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ABSTRACT
We study scaling behaviour of statistics of voids in the context of the halo model of non-
linear large-scale structure. The halo model allows us to understand why the observed galaxy
void probability obeys hierarchal scaling, even though the premise from which the scaling is
derived is not satisfied. We argue that the commonly observed negative binomial scaling is
not fundamental, but merely the result of the specific values of bias and number density for
typical galaxies. The model implies quantitative relations between void statistics measured for
two populations of galaxies, such as SDSS red and blue galaxies, and their number density
and bias.

Key words: methods: numerical – methods: statistical – galaxies: statistics – large-scale struc-
ture of Universe.

1 IN T RO D U C T I O N

Understanding the behaviour of voids in the galaxy distribution
is one of the remaining unsolved problems of large-scale struc-
ture. Voids are a powerful probe of non-linear large-scale structure.
They probe high-order statistical properties, but do so on scales
that should be accessible in perturbation theory. One interesting
property of voids is a scaling behaviour implied in the hierarchical
model of higher order clustering. The hierarchical scaling has been
verified many times, in a variety of samples, including the CfA red-
shift survey (Maurogordato & Lachièze-Rey 1987; Vogeley et al.
1994), Perseus-Pisces Fry et al. (1989), the Southern Sky Redshift
Survey (Maurogordato, Schaeffer & da Costa 1992) and IRAS 1.2 Jy
(Bouchet et al. 1993). Particularly intriguing are recent results from
2dFGRS (Croton et al. 2004a, 2007) and from DEEP2 and SDSS
(Conroy et al. 2005; Tinker et al. 2008), in which the scaling con-
tinues to hold with improved precision over larger scales, for both
magnitude selected subsamples and random dilutions.

However, in data (Bouchet et al. 1993; Gaztañaga 1994; Croton
et al. 2004b; Ross, Brunner & Myers 2006, 2007), and in numerical
simulations (Fry et al. 2011), the hierarchical clustering on which
the scaling is based is not obeyed. The hierarchical normalization
removes much of the variation, but the hierarchical amplitudes still
depend on scale, and the premise of the scaling does not hold
in detail. A recent alternative to purely hierarchical behaviour is
provided by the halo model (Ma & Fry 2000a,b; Scoccimarro et al.
2001). In this paper, we show that void scaling can be understood
in the halo model.

In Section 2, we review statistics and display the connection
between voids and correlation functions, and we apply the halo
model. Many common models are realizations of the halo model,
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and we present several of these in Section 3. In Section 4, we test
the model against numerical results and present several halo model
scaling relations. Section 5 contains a final discussion.

2 STATISTIC S O F VO ID S

2.1 Generating functions

The probability that a volume be empty of galaxies, or void, is
an intriguing statistical measure, accessible to perturbation theory
on large scales and yet an inherently non-linear statistic on all
scales. We study the properties of voids in the context of the halo
model, the essence of which is that galaxies come in groups or
clusters embedded in haloes; the number of galaxies is then the
sum over haloes of the number within each halo. The generating
function formulation of the halo model (Fry et al. 2011) is useful for
studying combinatorics, and particularly voids. Let the probability
and moment generating functions be

G(z) =
∞∑

n=1

Pn zn = 〈zn〉, (1)

M(t) =
∞∑

k=1

1

k!
mk tk, (2)

where Pn is the probability that a randomly placed volume contains n
galaxies, and mk is the order k factorial moment of the distribution,
mk = N̄k μ̄k = 〈 n[k] 〉, where n[k] = n(n − 1) ··· (n − k + 1) =
n!/(n − k)!. Since both probabilities and moments can be obtained
as derivatives of G, probabilities as

Pn = 1

n!

dn

dzn
G(t)

∣∣∣∣
z=0

, (3)
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582 J. N. Fry and S. Colombi

and moments as

mk = 〈n(n − 1) · · · (n − k + 1)〉 = dk

dzk
G(z)

∣∣∣∣
z=1

, (4)

we see that the generator M(t) of moments, so that mk =
dkM(t)/dt k|t=0 is thus M(t) = G(t + 1) (cf. Szapudi & Szalay 1993).
Connected, irreducible, discreteness corrected moments kn = N̄nξ̄n

are similarly obtained from K(t) = ln M(t) = ln G(t + 1).
In terms of the irreducible ξ̄n, the probability that a volume V be

empty of galaxies, or void, is then a sum over all orders,

P0 = G(0) = exp [K(−1)] = exp

[ ∞∑
k=1

(−1)k

k!
N̄kξ̄k

]
, (5)

a result also obtained by considering Venn diagrams and contour
integrals in the complex plane (Fall et al. 1976; White 1979; Fry
1986). From the void probability, we can write the statistic

χ = − ln P0

N̄
=

∞∑
k=1

(−1)k

k!
N̄k−1ξ̄k . (6)

In observations, in perturbation theory, and in stable clustering, we
often take the volume-averaged correlations to follow the so-called
hierarchical pattern,

ξ̄n = Sn ξ̄ n−1. (7)

(S2 = 1). In the hierarchical case, the void probability becomes

χ =
∞∑

k=1

(−1)k−1

k!
Sk (N̄ ξ̄ )k−1 = χ (N̄ ξ̄ ), (8)

a power series in the variable N̄ ξ̄ . This is the hierarchical scaling
relation: the void statistic − log P0/N̄ is a function of the scaling
variable N̄ ξ̄ , where the void probability P0, the mean count N̄ =
〈N〉 and the scaling variable N̄ ξ̄ = (〈N2〉 − 〈N〉2 − 〈N〉)/〈N〉 are
all observationally measurable quantities. When N̄ ξ̄ is small, χ →
1, the Poisson result P0 = e−N̄ , with clustering appearing only as
a small correction. When N̄ ξ̄ is large, the void scaling behaviour
is a strong test of hierarchical clustering to high orders. A similar
scaling behaviour has been found for gaps in the rapidity distribution
resulting from proton–antiproton, proton–nucleus and relativistic
heavy ion collisions (Hegyi 1992; Malik 1996; Ghosh et al. 2001).

