian part.

In Fig. 2, we show the CMB temperature power spectra
from the Gaussian and the non-Gaussian map, as defined in
Eq. (8). The non-Gaussian contribution is always subdominant,
as expected.

3. The optimal KSW estimator
for the lensing-ISW/RS bispectrum

In this section we present the formalism for the KSW estimator
(Komatsu et al. 2005) for the L-ISW bispectrum signal.

3.1. Definition

The a�m probability distribution function (PDF) in the limit of
weak non-Gaussianity (i.e., truncated at the bispectrum level) is

Fig. 2. L-ISW power spectrum from the separable mode-expansion
method simulation. The temperature power spectrum of the L-ISW sim-
ulation generated with the method described in Sect. 2.2 is compatible
with the input theoretical power spectrum from CAMB and the non-
Gaussian contribution is always subdominant. The temperature power
spectrum from one simulated L-ISW realization is shown in black, the
red line refers to the theoretical input from CAMB while the blue refers
to the non-Gaussian L-ISW contribution from the same realization.

given by (Babich 2005; Taylor & Watts 2001; Komatsu 2010)

P(a) =
1

(2π)Nharm/2|C|1/2 exp

⎡⎢⎢⎢⎢⎢⎣−1
2

∑
lm

∑
l′m′

a∗lm(C−1)lm,l′m′al′m′

⎤⎥⎥⎥⎥⎥⎦
×

{
1 +

1
6

∑
all lim j

〈al1m1 al2m2 al3m3〉
[
(C−1a)l1m1 (C−1a)l2m2 (C−1a)l3m3

− 3
(
C−1

)
l1m1,l2m2

(
C−1a

)
l3m3
,

]}
. (11)

where 〈a�1m1 a�2m2 a�3m3〉 is the angular bispectrum. Here, we are
interested in the L-ISW case, for which the angular bispectrum,
parametrized by the amplitude parameter f L-ISW

NL , is

〈a�1m1 a�2m2 a�3m3〉 = Gm1m2m3

�1�2�3
f L-ISW
NL bL-ISW

�1�2�3
, (12)

where

bL-ISW
�1�2�3

=

[
�1(�1 + 1) − �2(�2 + 1) + �3(�3 + 1)

2
CP
�1

CTφ
�3
+ (5p)

]
,

(13)

is the reduced bispectrum and CTφ
� ≡ 〈φ∗�maL-ISW

�m 〉 are the
L-ISW cross-correlation coefficients. According to Komatsu
et al. (2005), for a small departure from Gaussianity, the opti-
mal estimator for the L-ISW amplitude parameter is given by

f L-ISW
NL = (F−1)S L-ISW, (14)

where (F−1) is the inverse of the L-ISW Fisher matrix

F ≡ FL-ISW = fsky

∑
2��1��2��3

BL-ISW
�1�2�3

BL-ISW
�1�2�3

Δ�1�2�3C�1C�2C�3
· (15)

For a realistic CMB experimental setting, the noise, N�, and
the beam window function, w�, are accounted for so that C� =
N� + Cth

�
w2
� . In this case, the bispectrum is also convolved with
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the beam transfer function w�, BL-ISW
�1�2�3

∝ bL-ISW
�1�2�3
w�1w�2w�3 . For a

mask M(p), the observed sky fraction fsky is defined as

fsky =

∑
p M(p)

Npix
, (16)

where Npix = 12N2
s is the number of pixels in the map, Ns is the

map resolution, and the sum
∑

p is done over the pixels.
Assuming that the only relevant non-Gaussian contribution

is coming from the L-ISW term, which is the case if the lo-
cal primordial non-Gaussianity is small and foregrounds and
point sources have been correctly removed and masked, S L-ISW
is given by the data as

S L-ISW ≡ 1
6

∑
all lm

Gm1m2m3

l1 l2l3
bL-ISW

l1l2l3

[
(C−1a)�1m1 (C−1a)�2m2 (C−1a)�3m3

− 3(C−1)�1m1,�2m2 (C−1a)�3m3

]
. (17)

By factorizing the �i dependence, this becomes (Komatsu 2010)

S L-ISW =
1
2

∫
d2 n̂

{
P(n̂)[δ2E](n̂)Q(n̂)

−
[
δ2P

]
(n̂)E(n̂)Q(n̂)−P(n̂)E(n̂)

[
δ2Q

]
(n̂)

}
+S ISW

lin ,(18)

where the maps P(n̂), E(n̂), Q(n̂) etc. are the same as defined
in Eqs. (10) and, in the case of a realistic experiment, they are
convolved with the experimental window function w� so that, for
example, P(n̂) ≡ ∑

�m w�a�mY�m(n̂).
In Eq. (18), the first two lines refer to the cubic part of

the estimator, while S L-ISW
lin is the linear part, which corrects for

anisotropies and must be included if rotational invariance is not
preserved. Details on the analytic expression of the L-ISW linear
term and on its numerical implementation are given in the next
Sect. 3.2 and in Sect. 4.

