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The Lorentzian metric structure allows one to implement the relativistic notion of causality in any field theory and to define a notion of time dimension. We propose that at the microscopic level the metric is Riemannian and that the Lorentzian structure, usually thought as fundamental, is in fact an effective property, that emerges in some regions of a 4-dimensional space with a positive definite metric. We argue that a decent classical field theory for scalars, vectors and spinors in flat spacetime can be constructed, and that gravity can be included under the form of a covariant Galileon theory instead of general relativity.

Introduction

Part of the art of theoretical physics is to find mathematical structures that allow to formalize and "decomplexify" the laws of nature. These structures include the description of spacetime (dimension, topology, etc.), of the matter and interactions (fields, symmetries, etc.). While there is a large freedom in the choice of these mathematical structures, the developments in theoretical physics taught us that some of them are better-suited to describe some classes of phenomena. However, these choices are only validated by the mathematical consistency of the theory and, in the end, by the agreement of their consequences with experiments. Some structures, considered as fundamental in the domain of validity of a theory, can be replaced by other structures in a new description, e.g. the spacetime of Newtonian physics can be formally seen as the limit of the Minkowski structure in regimes, where v ≪ c. In this respect, the role of fundamental constants as concept synthesizers or as limiting quantities is central and signal the need for new mathematical structures in a new regime. 1,2 At each step, some properties, such as the topology of space, the number of spatial dimensions or the numerical values of the free parameters that are the fundamental constants, may remain ap r i o r ifree in one framework, or imposed in another framework (e.g. the number of space dimensions is fixed in string theory 3 ). It may even be that different structures can reproduce what we know about physics and one has to rely on less-defined criteria, such as simplicity and economy, to choose between them.

Among all these structures, and in the framework of metric theories of gravitation, the signature of the metric is in principle arbitrary. Indeed, it seems that on the scales that have been probed so far, there is a need for only one time dimension and three spatial dimensions. It is also now universally accepted that the relativistic structure is a central ingredient of the construction of any realistic field theory, in particular as the cleanest way to implement the notion of causality. Spacetime enjoys a local Minkowski structure and, when gravity is included, the equivalence principle implies (this is not a theoretical requirement, but an experimental fact, required at a given accuracy) that all the fields are universally coupled to the same Lorentzian metric. Thus, we now take for granted that the spacetime is 4-dimensional manifold endowed with a metric of signature (-, +, +, +).

While the existence of two time directions may lead to confusion, 4,5 several models for the birth of the universe [6][7][8][9] are based on a change of signature via an instanton in which a Riemannian and a Lorentzian manifolds are joined across a hypersurface which may be thought of as the origin of time. While there is no time in the Euclidean region, where the signature is (+, +, +, +), it flips to (-, +, +, +). Eddington even suggested 10 that it can flip across some surface to (-, -, +, +) and signature flips also arise in brane or loop quantum cosmology. [START_REF] Gibbons | [END_REF][12][START_REF] Mielczarek | Signature change in loop quantum cosmology[END_REF] It is legitimate to investigate whether the signature of the metric is only a convenient way to implement causality or whether it is just a property of an effective description of a microscopic theory in which there is no such notion. What does it take to construct a realistic field theory in a positively definite metric? If one considers a scalar field χ and assumes that its Lagrangian is a scalar and leads to second-order equations, the only terms that can be included are a "kinetic term", 1 2 δ µν ∂ µ χ∂ ν χ, and a potential term V (χ). As a consequence its field equation is elliptic, determining a static configuration.

In order to make dynamics emerge locally, we introduce a scalar field φ such that (1) its derivative has a nonvanishing vacuum expectation value (VEV) in region M 0 of the Riemannian space (see Fig. 1) and ( 2) that it couples to all other fields.

The first condition is implemented by assuming that ∂ µ φ =c o n s t . =0i nM 0 . We can thus set ∂ µ φ = M 2 n µ in M 0 with n µ a unit constant vector. Its norm

X E ≡ δ µν ∂ µ φ∂ ν φ = M 4 is constant and satisfies X E > 0, in M 0 .
(2.1)

Fig. 1. Example of a spatial configuration of the clock field. Locally, one can define regions such as M 0 , M ′ 0 and M ′′ 0 , in each of which a time direction emerges. Indeed, this direction does not preexist at the microscopic level and can be different from patches to patches. Now, under this assumption, one of the coordinates of the Euclidean space can be chosen as dt = n µ dx µ , i.e.

t ≡ φ M 2 , (2.2) 
up to a constant that can be set to zero without loss of generality and we introduce three independent coordinates x i (i =1,...,3) on the hypersurfaces Σ t normal to n µ . The second condition is implemented by considering that χ couples only to ∂ µ φ, so that one can consider the action

S χ = d 4 x - 1 2 δ µν ∂ µ χ∂ ν χ -V (χ)+ 1 M 4 (δ µν ∂ µ φ∂ ν χ) 2 . (2.3)
On M 0 where the condition (2.2) holds, it is straightforward to deduce that

S χ → dtd 3 x 1 2 (∂ t χ) 2 - 1 2 δ ij ∂ i χ∂ j χ -V ≡ dtd 3 x - 1 2 η µν ∂ µ χ∂ ν χ -V . (2.4) 
On M 0 , the action (2.3) thus describes the dynamics of a scalar field propagating in an effective 4-dimensional Minkowski spacetime with metric η µν = diag(-1, +1, +1, +1). The apparent Lorentzian dynamics, with a preferred time direction, results from the coupling to φ. As a consequence, φ is related to what we usually call "time", so that we shall call it a clock field.

