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ABSTRACT
We present a finely binned tomographic weak lensing analysis of the Canada–France–Hawaii
Telescope Lensing Survey (CFHTLenS) mitigating contamination to the signal from the
presence of intrinsic galaxy alignments via the simultaneous fit of a cosmological model and
an intrinsic alignment model. CFHTLenS spans 154 square degrees in five optical bands, with
accurate shear and photometric redshifts for a galaxy sample with a median redshift of zm =
0.70. We estimate the 21 sets of cosmic shear correlation functions associated with six redshift
bins, each spanning the angular range of 1.5 < θ < 35 arcmin. We combine this CFHTLenS
data with auxiliary cosmological probes: the cosmic microwave background with data from
WMAP7, baryon acoustic oscillations with data from Baryon Oscillation Spectroscopic Survey
and a prior on the Hubble constant from the Hubble Space Telescope distance ladder. This
leads to constraints on the normalization of the matter power spectrum σ 8 = 0.799 ± 0.015
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and the matter density parameter �m = 0.271 ± 0.010 for a flat � cold dark matter (�CDM)
cosmology. For a flat wCDM cosmology, we constrain the dark energy equation-of-state
parameter w = −1.02 ± 0.09. We also provide constraints for curved �CDM and wCDM
cosmologies. We find the intrinsic alignment contamination to be galaxy-type dependent with
a significant intrinsic alignment signal found for early-type galaxies, in contrast to the late-type
galaxy sample for which the intrinsic alignment signal is found to be consistent with zero.

Key words: cosmology: observations.

1 IN T RO D U C T I O N

Cosmological weak lensing is the study of the weak gravitational
distortions imprinted on the images of distant galaxies by large-scale
structures. A series of deflections are induced by the gravitational
potential of the dark and luminous matter that light passes, as it
travels through the Universe. This lensing effect results in a coherent
distortion, detected in the observed images of galaxies, that allows
us to infer the distribution and density of matter in the Universe.
This well-understood physical effect is recognized as one of the
most powerful probes of cosmology, allowing not only the direct
study of dark matter, but also, through the study of the growth of
structures, a unique probe of gravity and dark energy on large scales
(see review by Weinberg et al. 2012 and references therein for more
details).

It has long been recognized that the optimal way to extract cos-
mological information from the detection of weak gravitational
lensing is to utilize redshift information, for example by separating
the lensed galaxy sample into a number of tomographic bins using
photometric redshift information (Hu 1999). This idea was explored
theoretically to determine the optimal number of redshift bins (see
for example Huterer 2002; Simon, King & Schneider 2004) and also
significantly extended to consider a fully three-dimensional analy-
sis (Heavens 2003). These early predictions suggested that it was
possible to achieve up to an order-of-magnitude improvement on
cosmological constraints when weak lensing measurements were
made in combination with photometric redshifts. This drove weak
lensing survey designs to include multiband optical imaging for
redshift estimates, in addition to high-resolution imaging in a single
band for the measurement of the weak lensing distortions.

In order to detect cosmological weak lensing, correlations are
measured between the shapes of galaxies whose observed ellip-
ticity, εobs, is related to their intrinsic ellipticity, εs, and the weak
cosmological shear distortion that we wish to extract, γ , through1

εobs = εs + γ . (1)

The observed angular two-point correlation function 〈εa
obsε

b
obs〉 is

then determined by averaging over all galaxy pairs (a, b) separated
by angle θ . This observed quantity is related to the angular two-point
shear correlation function 〈γ aγ b〉 through

〈εa
obsε

b
obs〉 = 〈εa

s εb
s 〉 + 〈εa

s γ b〉 + 〈γ aεb
s 〉 + 〈γ aγ b〉 . (2)

For the majority of weak lensing analyses to date, the first three
terms on the right-hand side of equation (2) have been assumed to
be sufficiently small to be ignored (although see discussion below

1 For clarity, we assume this simplified form to relate galaxy ellipticity and
shear. In detail, the relationship also depends on the ellipticity estimator
used in the analysis and how rapidly the galaxy ellipticity varies at different
isophotal limits (see Section 3.1). We also assume here the weak shear limit
that |γ | � 1.

for analyses that do not make this assumption). In this case, the ob-
served angular two-point correlation function 〈εa

obsε
b
obs〉 is equated

with the cosmological shear correlation function 〈γ aγ b〉, which can
be directly related to the underlying matter power spectrum of den-
sity fluctuations in the Universe (see Section 3 for more details). It
is, however, possible that these intrinsic terms are significantly non-
zero, arising from correlations induced during galaxy formation,
between a galaxy’s intrinsic shape and its local density field. It was
noted early on that such an effect would be significantly more detri-
mental to the future measurement of weak lensing in tomographic
bins (King & Schneider 2003; Heymans et al. 2004), in comparison
to the standard two-dimensional analysis of that time.

The study of the impact of intrinsic galaxy alignments on weak
lensing studies initially focused only on the intrinsic alignment
of physically nearby galaxies; 〈εa

s εb
s 〉, hereafter referred to as ‘II’.

The broad agreement in results between the first estimates from
numerical simulations (Croft & Metzler 2000; Heavens, Refregier
& Heymans 2000), analytical studies (Catelan, Kamionkowski &
Blandford 2001; Crittenden et al. 2001; Lee & Pen 2001) and the
first low-redshift observational constraints (Pen, Lee & Seljak 2000;
Brown et al. 2002) resulted in a consistent picture; for deep weak
lensing surveys, the contamination to the weak lensing signal was
expected to be less than a few per cent effect. Hirata & Seljak (2004)
were the first to highlight, however, the importance of also including
the shear–shape correlations in the analysis, 〈εsγ 〉, for galaxies that
are separated by large physical distances along the line of sight. In
this case, the background galaxy experiences a shear γ caused by
the foreground tidal gravitational field. If the foreground galaxy has
an intrinsic ellipticity that is linearly correlated with this field, 〈εsγ 〉
is no longer expected to be zero. We refer to this effect hereafter as
‘GI’.

The most recent observational results have focused on inferring
the amplitude of the II and GI signal by measuring the local cross-
correlation between galaxy number densities and ellipticities, to
determine the correlation between galaxy shape and the local den-
sity field. This method was first implemented using low-redshift z ∼
0.1 galaxies in the Sloan Digital Sky Survey spectroscopic sample
(SDSS; Mandelbaum et al. 2006). It was then extended to higher
redshifts using the SDSS luminous red galaxy sample (LRG) be-
tween 0.15 < z < 0.35 (Hirata et al. 2007), and the MegaZ-LRG
sample out to z ∼ 0.6 (Joachimi et al. 2011). In these extensive
studies, a clear dependence on galaxy type is detected, with the
most massive red galaxies exhibiting the strongest intrinsic cor-
relations. Hirata et al. (2007) show that their data match models
for this galaxy-type dependence as predicted from numerical sim-
ulations (Heymans et al. 2006). The massive LRG population is,
however, in the minority when it comes to a typical deep cosmo-
logical weak lensing survey, which is dominated by the blue galaxy
population. The most representative observational analysis of this
effect therefore comes from the highest redshift measurements of
the GI and II effect, using blue galaxies from the WiggleZ sur-
vey out to z ∼ 0.7 (Mandelbaum et al. 2011). The reported null
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detection of this effect for blue galaxies results in a predicted sys-
tematic error of at most ±0.03 on the amplitude of the matter power
spectrum, σ 8, for a non-tomographic analysis of a survey like the
Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS).
We perform a tomographic weak lensing analysis of this survey in
this paper.

For a deep survey, such as CFHTLenS, the correlation between
a galaxy’s shape and its local density field impacts more strongly
on a tomographic analysis than a two-dimensional analysis for the
following reasons. For a deep two-dimensional analysis, there is
only a small fraction of galaxy pairs, at fixed angular separation
θ , that are physically close enough to have formed in the same
density field and hence experience some degree of alignment. The
significant II signal from these close pairs is therefore greatly di-
luted as the majority of galaxy pairs are well separated in three
dimensions. The lensing of background galaxies by a foreground
structure is most efficient when the foreground structure is well
separated from the source. In a two-dimensional analysis, the sig-
nal from the galaxy pairs that experience the strongest GI effects
is therefore again diluted by the presence of closer galaxy pairs in
the analysis where the lensing effect is less efficient. In contrast, a
tomographic analysis will include redshift bin combinations that, in
fact, enhance the contamination by both these effects. The autocor-
relation measurement of the lensing signal within narrow redshift
bins dramatically increases the fraction of physically close pairs and
hence the II contribution. The cross-correlation of well-separated
redshift bins, where the lensing is most efficient, enhances the GI
contribution. For this reason, we cannot ignore the intrinsic ellip-
ticity terms in equation (2) when undertaking a tomographic weak
lensing analysis and need to apply methods to mitigate the impact
of this astrophysical contamination to the signal. These mitigation
strategies unfortunately limit the dramatic order-of-magnitude im-
provements initially anticipated from tomographic weak lensing
analyses, but we still expect to find improved constraining power
when implementing a tomographic analysis (Bridle & King 2007).

A series of different proposals to mitigate the impact of intrinsic
alignments on weak lensing measurements have been made in the
literature, and in some cases applied to data. An optimal weighting
scheme to down weight physically close pairs was proposed by
Heymans & Heavens (2003) and applied to a weak lensing analysis
of the COMBO-17 survey (Heymans et al. 2004, see also King
& Schneider 2002). This method, however, only negates the II
contamination and requires prior knowledge of the angular and
redshift dependence of the intrinsic ellipticity correlation function
in order to optimally analyse the data. Motivated by our lack of
knowledge in this area, Joachimi & Schneider (2008) proposed a
nulling method where only the characteristic redshift dependence
of the II and GI correlations in different combinations of redshift
bins (see discussion above) are used to derive an optimal weighting
scheme that, in an ideal case, nulls all II and GI contributions to
the tomographic analysis. This method, however, has been shown to
significantly degrade cosmological parameter constraints (Joachimi
& Schneider 2009).

The main alternative to mitigating intrinsic alignment contam-
ination by using different weighting schemes is instead to use a
model fitting approach, and it is this technique that we exploit in
this paper. This approach was first highlighted by King (2005) who
demonstrated that a simultaneous model fitting analysis of finely
binned tomographic data, using a sufficiently flexible parametrized
model for the II and GI signals, allows for the marginalization over
the II and GI nuisance parameters in the final cosmological analy-
sis. This idea was extended by Bridle & King (2007) to determine

how the figure of merit for future cosmological surveys would de-
grade based on the flexibility of the II and GI model, or how much
prior knowledge we are prepared to assume, and the accuracy of
the photometric redshifts for the survey. For a typical photometric
redshift error of σ z ∼ 0.05(1 + z), the figure of merit for measuring
dark energy would decrease by 20–50 per cent depending on the
allowed flexibility of the model. Similar conclusions were drawn by
Kitching, Taylor & Heavens (2008) and Kitching & Taylor (2011)
when investigating the loss of constraining power when intrinsic
alignment modelling was marginalized over in a tomographic or
fully three-dimensional weak lensing analysis, and more recently
by Blazek et al. (2012) who investigated the impact of marginaliz-
ing over intrinsic alignments in a galaxy–galaxy lensing analysis.
The model fitting approach does, however, become more promising
if the lensing data are analysed simultaneously with galaxy cluster-
ing data. These extra data act to self-calibrate the II and GI signals
(Joachimi & Bridle 2010; Zhang 2010). Kirk, Bridle & Schneider
(2010) present the first example of such a joint analysis, combin-
ing two-dimensional weak lensing data from the 100 square degree
lensing survey (Benjamin et al. 2007) and SDSS shear–shape clus-
tering data (Mandelbaum et al. 2006). A single parameter analytical
model for intrinsic alignments from Hirata & Seljak (2004) is used
in this analysis, and we describe this ‘non-linear intrinsic align-
ment’ model in more detail in Section 3.2. Huff et al. (2011) also
use this model to remove GI contamination to their cosmic shear
analysis of the SDSS-Stripe 82 survey, but they fix the contamina-
tion using a mean measurement of the total amplitude for the GI
signal as determined by Hirata et al. (2007). Finally, Fu et al. (2008)
also mitigate the impact of GI on their cosmic shear analysis of the
third year data from Canada–France–Hawaii Telescope Legacy Sur-
vey (CFHTLS), presenting a simultaneous two-dimensional weak
lensing and intrinsic alignments model fitting method. This anal-
ysis however uses an alternative model for the GI contamination,
motivated by numerical simulations (Heymans et al. 2006).