Several models have been presented with specific analytic forms
for the void scaling function χ (N̄ ξ̄ ), useful against which to com-
pare observational and numerical results. Details are contained in
Appendix A.

Void scaling has been tested and found to hold in observational
data from the CfA redshift survey (Maurogordato & Lachièze-Rey
1987; Vogeley et al. 1994), Perseus-Pisces (Fry et al. 1989), the
Southern Sky Redshift Survey (Maurogordato et al. 1992), the IRAS
1.2 Jy redshift catalogue (Bouchet et al. 1993), and more recently
in the 2dFGRS (Croton et al. 2004a, 2007), and DEEP2 and SDSS
(Conroy et al. 2005). However, it is not clear that the scaling should
be obeyed: although the normalization to Sk = ξ̄k/ξ̄

k−1 removes
much of the dependence of ξ̄k on scale, the Sk are not in fact con-
stant (Bouchet et al. 1993; Gaztañaga 1994; Croton et al. 2004b,
2007; Ross et al. 2006, 2007), and the galaxy distribution does not
obey equation (7). To understand this, it is interesting to look at
implications for voids in the halo model.

2.2 The halo model

Reduced to its most basic terms, in the halo model total galaxy count
is the sum over clusters of the number of objects in a cluster. On

large scales, boundary effects are unimportant and clusters can be
considered as point objects that are either entirely inside or entirely
outside, the point cluster limit of the halo model (Fry et al. 2011).
In the limit that clusters are unresolved (the point cluster limit,
each cluster is either entirely within V or entirely outside of V),
and all clusters have identical occupation distribution (each cluster
has the same mean count N̄i and higher order moments μ̄n,i), the
generating function total count probabilities is the composition of
the halo number and halo occupancy generating functions,

G(z) = gh [gi (z)] , (9)

and galaxy count moments are simply related to correlations ξ̄k,h of
halo number and moments μ̄k of halo occupation, with N̄g = N̄hN̄i ,
and

ξ̄2 = ξ̄2,h + μ̄2,i

N̄h

(10)

ξ̄3 = ξ̄3,h + 3μ̄2,i ξ̄2,h

N̄h

+ μ̄3,i

N̄2
h

(11)

ξ̄4 = ξ̄4,h + 6μ̄2,i ξ̄3,h

N̄h

+ (4μ̄3,i + 3μ̄2
2,i)ξ̄h

N̄2
h

+ μ̄4,i

N̄3
h

(12)

ξ̄5 = ξ̄5,h + 10μ̄2,i ξ̄4,h

N̄h

+ (10μ̄3,i + 15μ̄2
2,i)ξ̄3,h

N̄2
h

+ (10μ̄2,i μ̄3,i + 5μ̄4,i)ξ̄2,h

N̄3
h

+ μ̄5,i

N̄4
h

. (13)

The moments ξ̄k are in general the sum of many terms, with differ-
ent dependences on scale, and galaxies do not in general have the
constant amplitudes of the hierarchical scaling pattern. However, if
only the underlying cluster correlations obey ξ̄k,h = Sk ξ̄ k−1

h , these
relations contain a more subtle scaling.

The combinatorics implied by the composition of generating
functions in equation (9) and the general pattern of equations (10)–
(13) remain true in the full halo model, in which occupation statistics
depend on halo mass, with a distribution described by the halo mass
function dn/dm and in which haloes can span the boundaries of
V, with two modifications (Fry et al. 2011). First, when haloes are
not identical but range over a distribution of masses, every term
in G(z) = 〈 zN 〉, and in particular the occupation moments μ̄n,i ,
are further averaged over the halo mass function. After averaging
over haloes of different mass, with mass-dependent occupation dis-
tribution and correlation strength, the net effect is to replace the
occupation moment μ̄k with

μ̄k → b̄k

b̄
μ̄k (14)

and halo correlations with

ξ̄k,h → b̄k

b̄k
h

ξ̄h, (15)

where the mean halo bias b̄h is b(m) as given in Mo, Jing & White
(1997), averaged over the occupied halo mass function,

b̄h =
∫

dm (dn/dm) b(m)∫
dm (dn/dm)

, (16)

the mean galaxy bias b̄ is weighted by occupation number,

b̄ =
∫

dm (dn/dm) b(m) 〈N〉∫
dm (dn/dm) 〈N〉 , (17)
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and b̄k is weighted by the occupation number factorial moment
〈N[k]〉,

b̄k =
∫

dm (dn/dm) 〈N [k]〉 b(m)∫
dm (dn/dm) 〈N [k]〉 , (18)

(b̄ = b̄1). The weighted bias factors b̄k are generally of the or-
der of unity (but since higher order bias factors are weighted by
higher powers of mass and bias is typically an increasing function
of mass, b̄k is rising with k). If halo correlations are hierarchical,
ξ̄k,h = Sk,h ξ̄ k−1

2,h , galaxy correlations are then found to be polyno-
mial functions of the combination N̄hξ̄h or b̄N̄hξ̄h/b̄h,

N̄gξ̄g = n̄g

n̄h

b̄

b̄h

(
b̄ N̄hξ̄h

b̄h

+ b̄hb̄2μ̄2

b̄2

)
, (19)

N̄2
g ξ̄3,g = n̄2

g

n̄2
h

b̄

b̄h

[
S3,h

(
b̄N̄hξ̄h

b̄h

)2

+ 3b̄2μ̄2

b̄

b̄N̄hξ̄h

b̄h

+ b̄hb̄3μ̄3

b̄2

]
,

(20)

N̄3
g ξ̄4,g = n̄3

g

n̄3
h

b̄

b̄h

[
S4,h

(
b̄N̄hξ̄h

b̄h

)3

+ 6b̄2μ̄2S3,h

b̄

(
b̄N̄hξ̄h

b̄h

)2

+
(

4b̄3μ̄3

b̄
+ 3b̄2

2μ̄
2
2

b̄2

)
b̄N̄hξ̄h

b̄h

+ b̄hb̄4μ̄4

b̄2

]
, (21)

N̄4
g ξ̄5,g = n̄4

g

n̄4
h

b̄

b̄h

[
S5,h

(
b̄N̄hξ̄h

b̄h

)4

+ 10b̄2μ̄2S4,h

b̄

(
b̄N̄hξ̄h

b̄h

)3

+
(

15b̄2
2μ̄

2
2

b̄2
+ 10b̄3μ̄3

b̄

)
S3,h

(
b̄N̄hξ̄h

b̄h

)2

+
(

10b̄2b̄3μ̄2μ̄3

b̄2
+ 5b̄4μ̄4

b̄

)
b̄N̄hξ̄h

b̄h

+ b̄hb̄5μ̄5

b̄2

]
, (22)

etc. For small R the quantities μ̄k rise monotonically with scale, but
on large scales μ̄k and bk become constant (Fry et al. 2011).