3.2. Linear term

The linear term of the estimator is given by

S L-ISW
lin = −1

2

∫
d2n̂

∑
all �m

bL-ISW
�1�2�3

(19)

× (C−1)�1m1,�2m2 (C−1a)�3m3 Ym1

�1
(n̂)Ym2

�2
(n̂)Ym3

�3
(n̂).

By using the explicit form of bL-ISW
�1�2�3

and by factorizing the
�-dependence, one obtains

S L-ISW
lin = −1

2

∫
d2n̂

{
Q(n̂)

[
〈P(n̂)δ2E(n̂)〉MC − 〈E(n̂)δ2P(n̂)〉MC

]

− δ2Q(n̂)〈P(n̂)E(n̂))〉MC (20)

− E(n̂)
[
〈Q(n̂)δ2P(n̂)〉MC + 〈P(n̂)δ2Q(n̂)〉MC

]
+ δ2E(n̂)〈P(n̂)Q(n̂)〉MC − δ2P(n̂)〈E(n̂)Q(n̂)〉MC

+ P(n̂)
[
〈Q(n̂)δ2E(n̂)〉MC − 〈E(n̂)δ2Q(n̂)〉MC

]}
,

where 〈〉MC indicates the Monte Carlo (MC) averages and
the different maps are defined in Eq. 10. They are convolved
with the experimental window function w�, so that P(n̂) ≡∑
�m w�a�mY�m(n̂), etc.

3.3. Wiener-filtered maps

The optimal bispectrum estimator as described in Eqs. (17)
and (18) involves products of inverse-variance-filtered maps,
C−1a = (S + N)−1a, where S and N are the signal and the
noise covariance matrix, respectively. A brute-force calculation
of such an expression is impractical for modern high-resolution
experiments because it involves the inversion of two matrices
that are too large to be stored and processed as dense systems. If
the noise covariance can be described in terms of a simple power
spectrum in spherical harmonic space, the calculation simplifies
significantly. However, this approach is no longer exact for ex-
periments with anisotropic noise distribution or reduced sky cov-
erage, leading to an increase in the error bars of the estimates.

Here, we used Wiener filtering as a basis for the exact eval-
uation of terms involving C−1a. We applied the iterative scheme
of Elsner & Wandelt (2013) to calculate the Wiener filter aWF ≡
S (S + N)−1a, the maximum a posteriori solution if signal and
noise are Gaussian random fields. After aWF has been success-
fully computed, we finally obtain the inverse-variance-filtered
map by normalizing the spherical harmonic coefficients of the
Wiener-filter solution by the CMB power spectrum multiplied
with the beam window function, C−1a�m = (Cth

�
b2
�)
−1aWF
�m .

4. Results

In this section we present the results for the numerical imple-
mentation of the optimal estimator and the methods presented
in Sects. 2.1 and 2.2 to build the CMB maps that contain the
L-ISW bispectrum. In particular, we processed the simulated
L-ISW maps through the estimator pipeline to obtain the am-
plitude parameter f L-ISW

NL of Eq. (14). We considered two main
settings:

– a full-sky cosmic-variance-limited CMB experiment up to a
maximum multipole �max � 1000, and

– a more realistic experimental setting that consisted of a one-
channel CMB experiment with a Gaussian beam with a
FWHM θb = 7′, a galactic mask leaving �80% of the sky,
and anisotropic uncorrelated noise. These settings are visu-
alized in Figs. C.3, C.2 and details are given in Sect. C.

