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ABSTRACT
We present a quantitative analysis of the largest contiguous maps of projected mass density
obtained from gravitational lensing shear. We use data from the 154 deg2 covered by the
Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS). Our study is the first attempt
to quantitatively characterize the scientific value of lensing maps, which could serve in the
future as a complementary approach to the study of the dark universe with gravitational lensing.
We show that mass maps contain unique cosmological information beyond that of traditional
two-point statistical analysis techniques.

Using a series of numerical simulations, we first show how, reproducing the CFHTLenS
observing conditions, gravitational lensing inversion provides a reliable estimate of the pro-
jected matter distribution of large-scale structure. We validate our analysis by quantifying the
robustness of the maps with various statistical estimators. We then apply the same process
to the CFHTLenS data. We find that the two-point correlation function of the projected mass
is consistent with the cosmological analysis performed on the shear correlation function dis-
cussed in the CFHTLenS companion papers. The maps also lead to a significant measurement
of the third-order moment of the projected mass, which is in agreement with analytic predic-
tions, and to a marginal detection of the fourth-order moment. Tests for residual systematics
are found to be consistent with zero for the statistical estimators we used. A new approach for
the comparison of the reconstructed mass map to that predicted from the galaxy distribution
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reveals the existence of giant voids in the dark matter maps as large as 3◦ on the sky. Our
analysis shows that lensing mass maps are not only consistent with the results obtained by the
traditional shear approach, but they also appear promising for new techniques such as peak
statistics and the morphological analysis of the projected dark matter distribution.

Key words: dark matter – large-scale structure of Universe.

1 IN T RO D U C T I O N

Gravitational lensing is a powerful tool for the study of the dark
matter distribution in the Universe. The statistical analysis of the
distortion and magnification of lensed galaxies provides unique in-
formation on structure formation processes. For example, two-point
statistics of the shear or convergence can be used to constrain the
dark matter power spectrum, the growth of structure and cosmo-
logical parameters (see Hoekstra & Jain 2008; Munshi et al. 2008
for recent reviews). Over the past 10 years, multiple groups have
reported improved constraints on the mass density parameter and
the power spectrum normalization using the shear correlation func-
tion. However, it is well known that gravitational lensing contains
a lot more information than the amplitude and shape of the mass
power spectrum. The distortion (shear), in particular, can be used to
reconstruct the projected mass density, or mass maps, thus making
the information on the distribution of dark matter available in a
different form. The use of mass maps as a cosmological tool has
received little attention so far.

The purpose of this paper is to explore the extent to which mass
maps can access the cosmological information not captured by the
two-point statistics. Several groups have explored different theoret-
ical routes beyond two-point statistics. For instance, higher order
shear measurements are a sensitive measure of the gravitational
collapse process through mode coupling in the non-linear regime
(Bernardeau, Van Waerbeke & Mellier 1997; Van Waerbeke et al.
2001; Takada & Jain 2003; Kilbinger & Schneider 2005), and can
also be used as an indicator of non-Gaussian non-linearity in the
primordial dark matter distribution (Takada & Jain 2004; Valageas,
Munshi & Barber 2005). More exotic statistical estimators involve
global statistical tools, such as the Minkowski functional, as op-
posed to local measurements based on the shear correlation func-
tions. Morphology of large-scale structures (Mecke, Buchert &
Wagner 1994) is also a probe of the non-linear processes in ac-
tion during structure formation (Sato et al. 2001).

The peak statistics is also an estimator that can be used to probe
the number of dark matter haloes as a function of redshift and
mass (Jain & Van Waerbeke 2000; Van Waerbeke 2000; Kratochvil,
Haiman & May 2010; Maturi et al. 2010), and it can potentially
constrain the halo mass function (Yang et al. 2011). The effect
of the large-scale dark matter environment on the galaxy–galaxy
lensing signal could be investigated; for instance, mass maps could
be used to quantify to what extent specific galaxy properties (e.g.
star formation rate, dust content, stellar population) depend on the
global dark matter environment such as a supercluster or a giant
void.

Most of these global statistics, such as peaks and structure mor-
phology, are non-local, and therefore cannot be expressed as a com-
bination of a subset of moments of the shear, which are, by defini-
tion, local measurements. The study of global features of the mass
distribution requires the mapping of the full two-dimensional mass.
Dark matter maps can also be used to understand global features
in the baryon/dark matter relation via cross-correlation with maps
from different wavelengths surveys, whether Sunyaev–Zel’dovich,

X-ray or atomic hydrogen. The use of mass maps is therefore com-
plementary to the analysis of the shear and magnification two-point
correlation functions. This motivates the need to have reliable mass
maps from gravitational lensing data.

Mass reconstruction is a common tool for the study of galaxy
clusters (Hoekstra, Franx & Kuijken 2000; Clowe et al. 2006a,b;
Heymans et al. 2008); it is mostly used to evaluate qualitatively the
matching between the baryonic and dark matter distributions, and
to explore the possible existence of dark clumps. A few rare cases
suggest their possible existence (Erben et al. 2000; Mahdavi et al.
2007; Jee et al. 2012), although the significance of these detections
is currently unclear. Mass reconstruction in cluster environments
concerns regions of relatively high lensing signal and small an-
gular scale. Mass reconstruction of weaker lensing signal, beyond
galaxy cluster scales, was performed in Massey et al. (2007) with the
1.64 deg2 area of the Cosmological Evolution Survey (COSMOS).
However, our work shows that sampling variance is still impor-
tant at even larger scales, implying that a relatively small survey
like COSMOS does not provide a fair sample of the dark matter
distribution.

In this paper, we use the 154 deg2 Canada–France–Hawaii Tele-
scope Lensing Survey (CFHTLenS) lensing data (Erben et al. 2012;
Heymans et al. 2012; Hildebrandt et al. 2012; Miller et al. 2013)
to perform lensing mass reconstruction over angular scales of sev-
eral degrees. We do not attempt to perform a three-dimensional
mass reconstruction (Massey et al. 2007; VanderPlas et al. 2011;
Leonard, Dupé & Starck 2012; Simon et al. 2012) because such
a reconstruction using ground-based data would only yield mean-
ingful results for galaxy clusters relatively close in redshift, z <

0.3, or for very massive and rare clusters at higher redshift, z <

0.6 (Simon, Taylor & Hartlap 2009). We explore the measure-
ment of convergence statistics from gravitational lensing maps
and the connection between dark and baryonic matter up to a
few degrees across. In particular, we focus on the importance
of the effect of noise in the reconstruction, and how to account
for it in the interpretation of the measurements. To this end, we
use ray-tracing simulations to test our reconstruction and analysis
procedure.

This paper is organized as follows. Notation and definitions are
described in Section 2. The analysis of simulated reconstructed mass
maps is discussed in Section 3. In Section 4, we present the results
from the CFHTLenS data and our new approach for the comparison
of dark matter and baryonic matter. We present our conclusions in
Section 6.