A third way to account for the intrinsic alignment signals has been
proposed, modifying the covariance matrix such that a marginaliza-
tion over possible functional forms of the II and GI power spectrum
is permitted (Kitching & Taylor 2011). This has the advantage in
that all functional forms are explored, and does not require explicit
estimation of any nuisance parameters, but makes the assumption
that the variance of the intrinsic alignment functions is Gaussian.

The first combined weak lensing and photometric redshift anal-
yses to directly detect the growth of structure, came from the
COMBO-17 survey (Bacon et al. 2005; Kitching et al. 2007) and
CFHTLS-Deep fields (Semboloni et al. 2006). These analyses were
followed by two independent tomographic analyses of the Hub-
ble Space Telescope (HST) COSMOS survey (Massey et al. 2007;
Schrabback et al. 2010). The areas of all these surveys were con-
sidered sufficiently small, all less than a few square degrees, such
that any contributions from intrinsic alignments could be ignored in
comparison to the large statistical errors. Schrabback et al. (2010)
did, however, attempt to mitigate any errors by removing all au-
tocorrelated narrow redshift bins from their analysis to reduce the
impact of the enhanced II signal in those bins. In addition, they re-
moved all LRG from their galaxy sample as the shapes of this type
of galaxy have been shown to be the most strongly correlated with
the local density field (Joachimi et al. 2011). As survey sizes grow
and statistical errors decrease, it is not possible to ignore intrinsic
alignments when analysing weak lensing in redshift bins. The recent
two-bin tomographic analysis of the 154 square degree CFHTLenS,
presented in Benjamin et al. (2013), therefore combines the strate-
gies of Huff et al. (2011) and Schrabback et al. (2010) to mitigate
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intrinsic alignment contamination. Using the linear tidal field in-
trinsic alignment model of Hirata & Seljak (2004), and following
Bridle & King (2007) by fixing its amplitude to the observational
constraints obtained by Brown et al. (2002), they estimate the II
and GI contamination to the cosmic shear measurement. They then
limit their analysis to two broad high-redshift bins with photometric
redshifts 0.5 < zph < 0.85 and 0.85 < zph < 1.3 such that any con-
tamination from intrinsic alignments is expected to be no more than
a few per cent. This broad bin tomography measurement is also used
to constrain parametrized modified gravity models in Simpson et al.
(2013). In this paper, we use the same CFHTLenS data, presenting
the first tomographic weak lensing analysis to apply a full model
fitting approach to mitigate the impact of intrinsic alignment con-
tamination on shear correlation functions. A fully three-dimensional
weak lensing analysis (Kitching, Heavens & Miller 2011) is applied
to the same CFHTLenS data in Kitching et al. (in preparation).

This paper is set out as follows. In Section 2, we describe
CFHTLenS and the auxiliary data sets used in this analysis. We
outline our methodology and chosen intrinsic alignment model in
Section 3, additionally describing how our tomographic analysis is
constrained by our requirements on the accuracy of the covariance
matrix estimated from N-body lensing simulations. We present our
results in Section 4, comparing joint parameter constraints from dif-
ferent combinations of CFHTLenS data with the cosmic microwave
background (CMB) data from WMAP7, baryon acoustic oscillations
data from BOSS, and a prior on the Hubble constant from the HST
distance ladder. In Section 5, we focus on the constraints that can be
placed on the amplitude of the intrinsic alignment signal for early-
type and late-type galaxies with this type of cosmological parameter
analysis, with concluding remarks in Section 6.

2 T H E C A NA DA – F R A N C E – H AWA I I
T ELESC OPE LENSING SURV EY

The CFHTLenS is a 154 square degree deep multicolour u∗g′r′i′z′

survey optimized for weak lensing analyses, observed as part of the
CFHTLS on the 3.6 m Canada–France–Hawaii telescope. The data
span four distinct contiguous fields: W1 (∼63.8 square degrees),
W2 (∼22.6 square degrees), W3 (∼44.2 square degrees) and W4
(∼23.3 square degrees). The CFHTLenS analysis of these data
presents the current state of the art in weak lensing data process-
ing with THELI (Erben et al. 2013), shear measurement with lensfit
(Miller et al. 2013), photometric redshift measurement from point-
spread-function-matched photometry (Hildebrandt et al. 2012) us-
ing the Bayesian photometric redshift code BPZ (Benı́tez 2000) and
a stringent systematic error analysis (Heymans et al. 2012). The
resulting galaxy catalogue that we use in this analysis includes a
shear measurement εobs with an inverse variance weight w and a
photometric redshift estimate zBPZ with a probability distribution
P(z) and best-fitting photometric galaxy type TBPZ. We apply the
galaxy size and signal-to-noise-dependent shear calibration correc-
tions described in Miller et al. (2013) and Heymans et al. (2012),
and only use the subset of 75 per cent of the survey data that have
been verified as science-ready and free of significant systematic
errors. This has been demonstrated through a series of rigorous
cosmology-insensitive tests on both the shear and photometric red-
shifts measurements, in combination see Heymans et al. 2012 for
the full details). Benjamin et al. (2013) also use a cross-correlation
analysis to verify the accuracy of the measured redshift distribu-
tions P(z) when the galaxy sample is limited to those galaxies
with a most probable photometric redshift estimate within 0.2 <

zBPZ < 1.3. In light of these analyses, which demonstrate the ro-

bustness of these data to systematic errors, we do not present any
further systematic error analyses in this work, referring the reader to
Heymans et al. (2012), and references therein. For the redshift se-
lection 0.2 < zBPZ < 1.3, the galaxy sample has a weighted mean
redshift of z̄ = 0.75, and a weighted median redshift of zm = 0.70,
as determined from the weighted sum of the P(z). The effective
weighted galaxy number density, in this redshift range, is neff = 11
galaxies per square arcmin.

2.1 Auxiliary cosmological data

In this analysis, we present joint cosmological parameter constraints
by combining our tomographic weak lensing analysis of CFHTLenS
with up to three complementary data sets to break parameter degen-
eracies. We include the temperature and temperature–polarization
CMB power spectra from the Wilkinson Microwave Anisotropy
Probe (Larson et al. 2011, hereafter referred to as WMAP7). We
incorporate the measurement of baryonic acoustic oscillations us-
ing the Baryon Oscillation Spectroscopic Survey data from the ninth
data release of the SDSS (Anderson et al. 2012, hereafter referred to
as BOSS). We adopt their primary reconstructed distance constraint
DV(z = 0.57)/rs = 13.67 ± 0.22. Here, rs is the sound horizon at
the baryon drag epoch, and DV(z = 0.57) is the volume element at
a redshift z = 0.57 which depends on angular diameter distances
and the Hubble parameter H(z). This constraint is found to be in
excellent agreement with measurements of the distance–redshift re-
lation from Type Ia supernovae (Conley et al. 2011; Suzuki et al.
2012). As baryon acoustic oscillations and supernova are probing
similar geometric properties of the Universe, using current super-
nova data in combination with WMAP7 and BOSS yields little to no
improvement for the majority of cosmological parameters that we
constrain in this analysis (see Anderson et al. 2012 for more details).
We therefore do not include Type Ia supernovae constraints. We do
however include a Gaussian prior on the Hubble constant, H0 =
73.8 ± 2.4 km s−1 Mpc−1, which combines constraints from local
supernovae, Cepheid variables and the megamaser at the centre of
NGC 4258 (Riess et al. 2011, hereafter referred to as R11).

3 M E T H O D

In this section, we review the theory and measurement of weak
lensing in tomographic redshift bins, discuss the non-linear intrin-
sic alignment model that we adopt for this analysis and present our
method to estimate the covariance matrix error from the Harnois-
Déraps, Vafaei & Van Waerbeke (2012) suite of high-resolution
N-body lensing simulations. We focus on a real-space shear corre-
lation function analysis in this paper, presenting a fully 3D spherical
harmonic analysis in Kitching et al. (in preparation). We conclude
this section describing the properties of the chosen tomographic
redshift bins and the Population Monte Carlo method that we use
to determine cosmological parameter constraints from the data.

3.1 Weak lensing tomography

Weak gravitational lensing by large-scale structure induces weak
correlations between the observed shapes of distant galaxies. We
parametrize galaxy shape through the complex galaxy ellipticity
ε = ε1 + iε2. The simple relationship between ellipticity and shear,
given in equation (1), holds for weak shear, when the ellipticity for
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a perfect ellipse with an axial ratio β and orientation φ is defined
as(

ε1

ε2

)
= β − 1

β + 1

(
cos 2φ

sin 2φ

)
. (3)

There are a range of different two-point statistics that have been
proposed to extract weak lensing information from the data (see
Schneider et al. 2002; Schneider, Eifler & Krause 2010 for a com-
prehensive discussion of the relationship between these statistics).
These statistics, however, all stem from a base measurement of the
observed angular two-point correlation function ξ̂± which can be
estimated from two redshift bins, i and j, from the data as follows:

ξ̂
ij
± (θ ) =

∑
wawb

[
εi
t (xa)εj

t (xb) ± εi
×(xa)εj

×(xb)
]

∑
wawb

. (4)

Here, the weighted sum, using inverse variance weights w, is taken
over galaxy pairs with angular separation |xa − xb| = θ . The tan-
gential and cross-ellipticity parameters εt, × are the ellipticity pa-
rameters in equation (3) rotated into the reference frame joining
each pair of correlated objects. In this paper, we only focus on this
statistic, referring the reader to Kilbinger et al. (2013) who present
a non-tomographic analysis of CFHTLenS using a wide range of
different two-point statistics. This analysis demonstrates that for
CFHTLenS, the cosmological parameter constraints are insensitive
to the two-point statistic adopted for the analysis.

The two-point shear correlation function ξ±(θ )GG is related to
the underlying non-linear matter power spectrum Pδ that we wish
to probe, with

ξ
ij
± (θ )GG = 1

2π

∫
d  P ij

κ () J±(θ ) , (5)

where J±(θ ) is the zeroth (for ξ+) and fourth (for ξ−) order Bessel
function of the first kind. Pκ () is the convergence power spectrum
at angular wavenumber 

P ij
κ () =

∫ wH

0
dw

qi(w)qj (w)

[fK (w)]2
Pδ

(


fK (w)
, w

)
, (6)

where fK(w) is the angular diameter distance out to the comoving
radial distance, w, and wH is the horizon distance. The lensing
efficiency function, qi(w), for a redshift bin i, is given by

qi(w) = 3H 2
0 �m

2c2

fK (w)

a(w)

∫ wH

w

dw′ ni(w
′)

fK (w′ − w)

fK (w′)
, (7)

where ni(w) dw is the effective number of galaxies in dw in redshift
bin i, normalized so that

∫
ni(w) dw = 1. a(w) is the dimensionless

scale factor, H0 is the Hubble parameter and �m the matter density
parameter at z = 0. For more details see Bartelmann & Schneider
(2001) and references therein.

3.2 Non-linear intrinsic alignment model

In this paper, we adopt the non-linear intrinsic alignment model
developed by Bridle & King (2007) to parametrize the contribution
of intrinsic alignments to our tomographic shear measurement. This
model is a simplified version of the linear tidal field alignment model
derived analytically by Hirata & Seljak (2004), based on the earlier
work of Catelan et al. (2001). Bridle & King (2007) choose to make
one key addition to this model by replacing the linear matter power
spectrum with a non-linear power spectrum, hence the name, non-
linear intrinsic alignment model. This modification to the original
model was motivated by comparisons of the model predictions to
measurements of intrinsic alignments from data (Mandelbaum et al.

2006) and simulations (Heymans et al. 2004), and the desire to make
the linear tidal field alignment model more realistic on small scales.
This model has since been adopted by several observational analyses
(Kirk et al. 2010; Joachimi et al. 2011; Mandelbaum et al. 2011),
as it has the useful property that with only a single parameter A,
both the II and GI contribution to the shear correlation function can
be predicted. The non-linear intrinsic alignment II and GI power
spectra are related to the non-linear matter power spectrum as

PII(k, z) = F 2(z)Pδ(k, z) PGI(k, z) = F (z)Pδ(k, z) , (8)

where the redshift- and cosmology-dependent modification to the
power spectrum is given by

F (z) = −AC1ρcrit
�m

D(z)
. (9)

Here ρcrit is the critical density at z = 0 and D(z) is the linear growth
factor normalized to unity today. We follow Joachimi et al. (2011)
by parametrizing the amplitude of F(z) with a free dimensionless
amplitude parameter, A, and a fixed normalization constant C1 =
5 × 10−14 h−2 M−1	 Mpc3. The value of C1 is chosen so that the
model matches the observational results of Brown et al. (2002)
such that the fiducial model for our analysis will assume A = 1. In
this case, the GI term is negative and acts to decrease the overall
signal. The II term, however, is always positive, independent of
the sign of A, and acts to increase the overall signal. We note
that F(z) differs from Bridle & King (2007), as we incorporate
the redshift-dependent corrections to the linear tidal field alignment
model reported in Hirata & Seljak (2010) and Joachimi et al. (2011).