All runs have were performed at full resolution Nside = 2048
(which corresponds to a map pixel number of 5.033 × 107).
The maps in Eqs. (10) were calculated with the Healpix pack-
age (Gorski et al. 2005). The theoretical power spectrum of
the temperature-only primary CMB coefficients C� was gener-
ated with the CAMB code for a fiducial ΛCDM cosmological
model with parameters corresponding to WMAP7 cosmological
parameters (Komatsu et al. 2011). For illustrative purpose, the
plots of the maps and the corresponding �-filters that contain the
L-ISW cross-correlation coefficients CTφ

�
are shown in Figs. 3

and 4.
We built a set of 100 CMB simulations for each of the two

methods described in sections 2.2 and 2.1 for a cosmic-variance-
limited CMB experiment with full sky coverage. For the covari-
ance method, we used the FLINTS code (Lavaux & Wandelt
2010) to generate the lensing coefficients aL

�m and the lens-
ing potential coefficients φ�m needed to build the non-Gaussian
aL-ISW
�m as described in Sect. 2.1. In both cases, we analyzed the

L-ISW simulated CMB maps with the L-ISW estimator up to
�max = 1000. According to the definition of f L-ISW

NL , the expected
value is 1 with 1σ error predicted from theory for �max = 1000
of �0.64. For the separable expansions mode method, the simu-
lations give a mean f L-ISW

NL = 1.1 with averaged 1σ error �0.69.
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Fig. 3. Large-scale contribution to the non-Gaussian L-ISW signal.
Upper panel: the map Q(n̂) ≡ ∑

�m CTφ
� (C−1a)�mY�m(n̂) contains the

L-ISW coefficients CTφ
� and enters the L-ISW estimator Eq. (18). The

�-filter
CTφ
�

C�
acts as a filter that suppresses the small scales (lower panel).

With the simulations built with the covariance method, we obtain
a mean f L-ISW

NL = 1.21 with averaged 1σ error of 0.67. The results
are summarized in Figs. 6 and 5. These estimates are compatible
with the theoretical predictions. The error bars are slightly sub-
optimal because of numerical noise and the fact that we assumed
a diagonal covariance matrix so that (C−1a)�m = a�m/C�.

To test the estimator on a more realistic case, we built a set
of 100 simulations with the separable mode-expansion method
considering a realistic experimental setting. This consists of a
CMB one-channel experiment with a Gaussian beam FWHM
θb = 7′, a galactic mask with fsky = 0.78, and anisotropic noise,
as previously described. In this case, we run the estimator up
to �max = 1500. The expected theoretical 1σ error on f L-ISW

NL
for this experimental setting and up to �max = 1500 is �0.49.
This estimate accounts for a �10% percent increase in the error
bar because the lensing is intrinsically non-Gaussian and gives
an extra contribution to the variance, as shown in Lewis et al.
(2011). We obtain a mean f ISW

NL = 1.09 with averaged 1σ error
�0.55. In this case we computed both the cubic and linear part of
the estimator. In particular, the linear term has been tested with
a set of 100 Monte Carlo (MC) averages generated for each map
product in equation (Eq. (21)). In the presence of anisotropic
noise and a sky cut, the linear part of the estimator is neces-
sary to recover the expected estimation of f L-ISW

NL and error bars.
The linear contribution to f L-ISW

NL is strongly anti-correlated with
the cubic part. This behavior is summarized in Fig. 8. In the
plot are shown the linear and the cubic contributions to the total
amplitude f L-ISW

NL ≡ ( f L-ISW
NL )cubic+( f L-ISW

NL )linear. We also checked

Fig. 4. Intermediate-scale contribution to the non-Gaussian L-ISW
signal. Same as Fig. 3 but, for the map δ2Q = −∑

� �(� +
1)CTφ

� (C−1a)�mY�m(n̂) (upper panel) and its corresponding filter −�(� +
1)

CTφ
�

C�
. The factor �(�+1) dominates at high �, defining more small-scale

features than the previous Q map.

Fig. 5. f L-ISW
NL values for 100 simulated non-Gaussian maps obtained

with the covariance method of Sect. 2.1. The lensing part has been com-
puted with the FLINTS code (Lavaux & Wandelt 2010). The straight
line refers to the averaged f L-ISW

NL from these simulations, the dashed
line to the averaged 1σ error. Here �max = 1000.

that with 100 MC averages the linear term converges and is sta-
ble: for this specific experimental setting we find that the results
do not improve when increasing the MC averages to 200.
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Fig. 6. Same as Fig. 5, but for 100 simulations built with the separable
mode-expansion method (Eq. (8)).

Fig. 7. Same as Fig.6 but for a more realistic CMB experiment with a
7′ FWHM Gaussian beam, anisotropic noise, and a 20% galactic mask.
Here �max = 1500. The dashed lines are the 1σ averaged error bars from
simulations, while the dotted lines are the expected Fisher errors.