Field theory in flat spacetime

In our example, the clock field allows for the emergence of an effective Lorentzian dynamics because the scalar field is actually coupled to the metric ĝµν = δ µν -2 M 4 δ µα δ νβ ∂ α φ∂ β φ that reduces M 0 to η µν . Let us now show 14 that it can be generalized to fields of any spin.

First, consider a vector field A µ with Faraday tensor 

F µν = ∂ µ A ν -∂ ν A
S A = 1 4 d 4 x -F µν F µν E + 4 M 4 F µρ E F ν Eρ ∂ µ φ∂ ν φ →- 1 4 dtd 3 xη µα η νβ F µα F νβ . (2.5)
Because of the coupling to the clock field, the vector field propagates effectively in a Minkowski metric and we recover the standard Maxwell action. The generalizations to a non-Abelian group and to charged scalar fields are straightforward. [START_REF] Mukohyama | [END_REF] Again, as for the scalar field, the action is equivalent to a minimal coupling to the effective metric ĝµν . The case of spinors is more subtle because one needs to define the Clifford algebra compatible with the Euclidean metric (see Ref. 14 for details of the construction), that is the matrices γ µ E satisfying {γ µ E ,γ ν E } = -2δ µν .T h e yc a nb e obtained from the standard γ-matrices as γ 0 E ≡ iγ 5 and γ i E ≡ γ i . The matrices

S µν E ≡ i 4 [γ µ E ,γ ν E ]
then satisfy the algebra of SO(4) rotation generators. Hence, the SO(4) rotation for Dirac field ψ is

ψ → Λ E, 1 2 ψ, Λ E, 1 2 =exp - i 2 ω E µν S µν E , (2.6) 
where ω E µν are real numbers. Since all S µν E are Hermitian, Λ E, 1 2 is unitary. This implies that ψ → ψΛ -1

E, 1 2 and ψ † → ψ † Λ -1 E, 1 2
so that both ψψ and ψγ 5 E ψ (= ψ † ψ) are scalars under a SO(4).

The dynamics is obtained by starting from the action for a Euclidean Dirac spinor, ψ( i

2 γ µ E ← → ∂ µ -m)ψ.
Assuming that the clock field φ has derivative couplings to ψ, there are six Hermitian bilinear coupling terms that transform as scalar under SO(4) and that do not include more than one derivative acting on spinors. Among them, it is sufficient to consider δ µν (i ψγ 5

E ← → ∂ µ ψ)∂ ν φ and (i ψγ ρ E ← → ∂ µ ψ)∂ ρ φ∂ ν φ.I ti s then easily shown that on M 0 S ψ = dx 4 ψ i 2 γ µ E ← → ∂ µ -m ψ + δ µν 2M 2 [(i ψγ 5 E ← → ∂ µ ψ) -(i ψγ ρ E ← → ∂ µ ψ)∂ ρ φ]∂ ν φ → dx 4 ψ i 2 γ 0 ← → ∂ 0 + i 2 γ i ← → ∂ i -m ψ.
(2.7)

The coupling to the clock field implies that ψ effectively propagates in an effective Lorentzian metric and we recover the standard Minkowskian Dirac action with the algebra for the γ-matrices, {γ µ ,γ ν } = -2η µν . Note that the interpretation in terms of the effective metric ĝµν cannot be extended to spinors.

Gravity and physics in curved spacetime

It is possible to extend this construction to gravity. For this purpose, we now consider a general 4-dimensional Riemannian manifold M with a positive definite metric g E µν . To minimize the number of degrees of freedom, we demand that the equation of motion for φ is second-order. Hence, its action is restricted to the Riemannian version of the Horndeski theory 15 with shift symmetry. Equivalently, it is given by the shift-symmetric generalized Galileon. 16,17 For the effective equations, i.e. once the Lorentzian structure has emerged, we would like to ensure that the system is invariant not only under time translation but also under charge, parity and time reversal (CPT). For this reason, we require that besides the shift symmetry (φ → φ +const.) the theory also enjoys a Z 2 symmetry (φ →-φ) for the clock field action. With these symmetries, the Riemannian action reduces to

S g = dx 4 √ g E {G 4 (X E )R E + K(X E ) -2G ′ 4 (X E )[(∇ 2 E φ) 2 -(∇ E µ ∇ E ν φ) 2 }, (2.8) 
where

X E ≡ g µν E ∂ µ φ∂ ν φ. As demonstrated in Ref. 14, it reduces on M 0 to S g = dx 4 √ -g{f (X)R +2f ′ (X)[(∇ 2 φ) 2 -(∇ µ ∇ ν φ)(∇ µ ∇ ν φ)] + P (X)}, (2.9)
in terms of X = -g µν ∂ µ φ∂ ν φ,w h e r eg µν is the emergent Lorentzian metric and where f and P are two functions related to G 4 and K.T h i sac t i on( 2.9) is a special case of the covariant Galileon 16 and the equations of motion are second-order.