In the halo model, the galaxy correlations are not simply hi-
erarchical, but every term in equation (6), though no longer a
simple power of N̄ ξ̄ , is a (polynomial) function of N̄hξ̄h If we
assume that the halo distribution follows the hierarchical pattern
ξ̄k,h = Sk,h ξ̄ k−1

h , then χ is a function of the variable N̄hξ̄h. But,
by equation (19), N̄gξ̄g is a (linear) function of N̄hξ̄h. Thus, in the
halo model, although the galaxy amplitudes Sk are not constant,
χ remains a function of N̄gξ̄g: the hierarchical scaling for voids
holds, even though ξ̄k,g no longer follows the simple hierarchical
pattern.

The pattern is seen in general in the generating function formu-
lation. The probability generating function is additionally averaged
over halo mass m,

G(z) = 〈 gh[gi(z)] 〉m, (23)

leading to the replacements of equations (14) and (15); and so this
pattern continues to all orders. With no empty haloes, the halo
occupancy generating function has gi(0)|m = p0|m = 0 for every
halo mass m, and so we have the very useful result

P0,g = 〈 gh [gi(0)] 〉m = 〈 gh(0) 〉m = 〈 p0,h 〉m = P0,h. (24)

This is not a surprise: even when averaged over a distribution of
haloes of different mass, no haloes means no galaxies, no galaxies
means no haloes.

3 N U M E R I C A L R E S U LT S

We present results for statistics of voids in the distribution of dark
matter, galaxies, and haloes for the numerical simulation studied
in Fry et al. (2011). The simulation is performed with the adaptive
mesh refinement (AMR) code RAMSES (Teyssier 2002) for a � cold
dark matter (�CDM) cosmology with �m = 0.3, �� = 0.7, H0 =
100 h km s−1 Mpc−1 with h = 0.7, and normalization σ 8 = 0.93,
where σ 8 is the root mean square initial density fluctuation in a
sphere of radius 8 h−1 Mpc extrapolated linearly to the present time.
The simulation contains 5123 dark matter particles on the AMR
grid, initially regular of size 5123, in a periodic cube of size Lbox =
200 h−1 Mpc. The hierarchical amplitudes Sk for mass, galaxies,
and haloes in this simulation are presented by Fry et al. (2011), and
further details can be found in Colombi, Chodorowski & Teyssier
(2007).

From the simulation data, we compute for spheres of radius R =
0.5–25 h−1 Mpc the probability P0 that the volume be empty and
the moments

N̄ = 〈N 〉 (25)

and

N̄2ξ̄ = 〈 N2 〉 − 〈N 〉2 − 〈N 〉 . (26)

The binomial uncertainty in the void probability is (Maurogordato
& Lachièze-Rey 1987; Hamilton 1985)

�P0 =
√

P0(1 − P0)

Ntot
, (27)

where Ntot is the total number of independent volumes sampled,
with is an additional cosmic variance contribution proportional to
ξ̄ (L), the variance on the scale of the sample (Colombi, Bouchet
& Schaeffer 1995), which is often insignificant. In computing the
uncertainty in χ = − ln P0/N̄ , the numerator and denominator are
far from independent, but in fact are almost exactly anticorrelated,
so that(

�χ

χ

)
≈

∣∣∣∣ �P0

P0 | log P0| − �N̄

N̄

∣∣∣∣ (28)

(Colombi et al. 1995). We adopt this as our error.
Fig. 1 shows the scaling behaviour of the void probability,

− log P0/N̄ = χ (N̄ ξ̄ ), evaluated in the simulation. Points repre-
sent results from spherical volumes of size R ranging from R =
0.5 h−1 Mpc to R = 25 h−1 Mpc. Statistics are evaluated for the full
substructure catalogue, 64 316 substructures in 50 234 haloes, and
for random dilution by factors of 2, 4 and 8. The two populations
trace different, relatively well-separated loci, the upper points com-
ing from the substructures and the lower from the haloes. Curves
show models as presented in Fig. A1 in the Appendix; the dotted
(black) curve shows the minimal model (equation A5), the solid
(blue) curve shows the negative binomial (equation A14), the long
dashed–short dashed (green) curve the quasi-equilibrium model of
Saslaw & Hamilton (1984), the dot–dashed (red) curve the limiting
lognormal or Schaeffer model (equation A21) and the long dashed
curve the gravitational instability result of Bernardeau (1992) be-
fore smoothing. For small volumes, χ → 1, the Poisson limit, for
all models, and the first correction 1 − 1

2 N̄ ξ̄ is also the same for
all models; but for N̄ ξ̄ � 1 differences begin to become apparent.
As found in observations, the substructure ‘galaxies’ lie close to
the negative binomial curve. Fig. 2 shows the scaling behaviour
of haloes of three different mass thresholds, from 2 × 1011 M�
to 4 × 1012 M�. Haloes of all masses are seen to follow well the
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584 J. N. Fry and S. Colombi

Figure 1. Scaling statistic χ = − ln P0/N̄ plotted against scaling variable
N̄ ξ̄ , for galaxies (squares) and haloes (circles). Lines show models, as in
Fig. A1 in the Appendix. Colours red, blue, green, cyan, magenta show
results for the full sample of haloes or substructure galaxies, and for random
dilutions by successive factors of 2.

Figure 2. Scaling curves for halo samples of different masses. Red symbols
show all haloes, blue symbols show haloes with mass M > 5 × 1011 M�, and
green symbols show M > 4 × 1012 M�. Circles, squares and triangles show
the full catalogues and dilutions by successive factors of 2. Dotted (black)
and solid (blue) lines show the minimal and negative binomial curves, as
before, and the dashed (red) line shows the geometric hierarchical model of
equation (A16).

middle curve, corresponding to the geometric hierarchical model of
equation (A16).