2 MA P M A K I N G A N D C O S M O L O G Y

2.1 Mass reconstruction

Mass maps are proportional to the projected mass convolved with
the lensing kernel. They can be constructed from the shear measure-
ment. A galaxy at position θ = (θ1, θ2) on the sky is characterized
by its redshift z and its shear components γi(θ ), where i = 1, 2.
In this paper, we use the flat sky tangent plane approximation. The
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relation between γ and the convergence κ involves the gravitational
deflection potential �(θ ), defined as

γi(θ) = Gi�(θ), (1)

where G1 = ∂11 − ∂22 and G2 = 2∂12. The function � is given by
a line-of-sight integral of the three-dimensional matter gravitational
potential � via

�(θ) =
∫ ws

0
dw′ fK (w − w′)

fK (w′)fK (w)
�(fK (w′)θ , w′). (2)

The comoving radial distance at redshift z is given by w(z) and
fK(w) is the corresponding angular diameter distance. The comov-
ing distance at the source redshift is ws. The three-dimensional
gravitational potential depends on the mass density contrast δ via
the Poisson equation:

	3D� = 3H 2
0 
0

2a
δ, (3)

where H0 is the Hubble constant, 
0 is the matter density and a is
the scale factor. The convergence κ(θ ) is defined as the line-of-sight
projection of the two-dimensional Laplacian of ψ :

κ(θ) = 	�(θ ), (4)

where 	 = ∂11 + ∂22, and the derivative ∂33 of the gravitational
potential along the line of sight vanishes on average due to the
Limber approximation (Kaiser 1998). The observable quantity is
the reduced shear g:

g = γ

1 − κ
. (5)

Due to the intrinsic ellipticity of galaxies, galaxy shapes provide a
noisy estimate of γ . This estimator, eobs, is given by

eobs = g + eint

1 − geint
. (6)

The intrinsic ellipticity eint is a generic term that contains a contri-
bution from the intrinsic galaxy shape and from the measurement
noise. The ensemble average 〈eobs〉 is an unbiased estimator of
the reduced shear g (Kayser & Schramm 1988). In the case of
CFHTLenS, a complete description of the measurement noise is
given in Heymans et al. (2012) and Miller et al. (2013).

Weak lensing studies assume that both the shear and convergence
amplitudes are much smaller than unity, (|γ |, κ � 1), so that one
can use the weak lensing approximation (g � γ ) for mass recon-
struction. In that case, equation (6) reduces to eobs � γ + eint, and it
follows that by comparing equations (1) and (4), one can reconstruct
the convergence from the observed shear in Fourier space (Kaiser &
Squires 1993). For the weak lensing approximation, we first write
the relation between the shear and convergence Fourier components
κ̂(s) and γ̂ (s), where we define the wavevector s = (s1, s2) = 2π/θ

as the two-dimensional analogue of θ in Fourier space:

κ̂(s) = 1

2

(
k2

1 − k2
2

k2
1 + k2

2

)
γ̂1(s) + k1k2

k2
1 + k2

2

γ̂2(s). (7)

Following Kaiser & Squires (1993), the shear data are first regu-
larized with a smoothing window and then equation (7) evaluated
from the smoothed Fourier components. Since real data also con-
tain masked regions (e.g. bright stars and sometimes area missing
from the detector), the smoothing takes into account the number
of pixels being masked within each smoothing window, so that the
resulting averaged quantity in that window is not biased. The prac-
tical procedure for obtaining a mass map from reduced shear is as
follows.

(i) The data eobs(θ ij ) = eobs
ij are first placed on a regular grid θ ij

and then smoothed. At pixel location θ ij , the smoothed ellipticity
eij is given by

eij =
∑

kl Wθ0 (θkl)w(θi−k;j−l)eobs
i−k;j−l∑

kl w(θi−k;j−l)
, (8)

where Wθ0 (θ ) is a normalized Gaussian smoothing window:

Wθ0 (θ ) = 1

πθ2
0

exp

(
−|θ |2

2θ2
0

)
(9)

and w(θ ) is the weight associated with the measurement noise of
e(θ). Details on the weight specific to CFHTLenS data are given in
Section 4.2.

(ii) The reconstructed mass is obtained from equation (7). An
absence of galaxies should result in a pixel value of zero. However,
note that since the Gaussian filter has infinite spatial extension, there
are no pixels in the final grid with a value of zero. There are, however,
pixels with higher noise (fewer objects) than others, especially when
a mask overlaps with the central region of the filter. The noisiest
pixels in the reconstructed map are removed if the effective filling
factor within the Gaussian window is below 50 per cent. This point
is discussed later in Section 3.2, where the noise in the reconstructed
maps plays an important role in the cosmic statistics measurement
from the convergence.

The alternative to the (Kaiser & Squires 1993, , hereafter KS93)
mass reconstruction approach is the full non-linear mass reconstruc-
tion as described in Bartelmann et al. (1996). A detailed comparison
between the two methods is left for a future study. For the purposes
of this paper, the KS93 reconstruction is sufficient because we are
not trying to recover the lensing signal in the non-linear regime at
sub-arcminute scales. We note, however, that the ability of the non-
linear mass reconstruction to recover large-scale structure statistics
was demonstrated in Van Waerbeke, Bernardeau & Mellier (1999).
Therefore, moving to a full non-linear reconstruction does not rep-
resent a conceptual challenge.

As shown in Crittenden et al. (2002), the shear can be split into
E and B modes, which correspond to the curl-free and curl shear
components, respectively. In the absence of residual systematics,
the scalar nature of the gravitational potential leads to a vanishing
B mode. As shown in Schneider et al. (1998), the split between E
and B modes is performed by applying the transformation (γ 1, γ 2)
to (−γ 2, γ 1), which is the same as rotating each galaxy by 45◦.
Our mass maps are reconstructed using the E and B modes and the
corresponding convergence is called κE and κB. As we will see later
on, it will be necessary to distinguish between the reconstructed
(noisy) map and the underlying true convergence value. We there-
fore introduce three additional convergence terms. We call κobs the
reconstructed convergence such that

κobs = κE + κran, (10)

where κE is the true underlying signal and κ ran is the reconstruction
noise. This equation is the convergence equivalent of equation (6)
in the weak lensing regime. We also introduce the convergence κ⊥,
reconstructed from the galaxies rotated by 45◦ such that

κ⊥ = κB + κran, (11)

where κB should be consistent with zero if the residual systemat-
ics are negligible. The validity of this statement will be verified
statistically.
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2.2 Cosmology

The noise-free convergence map κθ0 (θ), smoothed with a Gaussian
filter of size θ0, can be expressed in terms of the three-dimensional
mass density contrast δ(fK (w)(θ), w):

κθ0 (θ) = 3

2

0

∫
dθ ′

∫ wH

0
dw

g(w)

a(w)
δ(fK (w)(θ − θ ′), w)Wθ0 (θ ′),

(12)

where Wθ0 (θ ) is the normalized Gaussian window given by equation
(9) and wH represents the radial distance at infinite redshift. The
function g(w) accounts for the distribution of source redshifts:

g(w) =
∫ wH

w

dw′pS(w′)
fK (w′ − w)

fK (w′)
, (13)

where pS(w(z)) is the source redshift distribution. Equation (12)
represents the convergence map obtained from the reconstruction
process after the shear data have been pixelated and smoothed as
described in Section 2. Therefore, the positions on the sky θ are
pixels on the regular grid where the map has been computed. The
remainder of this paper will focus on sub-degree scales where the
flat sky approximation applies. However, we will use the exact full
sky formalism for all the lensing quantities, which has the advantage
of providing a robust numerical integration via a direct, one pass,
summation of the l wavevectors. Furthermore, a conservative cut at
lmax = 100 000 is used for both the second- and third-order statistics
predictions. The second-order moment of the convergence 〈κ2(θ0)〉
can be expressed from the convergence power spectrum Cκ

l :

〈κ2〉θ0 = 1

4π

∑
l

(2l + 1)Cκ
l W 2

l (θ0), (14)

where Wl(θ0) are the multipole moments of the smoothing window.
For the Gaussian window given by equation (9), the multipole mo-
ments are given by Wl(θ0) = exp(−l2θ2

0 /4). The power spectrum Cκ
l

can be derived from equation (12), assuming that the small angle
and Limber approximations apply (Miralda-Escude 1991; Kaiser
1992):

Cκ
l = 9

4

2

0

∫ ws

0
dw

g2(w)

a2(w)
P3D

(
l

fK (w)
; w

)
fK (ws − w)fK (w)

fK (ws)
.

