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Identifying and characterizing mutational paths is an important issue in evolutionary biology and
in bioengineering. We here introduce a generic description of mutational paths in terms of the
goodness of sequences and of the mutational dynamics (how sequences change) along the path. We
first propose an algorithm to sample mutational paths, which we benchmark on exactly solvable
models of proteins in silico, and apply to data-driven models of natural proteins learned from
sequence data with Restricted Boltzmann Machines. We then use mean-field theory to characterize
the properties of mutational paths for different mutational dynamics of interest, and show how it can
be used to extend Kimura’s estimate of evolutionary distances to sequence-based epistatic models
of selection.

Introduction. Designing proteins with controlled
properties, such as stability, binding affinity and speci-
ficity is a central goal in bioengineering. Directed evo-
lution setups result in the discovery of new proteins
with enhanced activities or affinities to a specific sub-
strate [1]. Over the past years, much progress was
made using data-driven models, intended to capture the
relation between protein sequences and functionalities.
In particular, unsupervised machine-learning approaches
such as Boltzmann Machines (BM) or Variational Auto-
Encoders trained on homologous sequence data (defin-
ing a protein family) were shown to be robust generative
models, able to design new proteins with functionalities
comparable to natural proteins [2, 3].

By comparison, the (even) harder problem of design-
ing paths of sequences, interpolating between two ho-
mologous proteins has received little attention (Fig. 1),
see however [4]. Yet solving this problem would be im-
portant in bio-engineering, e.g. to help design proteins
with gradually changing functionalities. In addition, it
would shed light on the navigability of the sequence land-
scape [5], and on how specificity emerged from ances-
tral, promiscuous proteins [6]. Informally speaking, a
path is a succession of mutants interpolating between
two fixed sequences at the edges, such that intermediate
proteins maintain good functionality and contiguous se-
quences along the path differ by few mutations. The lat-
ter constraint depends on the objective, e.g. producing
mutational paths plausible from an evolutionary point of
view, or optimized for experimental validations. In par-
ticular, due to the huge number of possible paths mutage-
nesis experiments generally restrict to direct paths going
through the 2D mutants containing the amino acids ap-
pearing in the two edge sequences (differing on D sites),
see Fig. 1 [7]. However, constraining paths to be di-
rect may preclude the discovery of better global paths,
involving mutations and their reversions and reaching
more favorable regions in the sequence space [8] (Fig. 1).

While various methods exist for building transition
paths between the minima of a multi-dimensional con-
tinuous landscape [9, 10] dealing with discrete configu-
rations requires the development of specific procedures
[11]. We hereafter propose a Monte Carlo algorithm

FIG. 1. Mutational paths between two sequences in
the landscape associated to a protein family. Darker
blue levels correspond to increasing values of the protein fit-
ness. Paths joining the start and end sequences are either
direct (green: each site carries the amino acid present at the
same position in the initial or in the final sequence) or global
(red: no restriction on amino acids), making possible the ex-
ploration of high fitness regions.

to sample mutational paths in protein landscapes, e.g.
obtained by Restricted Boltzmann Machines trained on
sequence data. We first benchmark our sampling proce-
dure on an exactly solvable model of lattice proteins [12],
and demonstrate its capability to find high-quality paths
between two proteins belonging to different subfamilies.
We then apply our algorithm to the WW domain, a bind-
ing module involved in the regulation of protein com-
plexes [13, 14]. The functionality of the sequences along
the paths is validated with structure (ligand+protein)-
informed software [15]. Last of all we derive a mean-field
characterization of paths, tailored to the mutational dy-
namics of interest. This mean-field theory allows us to
efficiently estimate evolutionary distances in the pres-
ence of strong epistatis in the selection process, which
is not possible with profile models at the basis of most
phylogenetic studies [16].

Definition and sampling of mutational paths. We as-
sume the sequence landscape is modeled through a prob-
ability distribution Pmodel(v) over amino-acid sequences
v of length N . Informally speaking, Pmodel quantifies
the probability that v is a member of the protein family
of interest, i.e. share its common structural and func-
tional properties, and can be learned from homologous
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sequence data [17, 18]. For natural protein families, exact
expressions for Pmodel are not available, but approximate
distributions can be inferred from multi-sequence align-
ments (MSA) using unsupervised learning techniques.

Hereafter, we use Restricted Boltzmann Machines
(RBM) [19], a class of generative models based on
two-layer graphs [20]. RBM define a joint probability
distribution of the protein sequence v (carried by the
visible layer) and of its M -dimensional latent represen-
tation h (present on the hidden layer) as

PRBM ∝ exp

(∑
i

gi(vi) +
∑
µ

hµIµ(v)−
∑
µ

Uµ(hµ)

)
,

(1)
where Iµ(v) =

∑
i wi,µ(vi) is the input to hidden unit

µ. The gi’s and Uµ’s are local potentials acting on,
respectively, visible and hidden units, and the wiµ’s
are the interactions between the two layers. They
are learned by maximizing the marginal probabilities
Pmodel(v) =

∫
dhPRBM (v,h) over the sequences v in

a multi-sequence alignment of the family. While other
unsupervised procedures providing approximate Pmodel
can be used, such as Direct Coupling Analysis [17, 18],
RBM offer a convenient way to interpret and to visualize
the changes in sequences along mutational paths, as we
will see below.