We see that the numerical results follow the predictions of hier-
archical scaling, but this is not necessarily what is expected. Within
the uncertainties of sampling a small number of objects, the ampli-
tudes for haloes may be consistent with constant values, but those
for mass, and especially for galaxies, are not. The normalization
from ξ̄k to Sk = ξ̄k/ξ̄

k−1
2 removes much of the variation with scale

(the unnormalized five-point function for mass covers more than
10 decades), but the resulting Sk for galaxies are not constant, as
shown in figs 5 and 6 of Fry et al. (2011), where the residual varia-
tion is still a factor of up to 10. Thus, we are faced with the fact that
hierarchical void scaling is observed, but its premise does not hold.
The halo model provides an explanation: in equations (19)–(22),
ξ̄2 and the higher order ξ̄k are all functions of N̄hξ̄h, and N̄hξ̄h is
linearly related to N̄gξ̄g . Fig. 3 and equation 19 illustrate this in the
simulation results. Fig. 3 shows N̄gξ̄g and N̄hξ̄h as a function of
scale R, for the full samples and for the two-, four-, an eight-fold

Figure 3. N̄g ξ̄g and N̄hξ̄h plotted versus cell radius r. Symbols of the same
colour show volumes of different radius for a fixed data sample. Colours
black, red, blue, green, cyan, magenta, yellow show random dilutions by
successive factors of two.

Figure 4. N̄g ξ̄g versus N̄hξ̄h for the same data plotted in Fig. 3. Symbols
of the same colour show volumes of different radius for a fixed data sample:
black shows the full sample; red, blue, green, cyan, magenta and yellow.
show random dilutions by successive factors of 2. For coloured symbols
(red) etc., both galaxies and haloes are diluted by same factor.

dilutions. Measured values are widely distributed; however, from
equation (19), on large scales N̄gξ̄g is related to N̄hξ̄h, as illustrated
in Fig. 4. On large scales, where halo size is negligible, we expect to
have no galaxies only if we have no haloes, a result also implied in
the composition of generating functions. Fig. 5 shows P0, g versus
P0, h for the same volumes.

The halo model contains the requirement P0, g = P0, h, no galax-
ies means no haloes, no haloes means no galaxies, from equation
(24) or from the fundamental sum over the occupancy of each halo,
Ng = ∑

Ni. From this, it is possible to obtain relations between void
scaling curves for galaxies and their haloes, or between two differ-
ent galaxy populations. Fig. 6 illustrates a mapping suggested by
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Figure 5. Probability a volume is void of galaxies P0g versus probability
the same volume is void of haloes P0h. Symbols of the same colour show
volumes of different radius for a fixed data sample. Different colours show
random dilutions by a factor of 2, black, red, blue, green, cyan, magenta,
yellow.

Figure 6. Mappings between galaxy and halo scaling curves implied by
the halo model. Filled squares show the void scaling curve for galaxies,
χg = − ln P0,g/N̄g as a function of xg = N̄g ξ̄g , and filled circles show the
scaling curve for haloes, χh = − ln P0,h/N̄h as a function of xh = N̄hξ̄h.
Open circles show the mapping of the halo data implied by the halo model,
with χh scaled by the factor of N̄h/N̄g = 1/1.28, plotted as a function of xh

scaled by the factor of 1.222 × 1.28 = 1.91. On large scales, this becomes the
same as the galaxy curve. Straight lines show power-law behaviour x−ω with
ω = 0.79, separated vertically by a factor of (bg/bh)2ω × (N̄g/N̄h)ω−1 =
1.30 or horizontally by a factor of (bg/bh)2(N̄g/N̄h)1−1/ω = 1.39.

the halo model, from the halo curve to the galaxy curve. The figure
shows the scaling statistic for galaxies − ln P0,g/N̄g (filled squares),
for haloes − ln P0,h/N̄h (filled circles) and for haloes mapped ver-
tically by the ratio of number

χg

χh

= − log P0/N̄g

− log P0/N̄h

= N̄h

N̄g

= 1

N̄i

= 1

1.28
, (29)

and horizontally by the ratio of the factors in N̄b2,

N̄gξ̄g

N̄hξ̄h

= N̄i (bg/bh)2 = (1.28)(1.22)2 = 1.91 (30)

(open circles). The mapping is indicated by arrows for a selected
sample of points, but every open circle originates from a filled
circle. The mapped halo curve and the galaxy curve are different for
N̄ ξ̄ � 1, where resolved halo form factors affect the statistics (Fry
et al. 2011), but they merge for N̄ ξ̄ � 1. See also Tinker & Conroy
(2009).

We obtain some inequalities comparing galaxies with their parent
haloes. Write the scaling variable as x = N̄ ξ̄ . All halo scaling curves
lie above the minimal scaling curve, and so χh(xh) > χmin(xh) >

1/xh. With χg/χh = N̄g/N̄h and with xg/xh = b2
gN̄g/b

2
hN̄h, this

becomes a limit on χg,

χg = N̄h

N̄g

χh = (N̄hb
2
h)

(N̄gb2
g)

b2
g

b2
h

χh = xh

xg

χh

b2
g

b2
h

>
b2

g

b2
h

1

xg

. (31)

Since b(m) is an increasing function of mass and bg (equation 17)
is weighted to larger m than bh (equation 16), we thus expect χg >

1/xg. As a horizontal scaling, we expect χg = χh at a value

xg

xh

>
b2

gN̄g

b2
hN̄h

. (32)

Since both bg/bh > 1 and N̄g/N̄h > 1, we expect that in general,
galaxy scaling curve will be to the right of the halo scaling curve.

To the extent that the scaling curve can be represented as a power
law, χ = Ax−ω (Balian & Schaeffer 1988), we can write quantitative
relations. Power-law behaviour implies a vertical mapping between
two scaling curves at the same value of x,

χg

χh

=
(

b2
g

b2
h

)ω(
n̄g

n̄h

)ω−1

, (33)

or a horizontal mapping,

xg

xh

= b2
g

b2
h

(
n̄g

n̄h

)1−1/ω

(34)

between two curves at the same value of χ . Since ω is often near
1, the horizontal mapping is typically much more dependent on
relative bias and only weakly on relative number. This horizontal
mapping is illustrated in Fig. 6, with ω = 0.79.