Finally, to test optimality, we Wiener-filtered the 100 L-ISW
simulations and processed them through the L-ISW estimator
pipeline. The maps were produced following Elsner & Wandelt
(2013), as described in section Sect. 3.3. We used the same ex-
perimental settings as inputs as was described previously. The
linear term was computed with 100 Wiener-filtered MC sim-
ulations. We found that the improvement over the non Wiener
filtered simulations is small (<10%) for our particular settings.
However, this does not exclude that the Wiener filtering may
have a more noticeable impact for a more realistic experimen-
tal setting and noise covariance.

5. fNL error estimation

This section summarizes the results for the impact of the L-ISW
signal on the error estimation of fNL from the local-type non-
Gaussianity. If the only contribution to fNL were coming from
the primary local-type non-Gaussianity, the error on this param-
eter would be simply given by

σP =

√
1

FP
, (21)

Fig. 8. The linear term of the estimator reduces the error bars for
anisotropic data. The plot shows the linear (solid black line) and the cu-
bic (dot-dashed black line) contributions to the total (red line) f L-ISW

NL ≡
( f L-ISW

NL )cubic+ ( f L-ISW
NL )linear for a CMB experiment with anisotropic noise

and a 22% galactic mask.

i.e., the inverse of the Fisher matrix of the local-type non-
Gaussian contribution

FP = fsky

∑
2��1��2��3

BP
�1�2�3

BP
�1�2�3

Δ�1�2�3C�1C�2C�3
, (22)

where fsky refers to the observed sky fraction. The noise, N�, and
the beam, b�, can be accounted for, so that C� = N� + Cth

� b2
� . In

this case the bispectrum is also convolved with the beam transfer
function b�: BP

�1�2�3
∝ bP

�1�2�3
b�1 b�2 b�3 .

However, the L-ISW can be a serious contaminant of the
local primary signal (Mangilli & Verde 2009; Hanson et al.
2009), so that it is important to quantify the effect on the ex-
pected fNL error as well. If the L-ISW signal is present, the error
matrix will be given by a non-diagonal Fisher matrix of the form

Fi j =

(
FP Fcross

Fcross FL-ISW

)
, (23)

where

Fcross = fsky

∑
2��1��2��3

BL-ISW
�1�2�3

BP
�1�2�3

Δ�1�2�3C�1C�2C�3
(24)

is the cross-correlation term and FL-ISW is the the Fisher term
of the L-ISW signal of Eq. (15). The expected error on the lo-
cal fNL is

σP
cross =

√
(F−1)11, (25)

i.e., the inverse of the full Fisher matrix containing the cross-
correlation between the primary local non-Gaussianity and the
L-ISW signal. The difference between the error estimation on
fNL-primary with and without the L-ISW contribution is

ΔσP = σP
cross − σP. (26)

To quantify the level of correlation between the two signals, one
can define the correlation coefficient as

r =
Fcross

√
FP
√

FL-RS
· (27)
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We found that the effect of the local non-Gaussianity on the
L-ISW is negligible. Therefore, the 1 − σ error of the L-ISW
amplitude parameter f L-ISW

NL is given by σL-ISW =
√

(FL-ISW)−1.
For a realistic CMB experiment as described in Sect. 4 and

in Appendix C, we found that the correlation between the two
signals is r = 0.20 at �max = 1500, and r = 0.27 at �max = 2000,
and that the expected detection significance of the L-ISW signal
(1/σL-ISW) is at �2 and �3σ. The effect on the fNL local error
due to the contamination is in the range between �3% to �5%
for �max from 1000 to 2000, depending on how strongly the two
signals are correlated. For �max = 2000, if the L-ISW signal is
not accounted for correctly, the fNL error bars are overestimated
by �4%.

6. Discussion and conclusions

We have presented the formalism and numerical implementation
to build the optimal KSW estimator for the lensing-integrated
Sachs Wolfe (L-ISW) bispectrum. Moreover, we have tested the
estimator on simulated CMB maps containing the L-ISW non-
Gaussian signal and on the Wiener-filtered simulations to test
optimality. We implemented and tested two methods for the sim-
ulations: a non-perturbative approach to simulate CMB sky maps
with the L-ISW signal, which is based on the FLINTS lensing
code (Lavaux & Wandelt 2010), and the perturbative separable
mode-expansion method calculated for this specific signal. We
provided the analytical expression and numerical implementa-
tion of the linear term of the estimator for this specific type of
bispectrum. For a realistic CMB experimental setting that ac-
counts for anisotropic noise and masked sky, the linear term
gives a relevant contribution that is highly anti-correlated with
the cubic part, and it is necessary to recover the signal and opti-
mal error bars. To achieve optimality, we also tested the estima-
tor on the Wiener-filtered L-ISW-simulated CMB maps. In this
case we recovered the signal with error bars that saturate the the-
oretical Cramer-Rao bound, with a small improvement of <10%
with respect to the non-Wiener-filtered simulations. Finally, we
estimated that, if not correctly accounted for, the L-ISW effect
also has an impact on f local