It can then be shown 14 that the action for scalar and vector fields can easily be generalized to curved spacetime, while the case of spinor is still an open question.

Discussion

By introducing couplings of the standard fields to a clock field, we have shown that a Lorentzian dynamics, including gravity, can emerge on a patch M 0 of a Riemannian space. This goes far beyond earlier attempts. 18 We thus propose that not only the Lorentz invariance 19 but also the Lorentzian signature may be an emergent phenomena at long distances. At short distances, on the other hand, higher derivative corrections compatible with the Riemannian diffeomorphism become important and the theory is genuinely Riemannian.

In flat spacetime, we can describe scalars, vectors and spinors and hence the whole standard model of particle physics. It is important to emphasize that: (1) it is limited to classical field theories; (2) when restricted to M 0 all fields propagate in the same effective Minkowski metric so that the equivalence principle is safe in first approximation; (3) indeed, the couplings to the clock field have been tuned for that purpose since the action (2.3) could have been chosen as

S χ = d 4 x - κ χ 2 δ µν ∂ µ χ∂ ν χ -V (χ)+ α χ 2M 4 (δ µν ∂ µ φ∂ ν χ) 2
and a Lorentzian signature is recovered, only if α χ >κ χ > 0. In the case where these constants are not tuned, different fields can have different lightcones; (4) In the bosonic sector, since the theory is invariant under the Euclidean parity (x µ →-x µ ) and field parity (φ →-φ), both P and T invariances in the Lorentzian theory are ensured. This explains why we have included only quadratic terms in ∂ µ φ in the actions for scalars and vectors; (5) In the fermionic sector, one of the terms in the Euclidean Dirac action and one of the coupling terms are not CPT invariant after the clock field has a VEV, unless they cancel each other; and (6) The configuration of the clock field is not arbitrary, but determined by solving its equation of motion. Since its action enjoys a shift symmetry, it shall take the form of a current conservation.

In curved spacetime, gravity takes the form of a covariant Galileon theory, that depends on two free functions constrained 14 by the stability of Friedmann-Lemaître background with respect to linear scalar and tensor perturbations. For the matter sector, the actions for scalar and vector fields are easily generalized and each depends on two free parameters (κ, α) that are allowed to be functions of X E in general but may as well be assumed constant. Besides, there is an environmental parameter which characterizes the clock field configuration on the patch M 0 . The emergent model has the following properties: (1) it induces two components which respectively behave as dark matter and dark energy when considering the dynamics of a homogeneous cosmology, similar to ghost condensates. 20 This sets two constraints for the cosmology to be consistent with standard cosmology, at least at the background level; (2) In general, scalars and vectors propagate in two different effective metrics. In order for the weak equivalence principle to hold, we have to impose that these two metrics coincide. In the simplest situation in which the coefficients (κ, α) are assumed to be constant, one only requires a tuning on the parameters of the Lagrangians, but then it is satisfied whatever the configuration of the clock field may be. In this sense, the tuning is not worse than the usual assumption that all the fields propagate in the same metric; (3) In general, the parameters entering our effective Lorentzian actions are environmentally determined. This means that if X E is not strictly constant on M 0 , fundamental constants may be spacetime dependent, which is strongly constrained 1,2 ; and (4) The speeds of light and of graviton may not coincide, which is constrained by the observations of cosmic rays [21][22][23] because particles propagating faster than gravity waves emit gravi-Cerenkov radiation.

To conclude, from a theoretical point of view, our construction gives a new insight into the need for Lorentzian metric as a fundamental structure. As we have shown, this is not a mandatory requirement and a decent field theory, at least at the classical level, it can be constructed from a Riemannian metric. Such a formalism may be fruitful in the debate on the emergence of time and, speculating, for the development of quantum gravity.

It also opens up a series of questions and possibilities. We can list: (1) the construction of Majorana and Weyl spinors; (2) the development of a quantum theory; (3) the possibility from the classical viewpoint that singularities in our local Lorentzian region may be related to singularities in the clock field (e.g. similar to topological defects) and not in the metric of the Euclidean theory; and (4) the possibility that a de Sitter spacetime may be an "illusion" in an anti-de Sitter Riemannian space. It then follows that a Euclidean AdS/CFT correspondence at the microscopic level would reveal itself as a dS/CFT correspondence in our effective Lorentzian universe. These are, for now, speculations but they illustrate that this framework may be fruitful for extending our current field theories, including general relativity.
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