The II and GI contributions to the observed two-point correlation
function are analogous to the GG contribution from equation (5),

ξ
ij
± (θ )II,GI = 1

2π

∫
d C

ij
II,GI() J±(θ ) , (10)

with the convergence power spectrum Pκ replaced by the projected
GI power spectrum CGI or projected II power spectrum CII,

C
ij
II () =

∫ wH

0
dw

ni(w)nj (w)

[fK (w)]2
PII

(


fK (w)
, w

)
, (11)

C
ij
GI()=

∫ wH

0
dw

qi(w)nj (w) + ni(w)qj (w)

[fK (w)]2
PGI

(


fK (w)
, w

)
,

(12)

where the projection takes into account the effective number of
galaxies n(w), and, in the case of GI correlations, the lensing ef-
ficiency qi(w) (equation 7). Consider two non-overlapping distinct
redshift bins, such that ni(w)nj(w) = 0 for all w. As the II term
comes from physically close galaxy pairs, we find for these non-
overlapping bins CII = 0, as expected. The GI term comes from the
correlation of background shear with foreground intrinsic elliptici-
ties. For the same two non-overlapping bins, with the mean redshift
of bin j greater than the mean redshift of bin i, we see that only the
ni(w)qj(w) term in the projection is non-zero, again as expected for
GI. In practice, however, we will find that statistical and catastrophic
errors in photometric redshift estimation will result in some level of
overlap between all the bins, so we expect some contribution from
II and GI between all our tomographic bin combinations.

Following from equation (2), we can now relate the observed two-
point ellipticity correlation function (equation 4) to the two-point
shear correlation function that we wish to measure (GG term, see
equation 5) and the two types of intrinsic alignment contamination
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(II and GI) that we wish to marginalize over in our weak lensing
analysis,

ξ̂
ij
± (θ ) = ξ

ij
± (θ )II + ξ

ij
± (θ )GI + ξ

ij
± (θ )GG . (13)

Before we continue to discuss our analysis technique to extract
cosmological parameters from the two-point ellipticity correlation
function, we should pause to assess how realistic the adopted non-
linear intrinsic alignment model is. As noted in Hirata et al. (2007),
the Catelan et al. (2001) model of linear galaxy alignment has no
sound grounding in theory, in contrast to the analytical models of
angular momentum correlations, and hence galaxy alignment, from
tidal torque theory (see the review by Schäfer 2009, and references
therein). It does however provide a good match to simulations and
observations, (see for example Bridle & King 2007; Hirata et al.
2007) and is therefore currently the favoured model. Equation (9)
assumes that the amplitude A of the intrinsic galaxy alignment sig-
nal is independent of redshift, and that even at the smallest physical
scales, the II and GI power spectra follow the same scale-dependent
evolution as the underlying matter power spectrum. Both these as-
sumptions are clearly oversimplifications and a truly conservative
tomographic analysis should therefore implement a more flexible in-
trinsic alignment model, allowing for scale- and redshift-dependent
perturbations around the non-linear intrinsic alignment model as
proposed by Bridle & King (2007). We choose not to take this
approach, however, motivated by the null measurement of intrin-
sic alignments using a sample of galaxies that are most similar
to the CFHTLenS galaxy population, at the median redshift of
CFHTLenS, by Mandelbaum et al. (2011). This observational anal-
ysis places an upper bound of 0.03 (2σ limit) on the size of the
systematic error induced on a measurement of σ 8 when neglecting
intrinsic alignments in a CFHTLenS-like survey. We can therefore
conclude that the systematic error introduced by the presence of
intrinsic alignments in CFHTLenS is likely to be sufficiently small
that any additional systematic error we introduce by using an inflex-
ible single-parameter intrinsic alignment model will be insignificant
compared to our statistical errors (which we show in Section 4.2
result in a 1σ error of ±0.04 on σ 8 at fixed �m, when intrinsic align-
ments are marginalized over). This rationale will no longer hold for
future surveys, however, where the large survey areas will reduce
the statistical errors, highlighting the pressing need for improved
models and observations of intrinsic galaxy alignments.

3.3 Covariance matrix estimation

One of the major challenges with a tomographic lensing analysis of
the type that we use in this analysis is the construction of a suffi-
ciently accurate covariance matrix that accounts for the significant
levels of correlation between both the angular and redshift binned
data. For Nt tomographic redshift bins, Nθ angular scales and con-
sidering both the ξ

ij
+ and ξ

ij
− components of the shear correlation

function between redshift bins i and j, we have a total number of
data points p given by

p = Nθ Nt(Nt + 1) . (14)

It is both the data vector, D(p) and the inverse of the corresponding
p × p covariance matrix, C−1, that we use in the cosmological
parameter likelihood analysis. In this section, we show that it is the
covariance matrix estimation that limits the maximum number of
data points that we can accurately analyse, motivating and justifying
our choice of p = 210 in Section 3.4.

There are a number of methods that can be used to estimate
a covariance matrix. Bootstrap and Jackknife techniques can be

used to estimate the data covariance directly from the survey (Wall
& Jenkins 2003), and various de-noising techniques can be ap-
plied to reduce the impact of noise bias when the matrix is in-
verted (see for example Norberg et al. 2009). Analytical functions
can be derived for random Gaussian convergence fields (Schneider
et al. 2002; Kilbinger & Schneider 2004) and scale-dependent non-
Gaussian corrections can be applied to those analytical functions
as determined through comparison to N-body lensing simulations
(Semboloni et al. 2007; Sato et al. 2011). Analytical functions can
also be derived for log-normal convergence fields or using a halo
model, which are found to be a significantly better approximation
compared to a Gaussian field. These analytical functions, however,
still require calibration using N-body simulations (Hilbert, Hartlap
& Schneider 2011; Kayo, Takada & Jain 2013). With sufficient
numbers of 3D N-body lensing simulations, the covariance can also
be estimated directly from the simulations. These can be popu-
lated to emulate the survey geometry, masks, redshift distribution,
galaxy number density and intrinsic ellipticity and shape measure-
ment noise for the survey (Hilbert et al. 2009; Vafaei et al. 2010;
Kiessling et al. 2011; Harnois-Déraps et al. 2012).

There are advantages and disadvantages to each method. Di-
rect estimation of the covariance matrix from the survey provides
a cosmology independent, but noisy estimate. In the inversion, the
covariance matrix can therefore become unstable. Furthermore, this
method is only suitable when the survey contains many independent
lines of sight, adequate to evaluate sampling variance errors which
dominate at large scales. As such, this direct estimation is only suit-
able for very large area surveys. Analytical functions are precise, but
approximate. They can be calculated for any cosmology, but require
cosmology- and scale-dependent corrections, for angular scales θ �
20 arcmin, calibrated with N-body simulations, to account for the
Gaussian or log-normal approximations made in their calculation.
N-body simulations are costly, and for the real-space correlation
analysis presented in this paper, the requirements on simulation
resolution and size is demanding. Low particle resolution in the
simulation results in an artificial lack of power that propagates to
all scales with real-space statistics. The finite simulation box size
also truncates density perturbations on scales larger than the box
length which results in a suppression of power in the large-scale
real-space dark matter halo correlation function measured from the
simulations (Power & Knebe 2006). High-resolution, large-area,
3D lensing simulations that are suitable for our real-space analysis
are therefore rare, and for a fixed cosmology (Hilbert et al. 2009;
Harnois-Déraps et al. 2012).

In this analysis, we estimate a covariance matrix from the three-
dimensional N-body numerical lensing simulations of Harnois-
Déraps et al. (2012). Light cones are formed from line-of-sight
integration through independent dark matter particle simulations.
The simulated cosmology matches the 5-year WMAP flat � cold
dark matter (�CDM) cosmology constraints from Dunkley et al.
(2009). The 10243 particle simulations have a box size of 147.0
or 231.1 h−1 Mpc, depending on the redshift of the simulation.
The boxes are grafted in projection such that each high-resolution
line-of-sight simulation has a real space resolution of 0.2 arcmin
in the shear field, spanning 12.84 square degrees sampled at 26
redshift slices within 0 < z < 3. The two-point shear statistics
measured in real space from the simulations closely matches the
theoretical predictions of the input cosmology within 0.5 � θ �
40 arcmin scales at all redshifts (Harnois-Déraps et al. 2012).
We therefore limit our tomographic analysis to these angular
scales where we can obtain an accurate estimate of the covariance
matrix.
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We populate each simulation by mapping 12.84 square degree
sections of the galaxy spatial distribution from the survey on to
the simulated shear field, and the corresponding redshift distribu-
tion and galaxy weights. With this method the survey masks and
effective source density are correctly replicated in the simulations.
We create a redshift realization of each line of sight, by sampling a
galaxy redshift z at random from each galaxy P(z) in the survey. We
verified that our results were insensitive to this realization method by
repeating the measurement of the covariance for different random
seeds. A galaxy shear γ is then assigned at that redshift by lin-
early interpolating between the shear output at discrete redshifts by
the lensing simulations. Intrinsic ellipticity and shape measurement
noise is added by randomly sampling from a zero-mean Gaussian
of width σ e = 0.279 per ellipticity component as measured from the
data.2 Note that we found no significant variation in the shot noise
σ e when measured as a function of photometric redshift within our
high-confidence redshift range 0.2 < zBPZ < 1.3. This was deter-
mined by binning the data into photometric redshift slices of width
�zBPZ = 0.1, where σ e for each bin was found to lie within two
standard deviations of the mean of the full sample.

Harnois-Déraps et al. (2012) create a total of 184 fully indepen-
dent N-body simulations. In order to gain a sufficient number of
realizations such that the correction for correlated noise in the in-
verse covariance matrix will not bias our results (see the discussion
in Section 3.3.1), we are therefore required to split each of the sim-
ulations into nine semi-independent simulations. Each simulation
then spans 1.4 square degrees such that the centres are separated by
more than twice the largest angular scale probed by this analysis.
This method to increase the number of simulations by sub-division,
also employed by Schrabback et al. (2010), yields nμ = 1656 semi-
independent line-of-sight simulations. In Section 4.2, we show that
the low level of correlation expected between each group of nine
simulations, introduced by splitting each fully independent simu-
lation into sub-fields, does not impact significantly on our results.
The data vector Dμ of the p components of ξ

ij
± (θ ), is then measured

from each simulation line-of-sight nμ and the covariance matrix is
estimated,

Ĉ(a, b) = 1

Asnμ

nμ∑
μ=1

(Dμ
a − D̄a)(Dμ

b − D̄b) , (15)

where D̄ is the average of the data measured over the total nμ

simulations. The area scaling term As accounts for the difference in
area between one line of sight in the simulation and the CFHTLenS
survey area used in the analysis (Schneider et al. 2002).

The covariance matrix we derive with this method ignores the im-
pact of intrinsic galaxy alignments. As our fiducial A = 1 intrinsic
alignment model is expected to lower the amplitude of the ob-
served two-point correlation function only at the few per cent level,
a GG-only covariance matrix is therefore expected to only slightly

2 Miller et al. (2013) show that the true intrinsic galaxy ellipticity distribution
is not well approximated by a Gaussian distribution. For the purposes of
evaluating the dominant shot noise component of the covariance matrix,
however, we argue that a Gaussian approximation is sufficient. The width
of the Gaussian model used is calculated directly from the data such that the
variance of the data and simulated ellipticity distributions are the same, even
if the shapes of the distributions differ. For the sub-dominant mix-term part
of the covariance, however, which arises from correlations between galaxy
ellipticities and cosmic shear, our Gaussian approximation could lead to
a mild underestimate of the covariance and this should be investigated in
future work.

overestimate our errors.3 We therefore conclude that a GG-only co-
variance is sufficient for our analysis supported by the findings of
Grocutt (2012) who analysed the covariance matrix derived from
simulated II+GI+GG Gaussian fields created using the method of
Brown & Battye (2011). For future tomographic analyses, we will
populate the N-body lensing simulations used in this analysis with
an intrinsic ellipticity component (see for example Heymans et al.
2006).