(15)

The three-dimensional mass power spectrum is defined as

〈δ̃∗(k, w)δ̃(k′, w)〉 = (2π)3δD(k − k′)P3D (k; w) . (16)

The third-order moment 〈κ3〉θ0 can also be expressed analytically
using the convergence angular bispectrum Bκ

l1l2l3
, the smoothing

filter multipoles Wl(θ0) and the Wigner 3j symbols:

〈κ3〉θ0 = 1

4π

∑
l1l2l3

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3

0 0 0

)

× Bκ
l1l2l3

Wl1 (θ0)Wl2 (θ0)Wl3 (θ0),

with the angular bispectrum given by

Bκ
l1l2l3

= 81
3
0

8π

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3

0 0 0

)

×
∫ wS

0
dw

g3(w)

a3(w)fK (w)

× B3D

(
l1

fK (w)
,

l2

fK (w)
,

l3

fK (w)
; w

)
, (17)

where B3D is the three-dimensional bispectrum. B3D is calculated
in the non-linear regime using non-linear extensions of perturba-
tion theory. Expressions for gravitational lensing are derived in
Van Waerbeke et al. (2001), based on the work of Scoccimarro &
Couchman (2001).

3 SI M U L AT I O N S

3.1 The CFHTLenS data

The purpose of this section is to validate our mass reconstruction
approach using mock catalogues that replicate the true CFHTLenS
observing conditions. CFHTLenS spans a total survey area of
154 deg2, covered with a mosaic of 171 individual pointings ob-
served by the 1 deg2 imager at the Canada–France–Hawaii Tele-
scope. The survey consists of four compact regions called W1, W2,
W3 and W4, which cover approximately 72, 36, 50 and 25 deg2,
respectively. Details on the data reduction are described in Erben
et al. (2012). The effective area is reduced to 120 deg2 by the mask-
ing of bright stars, artificial and natural moving objects, and faulty
CCD rows. The observations in the five bands u∗g′r′i′z′ of the sur-
vey allow for the precise measurement of photometric redshifts
(Hildebrandt et al. 2012). The shape measurement with lensfit is
described in detail in Miller et al. (2013).

3.2 Mock catalogues

The mock catalogues are constructed from a mixture of real data
(the noise, galaxy position and masking structure of CFHTLenS)
and simulated data (the shear signal from N-body simulations). The
N-body simulations used in this work are described in Harnois-
Déraps, Vafaei & Van Waerbeke (2012). The procedure for gener-
ating mock catalogues is as follows.

(i) Projected shear and convergence maps are constructed from
the combination of redshift slices for all source redshifts avail-
able in the simulation.1 The maps are sampled on a 1024 × 1024
grid and cover 12.4 deg2 each, which corresponds to a native pixel
size of 0.21 arcmin. These maps represent individual ‘tiles’. The
CFHTLenS fields W1, W2, W3 and W4 are covered with the maxi-
mum number of non-overlapping tiles that fit within their respective
areas. Given the area of the four CFHTLenS mosaic fields, one can
only cover W1 and W3 with four tiles each, and W2 and W4 with
one tile each. The final simulated area is therefore 124 deg2, which is
similar to the 154 deg2 covered by CFHTLenS. Note that since each
of the tiles used in our simulations is an independent line of sight,
we expect sampling variance to affect the mock catalogues less than
the four CFHTLenS fields, where only four fields are statistically
independent.

(ii) The 2D positions on the sky of all galaxies in CFHTLenS are
preserved. The orientation of each galaxy’s ellipticity is random-
ized, but its amplitude is held fixed as this is used as the only source
of shape noise in the mock catalogue. The redshift of each galaxy
is resampled using a redshift probability distribution obtained from
the photometric redshift distribution function. We refer the reader to
Benjamin et al. (2013) for the details. The galaxies are then placed
on the mosaic tiles and each galaxy’s redshift determines uniquely

1 The source redshifts are 0.025, 0.075, 0.126, 0.178, 0.232, 0.287, 0.344,
0.402, 0.463, 0.526, 0.591, 0.659, 0.73, 0.804, 0.881, 0.961, 1.071, 1.215,
1.371, 1.542, 1.728, 1.933, 2.159, 2.411, 2.691 and 3.004.
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the simulated shear and convergence. This is calculated using equa-
tions (1) and (4) with the reduced shear computed in equation (5).
The final ‘observed’ ellipticity in the mock catalogue is obtained by
equation (6). The masks are applied to the mock catalogue (i.e. no
‘missing galaxy’ has been added to fill in the gaps), as are all the
other characteristics of the survey (e.g. the weight associated with
galaxy shape measurements is also preserved).

(iii) Following the procedure described in Section 2, the mass
reconstruction is performed on a regular 512 × 512 grid, which is
a 2 × 2 re-binning of the simulation’s’ native pixel grid. The mass
reconstruction is performed for five different smoothing scales, with
a radius ranging from approximately 2 to 9 arcmin.

(iv) For some of the following tests performed on simulations,
we will be using the noise-free convergence map, obtained from
the stacking of convergence maps at different source redshifts using
the redshift distribution from (ii) above. These noise-free maps
are obtained directly from the simulated light cone, prior to the
construction of the mock catalogues. For this reason, and to make a
clear distinction with the quantity κE, we call the stacked noise-free
convergence map κ sim.

Fig. 1 shows an example of a mass reconstruction of one the
tiles. The background image with the white contours shows a noisy
mass reconstruction; the white contours represent the 1σ , 2σ , 3σ

and 4σ levels, where σ is the convergence rms determined from the
map. The black contours represent the 1σ , 2σ , 3σ and 4σ levels on
the noise-free convergence map κsim. This figure illustrates qualita-
tively how realistic shot noise (ellipticity noise) noticeably affects
the position, amplitude and sometimes even the presence or absence
of peaks in the reconstructed map. Many reconstructed peaks do not
match a real mass peak and the converse is also true. Although a
quantitative analysis of peaks is left for another paper, this illustra-

Figure 1. Mass reconstruction for one simulated line of sight covering
12 square degrees. The continuous background map with white contours
represents the reconstructed lensing mass (convergence) with masks shown
by the black regions. The white contours show the 1σ , 2σ , 3σ and 4σ

contours, while the black contours show the 1σ , 2σ , 3σ and 4σ levels
in the noise-free map. σ is the convergence rms measured on the mass
reconstruction.

tion is consistent with earlier work (Van Waerbeke 2000; Athreya
et al. 2002), showing that individual peaks are relatively noisy ob-
jects, with a higher chance of being a coincidence (20 per cent for
a 3σ peak) than what Gaussian statistics would predict in the field.
Masks are also shown in Fig. 1 as the black areas with sharp bound-
aries, which shows that our mass reconstruction procedure does not
generate catastrophic edge effects near the masks. The rest of this
section explores the reliability of the mass reconstruction quantita-
tively.

3.3 Analysis of the mock catalogues

In this section, we use the simulations and their reconstructed lens-
ing maps to verify that the level of shape noise and masks in the
CFHTLenS data will not introduce systematic errors in the statisti-
cal properties of the reconstructed convergence map. This will be
performed by running two distinct tests.

For the first test, we focus on the cross-correlation between two
maps κa and κb, where a and b can be any of the signal κobs,
noise-free κ sim, galaxy rotated κ⊥ or randomized κ ran maps. The
cross-correlation (denoted by a �) map Ca;b is given by

Ca;b = κa � κb√〈κ2
a 〉0

√
〈κ2

b 〉0

, (18)

where 〈. . . 〉0 denotes the zero lag value of the autocorrelation map.
This definition guarantees that Ca;b is normalized, i.e. the central
pixel of Ca;b is equal to 1 if κa = κb. Ca;b is then azimuthally
averaged within annuli as a function of the distance r from the
central pixel; this quantity is called 〈Ca;b〉r .