We can compare two galaxy populations, say i and j. The simpler
case is when both derive from essentially the same halo population;
then we have the mappings

χi

χj

= n̄j

n̄i

, (35)

xi

xj

= b2
i

b2
j

n̄i

n̄j

. (36)

With a power-law halo scaling function χh = Ax−ω, we find the
horizontal mapping χ i = χ j at

xi

xj

= b2
i

b2
j

(
n̄i

n̄j

)1−1/ω

. (37)

If halo scaling follows the minimal model, with ω ≈ 1, number
density does not enter at all. For the negative binomial model, on
scales of interest ω ≈ 0.8 and 1 − 1/ω ≈ −0.25, still a very weak
dependence. Such a weak dependence on number means that we can
expect scaling curves for populations with higher bias to be shifted
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Figure 7. Scaling function χ = − ln P0/N̄ plotted against scaling variable
N̄ ξ̄ for subsets of dark matter particles. The top (black) curve is derived
from a subsample of 2563 = 16 777 312 points, and each curve below that is
diluted by a further factor of

√
2; the final curve, diluted by a factor of 1024,

then represents 16 384 points. Dashed (cyan) curves show the behaviour
expected from gravitational instability (equation A6), smoothed for spectral
index n = +1, 0, −1, −2 and −3 (bottom to top).

to the right, by a factor of approximately b2
rel, or shifted upwards,

by a slightly larger factor.
We can also compare galaxy populations that derive from distinct

halo populations that have different number density and correlation
strength, as long as they follow the same scaling curves, as in
Fig. 2. Here, it is the relative bias bg, i/bh, i and relative number
density n̄g,i/n̄h,i , etc., that appear in the scaling relation. For power
law χ ∼ x−ω, this reduces to the single horizontal scaling

xi

xj

= (bg/bh)2
i

(bg/bh)2
j

[
(n̄g/n̄h)i
(n̄g/n̄h)j

]1−1/ω

. (38)

Finally, we present results for voids in the mass or dark matter
distribution. The number of dark matter particles is so large that
unless diluted substantially, only very small volumes are empty. We
begin with a random sample of one out of eight, or 2563 particles,
for which we compute the full PN for volumes with R = 0.2 h−1 Mpc
to R = 25 h−1 Mpc by factors of

√
2. We then take advantage of the

generating function to plot results for dilutions by a factor of λ,

P0(λ) = G(1 − λ), (39)

for λ = 2k/2, k = 0 to 20, or effective number of points from
2563 = 16 777 216 down to 16 284. Fig. 7 shows the scaling function
χ = − ln P0/N̄ plotted against the scaling variable N̄ ξ̄ for the full
sample and the 20 dilutions. We note that Croton et al. (2004a)
do not test scaling, but present results for only one density, which
from their simulation parameters should be equivalent to the second
curve below the median in Fig. 7.

The dark matter results do not follow the scaling implied by grav-
itational instability, but this is because most of the volumes sampled
are not in the large-scale, perturbative regime. To compare with per-
turbative gravitational instability, Fig. 8 shows results restricted to
large volumes, R = 6.3, 8.8, 12.5 and R > 17 h−1 Mpc. For suf-
ficiently large R, the measurements seem to approach the curve
predicted for gravitational instability for the appropriate value of
n ≈ −2, where d(ln ξ̄ )/d(ln R) = −(3 + n).

The small R behaviour of the halo model also has its own,
modified scaling behaviour, with power-law correlations ξ̄k ∝
R−(k−1)γ+δ , where γ = (9 + 3n)/(5 + n) and δ = (3 + n)p′/(5 + n);

Figure 8. Scaling curves χ = − ln P0/N̄ versus N̄ ξ̄ for point distributions
that track dark matter, for large volumes: R = 6.3 (green), R = 8.8 (blue),
R = 12.5 (red) and R > 16 h−1 Mpc (black). Filled symbols show measured
results; open symbols show gravitational instability results smoothed for
effective spectral index n, where 3 + n = −d ln ξ̄ /d ln R. For these scales,
n takes on values −2 < n < −1. Dashed (cyan) curves are as in Fig. 7.

Figure 9. The curves of Fig. 7 scaled as in equation (41), with �=−0.0625.
Points are plotted for R < 1 h−1 Mpc, while connecting lines are extended
for all R. Dashed (cyan) curves are as in Fig. 7; measured values typically
lie between −2 and −1.

p′ characterizes the small mass behaviour of the halo mass function,
dn/dm ∼ νp′

/m2 (Ma & Fry 2000a; Scoccimarro et al. 2001). In
terms of ξ̄2, this is

ξ̄k ∼ ξ̄ (k−1)(1+�)−�, (40)

with � = δ/γ = p′/(3 − p′), independent of spectral index n. This
dependence implies a modified scaling,

− ln P0/N̄ = 1 + ξ̄−� ψ(N̄ ξ̄ 1+�), (41)

expected to hold at small R. This behaviour was anticipated numer-
ically by Colombi, Bouchet & Hernquist (1996), who also point
out that this modified scaling cannot persist on all scales. Fig. 9
shows the success of this scaling for p′ = −0.2, � = −0.0625. This
value is different, even in sign, from the scaling exponent inferred
from low-order hierarchical amplitudes, although both are numer-
ically small, and may indicate a change in the mass dependence
of halo mass function at smaller masses. In evaluating results for
dark matter particles, we must also keep in mind that it is pos-
sible that some effect remains of the initial grid. Colombi et al.
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(1995) suggest that void results should be reliable only P0 � 1/e,
but we see no change of behaviour on different sides of this
boundary.