The covariance matrix we derive with this method is dependent
on the fixed simulation cosmology. Eifler, Schneider & Hartlap
(2009) investigate the impact of including a varying cosmology co-
variance matrix in a cosmic shear analysis, concluding that fixing
the cosmology of the covariance matrix has a non-negligible impact
on the size of the likelihood contours. This is an effect that becomes
less pronounced as the statistical power of a survey increases. Kil-
binger et al. (2013) therefore present a detailed analysis of the
impact of including a varying cosmology covariance matrix in the
analysis of the 2D cosmic shear measurement for the CFHTLenS
data. They also present a novel method to combine the advan-
tages of all the covariance matrix estimation methods to create a
cosmology-dependent covariance matrix. On scales θ < 30 arcmin,
the non-Gaussian sampling variance is estimated from the N-body
lensing simulations of Harnois-Déraps et al. (2012), as described
above, but setting σ e = 0. A varying cosmology estimate is then
obtained by scaling the data vector Dμ by the ratio of the desired
cosmology to the fixed simulation cosmology. For the larger angular
scales, where the finite box size causes power to be underestimated
in the simulations, a Gaussian analytic model is used, which has
been shown to be a good approximation on these scales (Semboloni
et al. 2007; Sato et al. 2011). The shot-noise term of the covariance
matrix is also estimated analytically (Schneider et al. 2002) and
the cosmology variation in the mixed term, which accounts for the
covariance between the cosmic shear and shot noise, is modelled
using the Eifler et al. (2009) fitting formulae. The conclusion of
this detailed covariance matrix analysis of Kilbinger et al. (2013)
is that, for a CFHTLenS-like survey, the impact of using a fixed
cosmology covariance matrix, or a varying cosmology covariance
matrix is marginal, particularly when CFHTLenS results are used in
combination with other cosmology surveys. Kilbinger et al. (2013)
also show good agreement between the diagonal components of
the covariance matrix with a Jackknife estimate of the covariance
from the data. We therefore conclude that using the Harnois-Déraps
et al. (2012) simulations to produce a fixed cosmology covariance
matrix, as estimated using equation (15), is sufficiently accurate for
our purposes.

3.3.1 Inverse covariance estimation

For the likelihood analysis of the CFHTLenS data, we require the in-
verse of the covariance matrix. Whilst we consider our measurement
of Ĉ from N-body lensing simulations to be an unbiased estimator
of the true covariance matrix C, it will have an associated measure-
ment noise from averaging over a finite number of semi-independent

3 In the analysis that follows, we find A to be consistent with zero for
the full galaxy sample and a sample of late-type galaxies, supporting this
strategy. For early-type galaxies, we find a significant value for A. In this
case, however, shot noise dominates the covariance matrix as the early-type
galaxy sample comprises only 20 per cent of the full galaxy population. In
this case, it is therefore again a reasonable strategy to ignore the impact of
intrinsic galaxy alignments on the covariance matrix.
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realizations nμ. This measurement noise means that Ĉ
−1

is not an
unbiased estimate of the true inverse covariance matrix (Hartlap, Si-
mon & Schneider 2007). Assuming Gaussian measurement errors
on Ĉ, an unbiased estimate of the true inverse covariance matrix is
derived in Anderson (2003), where C−1 = αA Ĉ

−1
and

αA = nμ − p − 2

nμ − 1
. (16)

Hartlap et al. (2007) shows that for p/nμ < 0.8, this correction
produces an unbiased estimate of the inverse covariance matrix C−1

and we use this correction in our analysis.
Unfortunately, even though the use of the Anderson (2003) cor-

rection creates an inverse covariance that is now unbiased in the
mean, there are still associated measurement errors on the individ-
ual components of Ĉ

−1
which now become boosted by a factor αA.

Hartlap et al. (2007) show that boosting this measurement noise in
the inverse covariance impacts on the size of the confidence regions
resulting from a likelihood analysis. They find that the area of the
confidence regions can erroneously grow by up to 30 per cent as
p/nμ → 0.8. The consequence is that for high values of p/nμ, pa-
rameter constraints appear less significant than they truly are. If we
require that the inclusion of the Anderson (2003) correction does
not increase the area of our Bayesian confidence regions by more
than ∼5 per cent, Hartlap et al. (2007) estimate a limit of p/nμ �
0.12 (see also Grocutt 2012 for similar conclusions). We note that
the tomographic analysis of the COSMOS survey by Schrabback
et al. (2010) estimated the covariance matrix from the Millennium
Simulation with p/nμ = 0.55. Whilst well within the requirements
for an unbiased Anderson (2003) correction, Hartlap et al. (2007)
predicts that such a correction would increase the area of the confi-
dence regions in a likelihood analysis by ∼12 per cent. As such the
Schrabback et al. (2010) cosmological parameter constraint errors
are expected to be slightly overestimated.

As we have a fixed number of N-body lensing simulations which
determines nμ, it is the accuracy that we require for the inverse
covariance matrix C−1 that sets the maximum number of data points
p in our analysis. The number of tomographic bins Nt and angular
scales Nθ is therefore set by the number of N-body simulations that
we have at our disposal. For p/nμ � 0.12 and nμ = 1656 (see
Section 3.3), we should therefore limit our analysis to p � 200.

3.4 Tomographic analysis and redshift distributions

In a tomographic weak lensing analysis, there is always a choice
to be made for the number of tomographic redshift bins, Nt, and
the number of scales probed, in our case angular scales, Nθ . As
the number of redshift and angular bins is increased, the amount
of information increases. A saturation limit is eventually reached
beyond which the data points become so correlated that the extra
information gained with each incremental increase in the number of
bins becomes marginal. With an unlimited number of N-body lens-
ing simulations from which to make an unbiased covariance matrix
estimate, the optimal number of tomographic bins will depend on
the photometric redshift accuracy of the survey, and the method by
which the contamination from intrinsic galaxy alignments is miti-
gated in the analysis. Bridle & King (2007) show that for a survey
with a photometric redshift scatter of σ z = 0.05(1 + z), using Nt ∼
8 brings the cosmological parameter constraints to within 20 per
cent of the best attainable with a fully 3D approach. This is in con-
trast to the conclusions of earlier cosmic-shear only optimizations,
which found Nt ∼ 3 to be optimal (Simon et al. 2004; Ma, Hu &

Huterer 2006). This difference indicates the importance of using
finely binned tomographic redshift slices when mitigating intrin-
sic alignment effects. Grocutt (2012) investigate the dependence
of cosmological parameter constraints when varying the number
of tomographic redshift bins, Nt, and the number of angular scales
probed, Nθ , simultaneously. A non-linear intrinsic alignment model
was assumed for the II and GI contamination (see Section 3.2). In
this analysis, the cosmological parameter constraints were found
to be less sensitive to increases in Nθ , in comparison to increases
in Nt. This is expected for the single-parameter non-linear intrinsic
alignment model, as the cosmic shear, GG, and non-linear intrinsic
alignment II and GI power spectrum vary smoothly with scale and
the relative amplitude between the II, GI and GG power for each
redshift bin is fixed as a function of scale. As the number of data
points p scales as Nt(Nt + 1), however, even small increases in Nt

can quickly lead to an unstable covariance matrix.
Motivated by the findings of Bridle & King (2007) and Grocutt

(2012), and with the limitation that the total number of data points
p � 200 (see Section 3.3.1), we choose to use Nt = 6 redshift
bins and Nθ = 5 angular bins such that our total number of data
points p = 210. The angular range is chosen to be spaced equally
in log (θ ) between 1.5 < θ < 35 arcmin, where the maximum
angular scale is determined by the limitations of the N-body lensing
simulations used to determine the covariance matrix. We select the
Nt = 6 redshift bins to span our high-confidence redshift range
0.2 < zBPZ < 1.3 such that the effective angular number density
of galaxies in each redshift bin is equal. The effective number
density includes the shear measurement weights w such that the
intrinsic ellipticity noise in each bin is equal. This choice is in
contrast to a cosmic shear signal-to-noise optimized redshift bin
selection which would lead to much broader bins at low redshift.
Such optimization is undesirable for our purposes, as it is the lowest
redshift bins where the presence of intrinsic alignments is most
prominent. Table 1 lists the resulting redshift selection for each
tomographic bin. The median redshift zm and mean redshift z̄ is
calculated from the effective redshift distribution as measured by
the weighted sum of the photometric error distributions P(z). These
error distributions extend out to zBPZ = 3.5 which skews the mean
redshift measurement, relative to the median, particularly in the
lowest redshift bin.

Fig. 1 compares the effective redshift distribution for each tomo-
graphic bin as determined from the maximum posterior redshift zBPZ

(upper panel) and by the weighted sum of the photometric redshift
error distributions P(z) (lower panel). In order to highlight the dif-
ferences between the redshift distributions measured from these two

Table 1. Tomographic redshift bin selection. Galaxies are
selected based on their maximum posterior photometric red-
shift estimate zBPZ. The median redshift zm and mean redshift
z̄ for each bin is calculated from the effective redshift distri-
bution as measured by the weighted sum of the photometric
redshift error distributions P(z).

Bin zBPZ zm z̄

1 0.20−0.39 0.28 0.36

2 0.39−0.58 0.48 0.50

3 0.58−0.72 0.62 0.68

4 0.72−0.86 0.82 0.87

5 0.86−1.02 0.93 1.00

6 1.02−1.30 1.12 1.16
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Figure 1. Tomographic redshift distribution. The upper panel shows the
effective weighted number of galaxies as a function of their maximum
posterior photometric redshift estimate, separated into six tomographic bins
within 0.2 < zBPZ < 1.3. The effective weighted number of galaxies in each
redshift bin is constant. The lower panel shows the redshift distribution for
each selected bin as estimated from the weighted sum of the photometric
redshift probability distributions P(z).

different estimators, the binning in the upper panel is chosen to be
significantly finer than the typical CFHTLenS photometric redshift
error σ z ∼ 0.04(1 + z) (Hildebrandt et al. 2012). The fine struc-
ture revealed by this binning therefore illustrates redshift focusing
effects arising from the photometric redshift measurement, not true
physical structures. Accurate measurements of P(z) for each galaxy
allows us to fully account for these focusing effects, in addition to
overlapping redshift distributions and catastrophic redshift outliers
in our analysis [see Benjamin et al. (2013) for detailed analysis of
the P(z) used in this analysis]. For our intrinsic alignment analysis,
it is particularly important to quantify the degree of overlap between
redshift bins as the II term is only significant for physically close
galaxy pairs. It is therefore the summed P(z) redshift distributions
displayed in the lower panel of Fig. 1 that we use in this analysis.

3.5 Population Monte Carlo sampling likelihood
analysis method

In this study, we perform a Bayesian likelihood analysis of
CFHTLenS and the auxiliary data, discussed in Section 2, to con-
strain the parameters of a range of cosmological models. To cal-
culate the likelihood values we use the Population Monte Carlo
sampling software COSMOPMC4 (Kilbinger et al. 2011), modified to
include an optional simultaneous fit of cosmic shear and the intrin-
sic alignment model outlined in Section 3.2. Future releases of this
software package will include this option. The Population Monte
Carlo method is described in Wraith et al. (2009) along with a com-
parison to the more standard Markov chain Monte Carlo method
for cosmological parameter estimation. We also refer the reader to
a detailed discussion of the COSMOPMC analysis of 2D CFHTLenS
cosmic shear data in Kilbinger et al. (2013) for further information
about the methodology.

We assume a matter power spectrum derived from the Eisenstein
& Hu (1998) transfer function with a Smith et al. (2003) non-linear
correction. For dark energy cosmologies, where the equation of state
of dark energy parameter, w0 �= −1, a modulation of the non-linear

4 COSMOPMC: www.cosmopmc.info

power is required (McDonald, Trac & Contaldi 2006) which we ap-
ply using of the scaling correction from Schrabback et al. (2010) and
Refregier et al. (2011). The Smith et al. (2003) halo-model prescrip-
tion for the non-linear correction has been calibrated on numerical
simulations and shown to be accurate to between 5 and 10 per cent
over a wide range of k scales (Eifler 2011) and found to be of suffi-
cient accuracy for the statistical power of CFHTLenS (Vanderveld
et al. 2012). Whilst our assumed transfer function includes baryonic
oscillations on large scales, we are unable to include the uncertain
effects of baryons on small physical scales. Semboloni et al. (2011)
present an analysis of cosmological hydrodynamic simulations to
quantify the effect of baryon physics on the weak gravitational
lensing shear signal, using a range of different baryonic feedback
models. For the ξ+ angular scales we use, we would expect baryons
to induce at most an ∼10 per cent decrease in the signal relative
to a dark matter only Universe, in the mid-to-high redshift tomo-
graphic bins where our highest signal-to-noise measurements are
made. This is assuming the ‘AGN feedback’ model which leads to
the largest changes in the matter power spectrum of the simulations
that were studied by Semboloni et al. (2011), where we note that this
scenario is the one that matches observed gas fractions in groups.
In the cosmological analysis that follows, we present an additional
conservative analysis where the tomographic data most susceptible
to significant errors caused by baryonic or non-linear effects are
removed (see Benjamin et al. 2013 for further discussion). If signif-
icant errors exist, however, the inclusion and marginalization over
the intrinsic alignment amplitude A in our analysis, which modu-
lates the amplitude of the observed shear power spectrum, should
work to some extent, to reduce the impact of these effects in addition
to mitigating contamination by intrinsic galaxy alignments.