Fig. 2 shows 〈Ca;b〉r for different combinations of reconstructed
and noise-free maps for the Gaussian smoothing scale θ0 =
2.5 arcmin. The filled triangles show 〈CE;⊥〉r , the cross-correlation
profile between the reconstructed mass map and the galaxy rotated
map, averaged over the 10 lines of sight of the mock catalogue
(see Section 3.2). The error bars, which represent the error on the
average profile, show that 〈Cobs;⊥〉r is consistent with zero. The
solid area shows the scatter of 〈Cobs;ran〉r averaged over 100 random

Figure 2. For a smoothing scale of θ0 = 2.5 arcmin, the different sets of
points show the cross-correlation profile 〈Ca;b〉r between two convergence
maps κa and κb, where a and b are one of ‘obs’, ‘B’, ‘sim’ or ‘ran’. The black
filled circles show 〈Cobs;sim〉r and the red filled triangles show 〈Cobs;B 〉r . The
error bars for the filled circles and triangles are the 1σ rms of the average
over the 10 lines of sight. The light blue filled area shows the 1σ region of
〈Cobs;ran〉r averaged over 100 random noise realizations. The 1σ region in
the latter also represents the deviation of the average.
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realizations of κ ran. This quantity is also consistent with zero, which
confirms that the field boundary, edges and masks do not generate
systematic effects, even for pure noise reconstructions. The filled
circles show the cross-correlation profile between the mass recon-
struction and the noise-free map 〈Cobs;sim〉r . The error bars illustrate
the dispersion of the average over the 10 lines of sight; the zero-lag
cross-correlation coefficient is only 0.3, which is another indication
that mass maps are noisy, especially for small smoothing scales.
Larger smoothing scales, not shown here, lead to a stronger cross-
correlation amplitude, but also a larger correlation length. This first
test demonstrates the absence of systematic effects (e.g. spurious
peaks) around masks and low-density areas; if these were present,
we would expect a significant non-zero residual cross-correlation
between the reconstructed mass map κobs and κ⊥ or the pure noise
reconstruction.

The second test consists of looking at various higher order mo-
ments of the convergence. Like the traditional measurement of the
second-order moment of the shear 〈γ 2〉 (here γ 2 = γ 2

1 + γ 2
2 ), we

want to measure the true moments of the convergence 〈κn
E〉, with

n = 2, 3, 4, 5. A measurement of the convergence moments from
noisy reconstructed mass maps has never previously been reported.
However, there is a complication with the measurement of conver-
gence moments: the convergence can only be measured within a
smoothing window, unlike the shear, which is given for each in-
dividual galaxy. Therefore, the convergence noise is correlated for
different points on the grid, with the result that the moments of
κobs and κE are not equal. A shot noise removal, or de-noising, is
therefore required in order to remove this bias from the observed
convergence moments 〈κn

obs〉.
We choose a direct approach for the de-noising procedure, which

consists of removing the correlated noise contribution from the
moments measured on κobs. Fortunately, two independent residual
systematics tests can be performed, one on the ‘mass map’ of the
rotated galaxies κ⊥ and the other by comparing the de-noised mo-
ments of κE to the moments of the noise-free maps κsim. Fig. 2
shows the absence of cross-correlation between κobs and the noise
κ ran which means that, to first approximation, the signal and noise
can be treated as statistically independent (Van Waerbeke 2000).
We use this lack of correlation to derive relatively straightforward
relations between the moments of κobs and κE. For instance, the
observed second-order moment 〈κ2

obs〉 is the quadratic sum of 〈κ2
E〉

and 〈κ2
ran〉. The extension of this relation to higher order moments

defines our de-noising procedure. Moments of the noise maps κ ran,
needed for this step, are measured from a large number of pure noise
reconstructions. The relations below show how, for each smooth-
ing scale θ0, the observed moments of κobs are related to the true
moments of κE and the moments of the noise map κ ran:〈
κ2

E

〉
θ0

= (
κ2

obs

)
θ0

− (
κ2

ran

)
θ0〈

κ3
E

〉
θ0

= (
κ3

obs

)
θ0〈

κ4
E

〉
θ0

= (
κ4

obs

)
θ0

− 6
(
κ2

obsκ
2
ran

)
θ0

− (
κ4

ran

)
θ0〈

κ5
E

〉
θ0

= (
κ5

obs

)
θ0

− 10
(
κ3

obsκ
2
ran

)
θ0

. (19)

For clarity, (· · ·)θ0
denotes the moment average over one map, (· · ·)θ0

is averaged over several noise maps κ ran and 〈· · ·〉θ0 is the de-noised
moment. We limit our analysis to higher order moments up to the
fifth order. Beyond the fifth order, we find that the measurements
become too noisy with the CFHTLenS data. Appendix A includes
the expressions of the residual systematics moments, i.e. all the

combinations of E and B modes that we expect to vanish if residual
systematics are negligible for n = 2, 3, 4, 5. As the measurements
will show, the residual systematics are indeed consistent with zero.
Our de-noising approach automatically takes care of varying noise
across the field because the noise rms for different positions on a map
is preserved for the different noise realizations. This is due to the fact
that we keep the galaxy’s position and shape noise unchanged. A
further improvement of the de-noising technique was implemented
by taking into account the fraction of pixels not masked within each
smoothing window. We achieve this by constructing a filling factor
map computed from the smoothed grid with pixels set to 1, and then
masking and smoothing with the same window that was applied to
the lensing data for the mass reconstruction. Using this filling factor
map, regions around masks in the lensing reconstructed maps are
down-weighted without biasing the signal. In order to eliminate the
noisiest regions, we apply a cut-off of 50 per cent such that pixels
below this threshold are excluded from the moment analysis. We
verified that the application of this cut-off has a negligible effect on
the measurement with a cut-off varying from 0 to 80 per cent. Of
course, high cut-off values boost the noise and it becomes difficult
to evaluate changes in the signal. This procedure guarantees that
pixels in the mass map contribute proportionally to the unmasked
area located in a smoothing window. We will compare the de-noised
moments of κobs with the noise-free moments measured on κsim.

Fig. 3 shows the convergence moments as measured from the
mock catalogues using the de-noising technique described earlier.
We see that the de-noised moments 〈κn

E〉 (filled circles) are con-
sistent with the noise-free moments 〈κn

sim〉. Note that the noise-free
moments represent the true answer in the sense that they are directly
computed from the N-body simulations, without mass reconstruc-
tion, and they therefore contain no noise, no discrete sampling
and no mask. On the other hand, the moments 〈κn

E〉 are de-noised
moments obtained from the noisy mass reconstruction maps that
include masks. The two moments agree, which demonstrates that
our mass reconstruction procedure leads to reliable mass maps that
preserve the statistical and cosmological information. In Fig. 3, the
de-noised moment errors were computed from the variance between
the 10 lines of sight and divided by

√
10. The noise-free moment

errors are shown by the filled regions around the solid lines and
are also divided by

√
10. The open symbols show, for the different

moments, the residual systematics obtained from all the possible
combinations of the reconstructed maps κobs and κ⊥, where the
de-noised moments were computed using the expressions derived
in Appendix A. All moments involving one or more of the rotated
galaxies maps κ⊥ are consistent with zero, showing that the B mode
is consistent with pure noise once it has been de-noised.

These results from mock catalogues validate our approach for the
CFHTLenS data and demonstrate that for the 154 deg2 of the survey,
our reconstruction process is stable. Furthermore, we have shown
that realistic masking geometry does not alter the reconstruction,
and therefore we are able to reliably quantify some of the most basic
statistics of the projected mass density.