4 D ISCUSSION

The implication of the halo model for void probability on large
scales is simple: to have no galaxies means no haloes, no haloes
means no galaxies. This point cluster limit of the halo model pro-
vides a natural answer to the otherwise puzzling question, Why do
voids obey the hierarchical scaling when the correlation functions
do not satisfy the hierarchical premise, constant Sn. In the limit
that the volume considered is large compared to halo sizes, void of
galaxies means void of haloes, the void probability P0 is the same,
and scaling curves are related by number and by clustering strength
or bias. Since N̄g > N̄h (a halo contains one or more galaxies)
and ξ̄g > ξ̄h (bias is an increasing function of mass), we anticipate
points on the scaling plot move down and to the left.

In the simulations as well as in observations, the negative bi-
nomial scaling curve is a good approximation to that for galax-
ies; the weak clustering lognormal curve is much less favoured,
and the more strongly clustered lognormal even less so. We ex-
pect the void scaling relation to provide different scaling curves
for different galaxy populations; that galaxy results are often in
agreement with the negative binomial curve can be attributed to the
number density and clustering strength of typical galaxies. With
different results for different galaxy populations, in a direction con-
sistent with relative bias and number density, we conclude that
there is no fundamental reason that galaxies follow the negative
binomial scaling curve, but that this follows from typical galaxy
parameters.

The success of void scaling for galaxies requires that the un-
derlying halo distribution follows the hierarchical pattern of higher
order clustering. In our simulations (Fry et al. 2011), the halo Sk,h

are approximately constant, roughly S3,h ≈ 1, S4,h ≈ 2 and S5,h ≈ 3,
over a limited range of scales squeezed between the finite size of the
simulation on the large end and the ability to separate extended ob-
jects on the small end. These values of the Sk,h do not change much
for different mass ranges. More important, as seen in Fig. 2, differ-
ent halo samples have remarkably similar scaling curves: for mass
thresholds ranging over a factor of 20 and number densities different
by a factor of more than 4, the scaling curves are indistinguishable
and seem to follow well the geometric halo mode curve of equation
(A16). The scaling is important, because there is essentially no direct
observational information for Sk,h. What results do exist are only for
much higher mass thresholds: Jing (1990) measures the void scaling
function for ACO clusters and Cappi, Maurogordato & Lachieze-
Rey (1991) for samples defined by Postman, Geller & Huchra
(1986) and Tully (1987), but their results only reach N̄ ξ̄ � 2, for
which all model scaling curves are much the same. Jing & Zhang
(1989) find that Abell clusters have a hierarchical three-point func-
tion with amplitude independent of richness class, and Cappi &
Maurogordato (1995) also find, to a degree, constant Sk amplitudes
for Abell and ACO clusters (but with a systematic difference be-
tween northern and southern galactic hemispheres), with numerical
values S3 ≈ 3, S4 ≈ 15, S5 ≈ 100, appropriate to the high thresh-
old, rare halo limit Sk = kk − 2 of Bernardeau & Schaeffer (1999).
These do not apply directly to statistics of haloes that host galaxies,
including single galaxies and so extend down to galaxy masses;
a theory that predicts the halo amplitudes Sk,h or the halo scaling
curve for mass thresholds of 1011 or 1012 M� has yet to be found.

Figure 10. Void scaling for SDSS red and blue galaxies. Solid circles show
SDSS data from Tinker et al. (2008). Open triangles show direct mapping,
appropriate if the two samples inhabit the same haloes. Open squares show
mapping assuming the two samples derive not from the same haloes but
from haloes that follow the same scaling curve. Open circles are mapped
only by bias, as appropriate for a power-law scaling with ω = 1.

Dark matter behaves differently. For dark matter, the behaviour of
voids depends strongly on the density of particles. In the quasi-linear
regime on large scales, the behaviour seems to follow the predictions
of gravitational instability. For mass, there is no smallest object, no
smallest cluster, and for any scale there are always clusters smaller
and larger than that size. The halo model has implications for high-
order functions, Small scales follow a modified scaling predicted
by the halo model, as in equation (41).

Halo model mappings have been derived in order to apply to
observational data. Tinker et al. (2008) present in their Fig. 7(d)
void scaling curves for SDSS blue and red galaxies in which the
locus for red galaxies is shifted substantially to larger values of
N̄ ξ̄ ; similar results are found for red and blue 2dFGRS galaxies
by Croton et al. (2007). Fig. 10 shows the SDSS data (filled cir-
cles) and the results of halo model scalings applied to red and
blue galaxies for three different assumptions about the underlying
haloes: assuming red and blue galaxies reside in the same haloes
(open triangles), assuming a power-law halo scaling curve with
ω = 1 (open circles), and assuming their parent haloes trace same
halo scaling curve (open squares), using the values bred = 1.02,
bblue = 0.85, nred = 0.00328, nblue = 0.00433 h3 Mpc−3 and ratios
(bg/bh)red = 1.53, (ng/nh)red = 1.93, (bg/bh)blue = 1.18, (ng/nh)blue =
1.21, computed from analytic halo occupation distributions for red
and blue samples given by Tinker et al. (2008). Blue squares and
red triangles begin to show departures from simple scalings, which
should apply only in the large-scale limit. The last, relative scal-
ing is perhaps the most realistic, but the halo assumptions overlap
and all of the scalings behave similarly. This is a confirmation that
the ideas of the halo model apply to observations, as well as to
simulations.

The void scaling results illustrate yet another success of the halo
model in describing non-linear phenomena that it was not designed
and not optimized to explain. Applied to dark matter, the model
may still be only an approximation, but for galaxies, on scales
where details of the structure of haloes are irrelevant, it is almost
necessarily true: the total number of galaxies is the sum over haloes
of the number of galaxies in each halo, and the combinatoric results
of the halo model are independent of whether there is such a thing
as a universal profile shape or not.
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Gaztañaga E, 1992, ApJ, 398, L17
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Gaztañaga E., Yokohama J., 1993, ApJ, 403, 450
Ghosh D., Deb A., Ghosh J., Chattopadhyay R., Kayum Jafri A., Azizar

Rahman M., Sarkar S. R., 2001, Astropart. Phys., 15, 329
Greenwood M., Yale G. U., 1920, J. R. Stat. Soc. A, 83, 255
Hamilton A. J. S., 1985, ApJ, 292, L35
Hamilton A. J. S., 1988, ApJ, 332, 67
Hegyi S., 1992, Phys. Lett. B, 274, 214
Hubble E., 1934, ApJ, 79, 8
Jing Y.-P., 1990, A&A, 233, 309
Jing Y.-P., Zhang J.-L., 1989, ApJ, 342, 639
Klauder J. R., Sudarshan E. C. G., 1968, Fundamentals of Quantum Optics.