We use COSMOPMC to analyse CFHTLenS and WMAP7 indepen-
dently. For the combined results with BOSS and our assumed H0

prior from R11, we importance-sample the WMAP7-only likelihood
chain, multiplying each sample point with the CFHTLenS, BOSS
and R11 posterior probability. For our CFHTLenS-only flat �CDM
analysis, we limit our parameter set to the matter density parameter,
�m, the amplitude of the matter power spectrum controlled by σ 8,
the baryon density parameter �b, the Hubble parameter h and the
power spectrum spectral index ns. With WMAP7, we also include
into the parameter set the reionization optical depth τ , the Sunyaev–
Zel’dovich template amplitude ASZ and the primordial amplitude of
the matter perturbations �2

R, from which we derive σ 8. The equa-
tion of state of dark energy parameter w0 and dark energy density
parameter �de are also included for non-flat or non-� cosmological
models. We use flat priors throughout which are broad enough to
cover the full 3σ posterior distribution in each parameter direction
for each combination of data. Throughout the paper, we quote and
plot 68 and 95 per cent Bayesian confidence or credibility regions.
These regions contain 68 and 95 per cent of the posterior proba-
bility determined from the multidimensional distribution of points
from the PMC parameter sample. All figures showing the result-
ing joint-constraints on two parameters, are marginalized over the
multidimensional parameter space that is not shown.

4 R ESULTS

Fig. 2 presents the observed two-point correlation function ξ̂
ij
+ (θ )

for every tomographic bin combination in our chosen six redshift
bin analysis. With Nt tomographic bins, there are Nt(Nt + 1)/2 in-
dependent combinations or 21 combinations in our case. The panels
show the different ij bin combinations, ordered with increasing red-
shift bin i from left to right, and increasing redshift bin j from lower
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Figure 2. The observed two-point correlation function ξ̂
ij
+ (θ ). The panels show the different ij redshift bin combinations, ordered with increasing redshift bin

i from left to right, and increasing redshift bin j from lower to upper. Refer to Table 1 for the redshift ranges of each tomographic bin. The errors are estimated
from an analysis of N-body lensing simulations as discussed in Section 3.3. The theoretical curves show our fiducial total GG+GI+II signal as a solid line.
When distinguishable from the total, the GG only signal is shown dashed. The magnitude of the GI signal is shown dot–dashed (our fiducial GI model has a
negative anti-correlated signal) and the II signal is shown dotted, where the amplitude is more than 10−7. The results of the broad two-bin tomographic analysis
of Benjamin et al. (2013) are shown in the lower right corner.

to upper, where the redshift distributions of each bin are shown
and tabulated in Section 3.4. The autocorrelated bins lie along the
diagonal. The data points are calculated using the shear correla-
tion function estimator in equation (4), correlating pairs of galaxies
within the full mosaic catalogue for each of the four CFHTLS
fields. The measurements from each field are then combined using
a weighted average, where the field weight is given by the effective
number of galaxy pairs in each angular bin. Note that the results for
each ij bin from each field were found to be noisy but consistent
[see Kilbinger et al. (2013) for measurements of the higher signal-
to-noise 2D shear correlation function for each CFHTLS field]. The
errors, which include sample variance, are estimated from an anal-
ysis of N-body lensing simulations as discussed in Section 3.3. We
remind the reader that the data are highly correlated, particularly
in the low-redshift bins. The theoretical curves show our fiducial
WMAP7 best-fitting cosmological parameter model, with an A = 1
non-linear intrinsic alignment model, to be a good fit to the data. A
possible exception to this is data from tomographic bin combina-
tions that include the lowest redshift bin, which we discuss further
in Section 4.1. The individual components are shown; GG (dashed),

GI (dot–dashed) and II (dotted) models with the total GG+GI+II
shown as a solid line. For comparison, we also show the results of
the broad two-bin tomographic analysis of Benjamin et al. (2013)
in the lower-right corner to demonstrate the low level of II and GI
contamination expected for this high-redshift selected analysis.

4.1 Tomographic data visualization

With 21 tomographic bin combinations, two statistics ξ̂
ij
+ (θ ) and

ξ̂
ij
− (θ ) and five angular scales, we have a total of p = 210 data

points, half of which are shown in Fig. 2. In the cosmological pa-
rameter constraints that follow, it is this large data vector, and a
correspondingly large covariance matrix, that we use in the likeli-
hood analysis. Purely for improving the visualization of this large
data set, however, we propose the following method to compress
the data, motivated by the different methods of Massey et al. (2007)
and Schrabback et al. (2010).

To compress angular scales, we first calculate a WMAP7 cosmol-
ogy GG-only theory model ξ

ij
fid for each redshift bin combination
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ij and each statistic (+/−). We then define a free parameter α
ij
±

which allows the overall amplitude of the model to vary, but keeps
the angular dependence fixed. The best-fitting amplitude α

ij
± is then

found from a χ2 minimization of α
ij
±ξ

ij
fid(θ ) to the shear correlation

functions measured at five angular scales in each ij bin and each
statistic. A best-fitting value of α

ij
± = 1 implies that the data in

bin ij are well fitted by a WMAP7 GG-only cosmology. Following
Schrabback et al. (2010), each bin is then assigned a single value
of αij ξ̂

ij
fid(θ = 1 arcmin) which can be interpreted as the amplitude

of the two-point shear correlation function measured in bin ij at an
angular scale of θ = 1 arcmin.

To compress the information in the redshift bin combination,
we calculate the lensing efficiency function qi(w) (equation 7) for
each redshift bin i, and then determine the peak redshift zpeak of
the combined lensing sensitivity qi(w)qj(w) for each redshift bin
ij combination. This peak redshift locates the epoch that is the
most efficient at lensing the two-galaxy samples in the redshift
bin combination ij, but we note that these distributions are very
broad, particularly for the redshift bins with a significant fraction
of catastrophic outliers in the photometric redshift distribution (see
Fig. 1).

Fig. 3 shows the resulting compressed 21 data points for
each statistic, ξ+ (circles) and ξ− (crosses), plotting αij ξ̂

ij
fid(θ =

1 arcmin) against zpeak. This can be compared to the fiducial cos-
mology prediction (shown dotted, by setting α = 1). Note that the
relatively high fraction of catastrophic redshift outliers in the lowest
redshift bin impacts on the expected signal measured from redshift
bin combinations that include this bin. The expected increase in
signal, as zpeak increases, is therefore not smooth. This can be seen
in the theoretical curve in Fig. 3 which displays a slight kink at
zpeak = 0.22. To recover αij from this figure, one simply divides
the value of each data point by the value of the fiducial model,
shown dotted, at that zpeak. Consistent values for αij are measured
from both the ξ+ and ξ− statistic. We find a signal that rises as
the peak redshift of the lensing efficiency function increases; the
more large-scale structure the light from our background galaxies

Figure 3. Compressed CFHTLenS tomographic data where each point rep-
resents a different tomographic bin combination ij as indicated by zpeak, the
peak redshift of the lensing efficiency for that bin combination. The best-
fitting amplitude αij of the data relative to a fixed fiducial GG-only cosmol-
ogy model is shown, multiplied by the fiducial model at θ = 1 arcmin for ξ+
(circles) and ξ− (crosses, offset along the zpeak axis for clarity). The error
bars show the 1σ constraints on the fit. The data can be compared to the
fiducial GG-only model, shown dotted. Note that the colour of the points
follow the same colour-scheme as Fig. 1, and indicates the lower redshift
bin that is used for each point.

propagates through, the stronger the lensing effect. In general, the
data are well fitted by the WMAP7 GG-only fiducial model, but
we do see an indication of an excess signal at low redshifts where,
for a fixed angular scale, the smaller physical scales probed are
more likely to be contaminated by the intrinsic galaxy alignment
signal. This is however also the regime where the analysis is most
affected by catastrophic outliers in our photometric redshift distri-
bution. Based on the cross-correlation analysis of Benjamin et al.
(2013), we expect these errors to be accounted for by our use of
photometric redshift distributions P(z). In Heymans et al. (2012),
we also show that the catalogues used in this analysis present no
significant redshift-dependent systematic bias when tested with a
cosmology-insensitive galaxy–galaxy lensing analysis. This gives
us confidence in the robustness of our results at all redshifts. We
note that in order to make this visualization of the data, the different
redshift bin combinations and the ξ+ and ξ− statistics are consid-
ered to be uncorrelated. The plotted 1σ errors on α are therefore
underestimated but we re-iterate at this point that this data compres-
sion is purely for visualization purposes and it is not used in any of
the cosmological parameter constraints that follow.

4.2 Comparison of parameter constraints from weak lensing
in a flat �CDM cosmology

The measurement of cosmological weak lensing alone is most sen-
sitive to the overall amplitude of the matter power spectrum. This
depends on a degenerate combination of the clustering amplitude
σ 8 and the matter density parameter �m, and it is therefore in this
parameter space that we choose to compare the constraints we find
from weak lensing alone using different analysis techniques. We
limit this comparison to flat �CDM cosmologies. Fig. 4 compares
three cases. In blue we show the 68 per cent Bayesian confidence
limits from a 2D weak lensing analysis of CFHTLenS, limited to
the same angular scales as our tomography analysis with θ < 35 ar-
cmin. This can be compared to the 68 per cent constraints from our

Figure 4. Flat �CDM parameter constraints (68 per cent confidence) on
the amplitude of the matter power spectrum controlled by σ 8 and the matter
density parameter �m from CFHTLenS-only, comparing three cases: 2D
weak lensing (blue) and six-bin tomographic lensing where intrinsic align-
ments are assumed to be zero (pale blue) and are marginalized over (pink).
For reference, the black cross shows the corresponding best-fitting values
from WMAP7 (Komatsu et al. 2011).

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/432/3/2433/1749063 by guest on 11 August 2022



2444 C. Heymans et al.

Table 2. Constraints orthogonal to the σ8−�m degeneracy direction for
a number of different types of lensing analyses: 2D weak lensing to θ <

350 arcmin (Kilbinger et al. 2013) and to θ < 35 arcmin, two-bin tomo-
graphic lensing (Benjamin et al. 2013), and six-bin tomographic lensing
where intrinsic alignments are assumed to be zero or are marginalized over
(our primary result indicated in bold). We also present constraints for two
conservative analyses to test the covariance matrix and our sensitivity to
potential error in the assumed non-linear correction to the matter power
spectrum (see the text for more detail).

Data α σ 8(�m/0.27)α

2D Lensing:

θ < 350 arcmin (Kilbinger et al. 2013) 0.59 ± 0.02 0.787 ± 0.032

θ < 35 arcmin 0.61 ± 0.02 0.791+0.052
−0.066

Two-bin tomography:

θ < 40 arcmin (Benjamin et al. 2013) 0.55 ± 0.02 0.771 ± 0.040

Six-bin tomography (all θ < 35 arcmin):

A = 0 0.52 ± 0.02 0.783+0.024
−0.032

A marginalized 0.46 ± 0.02 0.774+0.032
−0.041

nμ = 736 covariance matrix 0.48 ± 0.03 0.768+0.032
−0.041

Low θ scales removed 0.45 ± 0.03 0.774+0.038
−0.057

six-bin ξ± tomographic lensing measurement when intrinsic align-
ments are assumed to be zero (pale blue) and when the amplitude of
the intrinsic alignment model is allowed to be a free parameter and
is marginalized over (pink). All three measurements are consistent
and can be compared to the best-fitting WMAP7 results shown as a
black cross for reference.

Table 2 lists the parameter constraints, for the three cases shown
in Fig. 4, on the combination σ 8(�m/0.27)α . The parameter α is
derived from a fit to the likelihood surface to determine the direc-
tion that is orthogonal to the σ8−�m degeneracy direction. These
results can be compared to the 2D CFHTLenS constraints from
Kilbinger et al. (2013), where large angular scales were included
in the analysis, and a two-bin tomography analysis from Benjamin
et al. (2013), limited to the same angular scales considered in this
analysis. We find excellent agreement between the cosmological
results from the different analyses, indicating that ignoring intrinsic
alignment contamination in Kilbinger et al. (2013) and Benjamin
et al. (2013) did not introduce any significant bias in their results.
Differences in the values of the α parameter arise from a number
of factors. The strength of the lensing signal is modulated by �m

in a manner which is sensitive to both the source redshift distribu-
tion and the angular scales under consideration (Bernardeau, Van
Waerbeke & Mellier 1997). Furthermore, the degeneracy contours
are not perfectly represented by a power law, so the value of α is
not our key interest here.