3.4 Beyond the moments: convergence PDF and peak statistics

The first few convergence moments give only a partial description
of the histogram of the convergence, which is also called the one-
point probability distribution function (PDF). However, the one-
point PDF, along with its extensions to higher order, contains addi-
tional information about the moment hierarchy, and therefore about
the structure formation process. For instance, Juszkiewicz et al.
(1995) demonstrated that a combination of different moments of
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Figure 3. Moments of the convergence 〈κn〉, n = 2, 3, 4, 5, measured on the simulations. The filled circles show the de-noised moments for the reconstructed
mass map κobs. The error bars show the 1σ deviation of the mean of the 10 lines of sight. The solid line inside the light blue region shows the noise-free
moments measured on κsim, and the filled light blue area shows the 1σ deviation of the mean of the 10 noise-free maps. The open symbols show all the possible
de-noised combinations of κobs and κ⊥: 〈κ2

B 〉θ0 for the top-left panel, 〈κ3
B 〉θ0 , 〈κEκ2

B 〉θ0 , 〈κ2
EκB 〉θ0 for the top-right panel, 〈κ4

B 〉θ0 , 〈κEκ3
B 〉θ0 , 〈κ2

Eκ2
B 〉θ0 , 〈κ3

EκB 〉θ0

for the bottom-left panel and 〈κ5
B 〉θ0 , 〈κEκ4

B 〉θ0 , 〈κ2
Eκ3

B 〉θ0 , 〈κ3
Eκ2

B 〉θ0 , 〈κ4
EκB 〉θ0 for the bottom-right panel.

the PDF, through the Edgeworth expansion, probes different as-
pects of the gravitational collapse. General characteristics of the
PDF, such as the height and the minimum κ of the convergence
histogram, are important features that are not easily captured by
convergence moments. Therefore, it would be interesting to use
the convergence PDF itself as a cosmological probe. This possi-
bility has been theoretically explored (Munshi, Valageas & Barber
2004; Valageas & Munshi 2004) using the aperture filtered shear,
the same filter which transforms the shear γ into a local, scalar
quantity (Schneider 1996). Doing this analysis on the convergence
κ PDF, instead of the aperture filtered shear, would exploit the fact
that the long-wavelength modes are preserved; this analysis with
the CFHTLenS mass maps is left for a forthcoming study.

Nevertheless, we can already illustrate with our simulations the
expected level of one-point PDF signal-to-noise. Fig. 4 shows the
measured one-point PDF for κ compared to the κ⊥ one-point PDF.
The average one-point PDF obtained from pure noise reconstruc-
tions (with error bars) is also shown, and the B-mode PDF is consis-
tent with pure noise. This result is in agreement with Fig. 3, which
shows a negligible B mode for the convergence moments. One can
also clearly see that the cosmological signal broadens the PDF com-
pared to pure noise (or B-mode) PDFs. This one-point PDF study
opens up a new statistical analysis opportunity for gravitational

Figure 4. PDF histogram of the convergence for the reconstructed map
κobs (solid line) and for the galaxy rotated map κ⊥ (dashed line). The filled
circles with error bars are obtained from an average of 10 noise realization
maps κ ran where the galaxy orientations have been randomized before the
mass reconstruction.
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lensing surveys, which remains to be exploited. Alternative probes
for cosmology using the convergence PDF could be constructed,
such as using the minimum value of the convergence found in voids
(modulo the convolution by the noise) as a direct measurement of
the mass density parameter 
0, which is relatively insensitive to the
non-linear clustering.

Another interesting use of convergence maps is the study of
peak statistics. The idea of using peaks in dark matter maps to
constrain the halo mass function was first proposed in Van Waerbeke
(2000) and Jain & Van Waerbeke (2000). This analysis relies heavily
on the properties of peak statistics in Gaussian noise developed
for the cosmic microwave background (Bond & Efstathiou 1987).
The peak statistic theory has recently been pursued further (Maturi
et al. 2010; Marian et al. 2012). Peak statistics provides a higher
level of statistical analysis of maps, where we expect the sensitivity
to cosmology and residual systematics to be different from the
statistical analysis using moments of the shear or convergence. It
is important to distinguish between the maps constructed in this
paper and the maps being discussed in Marian et al. (2012), which
use the aperture mass filter, originally defined in Schneider (1996).
The aperture mass filter is a pass-band filter, as opposed to the
Gaussian (or top-hat) smoothing window used in our study, which
is a low-pass filter. The low-pass filter preserves the large-scale
modes, hence keeping visible the voids and large overdensities,
unlike what happens with a pass-band filter (see Section 4.4 below).
The peak statistics of a low-pass map allows the study of the dark
matter halo mass function as a function of the larger scale dark
matter environment, which is essentially not possible with a band-
pass filter. The two approaches are complementary and it would
be beneficial in the future to unify them into a single approach
to making mass maps. Peak statistics, convergence PDF and the
morphological analysis of large-scale structure from the CFHTLenS
data are left for future studies.

4 R E S U LT S F RO M C F H T L E N S

Residual systematics in the shear signal, based on the selected fields
that passed the systematics tests (the ‘good’ fields), are given in
Heymans et al. (2012). In total, 129 MegaCam pointings (out of 171)
passed the residual systematics tests. The convergence moments
presented in this paper are based on these good fields, while the
mass reconstruction is performed on all the fields. Each galaxy in
the CFHTLenS catalogue has a shear estimate eobs and a weight w

(Miller et al. 2013), a calibration factor m (Heymans et al. 2012)
and a photometric redshift PDF (Hildebrandt et al. 2012). In the
following sections, we describe how these elements are integrated
into the map-making process.

For the lensing mass reconstruction, source galaxies are selected
in the redshift range z = [0.4, 1.1], which is sufficiently broad
to avoid the complication of intrinsic alignment (Heymans et al.
2013), but narrow enough to guarantee that the three-point signal is
detectable at a few sigma (Vafaei et al. 2010).

4.1 Mass reconstruction

Mass reconstruction on the CFHTLenS data follows the same pro-
cedure as described in Section 2 using the KS93 algorithm. The
regular grid over which the mass reconstruction and smoothing are
performed consists of square pixels with an area of approximately
1 arcmin2. The average of the galaxy ellipticities is first calculated
within each pixel, using the calibration correction implemented in
Miller et al. (2013) in order to account for the constant correction c2

(Heymans et al. 2012), the multiplicative shear measurement bias
(1 + mi) and the weighting wi for each galaxy located at θ i within
that pixel. The shear estimate per galaxy is not divided by (1 + mi),
but instead the average ēpix in each pixel is given by the weighted
sum over the galaxies in that pixel:

ēpix =
∑

i=1,2 wi ei(θ i)∑
i=1,2 wi(1 + mi)

. (20)

The smoothing of this grid-averaged ellipticity map is then per-
formed using the Gaussian window function given by equation (9).
Mass maps are reconstructed with the following smoothing scales:
1.8, 3.5, 5.3, 7.1 and 8.9 arcmin. The final maps have sizes of 512 ×
449, 512 × 505, 512 × 495 and 512 × 502 for W1, W2, W3 and
W4, respectively, which are chosen to be close to the grid size that
was used in the simulations. The fact that the angular resolution is
different for the different fields has no effect on our results. Mass
reconstruction is also performed with the galaxies rotated by 45◦

in order to probe the B modes. As a sanity check, we computed
the cross-correlation map between κobs and κ⊥, following equation
(18), which shows that the two maps are uncorrelated, hence sup-
porting the conclusion that the B mode in the data is consistent with
zero.