Benjamin, New York
Ma C.-P., Fry J. N., 2000a, ApJ, 538, L107
Ma C.-P., Fry J. N., 2000b, ApJ, 543, 503
Malik S., 1996, Phys. Rev. D, 54, 3655
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A P P E N D I X A : MO D E L S

In this Appendix, we present several models with specific analytic
forms for the void scaling function χ (N̄ ξ̄ ), useful against which
to compare observational and numerical results. Many of these
models, introduced previously in a variety of different contexts (see
Fry 1986; Mekjian 2007), can be realized as halo models with a
Poisson halo distribution; several were discussed by Sheth (1996).
With mean μ, probabilities pn = μn e−μ/n!, the Poisson generating
function is

g(z) =
∞∑

n=0

1

n!
μn e−μ zn = eμ(z−1); (A1)

in particular, the void probability is P0 = e−N̄h = e−N̄/N̄i . For an
unclustered halo distribution, correlations of galaxy number are
given by the last term in equations (10)–(13), and a Poisson halo
distribution is always hierarchical of a sort, with scaling function
χ = − ln P0/N̄ = 1/N̄i , scaling variable N̄ ξ̄ = N̄i μ̄2,i and ampli-
tudes Sk = μ̄k,i/μ̄

k−1
2,i all determined by the occupation distribution

(although not every occupation distribution has constant Sk). Fig. A1
compares models detailed in the following.

A1 Minimal Poisson model

A Poisson sum of clusters with mean μ with Poisson occupancy
distribution with mean ν has

G = gh[gi(z)] = exp
(
μ [eν(z−1) − 1]

)
. (A2)

From derivatives of G we have moments 〈N [k] 〉 (equation 4),

N̄ = G′(1) = μν, (A3)

N̄2ξ̄ = G′′(1) − [G′(1)]2 = μν2, (A4)

from which we obtain ν = N̄ ξ̄ , μ = 1/ξ̄ , void probability P0 =
G(0) = exp

[
−(1 − e−N̄ ξ̄ )/ξ̄

]
and thus
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Figure A1. Model void scaling functions χ (N̄ ξ̄ ). The solid (blue) line
shows the negative binomial model (equation A14); the doted (black) line
shows the minimal model (equation A5); the short dashed/long dashed
(green) line shows the quasi-equilibrium model (equation A20); the dot–
dashed (red) line shows the Schaeffer or lognormal model (equation A21);
the long dashed (cyan) curve shows the gravitational instability prediction
(Section A6); and the short dashed (cyan) curves show the smoothed gravita-
tional instability result for effective power index n = −3, −2, −1, 0 and +1
(top to bottom).

χ = 1 − e−N̄ ξ̄

N̄ ξ̄
. (A5)

This minimal hierarchical model, with Sk = 1 for all k, saturates
the Schwarz inequality requirement that the hierarchical amplitudes
obey S2m S2n ≥ S 2

m+n (Fry 1986).
A Poisson occupation distribution formally includes possibility

empty haloes. The same result can be achieved by excising empty
haloes and rescaling (Fry et al. 2011), so that the occupation gener-
ating function becomes

gi(z) = eν(z−1) − e−ν

1 − e−ν
. (A6)

The remainder of the calculation is straightforward; although the
relation between ν and N̄i changes, again ν = N̄ ξ̄ and χ = (1 −
e−N̄ ξ̄ )/N̄ ξ̄ .

Equation (A5) is the limit a → ∞ of the hypergeometric model
of Mekjian (2007), which has

χa = (1 + N̄ ξ̄/a)1−a − 1

(1 − a)N̄ ξ̄/a
. (A7)

The minimal model scaling curve is plotted as the dotted (black)
line in Fig. A1.

A2 Negative binomial model

The negative binomial distribution with mean N̄ and parameter K
(also called Pascal, if K is an integer, or Pólya distribution if K is
real), has count probabilities

PN = (N + K − 1)!

N ! (K − 1)!

(N̄/K)N

(1 + N̄/K)N+K
. (A8)

For K = 1, this reduces to the Bose–Einstein distribution,
and is sometimes also referred to as modified Bose–Einstein.
This distribution appears in the frequency of industrial accidents
(Greenwood & Yale 1920), the distribution of ancient meteorites
found in China (Yang, Xuan & Li 1983), in quantum optics

(Klauder &. Sudarshan 1968), and in the multiplicity of charged
particles produced in high-energy collisions (Carruthers & Shih
1983, 1987; Carruthers 1991) and cosmic ray showers (Teich, Cam-
pos & Saleh 1987), as well as in large-scale structure (Neyman,
Scott & Shane 1953; Carruthers & Minh 1983; Carruthers & Shih
1983; Carruthers 1991; Elizalde & Gaztañaga 1992; Gaztañaga
1992; Gaztañaga & Yokohama 1993), where it is often found
to be a good approximation to the observed scaling curve of
galaxies.

The negative binomial can be realized as a Poisson sum of clusters
with logarithmic occupation distribution (Sheth 1995). The halo and
occupation generating functions are

gi(z) =
∞∑

n=1

−1

ln(1 − p)

pn

n
zn = ln(1 − pz)

ln(1 − p )
, (A9)

G(z) = exp

(
μ

[
ln(1 − pz)

ln(1 − p )
− 1

])
. (A10)

The probability of a void is G(0) = e−μ and χ = μ/N̄ ; it is only
necessary to relate these to moments N̄ , ξ̄ obtained from G′(0) and
G′ ′(0) as in equations (A3), (A4),

N̄ = −μp/(1 − p)

ln(1 − p)
, N̄2ξ̄ = −μp2/(1 − p)2

ln(1 − p)
. (A11)

Then,

χ = μ

N̄
= 1 − p

p
ln(1 − p), (A12)

N̄ ξ̄ = p

1 − p
, (A13)

χ = μ

N̄
= 1 − p

p
ln(1 − p) = ln(1 + N̄ ξ̄ )

N̄ ξ̄
. (A14)

It has been suggested that convergence of the logarithmic series
defined by equation (8) with Sk = (k − 1)! limits N̄ ξ̄ < 1; but the
probability generating function formulation has no restriction.