NL error bars, leading to a bias and an
overestimation of �4%, in agreement with Lewis et al. (2011).
Thus a joint analysis of non-Gaussian shapes and/or L-ISW tem-
plate subtraction will be needed to recover unbiased minimum
variance results of the local-type primordial non-Gaussian sig-
nal. The unbiased non-Gaussian results for the local shape from
Planck data can be found in Planck Collaboration (2013a). A
detailed description of different methods for an unbiased analy-
sis of CMB non-Gaussianity can be found in Kim et al. (2013).
After subtracting the L-ISW bispectrum signal, there is no evi-
dence of primordial local non-Gaussianity in Planck data, since
f local
NL = 2.7 ± 5.8 (Planck Collaboration 2013a). It is important

to note that the KSW bispectrum approach to the estimation of
the L-ISW is complementary to the lensing reconstruction esti-
mator of Lewis et al. (2011). In principle, the KSW estimator
can offer advantages over other methods because the bispectrum
has a unique shape and has been shown to be robust to fore-
ground contamination (Yadav & Wandelt 2010), therefore it can
be measured by using a larger sky fraction. In addition, includ-
ing the L-ISW in the framework of bispectrum analysis gives an
unified approach to testing for primordial non-Gaussianity. The
tools presented here enable the optimal analysis of this important
signal from CMB data and can be used for the Planck data anal-
ysis as described in Planck Collaboration (2013a,b). The L-ISW
signal is detected at 2.7σ in the Planck temperature data, and we
expect that the statistical significance will be increased by �15%

when adding the polarization data. As pointed out in Lewis et al.
(2011), the L-ISW bispectrum signal is expected to be detected
at �9σ by combining the temperature and polarization data from
future CMB full-sky and cosmic-variance-limited experiments
such as COrE.

Acknowledgements. This work was supported in part by NSF grants AST 07-
08849 and AST 09-08902, and by NASA/JPL subcontract 1413479; and through
Ben Wandelt’s ANR Chaire d’excellence ANR-10-CEXC-004-01. A.M. ac-
knowledges Guilhem Lavaux for the FLINTS lensing simulations, Licia Verde
for useful comments and discussion, and the University of Illinois for the use of
the curvaton computers.

Appendix A: simulated L-ISW CMB bispectrum
from the covariance method

This appendix describes the covariance method used to build the
L-ISW simulated maps and described in Sect. 2.1. It is straight-
forward to check that the coefficients aL-ISW

�m = z�m+ΔaL
�m give the

desired bispectrum by calculating 〈(aISW
�m )3〉 = 〈(z�m + ΔaL

�m)3〉.
The lensing coefficients aL

�m can be expressed analytically, at first
order in the lensing expansion, as

aL
�n = aP

�m +
∑

�′�′′m′m′′
(−1)m+m′+m′′G−mm′m′′

��′�′′ (A.1)

× �
′(�′ + 1) − �(� + 1) + �′′(�′′ + 1)

2
aP∗

m′�′φ
∗L
�′′−m′′ ,

where aP
�m the primary and φL

�m the harmonic coefficients of the
lensing potential φL. Since, according to the new variables def-
inition (z�m, t�m) of Eq. (6), t�m = φL

�m, the aL
�m can be written as

aL
�m ∝ aP

�m + f�a
P∗
�mt�m. (A.2)

Here, to simplify the notation, f� =∑
�′�′′m′m′′ (−1)m+m′+m′′G−mm′m′′

��′�′′
�′(�′+1)−�(�+1)+�′′(�′′+1)

2 , so that
ΔaL
�m = f�aP∗

�mt�m at first order. The explicit expression for
〈(aL-ISW
�m )3〉 takes the form

〈(
aLISW
�m

)3
〉
=

〈(
z�m + ΔaL

�m

)3
〉
=

〈
z3
�m + z�m

(
ΔaL
�m

)2

+ 3z2
�mΔaL

�m +
(
ΔaL
�m

)3
+2z�m

(
ΔaL
�m

)2
〉
. (A.3)