4.2 Cosmic statistics on CFHTLenS mass maps

Following the procedure described in Section 3.2, 100 independent
pure noise maps κ ran are reconstructed for each CFHTLenS field
and each smoothing scale. The pure noise maps are necessary for
the de-noising of the convergence moments. This paper is the first
to measure cosmic shear statistics directly from reconstructed mass
maps and it is therefore important to quantify the reliability of the
measurements against predictions. Theoretical predictions for the
second- and third-order moments are calculated using equations
(14) and (17). The key ingredient for these predictions is an accu-
rate redshift distribution nS(z) of the galaxies. In order to estimate
nS(z), we use the PDF of the photometric redshifts (Hildebrandt
et al. 2012), the robustness of which has been thoroughly tested
in Benjamin et al. (2013). The implementation of this approach in
other CFHTLenS papers, where the second-order moment of the
shear has been used to constrain cosmological parameters, shows
that the redshift distribution derived from CFHTLenS photometric
redshifts provides a robust and consistent interpretation of the weak
lensing data as a function of source redshift (Benjamin et al. 2013;
Heymans et al. 2013; Kilbinger et al. 2013; Simpson et al. 2013).

The data points in Fig. 5 show the stacked redshift distribution
PDF for our galaxy selection with photometric redshifts 0.4 < z <

1.1, the same galaxy selection used for the lensing mass reconstruc-
tion. In order to make predictions for the lensing statistics, we fit
the observed redshift distribution with the following four-parameter
double-Gaussian model:

nS(z) = a × exp

(
− (z − 0.7)2

b2

)
+ c × exp

(
− (z − 1.2)2

d2

)
.

(21)

Fig. 5 shows that this is a reasonable fit to the data, in particular
in capturing the long, slowly decreasing tail at high redshifts. The
best-fitting values are a = 1.50, b = 0.32, c = 0.20 and d = 0.46.

Fig. 6 shows the second- to fifth-order moments of the conver-
gence measured on CFHTLenS lensing data. The solid lines show
the predictions for the second- and third-order moments using the
redshift distribution derived above. The predictions are not a fit to the

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/433/4/3373/1750406 by guest on 23 August 2022



CFHTLenS: mapping the large-scale structure 3381

Figure 5. Redshift distribution of the galaxies from the CFHTLenS cata-
logue that are used for the measurement of the convergence moments. Data
points show the actual probability distribution obtained from the photomet-
ric redshifts and the solid line shows the best-fitting function defined in
equation (21). The best-fitting parameter values are a = 1.50, b = 0.32, c =
0.20 and d = 0.46.

data. They are computed using the CAMB non-linear power spectrum2

for the  cold dark matter (CDM) model 
b = 0.0471, 
CDM =
0.2409 and 
 = 0.712 for the baryonic, dark matter and cosmo-
logical constant-density parameters, respectively. The matter power
spectrum is normalized to σ 8 = 0.792 at z = 0. The other cosmo-
logical parameters, such as the power spectrum tilt, running spectral
index, etc., are identical to the best-fitting values from Wilkinson
Microwave Anisotropy Probe (WMAP7; Komatsu et al. 2011). This
particular choice of parameters is consistent with the parameter
values obtained in the CFHTLenS companion papers (Benjamin
et al. 2013; Heymans et al. 2013; Kilbinger et al. 2013; Simpson
et al. 2013; Kitching et al. in preparation). The predictions agree
well with measurements for the second- and third-order statistics,
which gives us a high level of confidence in the reliability of mass
maps to extract cosmological information and confirms the analy-
sis performed on the shear. The error bars represent the sampling
variance between the four CFHTLenS fields, accounting for the
different image sizes; therefore, they capture the total error bud-
get (including statistical variance). Since there are no reliable fully
non-linear predictions for the fourth- and fifth-order moments, a
full cosmological analysis including all moments must rely on ray-
tracing simulations. This work is left for a future study in which
the properties of the full convergence PDF will be investigated. As
Fig. 6 illustrates, the CFHTLenS data show a marginal detection of
the fourth-order moment and no detection of the fifth. The residual
systematics are consistent with zero for all moments.

4.3 The connection between large-scale dark matter
and baryons

4.3.1 Construction of the mass map predicted from baryons

Sections 3 and 4 describe the mass reconstruction process in the
presence of realistic noise and masks. A cosmological signal is
clearly measured on the CFHTLenS data and the level of residual
systematics is shown to be consistent with zero. In this section,

2 http://camb.info/

we are interested in the comparison between the reconstructed dark
matter and the matter distribution of the stellar content. The connec-
tion between dark matter and baryons is quantified in the CFHTLenS
companion papers (Gillis et al. 2013; Velander et al. 2013) at the
galaxy and galaxy-group scales. Here we are interested in the con-
nection between dark matter and baryons at much larger scales. For
example, we would like to explore whether there are large-scale
features common to both the dark matter and the baryons, such as
voids. To this end, we develop a new approach, which consists of
first predicting the dark matter map from the stellar mass distri-
bution (Wilson, Kaiser & Luppino 2001), and then comparing the
peak distribution from the predicted κ map to the lensing map.

In order to construct a predicted κ map, a Navarro–Frenk–White
dark matter density profile (Navarro, Frenk & White 1997) is as-
signed to each galaxy in the CFHTLenS catalogue; the procedure is
detailed below. There is no need to separate the galaxy population
into sources and lenses because most galaxies act as both due to
our broad redshift selection. Galaxies are assigned a dark matter
mass following the relation between stellar mass and halo mass
from Leauthaud et al. (2012), which provides a relation for red-
shifts between 0.2 and 1, covering almost the entire redshift range
of galaxies in our work. The only complication is that this relation
is only provided for central galaxies, while in our sample a large
fraction are satellites. Unfortunately, it is impossible to separate the
central galaxies from the satellites on an individual basis; it can only
be done statistically (Velander et al. 2013). We therefore proceed
by assuming that all galaxies are central galaxies and all follow the
stellar mass-to-halo mass relation in Leauthaud et al. (2012). This
will overestimate our predicted total mass, but to a first approxi-
mation it should not dramatically affect the relative distribution of
mass. Based on fig. 4 from Leauthaud et al. (2011), we anticipate
that, on average, there are roughly one to two satellite galaxies for
every central galaxy. This should lead us to overestimate the to-
tal mass by roughly a factor of 2–3. The exact calculation is not
needed as we are only interested in an order-of-magnitude estimate
of how wrong our predicted convergence can be. In a future work,
the same strategy will be applied to clusters instead of individual
galaxies, which should mitigate this effect. In order to complete our
convergence prediction from the galaxies, we need to assign a con-
centration to each halo. To this end, we use the mass–concentration
relation calibrated from numerical simulations in Muñoz-Cuartas
et al. (2011).

At this stage, each galaxy in the CFHTLenS catalogue is asso-
ciated with a dark matter halo of known concentration and mass.
The last step is to apply the lensing kernel in order to predict the
convergence based on the redshifts of the lenses and sources. Every
galaxy is simultaneously both a lens and a source, depending on
whether it is in the background or the foreground relative to other
galaxies. One can then compute for each galaxy a predicted conver-
gence based on the foreground mass distribution coming from all
galaxies located at lower redshift. For a source galaxy at location
θ on the sky with redshift zS and N foreground lenses at redshifts
zLi

, the total convergence predicted from the baryonic distribution
is given by

κgal(θ ) =
N∑

i=1

�i(|θ − θ i |)
�crit(zLi

, zS)
− κ̄gal, (22)

where �i(|θ − θ i |) is the projected halo mass of lens i centred at θ i

and �crit(zLi
, zS) is the critical density given by

�crit(zLi
, zS) = c2

4πG

fK (wS)

fK (wL)fK (wS − wLi
)
. (23)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/433/4/3373/1750406 by guest on 23 August 2022

http://camb.info/


3382 L. Van Waerbeke et al.

Figure 6. Moments of the convergence 〈κn〉, n = 2, 3, 4, 5 measured on the CFHTLenS data. The error bars show the 1σ deviation from the mean of the four
CFHTLenS fields. The solid lines denote the moments measured from the signal maps and de-noised using the procedure described in Section 3.2. The open
symbols show the different de-noised combinations of the signal map κobs and systematics map κ⊥, similar to that shown in Fig. 3 for the simulations. The
solid line shows the second-order moment (top-left) and third-order moment (top-right) predictions from equations (14) and (17) using the WMAP7 cosmology
(see the text in Section 4.3).