Equation (A14) is the limit a → 1 of the hypergeometric model
of Mekjian (2007). The negative binomial model scaling curve is
plotted as the solid (blue) line in Fig. A1.

A3 Geometric hierarchical model

An occupancy distribution with probability pn ∝ pn for n ≥ 1 has
occupancy generating function gi(z) = z(1 − p)/(1 − pz) and

G(z) = exp

(
μ

[
z(1 − p)

1 − pz
− 1

])
. (A15)

From the first and second moments, N̄ = μp/(1 − p) and N̄2ξ̄ =
2μp/(1 − p)2, we find p = 1

2 N̄ ξ̄/(1 + 1
2 N̄ ξ̄ ) and

χ = μ

N̄
= 1 − p = 1

1 + 1
2 N̄ ξ̄

. (A16)

The geometric halo model is the case a = 2 of the hypergeometric
model of Mekjian (2007), the model of Hamilton (1988) with Q =
1
2 , and also the ω = 1 instance of the form χ = 1/(1 + N̄ ξ̄/2ω)ω

cited in Alimi, Blanchard & Schaeffer (1990). Although not plot-
ted, the geometric model falls between the minimal and negative
binomial curves in Fig. A1.
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A4 Quasi-equilibrium model

Saslaw & Hamilton (1984) apply thermodynamics to obtain a grav-
itational quasi-equilibrium distribution function. The resulting dis-
tribution is once again a halo model, a Poisson sum of haloes, with
Borel occupation distribution (Sheth & Saslaw 1994; Sheth 1996),

pn = 1

n!
(nb)n−1 e−nb, (A17)

and with total count probabilities

PN = N̄ (1 − b)

N !

[
N̄ (1 − b) + Nb

]N−1
e−N̄ (1−b)−Nb. (A18)

The void probability is P0 = e−N̄(1−b), and as the second moment
gives

1 + N̄ ξ̄ = 1

(1 − b)2
, (A19)

the scaling function is

χ = 1√
1 + N̄ ξ̄

. (A20)

Saslaw and Hamilton assume the functional form b(n̄T −3) =
b0n̄T −3/(1 + b0n̄T −3) to interpolate between ideal gas (b → 0)
and virialized (b → 1) limits. Sheth (1995) shows that invoking
instead the form b = 1 − ln(1 + b0n̄T −3)/b0n̄T −3, (which has the
same limits), the negative binomial also arises as a quasi-equilibrium
model.

The quasi-equilibrium model scaling curve is plotted as the long
dashed/short dashed (green) line in Fig. A1. This model is also the
ω = 1

2 instance of the form χ = 1/(1 + N̄ ξ̄/2ω)ω cited in Alimi
et al. (1990).

A5 Lognormal model

It has been found that in the limit of very high threshold, a clipped
Gaussian field produces a distribution with Qk = 1, Sk = kk − 2 for
all k (Politzer & Wise 1984; Szalay 1988), the ν = 0 model of
(Schaeffer 1984) and a result that holds in the rare halo limit under
some very general condition (Bernardeau & Schaeffer 1999). For
this set of amplitudes the scaling function is written parametrically
(Schaeffer 1984) as

χ = (1 + 1
2 τ ) e−τ , y = N̄ ξ̄ = τ eτ . (A21)

This also constitutes the lower envelope of the lognormal distribu-
tion, suggested by Hubble (1934) and more recently considered by
Coles & Jones (1991); although the full lognormal distribution does
not in general scale, lognormal voids approach this curve for ξ̄ � 1
(numerically found to hold for ξ̄ � 1).

The Schaeffer model, or lower bound of the lognormal distri-
bution, is plotted as the long dashed/short dashed (green) line in
Fig. A1.

A6 Gravitational instability

The gravitational instability amplitudes Sk can be computed in per-
turbation theory, which gives S3 = 34/7 (Peebles 1980), S4 =
60 712/1312 (Fry 1984), etc. The complete set of amplitudes can
be obtained from a generating function (Bernardeau 1992). In par-
ticular, the function

ϕ(y) =
∞∑

p=2

(−1)p

p!
Spyp (A22)

is obtained as a transform of the vertex generating function G(τ )
by

ϕ(y) = yG + 1
2 τ 2, τ = yG ′, . (A23)

with χ (y) = 1 + ϕ/y. The function G(τ ) is found parametrically,

τ = 3

5

[
3

4
(sinh θ − θ )

]2/3

(A24)

G = 9

2

(sinh θ − θ )2

(cosh θ − 1)3
− 1, (A25)

the same hypercycloid functions that describe the time evolution of
spherical underdensities (Peebles 1980). A useful analytic approx-
imation to this function has been found to be

G = (1 + 2τ/3)−3/2 − 1. (A26)

The gravitational instability scaling curve is plotted as the long
dashed (cyan) line in Fig. A1.

The smoothing in computing volume-averaged moments mod-
ifies the values of the Sk and so also the scaling curve. For
a power-law power spectrum, P = Akn, Bernardeau (1994)
shows that the windowed vertex generating function becomes
Gs = G[τ (1 + Gs)−(3+n)/6]. With the approximation of equation
(A26), the effect of smoothing on a scale where ξ̄ (R) has
effective power index d(ln ξ̄ )/d(ln R) = −(3 + n) then follows
from

τ = 3

2
(1 + G)(3+n)/6

[
(1 + G)−2/3 − 1

]
, (A27)

which can in some cases be solved analytically and in all cases can
be used to obtain G, ϕ and χ numerically. Dashed (cyan) curves
in Fig. A1 show the windowed gravitational instability result for
n = −3, −2, −1, 0 and +1 (top to bottom). The n = +1 windowing
of the gravitational instability scaling function is remarkably similar
to the minimal model, and the n = 0 mapping of the gravitational
instability function is remarkably similar to the negative binomial
model.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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