From this the only non-zero term is

〈
3z2
�mΔaL

�m

〉
= 3

〈
f�a

P∗
�mt�mCTT

�

(
x�m x�′m′

(
rTφ
�

)2
+ y�my�′m′

×
(
1−

(
rTφ
�

)2
))
+2x�mrTφ

� y�′m′

√
1−

(
rTφ
�

)2)〉
.(A.4)

From this only survives

6

〈
f�a

P∗
�mt�mCTT

� x�mrTφ
�
y�′m′

√
1 −

(
rTφ
�

)2
〉
. (A.5)

By using the definition of rTφ
� in Eq. (2) and the approximation

rTφ
�
� 1 for which 1 − (rTφ

�
)2 � 1, since by construction aP

�m =

y�m

√
CTT
� , t�m = x�m

√
Cφφ� , 〈x2〉 = 1, 〈y2〉 = 1 and 〈xy〉 = 0, we

recover the expected signal
〈(

aLISW
�m

)3
〉
= 6 f�C

P
�C
φT
�
. (A.6)
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Fig. C.1. Noise simulations. Example of one simulated anisotropic
noise map realization (bottom panel) and its correspondent noise power
spectrum in red on the upper panel. The black line corresponds to the
power spectrum from the same L-ISW simulation.

Appendix B: L-ISW cross-correlation coefficients

The definition of the CMB lensing-ISW/RS cross-correlation co-
efficients is (Spergel & Goldberg 1999; Verde & Spergel 2002;
Giovi et al. 2005):

CTφ
�
≡

〈
φ∗mL �a

m
�

〉
� 2

∫ zls

0

r(zls) − r(z)
r(zls)r(z)3

,

[
∂

∂z
Pφ(k, z)

]
k= �

r(z)

dz. (B.1)

where, r(z) is the co-moving conformal distance and Pφ(k, z) is
the gravitational potential power spectrum that accounts for both
the linear and non-linear contributions. The non-linear regime
RS contribution to the signal is tiny, in agreement with Lewis
(2012) and Junk & Komatsu (2012)2. Considering both the lin-
ear ISW and the Rees Sciama effect improves the f L-ISW

NL variance
and signal-to-noise ratio by a few percent (�2%) with respect
to the linear-only case calculation. In this work we considered
both contributions for completeness. As a template for both the
simulations and the estimator, we used the late ISW-lensing

2 We found that the amplitude on the non-linear effect estimated in
Mangilli & Verde (2009) (as well as probably in Giovi et al. 2005) com-
pared to Lewis (2012); Junk & Komatsu (2012) was due to an interpo-
lation problem. Even a small numerical effect at the interpolation scale
k = �

r(z) can propagate through the line-of-sight integration to a rele-

vant effect on the non-linear transition scale of the CTφ
� . Note, however,

that the CTφ
� coefficients are very sensitive to the cosmology parameters

related to the late-time evolution, ΩΛ, w, σ8, and to the modeling of
the non-linearities (e.g. Verde & Spergel (2002)), so extra care must be
taken when comparing results from different authors.

Fig. C.2. Experimental setting: beam window function and anisotropic
noise map. The Gaussian beam with a 7′ FWHM is shown in the upper
panel, while the bottom panel shows the dipole-like anisotropic noise
covariance matrix map.

Fig. C.3. Mask. Galactic mask cut with fsky = 0.78 (upper panel) ob-
tained from thresholding the smoothed 100 μm IRAS map (bottom
panel).
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cross-correlation coefficients of Eq. (B.1). This is a good ap-
proximation since this effect provides the main contribution.
However, for a detailed description see Lewis (2012).

Appendix C: experimental setting

Figures C.2 and C.3 summarize the experimental settings used
in the simulations. These settings are inspired by a space-based
experiment such as WMAP or Planck, with a variation of the
noise with the ecliptic latitude. We considered a one-channel
CMB experiment with a Gaussian beam with a FWHM θb = 7′, a
galactic mask leaving �80% of the sky and anisotropic uncorre-
lated noise. In particular, we obtained a galactic type mask from
the IRAS3 100 μm map smoothed at 5 angular degrees resolu-
tion and with a threshold of 12 MJy/sr. We considered a dipole-
type anisotropic noise covariance matrix, which accounts for the
anisotropies owing to, e.g., the scanning strategy. An example
of an anisotropic noise realization and the corresponding power
spectrum is given in the bottom and upper panels of Fig. C.1.
The noise starts to dominate from � � 1300.
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