Note that the average predicted convergence κ̄gal is calculated only
after all haloes have been assigned to the galaxies. The critical den-
sity depends on the observer–lens, lens–source and observer–source
angular diameter distances fK(wL), fK (wS − wLi

) and fK(wS), re-
spectively. The sky average predicted convergence is set to zero by
subtracting the mean κ̄gal in equation (22). We assume that the weak
lensing approximation applies, which means that the convergence
from the different lenses can be added linearly. It is important to
emphasize that the lens redshift goes down to the lowest reliable
value z = 0.2, and that the sources only cover redshifts z = 0.4 and
higher (in order to be consistent with our source galaxy selection
outlined in Section 4.2).

The convergence predicted from the baryonic content κgal(θ ) is
assigned to each galaxy in the CFHTLenS catalogue. Following
Section 4.2, the κgal(θ ) are placed on the same regular grid that is
used for the lensing mass reconstruction. The lensfit weighting is
used to determine the average κ̄gal(θ ) within each pixel, and the same
Gaussian smoothing is applied. For most galaxies, the size r200 of a
single galactic halo is comparable to the size of a pixel, which is of
the order of half an arcminute, in the final resolution map. The galax-
ies in the masked regions therefore do not impact our analysis as the
extension of their halo is small.3 The Gaussian smoothing window is
sometimes truncated by the masks, but this effect is minimal because
of the filling factor cut of 50 per cent applied to the predicted mass
map. Furthermore, this is a random, zero net effect, leading only to
larger noise around the image masks, but not to a bias in the projected
convergence.

3 Note that the haloes from low-redshift galaxies do extend over several
pixels, but their lensing efficiency is small due to their proximity to the
observer.

4.3.2 Comparing the lensing with the predicted dark matter maps

In this section, we perform a comparison of the κobs and κgal maps.
Following an approach similar to Section 3.3, when comparing
noise-free and noisy simulated data, we first compute the cross-
correlation profile between the lensing reconstructed mass map κobs

and the predicted map κgal and between the rotated galaxies map
κ⊥ and κgal. These profiles are called 〈Cobs;gal〉 and 〈C⊥;obs〉, respec-
tively, as defined by equation (18). Fig. 7 shows that the correlation

Figure 7. The five black dotted lines with points and error bars show the
cross-correlation function 〈Cobs;gal〉 with CFHTLenS data. The κobs and κgal

maps have been smoothed with a Gaussian window of 1.8, 3.5, 5.3, 7.1 and
8.9 arcmin from bottom to top. The data points denote the mean over the
four CFHTLenS fields and the error bars represent the error on the mean.
The red line with triangular data points show 〈C⊥;obs〉 for a smoothing scale
of 1.8 arcmin. The other smoothing scales are also consistent with zero, but
are not shown here for the sake of clarity.
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increases for larger smoothing windows, and that the overall cor-
relation level always remains below 50 per cent. The relatively low
cross-correlation coefficient for small smoothing scales is due to
the fact that the noise level in the reconstructed lensing mass maps
is high, and for small smoothing windows, many of the peaks and
structures we see in mass maps are the result of noise, which is
consistent with the description given in Section 3.3. However, the
predicted maps κgal, based on real galaxies that have been detected
by CFHTLenS, have a lower noise level than the lensing maps. The
sources of noise in the predicted maps are likely dominated by in-
trinsic stochastic biasing between dark matter and baryons and the
undetected galaxies in the survey. For this reason, we adopt the pre-
dicted maps as the reference from which the peaks will be detected
and then compared to the lensing maps. Using the lensing maps as
the reference is formally equivalent, but we found that the level of
noise in the comparison is reduced when the predicted maps are
used instead.

Next, we want to compare the 2D spatial distribution of peaks
between the maps. The peak distribution is a powerful tool that
helps visually identify the large-scale structures. We will see that
this comparison reveals the existence of large underdensities (voids)
that cannot be identified with a statistical analysis using moments.
Given that for a fixed smoothing scale, the noise in lensing maps is
higher than the noise the predicted maps, we decided to detect peaks
in the predicted map using the 1.8 arcmin smoothing scale and com-
pare it to the lensing map using the smoothing scale of 8.9 arcmin.
A peak location is defined as a pixel where all surrounding pixels
have a lower amplitude. Fig. 8 shows the location of κgal peaks
for W1 (shown as white circles) superimposed on the reconstructed
lensing map shown as the continuous coloured background. Con-
tours are shown for the lensing reconstruction map at 1σ , 2σ , 3σ

and 4σ levels, which is a common way of indicating the signifi-
cance of structures in lensing maps. On average, the distribution of
κgal peaks matches the lensing mass overdensities. A quantitative

Figure 8. Mass maps for the W1 field. The continuous map with contours shows the mass reconstructed from gravitational lensing. The contours indicate the
1σ , 2σ , 3σ and 4σ on this map, where σ is the rms of the convergence. The open circles indicate the position of peaks in the predicted mass map, constructed
from galaxies as described in Section 4.3. The circle size is proportional to the peak height. The field of view is approximately 9 × 8 deg2.
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Figure 9. Left-hand panel: the x-axis values show, for all W fields, the predicted convergence κgal, taken at peak locations. The y-axis shows the lensing κ lensing

values measured from either the mass reconstruction map κobs or the rotated galaxies reconstructed map κ⊥. The lensing κ lensing values are taken at positions
given by the peak location in the κgal map. Individual dots on the figure represent individual peaks, and the black open circles show the binned average. The
red open circles show the binned average of the κgal peak values versus κ⊥. The error bars always represent the dispersion on the mean. Right-hand panel:
the x-axis shows the predicted convergence κgal values taken at the trough locations. The y-axis shows the lensing convergence values taken at the κgal trough
locations from either κobs or κ⊥. The detection of voids is manifest, though the very significant negative values of κobs correlated with the κgal troughs.

comparison between the predicted convergence and the lensing con-
vergence is shown in the left-hand panel of Fig. 9; the small dots
in this figure show, for each peak detected on the κgal map, the
corresponding value of the lensing map κobs at the same location.
Note that for Fig. 9 we have used a smoothing scale of 1.8 arcmin
for the lensing map as well, hence the high noise rms for the lensing
peak amplitude. Although only peaks have been used in this plot,
it does not mean that the lensing convergence is positive. In fact,
there are a substantial number of κgal peaks inside low-density re-
gions with negative convergence, despite the fact that, on average,
peaks live in positive convergence regions. A comparison of the
binned κgal peak values to the averaged lensing convergence in
the bin shows that the reconstructed and predicted convergence are
strongly correlated, consistent with the fact that baryons trace dark
matter to first approximation. The lensing convergence is roughly
two to three times lower than the predicted convergence; this is
expected, as discussed in Section 4.4, because we assumed that all
galaxies are central galaxies of the host dark matter halo. Following
the numerical calculations from Leauthaud et al. (2011), this erro-
neous assumption would lead to an overestimate of the predicted
mass by a factor of 2−3. Note that for an individual peak, the noise
has rms σκ � 0.015, consistent with the fact that there are approxi-
mately ∼100 lensed galaxies within each smoothing window. Fig. 9
also shows the peak analysis performed with the B-mode lensing
map κ⊥, and one can see that the correlation between κ⊥ and κgal

peaks and troughs vanishes.
The analysis of the 2D distribution of peaks provides a consistent

picture where the galaxy distribution is correlated with the lensing
mass, as one would expect. We can perform a similar analysis on
troughs (local minima). A trough location is defined as a pixel where
all surrounding pixels have a higher amplitude. A high number
density of troughs would be an indication of cosmic voids. Fig. 10
shows such an analysis for W1, where the white triangles represent
troughs in κgal. One can see that the triangles preferentially populate
underdense regions of the lensing map extending over a few degrees;
this is a convincing illustration of the detection of giant projected
voids in large-scale mass maps based on lensing data. A comparison

of Figs 8 and 10 reveals how the distribution of peaks and troughs
provides a mapping of large-scale structures and voids, respectively.
The right-hand panel of Fig. 9 shows how κgal troughs compare to
the lensing mass reconstruction κobs, with troughs populating large
void regions preferentially. This shows that the detection of voids
is significant, with residual systematics also being consistent with
zero in the underdense regions. Troughs are located primarily in
negative convergence regions, as one would expect. The predicted
convergence κgal is closer to the reconstructed convergence κobs for
the troughs than for the peaks (Fig. 9). A possible explanation is that
there are less satellite galaxies in voids than in overdense regions.