Focusing first on the constraints from tomography and 2D lensing
limited to the same angular scales but ignoring intrinsic alignments
(shown blue and pale blue in Fig. 4), we find close to a factor
of 2 improvement in the constraint on σ 8(�m/0.27)α , in addition
to an improvement in degeneracy breaking between σ 8 and �m,
when tomographic bins are considered. Unfortunately, however,
our tomographic analysis is limited by the extent of the N-body
simulations used to determine our covariance matrix, which forces
us to lose the large angular scales considered in the 2D analysis from
Kilbinger et al. (2013). Comparing the constraints from tomography
limited to θ < 35 arcmin, with 2D lensing out to θ = 350 arcmin, we
find similar constraints on σ 8(�m/0.27)α . This demonstrates how,
in this parameter space, the large angular scales are adding as much

information in a 2D Lensing analysis as the additional redshift bins
add in a tomographic analysis of the same data. This motivates
future work to remove the current angular limitations imposed by
the tomographic covariance matrix estimation method that we use
in this analysis.

Adding in the intrinsic alignment model, and hence an additional
free parameter A, broadens the parameter constraints, as expected,
reducing the constraining power on σ 8(�m/0.27)α by roughly 30 per
cent compared to a GG-only analysis. For �m = 0.27, however,
we find very little difference in the best-fitting value of σ 8 which
changes by 0.01. Larger deviations between the two analyses are
however seen for higher values of �m. Fig. 4 shows that the 68 per
cent confidence region shifts to slightly lower �m and higher σ 8. For
a fixed �m, the resulting best-fitting σ 8 is therefore slightly lower
when intrinsic alignments are marginalized over. This behaviour
is unexpected for a conventional intrinsic alignment model where
the negative GI signal dominates the positive II signal such that
the total GG+GI+II signal observed is less than the GG signal
alone. For the fiducial A = 1 intrinsic alignment model, a GG-only
analysis would therefore underestimate σ 8 for a fixed �m. For this
CFHTLenS-only analysis, however, we instead find a preference
for a negative value of A = −1.60+1.33

−1.94, and hence the GG-only
analysis prefers higher values of σ 8. We explore and discuss this
result in more detail in Section 5 but re-iterate that the differences
we have commented upon here are well within our 2σ errors and
are therefore not significant.

Finally, we perform two conservative analyses to ensure the ro-
bustness of our results, the constraints from which are reported in
the lower two rows of Table 2. The first is to compare constraints
when we use a covariance matrix constructed from nμ = 736 semi-
independent lines of sight (where each fully independent N-body
lensing simulation is split into four sub-simulations) instead of the
standard nμ = 1656 analysis that we use throughout this paper. The
excellent agreement between the results from the two estimates of
the covariance matrix verifies that the low level of correlation ex-
pected between each group of nine or four simulations, introduced
by splitting each fully independent simulation into sub-fields, does
not impact significantly on our results. It also demonstrates that the
Anderson (2003) inverse covariance de-biasing correction (equa-
tion 16), is sufficiently accurate for our analysis. The second con-
servative analysis is to remove the angular scales where uncertainty
in the accuracy of the non-linear correction to the power spectrum
could bias our results. We select these angular scales by calculat-
ing a WMAP7 cosmology theoretical prediction for ξ

ij
± (θ ) assuming

two different non-linear corrections, where we boost and decrease
the Smith et al. (2003) non-linear correction to the power spec-
trum by ±7 per cent. Note that we chose the value of 7 per cent
from the average error over the range of k scales tested in Eifler
(2011). For angular scales where more than a 10 per cent difference
is found in the expected signal, between these two different non-
linear correction regimes, we remove these scales from our analysis.
As the ξ− statistic probes significantly smaller k scales compared
to the ξ+ statistic, at a fixed θ , we cut more ξ− data than ξ+ (see
Benjamin et al. 2013 for further discussion). For ξ+, our require-
ment for less than a 10 per cent deviation corresponds to the removal
of data with θ � 3 arcmin for tomographic bin combinations in-
cluding bins 1 and 2. For ξ−, this corresponds to removing data
with θ � 30 arcmin for tomographic bin combinations including
bins 1, 2, 3 and 4, and data with θ � 16 arcmin for tomographic
bin combinations including bins 5 and 6. Applying these cuts in
angular scale results in a final data vector of length p = 120. As
the ξ± statistic is an integral over many k scales weighted by J0
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and J4 Bessel functions, one cannot directly relate the limits we
place on θ , to limits on k. We note, however, that as these cuts
do preferentially remove the smallest physical k scales where the
theoretical prediction to the power spectrum is expected to be most
impacted by baryonic feedback effects. This conservative analysis
to test the non-linear correction therefore also works as a mitigation
strategy to avoid uncertain baryon feedback errors. For this conser-
vative analysis, we find no change in the best-fitting measurement of
σ 8(�m/0.27)α , but a reduction in the constraining power by roughly
20 per cent (see the ‘Low θ scales removed’ row in Table 2). We
also lose roughly 20 per cent of the constraining power on the in-
trinsic alignment amplitude A with this conservative analysis. As
the best-fitting value for σ 8(�m/0.27)α remains unchanged, we can
conclude that the inclusion of small-scale data does not introduce

any significant bias in our results. Furthermore, as our focus for this
analysis is the mitigation of intrinsic galaxy alignments, which are
most tightly constrained by the low-redshift bins preferentially cut
with this type of conservative analysis, the CFHTLenS results that
follow include the full angular scale range shown in Fig. 2.

4.3 Joint cosmological parameter constraints

We present joint cosmological parameter constraints from
CFHTLenS combined with WMAP7, BOSS and R11 for four cos-
mological models testing flat and curved �CDM and wCDM
cosmologies. Table 3 lists the best-fitting 68 per cent confi-
dence limits for our cosmological parameter set for the combi-
nation of CFHTLenS and WMAP7 (first line for each parameter),

Table 3. Joint cosmological parameter constraints for four models, testing flat and curved �CDM and wCDM cosmologies.
The first line for each parameter lists the constraints from CFHTLenS combined with WMAP7 and R11. The second line lists the
constraints from CFHTLenS combined with WMAP7, BOSS and R11. Deduced parameters are indicated with �.

Parameter Flat �CDM Flat wCDM Curved �CDM Curved wCDM Data

�m 0.255+0.014
−0.014 0.256+0.111

−0.073 0.255+0.028
−0.023 0.214+0.161

−0.049 CFHTLenS + WMAP7

0.250+0.012
−0.012 0.242+0.020

−0.014 0.248+0.014
−0.013 0.243+0.020

−0.014 CFHTLenS + WMAP7 + R11

0.271+0.010
−0.009 0.269+0.018

−0.015 0.275+0.011
−0.010 0.247+0.021

−0.018 CFHTLenS + WMAP7 + R11 + BOSS

σ ∗
8 0.794+0.016

−0.017 0.81+0.10
−0.10 0.805+0.028

−0.029 0.871+0.076
−0.125 CFHTLenS + WMAP7

0.795+0.016
−0.018 0.810+0.030

−0.027 0.813+0.021
−0.024 0.819+0.028

−0.032 CFHTLenS + WMAP7 + R11

0.799+0.014
−0.016 0.800+0.030

−0.025 0.791+0.017
−0.019 0.826+0.026

−0.031 CFHTLenS + WMAP7 + R11 + BOSS

A −1.18+0.96
−1.17 −1.4+1.2

−1.9 −0.84+0.97
−1.21 −1.7+1.4

−2.0 CFHTLenS + WMAP7

−1.37+0.96
−1.21 −1.3+1.0

−1.2 −0.91+0.94
−1.04 −0.85+0.89

−1.16 CFHTLenS + WMAP7 + R11

−0.48+0.75
−0.87 −0.51+0.82

−0.84 −0.31+0.70
−0.86 −0.32+0.70

−1.04 CFHTLenS + WMAP7 + R11 + BOSS

w0 −1 −1.05+0.33
−0.34 −1 −1.18+0.36

−0.22 CFHTLenS + WMAP7

−1 −1.06+0.08
−0.07 −1 −1.04+0.11

−0.12 CFHTLenS + WMAP7 + R11

−1 −1.02+0.09
−0.09 −1 −1.19+0.14

−0.11 CFHTLenS + WMAP7 + R11 + BOSS

�de 1 − �m 1 − �m 0.743+0.029
−0.025 0.782+0.161

−0.050 CFHTLenS + WMAP7

1 − �m 1 − �m 0.747+0.015
−0.014 0.753+0.022

−0.016 CFHTLenS + WMAP7 + R11

1 − �m 1 − �m 0.730+0.012
−0.011 0.762+0.021

−0.019 CFHTLenS + WMAP7 + R11 + BOSS

�∗
K 0 0 0.002+0.008

−0.009 0.004+0.006
−0.008 CFHTLenS + WMAP7

0 0 0.005+0.005
−0.005 0.004+0.008

−0.007 CFHTLenS + WMAP7 + R11

0 0 −0.004+0.004
−0.004 −0.009+0.005

−0.004 CFHTLenS + WMAP7 + R11 + BOSS

h 0.717+0.016
−0.015 0.74+0.14

−0.12 0.724+0.042
−0.041 0.82+0.11

−0.16 CFHTLenS + WMAP7

0.723+0.013
−0.013 0.738+0.023

−0.026 0.734+0.022
−0.020 0.741+0.022

−0.024 CFHTLenS + WMAP7 + R11

0.702+0.010
−0.010 0.706+0.023

−0.020 0.691+0.014
−0.011 0.724+0.023

−0.027 CFHTLenS + WMAP7 + R11 + BOSS

�b 0.0437+0.0014
−0.0014 0.044+0.020

−0.012 0.0431+0.0057
−0.0041 0.0358+0.0282

−0.0086 CFHTLenS + WMAP7

0.0433+0.0012
−0.0013 0.0414+0.0032

−0.0026 0.0417+0.0027
−0.0023 0.0409+0.0032

−0.0024 CFHTLenS + WMAP7 + R11

0.0453+0.0009
−0.0011 0.0450+0.0037

−0.0029 0.0470+0.0020
−0.0017 0.0425+0.0035

−0.0027 CFHTLenS + WMAP7 + R11 + BOSS

ns 0.967+0.013
−0.013 0.965+0.014

−0.014 0.967+0.014
−0.014 0.967+0.014

−0.013 CFHTLenS + WMAP7

0.971+0.011
−0.012 0.964+0.013

−0.014 0.968+0.014
−0.014 0.966+0.013

−0.015 CFHTLenS + WMAP7 + R11

0.961+0.012
−0.011 0.957+0.014

−0.013 0.968+0.013
−0.014 0.961+0.015

−0.013 CFHTLenS + WMAP7 + R11 + BOSS

τ 0.089+0.015
−0.014 0.089+0.016

−0.014 0.088+0.018
−0.014 0.089+0.016

−0.014 CFHTLenS + WMAP7

0.092+0.015
−0.014 0.089+0.016

−0.014 0.089+0.018
−0.014 0.088+0.016

−0.013 CFHTLenS + WMAP7 + R11

0.082+0.014
−0.012 0.082+0.017

−0.012 0.086+0.016
−0.011 0.084+0.016

−0.013 CFHTLenS + WMAP7 + R11 + BOSS

�2
R 2.395+0.086

−0.087 2.405+0.094
−0.086 2.412+0.090

−0.096 2.430+0.103
−0.096 CFHTLenS + WMAP7

2.378+0.079
−0.086 2.412+0.098

−0.082 2.418+0.090
−0.098 2.420+0.095

−0.090 CFHTLenS + WMAP7 + R11

2.427+0.092
−0.072 2.440+0.083

−0.093 2.382+0.102
−0.091 2.391+0.111

−0.072 CFHTLenS + WMAP7 + R11 + BOSS
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Figure 5. Flat �CDM joint parameter constraints (68 and 95 per cent
confidence) on the amplitude of the matter power spectrum controlled by
σ 8 and the matter density parameter �m from CFHTLenS-only (pink),
WMAP7-only (blue), BOSS combined with WMAP7 and R11 (green), and
CFHTLenS combined with BOSS, WMAP7 and R11 (white).