Figs 11 and 12 show the same analysis for the three other
CFHTLenS fields W2, W3 and W4. The peak and void statistics
shown in Fig. 9 include all four fields. The key message from the
comparison of the baryon and dark matter maps is that dark matter
maps trace large-scale structures reliably, but evaluating the signif-
icance of most of the individual mass peaks is challenging for two
reasons; first, the shot noise is high and very few peaks are above
the secure 4σ threshold. Secondly, the maps clearly show that the
large-scale structures are a source of noise comparable to the shot
noise (Hoekstra 2001; Hoekstra et al. 2011).

5 C O N C L U S I O N

This paper is the first quantitative cosmological analysis of mass
maps reconstructed from lensed galaxy shapes. We validated our
approach by using N-body simulations and then applied it to the
CFHTLenS data. We find that convergence maps contain reliable
cosmological information that has the potential to go beyond the
traditional analysis using two-point statistics. Peak statistics and
morphological analysis are the next studies to be performed on
mass maps.

Using N-body simulations, we have shown that the reconstruction
process is stable and that the input cosmological signal is recovered
accurately despite the presence of masks, the relatively high level
of shape noise and the non-Poissonian spatial distribution of the
background sources. Mass reconstruction was performed and tested
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Figure 10. Similar to Fig. 8, with the background map and contours mapping the projected matter reconstructed from gravitational lensing mass. The open
triangles show the position of the troughs in the mass map predicted from the galaxy distribution. The open triangles unambiguously trace the underdense
regions in the density mass map. The triangle size is proportional to the height of the trough.

with the traditional KS93 algorithm. The testing of the full non-
linear mass reconstruction at the same level of precision is left for
a future study.

The application to the CFHTLenS data shows for the first time
that windowed statistics of the convergence can be measured on
mass maps. We find excellent agreement between the second- and
third-order moments measured on the reconstructed mass maps and
the predictions for a cosmological model determined from a shear
correlation function analysis of the same data (Benjamin et al. 2013;
Heymans et al. 2013; Kilbinger et al. 2013; Simpson et al. 2013).
Our attempt at measuring higher order statistics shows a marginal
detection of the fourth-order moment. For all the moments of the
convergence, the residual systematics are found to be consistent with
zero. In Section 4.4, we compared the reconstructed convergence
with the predicted convergence using galaxies as tracers of dark
matter haloes, where a halo is assigned to each galaxy. We have
shown that the predicted and reconstructed mass maps are strongly

correlated with each other. The maps reveal the existence of large
voids in the projected dark matter distribution, which span regions
as large as 3◦−4◦ on the sky.

We consider this paper to be a feasibility study that strongly sug-
gests that future precision cosmology on mass maps is possible.
Cosmology with mass maps enables studies that are currently not
possible with only the shear (shape) information: global structure
morphology, peak statistics with long-wavelength modes included,
cross-correlation with other cosmology maps and statistics of con-
vergence PDFs. However, before mass maps can become a com-
pletely reliable cosmological probe, several technical issues must
be addressed.

(i) A correct non-linear reconstruction will have to be imple-
mented to account for the most massive structures, such as clusters
of galaxies.
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Figure 11. Same as Fig. 8 for the mosaics W3 (left), W2 (top-right) and W3 (bottom-right). The field of view is approximately 7.3 × 7, 5 × 5 and 6 × 6 deg2,
respectively.

(ii) Our approach consisted of removing the noise bias from the
moments measured on the reconstructed mass. A completely differ-
ent strategy is to de-noise the map itself before any measurement
(Starck, Pires & Réfrégier 2006). It remains to be tested whether the
latter is a robust and better approach for precision measurements.

(iii) The photometric redshift uncertainty will have to be included
in the comparison of dark matter and baryons and in the map-
making process itself. How to construct a predicted mass map from
a distribution of galaxies with photometric redshift errors is an open
problem.

(iv) A potential fundamental limitation with maps is that the
current mass reconstruction process does not distinguish between
intrinsic galaxy alignment and gravitational lensing, which both lead
to correlated galaxy shapes. From our particular choice of redshift
range, and from the residual systematics studies in CFHTLenS
companion papers, we know that our measured signal is mainly
caused by gravitational lensing (Heymans et al. 2013; Kitching et al.,
in preparation), but future precision cosmology using mass maps
will require a clear identification and separation of the different
causes leading to galaxy shape correlations. It is not clear whether
this is possible with mass maps, and further theoretical studies will
be needed.
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Leonard A., Dupé F.-X., Starck J.-L., 2012, A&A, 539, A85
Mahdavi A., Hoekstra H., Babul A., Balam D. D., Capak P. L., 2007, ApJ,

668, 806
Marian L., Smith R. E., Hilbert S., Schneider P., 2012, MNRAS, 423,

1711
Massey R. et al., 2007, Nat, 445, 286
Maturi M., Angrick C., Pace F., Bartelmann M., 2010, A&A, 519, A23
Mecke K. R., Buchert T., Wagner H., 1994, A&A, 288, 697
Miller L. et al., 2013, MNRAS, 429, 2858
Miralda-Escude J., 1991, ApJ, 380, 1
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APPENDIX A

In this appendix, we derive the relation between the de-noised mo-
ments 〈κn

E〉θ0 , 〈κn
B〉θ0 and the observed moments 〈κn

obs〉θ0 , 〈κn
⊥〉θ0 ,

where θ0 is the Gaussian smoothing scale. The observed conver-
gence map κobs is the sum of the true signal κE and an uncorrelated

noise component κ ran. We are repeating equations (10) and (11):

κobs = κE + κran. (A1)

The observed B-mode convergence map κ⊥, which is the recon-
structed mass from the 45◦ rotated galaxies, is similarly related to
the true B mode κB and the noise contribution κ ran:

κ⊥ = κB + κran. (A2)

Note that the true B mode should be zero if there is no residual
B-type systematics. Since we are testing this hypothesis precisely,
we keep κB as a quantity to be measured from the data instead of
making it equal to zero. The noise contribution to each convergence
moment measured in this work is then given by〈
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The left-hand side corresponds to the de-noised (unbiased) moment
and the right-hand side shows the combination of moments leading
to this unbiased measurement. The measured signal, B-mode and
random noise maps are given by κobs, κ⊥ and κ ran, respectively.
As a reminder from the definition given in Section 4.2, a few en-
semble averages have been introduced: (· · ·)θ0

denotes the moment
average over one map, (· · ·)θ0

is averaged over several noise maps
κ ran and 〈· · ·〉θ0 is the de-noised moment. One can see from these
equations that there are as many systematics moments as there are
permutations of κE and κB for a given moment order. A total of
100 random maps have been generated for each smoothing scale. In
order to derive equations (A3), we assumed that all the terms with
odd-order moments of the noise maps κ ran can be neglected, as they
only introduce noise in the equations above.
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