CFHTLenS, WMAP7 and R11 (second line for each parameter)
and for CFHTLenS, WMAP7, BOSS and R11 (third line for each
parameter). For comparison, the figures in this section also show
constraints for WMAP7-only and WMAP7 combined with BOSS
and R11. We refer the reader to Komatsu et al. (2011) and Ander-
son et al. (2012) for tabulated cosmological parameter constraints
for the non-CFHTLenS combination of data sets shown, noting
that we find good agreement with their tabulated constraints. We
also refer the reader to Kilbinger et al. (2013) for CFHTLenS-
only parameter constraints for the curved and wCDM cosmological
models tested in this section. Whilst CFHTLenS currently repre-
sents the most cosmologically constraining weak lensing survey,
it spans only 154 square degrees and is therefore not expected to
have significant constraining power when considered alone. This is
demonstrated in Fig. 5 which compares parameter constraints in the
σ8−�m plane for a flat �CDM cosmology. The wide constraints
from CFHTLenS-only are shown in pink (note that the inner 68 per
cent confidence region is shown in pink in Fig. 4), in compari-
son to the tight constraints from WMAP7-only (blue). The power

of lensing, however arises from its ability to break degeneracies
in this parameter space owing to the orthogonal degeneracy direc-
tions. BOSS combined with WMAP7 and R11 is shown green and
when CFHTLenS is added in combination with BOSS, WMAP7
and R11 (white) we find the combined confidence region decreases
in area by nearly a factor of 2. As we will show in this section, the
tomographic lensing information presented in this analysis is there-
fore very powerful when used in combination with auxiliary data
sets.

The figures that follow in this section all compare constraints
for different combinations of cosmological parameters and cosmo-
logical models with the following colour-scheme: WMAP7-only
(in blue), WMAP7 combined with CFHTLenS and R11 (in pink),
WMAP7 combined with BOSS and R11 (in green) and all four data
sets in combination (in white). Comparing the green contours with
the pink contours allows the reader to gauge the relative power
of BOSS and CFHTLenS when either survey is used in combina-
tion with WMAP7 and R11. Comparing the green contours with
the white contours allows the reader to gauge the extra contribu-
tion that CFHTLenS makes to BOSS, R11 and WMAP7 in break-
ing different parameter degeneracies and constraining cosmological
parameters.

4.3.1 Constraints in the σ8−�m plane

Fig. 6 shows joint parameter constraints on the normalization of
the matter power spectrum σ 8 and the matter density parameter
�m for four cosmological models: flat �CDM, flat wCDM, curved
�CDM and curved wCDM. The comparison of the results for the
four cosmological models show the decreased WMAP7 sensitiv-
ity to these two cosmological parameters when extra freedom in
the cosmological model is introduced, such as dark energy w0 or
curvature. We find slightly tighter constraints from CFHTLenS in
combination with WMAP7 and R11 (pink), in comparison to BOSS
in combination with WMAP7 and R11 (green). The 68 per cent
confidence regions between these two survey combinations only
marginally overlap, introducing a mild tension. The constraints are
however consistent at the 95 per cent confidence level. For the matter
density parameter �m, the addition of BOSS data to the combined
CFHTLenS, WMAP7, R11 analysis typically decreases the 1σ er-
rors by ∼20 per cent across all cosmologies. For the normalization
of the matter power spectrum σ 8, however, we find that BOSS adds
little to the constraining power of CFHTLenS with WMAP7 and
R11 for the cosmological models tested. Furthermore, for a flat

Figure 6. Joint parameter constraints on the normalization of the matter power spectrum σ 8 and the matter density parameter �m from WMAP7-only (blue),
BOSS combined with WMAP7 and R11 (green), CFHTLenS combined with WMAP7 and R11 (pink) and CFHTLenS combined with BOSS, WMAP7 and R11
(white).
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Figure 7. Joint parameter constraints on curvature showing constraints on the curvature parameter �K and the matter density parameter �m from WMAP7-only
(blue), BOSS combined with WMAP7 and R11 (green), CFHTLenS combined with WMAP7 and R11 (pink) and CFHTLenS combined with BOSS, WMAP7
and R11 (white).

�CDM cosmology the constraint σ 8 = 0.799 ± 0.015 is almost
entirely driven by CFHTLenS in combination with WMAP7 alone.

4.3.2 Curved cosmological models

We consider two curved cosmologies where the sum of the different
density components of the Universe is no longer limited to the
critical density. Fig. 7 shows joint parameter constraints on the
curvature �K and the matter density parameter �m for WMAP7-only
(blue), BOSS combined with WMAP7 and R11 (green), CFHTLenS
combined with WMAP7 and R11 (pink) and CFHTLenS combined
with BOSS, WMAP7 and R11 (white). In both the curved �CDM
and curved wCDM cosmology, we find that the data are consistent
with a flat Universe with �K � −0.004 ± 0.004 (see Table 3 for
exact numbers for the different cosmologies and data combinations).

In this parameter space, we find a factor of 2 improvement when R11
is included in combination with CFHTLenS and WMAP7. This is
partly because when curvature is allowed the degeneracy direction
of the CMB in the σ8−�m plane changes such that the combination
of lensing with the CMB becomes less powerful. Little improvement
is found in the constraining power when BOSS is included in our
parameter combination, but the mean �K changes by nearly 2σ .

4.3.3 Constraints on dark energy

Finally, we turn to the constraints that can be placed on the dark en-
ergy equation-of-state parameter w0 in flat and curved cosmologies.
Fig. 8 shows joint parameter constraints in the w−�m plane and also
the w−�K plane for a curved wCDM cosmology. As with the other
parameter planes that we have commented upon in this section, we

Figure 8. Joint parameter constraints on the dark energy equation-of-state parameter w0 and the matter density parameter �m, and curvature parameter �K

for a curved wCDM cosmology from WMAP7-only (blue), BOSS combined with WMAP7 and R11 (green), CFHTLenS combined with WMAP7 and R11
(pink) and CFHTLenS combined with BOSS, WMAP7 and R11 (white).
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again see the mild tension between BOSS and CFHTLenS and the
power of including these surveys in addition to WMAP7 data alone.
For both the curved and flat wCDM cosmologies, we find that w is
consistent with a cosmological constant (see Table 3 for exact num-
bers for the different cosmologies and data combinations). As with
our constraints on the curvature, we find very little improvement in
the constraining power on w when BOSS is included in our param-
eter combination. We do, however, find excellent agreement with
the combined probe constraints from Anderson et al. (2012) when
BOSS is combined with WMAP7, SDSS-LRG baryon acoustic os-
cillation constraints from Padmanabhan et al. (2012) and Type Ia
supernovae results from Conley et al. (2011). With this combina-
tion of data sets, Anderson et al. (2012) find w = −1.09 ± 0.08
for flat and curved wCDM models. Note that this was shown to be
the only parameter where the addition of the supernova data to the
BOSS and WMAP7 data impacted upon the analysis, decreasing
the errors by a factor of ∼2. This result is in agreement with our
wCDM model constraints from CFHTLenS with WMAP7 and R11,
where we find w = −1.06 ± 0.08 (flat) and w = −1.04 ± 0.12
(curved).

We find good agreement between the mean measurements when
the different parameters sets are combined. This is in contrast to
the 2D weak lensing analysis of Kilbinger et al. (2013) where a 2σ

difference is found between the mean w0 measured with lensing,
WMAP7 and BOSS, with and without a prior on the hubble param-
eter h. For all cosmologies tested in this analysis, the constraints on
h from CFHTLenS with WMAP7 are in good agreement with the
R11 measure of h = 0.738 ± 0.024. Focusing on flat �CDM, in this
analysis we find h = 0.717 ± 0.016 for CFHTLenS with WMAP7, in
comparison to BOSS with WMAP7 who find a 2σ offset from R11
with h = 0.684 ± 0.013. For wCDM cosmologies, Kilbinger et al.
(2013) and BOSS find even larger shifts away from the R11 result,
but at a lower significance, and it is this that causes the differences
in the measurement of w0, with and without the inclusion of a prior
on h, that we do not find in this analysis.

5 TH E I N T R I N S I C A L I G N M E N T O F
E A R LY-T Y P E A N D L AT E - T Y P E G A L A X I E S

As discussed in Section 1, there is clear evidence in the literature
that the strength of the intrinsic alignment signal depends on galaxy
type, with the most massive red galaxies exhibiting the strongest in-
trinsic correlations (Joachimi et al. 2011). In this section, we there-
fore present separate tomographic analyses of an early-type and
late-type galaxy sample, selected using the measured best-fitting
photometric type TBPZ. This classification type ranges from 1 to 6
and represents the best-fitting spectral energy distribution to each
galaxy’s photometry (see Hildebrandt et al. 2012 for more details).
We follow Simon et al. (2013) by selecting late-type spiral galax-
ies with TBPZ > 2.0, roughly 80 per cent of the galaxy catalogue
used in the main analysis. The remaining 20 per cent are classified
as early-type galaxies. Each sample is split into six tomographic
bins, using the redshift selection given in Table 1, and the redshift
distribution determined from the sum of the P(z). Covariance ma-
trices were determined for each galaxy sample using the method
outlined in Section 3.3, but mapping only the relevant galaxy sam-
ple on to the N-body lensing simulations. We found no evidence
for a significant difference in σ e for the two samples. Fig. 9 shows
the resulting compressed tomographic measurements made with
early-type galaxies (circles) and late-type galaxies (crosses). The
data compression uses the visualization method described in Sec-
tion 4.1, modified slightly such that the free amplitude parameter

Figure 9. Compressed CFHTLenS tomographic data for two-galaxy sam-
ples: early-type (circles) and late-type (cross) galaxies. As in Fig. 3, each
point represents a different tomographic bin combination ij as indicated by
zpeak, the peak redshift of the lensing efficiency for that bin. The measured
best-fitting amplitude αij of the data for each galaxy type, multiplied by the
fiducial model at θ = 1 arcmin for ξ+. is shown. The error bars show the
1σ constraints on the fit. The data can be compared to the fiducial GG-only
model, shown dotted.

αij is fitted simultaneously to both the ξ+ and ξ− measured from the
data. This simultaneous fit is justified as the αij values measured for
ξ+ and ξ− independently are fully consistent. The resulting best-
fitting amplitude αij is shown, multiplied by the fiducial model at
θ = 1 arcmin for ξ+. With only 20 per cent of the data contained in
the early-type sample, it is unsurprising that the measured signal to
noise is significantly weaker than for the late-type sample which are
well fitted by the fiducial GG-only model, shown dotted. We can,
however, optimize the measurement of the intrinsic alignment sig-
nal from early-type galaxies, to get a clearer picture, if we assume
the II contribution to cross-correlated bins is small in comparison
to the GI signal. If this is the case, we can decrease the noise on
the GI measurement by using the full galaxy sample as background
galaxies to correlate with the early-type galaxies in the foreground
bin. The result of this optimized analysis is shown, in compressed
tomographic data form, in Fig. 10. The open circles show the tomo-
graphic signal measured in the autocorrelated redshift bins between
early-type galaxies (these autocorrelation bins are also shown in
Fig. 9). The closed symbols show the tomographic signal in the
cross-correlated redshift bins where early-type galaxies populate
the foreground bin and the full galaxy sample populates the back-
ground higher redshift bin. The data can be compared to the fiducial
GG-only model, shown dotted. What is interesting to note from
this figure is that at low redshifts, where the intrinsic alignment
signal is expected to be the most prominent, the autocorrelated bins
tend to lie above the GG-only model. We expect this from the II
term. For the cross-correlated bins, however, the measured signal
tends to lie below the GG-only model. We expect this from the GI
term.

Fig. 11 combines the CFHTLenS data split by galaxy type, and
our optimized early-type galaxy tomography analysis, with auxil-
iary data from WMAP7, BOSS and R11 to constrain the amplitude
of the intrinsic alignment model A. Assuming a flat �CDM model,
the resulting 68 and 95 per cent confidence limits on A and the
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Figure 10. Compressed CFHTLenS tomographic data for an optimized
early-type galaxy intrinsic alignment measurement with autocorrelated red-
shift bins containing only early-type galaxies (circles) and cross-correlation
redshift bins containing early-type galaxies in the low-redshift bin and all
galaxy types in the high-redshift bin (filled). Different tomographic bin com-
binations ij are indicated by zpeak, the peak redshift of the lensing efficiency
for that bin. The best-fitting amplitude αij of the data relative to a fixed fidu-
cial GG-only cosmology model is shown, multiplied by the fiducial model
at θ = 1 arcmin for ξ+. The error bars show the 1σ constraints on the fit.
The data can be compared to the fiducial GG-only model, shown dotted.

matter density parameter �m can be compared.5 In the left-hand
panel, we show constraints from the two-galaxy samples split by
SED type. The early-type galaxy constraints are shown in red and
the late-type galaxy constraints are shown in blue. In the right-hand
panel, constraints are shown for the full galaxy sample in purple
and the optimized early-type intrinsic alignment analysis in pink.
The marginalized 68 per cent confidence errors on A, from the com-
bination of CFHTLenS data with WMAP7, BOSS and R11, for the
four different measurements are

Alate = 0.18+0.83
−0.82 , (17)

Aearly = 5.15+1.74
−2.32 , (18)

A
opt
early = 4.26+1.23

−1.39 , (19)

Aall = −0.48+0.75
−0.87 . (20)

We find that the intrinsic alignment amplitude of the late-type sam-
ple is consistent with zero. In contrast, the amplitude of the intrinsic
alignment model for the early-type sample is detected to be non-zero
with close to 2σ confidence. When we consider the optimized anal-
ysis, we find an even stronger detection, with an intrinsic alignment
amplitude of A = 0 for early-type galaxies ruled out with 3σ confi-
dence. The optimized early-type analysis should be considered with
some caution, however, as the tomographic redshift bins do overlap
and as such a small fraction of late-type with early-type II correla-
tion will be included in the measurement. The measurement of Aearly

should therefore be considered as our cleanest measurement of the
early-type galaxy intrinsic amplitude with the optimized A

opt
early anal-

5 Note that the constraints on cosmological parameters other than A are
consistent between the early-type and late-type analysis, and that both sets
of parameter constraints, with the exception of A, are consistent with the
full galaxy sample analysis reported in Table 3.

ysis providing us with the strongest evidence for intrinsic galaxy
alignments between early-type galaxies.

5.1 Discussion

Our constraints show the same broad findings as other studies;
intrinsic alignments are dependent on galaxy type. As previous
studies have focused on specific galaxy samples at fixed redshifts,
however, it is difficult to compare our constraints directly. With that
caveat we can, however, comment on literature results from galaxy
samples that are the most comparable. Our late-type sample is most
similar in its properties to the blue galaxies from the WiggleZ
survey analysed in Mandelbaum et al. (2011). Their null detection
is in agreement with our late-type galaxy results. Our early-type
sample is most similar in terms of luminosity and redshift to the
MegaZ-LRG sample analysed in Joachimi et al. (2011). The best-
fitting values 4 � A � 6 for a range of different types of LRG galaxy
selection with an error of ∼1 are in very good agreement with our
early-type galaxy results.

For the full galaxy sample, there is an indication that negative
values of A are preferred. For flat cosmologies, A is negative at
the 1.4σ level when the CFHTLenS data are combined only with
WMAP7 and R11 (see Table 3 for constraints on A for the full
galaxy sample for different cosmologies and data combinations).
Whilst we emphasize that this result is not statistically significant it
is however worth commenting on what this finding could mean. In
the conventional intrinsic alignment model, the GI signal is negative
and scales with A. The II signal is positive and scales with A2.
Finding A < 0, however, implies the data prefer a GI+II signal that
is more positive than the conventional model would predict. This
suggests that future surveys with lower statistical errors should aim
to fit independent amplitudes to the GI and II signals as the interplay
between the two effects may be more complex than the linear tidal
field alignment model suggests.

It is also interesting to comment on the decrease in the amplitude
of the best-fitting intrinsic alignment signal when early- and late-
type galaxies are combined. If detected in future surveys at higher
significance, this would indicate a complex interplay between the
two galaxy types. It has long been thought that the reason for the
difference between the intrinsic alignments of early- and late-type
galaxies lies in the different mechanisms at play during galaxy for-
mation. The intrinsic alignment model we use in this analysis is
based on linear theory. A more traditional galaxy formation sce-
nario for late-type galaxies, however, is tidal-torque theory where it
is the angular momentum of the dark matter field that induces galaxy
spin and hence intrinsic galaxy alignments (see Schäfer 2009, and
references therein). The simple hypothesis, presented in Heymans
et al. (2006), is that the intrinsic alignment of early-type galaxies
is a result of ellipticity deformations due to the linear tidal field, in
contrast to late-type galaxies whose alignment results from angu-
lar momentum-induced ellipticity alignments (van den Bosch et al.
2002). This hypothesis is in good agreement with recent observa-
tions of galaxy-type dependence in the intrinsic alignment signal,
as halo angular momentum is proportional to the square of the tidal
shear, and the induced galaxy alignments therefore correlate over
much shorter ranges compared to alignments directly caused by the
linear tidal shear (Catelan et al. 2001).

In addition to the linear model used throughout this paper, Hirata
& Seljak (2004) also investigate the GI signal expected from an
intrinsic alignment model where the galaxy ellipticity is propor-
tional to the square of the tidal field. In this case, the GI signal is
expected to be zero. As our galaxy sample is dominated by late-type
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Figure 11. Joint parameter constraints on the amplitude of the intrinsic alignment model A and the matter density parameter �m from CFHTLenS combined
with WMAP7, BOSS and R11. In the left-hand panel, the constraints can be compared between two-galaxy samples split by SED type, (early type in red and
late type in blue). In the right-hand panel, we present constraints from an optimized analysis to enhance the measurement of the intrinsic alignment amplitude
of early-type galaxies (pink). The full sample, combining early and late-type galaxies, produces an intrinsic alignment signal that is consistent with zero (shown
purple). A flat �CDM cosmology is assumed.

galaxies, the majority of correlated galaxy pairs in our analysis from
different redshift bins will include a late-type foreground galaxy.
Combining the findings of Hirata & Seljak (2004) with our simple
hypothesis that late-type intrinsic galaxy alignment is caused by
halo angular momentum-induced alignments leads to an expected
zero GI measurement on average. In autocorrelated tomographic
bins, however, the stronger galaxy clustering of early-type galaxies
will mean that at small angular scales, there is a higher proportion
of close early-type galaxy pairs in the measurement, compared to
the numbers of early-type and late-type foreground galaxies that
contribute to the GI signal. This therefore boosts the true II signal
in autocorrelated bins over the amplitude that would be predicted
from GI-only constraints from a mixed galaxy population.

The linear tidal field alignment model used in this analysis could
compensate for these different galaxy-type contributions to the II
and GI signal by favouring a small but negative value for A. In
this case, the GI signal in the cross-correlation bins is positive but
sufficiently weak to provide a reasonable fit to the GI = 0 model
signal expected from the dominant late-type galaxy population. In
the autocorrelated bins, the additional true positive II signal from the
clustered early-type galaxies is then represented in the model fit, not
by the model II signal, but the positive GI signal. If A was positive
and less than unity, there would still be a reasonable weak but now
negative fit to the GI = 0 model in the cross-correlation bins. In the
autocorrelated bins, however, there would not be sufficient signal in
the combined II+GI model to represent the extra II power arising
from the clustered early-type sample.

Based on this discussion, we can conclude that our constraints
for the full sample favouring a slightly negative value for A fits
our simple hypothesis that early-type galaxy alignment results from
the linear tidal field and late-type galaxy alignment results from
angular momentum-induced correlations. The next generation of
weak lensing surveys will have the statistical power to test this
hypothesis further.

6 C O N C L U S I O N S

The CFHTLenS represents the current state of the art in cosmo-
logical weak lensing data analysis from the applied weak lensing

optimized data reduction, shear and photometric redshift measure-
ment methods, through to the robust systematic error analysis and
error quantification of the resulting shear and redshift catalogue.
Spanning 154 square degrees, CFHTLenS is currently the largest
deep weak lensing survey in existence permitting the tightest cos-
mological constraints from weak gravitational lensing. In this paper,
we present the first multiredshift bin, or tomographic, weak lensing
analysis to mitigate the contamination to the measured two-point
shear correlation function through the simultaneous fit of a cosmo-
logical model with an intrinsic galaxy alignment model. Combin-
ing the tomographic CFHTLenS data with auxiliary cosmological
probes, the CMB with data from WMAP7, baryon acoustic oscilla-
tions with data from BOSS and a prior on the Hubble constant from
the HST distance ladder, we have improved constraints on a range
of cosmological parameters for a standard flat �CDM model, in
addition to curved and dark energy models. We constrain the am-
plitude of the matter power spectrum σ 8 = 0.799 ± 0.015 and the
matter density parameter �m = 0.271 ± 0.010 for a flat �CDM
cosmology. For a flat wCDM cosmology, we constrain the dark en-
ergy equation-of-state parameter w = −1.02 ± 0.09. In general, we
find tighter constraints from the combination of CFHTLenS with
WMAP7 and R11 than from BOSS with WMAP7 and R11, and we
find that the addition of BOSS to CFHTLenS with WMAP7 and
R11 only significantly improves constraints on the matter density
parameter �m, for all cosmologies tested. Constraints on the other
parameters are only shown to significantly improve when a curved
wCDM model is considered. Finding consistent results, however,
between these two very different probes of cosmology suggests a
bright future for studies of the ‘Dark Universe’ with weak lensing
and baryon acoustic oscillations.

Tomographic weak lensing has long been recognized as a pow-
erful tool to constrain dark energy by detecting the influence dark
energy has on the growth of structure in addition to the distance–
redshift relationship. One astrophysical source of uncertainty that
mimics cosmological weak lensing is the intrinsic alignment of
neighbouring galaxies. This phenomenon unfortunately reduces the
overall constraining power of tomographic weak lensing analyses
as, to ensure the cosmological constraints are unbiased, the con-
tamination from intrinsic alignments must be considered. In this
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analysis, we have assumed a simple one-parameter model that scales
the amplitude of the II and GI intrinsic alignment contamination
expected from a linear tidal field alignment model of galaxy shape
correlation (Catelan et al. 2001; Hirata & Seljak 2004; Bridle &
King 2007). Our results are consistent with there being zero intrin-
sic alignment between galaxies in our late-type sample, with A �
0.2 ± 0.8. The best-fitting amplitude is, however, within 1σ of the
fiducial model amplitude A = 1. This fiducial model is commonly
assumed for parameter forecasts, and is based on the amplitude
of low-redshift galaxy intrinsic ellipticity correlations measured by
Brown et al. (2002). For the 20 per cent of galaxies in our sam-
ple, whose five-band photometry is best fitted by an early-type
SED, however, we detect a non-zero intrinsic alignment signal,
A � 5 ± 2, roughly five times the fiducial model amplitude. This
is in agreement with previous observations of a galaxy-type de-
pendence, using a very different methodology (Hirata et al. 2007;
Joachimi et al. 2011; Mandelbaum et al. 2011). Our results there-
fore add to the increasing body of independent observations that
point towards a scenario where the galaxy formation and evolution
mechanisms, which determine galaxy shape, differ for early- and
late-type galaxies. For the combined galaxy sample, we find that
the net effect of the two galaxy types produces an intrinsic align-
ment signal that is consistent with zero, with A � −0.5 ± 0.8 (see
Section 4 for the exact constraints for the different cosmological
models).

One difficulty, for the analysis of finely binned tomographic cor-
relation functions which are optimized for the simultaneous analysis
of cosmological models and intrinsic alignment models, is the esti-
mation of an accurate and invertible covariance matrix for the large
data vector. In this paper, we discuss the different options for co-
variance matrix estimation and the noise biases that can arise in
the matrix inversion. We chose to use N-body lensing simulations
as the basis for our covariance matrix estimation in order to cor-
rectly account for non-Gaussianity on small angular scales. This is
in contrast to many earlier studies which often resorted to a fitting
function correction. This choice, however, limits the largest angular
scales that we can analyse. The finite simulated box size truncates
the large-scale modes, reducing the large-scale power probed by
each simulated line of sight. In addition, as high-resolution N-body
lensing simulations are expensive to create, we are also limited
by the total number of simulated independent lines of sight avail-
able. This finite number limits the number of data points for which
we can invert the simulation estimated covariance matrix without
biasing our results, or erroneously increasing the area of the result-
ing confidence regions. A priority of future surveys must therefore
be to ensure the availability of a large volume of N-body simula-
tions for covariance matrix estimation. Alternative methods should
also be developed such as the simulation-analytic covariance ma-
trix grafting method described in Kilbinger et al. (2013), in addition
to methods which optimally combine simulation and data-based
bootstrap or Jackknife estimates.

Three major new weak lensing surveys6 are currently in progress,
or will commence soon, and as such this is an exciting time for the
study of the ‘Dark Universe’. These surveys will image more than
ten times the area surveyed by CFHTLenS, charting a sufficient vol-
ume to address the issue of astrophysical bias arising from intrinsic
galaxy alignments in greater detail. By self-calibrating the intrinsic
alignment model with the additional information from galaxy clus-

6 KiDS: kids.strw.leidenuniv.nl, DES: www.darkenergysurvey.org and HSC:
www.subarutelescope.org/Projects/HSC

tering (Bernstein 2009; Joachimi & Bridle 2010; Zhang 2010), the
marginalization over many intrinsic alignment nuisance parameters
will become feasible. Another viable mitigation strategy is to de-
velop new statistics which are less sensitive to intrinsic alignment
contamination. In addition, complementary spectroscopic or highly
accurate photometric redshift observations could be exploited to
place observational constraints on different analytical and hydrody-
namical simulation models of galaxy shape correlations. This effort,
in parallel to large-area survey acquisition, will then allow us retain
as much power as possible from weak gravitational lensing as a
cosmological probe.
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