We define the probability of a mutational path of T
steps, V = {v1,v2, ...,vT−1} through

P[V|vstart,vend] ∝
T−1∏
t=1

Pmodel(vt)×

π(vstart,v1)×
T−2∏
t=1

π(vt,vt+1)× π(vT−1,vend) (2)

where the ’transition’ factor π(v,v′) increases with the
similarity between the sequences v,v′. As an illustration
we may choose π = 1 if the two sequences are identical,
e−Λ if they differ by one mutation (with Λ > 0), and
0 if they are two or more mutations apart. This choice
generates ‘continuous’ paths, along which successive se-
quences differ by one mutation at most. Other choices
for π, more plausible from an evolutionary point of view
will be introduced below.

The probability P(V) can be sampled as follows. Start-
ing from a path V0, we randomly pick up an intermedi-
ate sequences vt and attempt at mutating one amino
acid, under the constraint that the Hamming distances
of the trial sequence v′ with vt−1 and vt+1 be at most
1. The mutation is then rejected or accepted, i.e.
vt ← v′ according to detailed balance. Note that for
global paths amino acids can take any values. For di-
rect paths each amino acid has to coincide with the one
either in vstart or in vend on the same site, and the
length T of the path matches the Hamming distance
D = N

(
1 − q(vstart,vend)

)
between the two edge se-

quences. To improve the quality of the sampled muta-
tional paths we introduce a fictitious inverse temperature
β and resort to simulated annealing. We then sample

FIG. 2. Mutational paths for lattice proteins,
joining sequences I=DRGIQCLAQMFEKEMRKKRRKCYLECD and
H=RECCAVCHQRFKDKIDEDYEDAWLKCN belonging to the family
with structure shown in b) and c). Red and blue colors re-
spectively correspond to negatively and positively charged
amino acids. Cysteine is denoted by a green C. (a) Projec-
tions of 104 LP sequences in the family (grey dots) along the
top two PC of their correlation matrix. Green lines represent
direct paths, while red and maroon lines show some global
paths sampled from Eq. (2); here, we set inverse temperature
β = 3 and the mutation penalty Λ = 2, while the length
of the direct and global paths are respectively Tdirect = 24,
Tglobal = 82. The relative numbers of maroon (2) and red
(10) paths respect the statistics over all sampled paths. Sides:
histograms of projections along PC1 (top) and PC2 (right).
Inset: folding probability pnat along each path vs. number of
mutations/T .(b,c) Structure of the family. Sequences having
opposite alternating configurations of charges along PC1 fold
equally well. (d,e) Sequence logos of the top two PCs.

paths from P[V]β , where the value of β is initially very
small and progressively ramped up to some target value.
The complete procedure and the proof of detailed bal-
ance are given in Supplemental Material, Sec. 1.

Benchmarking mutational path sampling on in silico
proteins. We benchmark the performances of our MC
procedure on a model of Lattice Proteins (LP) [12, 21].
In LP, sequences of 27 amino acids may fold into ' 105

different self-avoiding conformations going through the
nodes of a 3 × 3 × 3 cubic lattice. The sequence land-
scape associated to a structure S (Fig. 2(a)) is defined by
the probability pnat(v|S) that a sequence v has S as its
native fold; pnat can be exactly computed from the en-
ergies of interactions between adjacent amino acids, see
Supplemental Material, Sec. 2 for details.

We first generate many sequences v with high pnat
values for the fold S of Figs. 2(b,c) following the pro-
cedure of [22]. We next compute the top two Principal
Components (PC) of these sequence data using one-hot
encoding (Figs. 2(d,e)): PC1 corresponds to an extended
electrostatic mode, and PC2 identifies possible Cys-Cys
bridges. Projecting the sequences onto these two PCs re-
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veals two sub-families separated along PC1 (Fig. 2(a)),
associated to opposite chains of alternating charges along
the electrostatic mode (Figs. 2(b,c)). We will use our
path sampling procedure to interpolate between the two
sub-families, see start (white star) and end (black star)
sequences in Fig. 2(a).

To mimick the approach followed for natural proteins
we train a RBM on the LP sequence data generated
above, to infer an approximate expression for pnat from
the data; see Supplemental Material, Sec. 3 for details
about the inference of the RBM model. We then use
our sampling algorithm to produce global mutational
paths, see Fig. 2(a). The algorithm is able to find ex-
cellent global mutational paths in terms of the ground
truth folding probability pnat (insert Fig. 2(a)). By fix-
ing the target inverse temperature β to a value larger
than one, we are able to obtain pnat values along the
path higher than those of the sequences at the extremi-
ties. Repeated runs of the sampling procedure give dif-
ferent paths that cluster into two classes, shown in red
and maroon in Fig. 2(a). While few global paths exploit
a transient introduction of Cys-Cys interaction to stabi-
lize the structure while flipping the electrostatic residues
(marron cluster); most (red cluster) introduce additional
stabilizing electrostatic contacts along the path (red clus-
ter). See Supplemental Material, Sec 4 for details.

Mutational path sampling from data-driven models of
natural proteins. We next show that our path sampling
procedure can be applied to natural proteins. To do so
we train a RBM from MSA data of the WW family, a
protein domain binding specifically proline-rich peptides
[13, 23] and sample mutational paths, either global or
direct, between the Human YAP1 domain and three nat-
ural sequences known to have different binding specifici-
ties [26]. Figure 3(a) shows some sampled paths in the 2-
dimensional space spanned by the inputs I(v) (see Eq. 1)
to two RBM hidden units chosen to cluster natural WW
sequences depending on their binding specificities [20].
Figures 3(b,c) show the probabilities of sequences along
global and direct paths are comparable to the ones of nat-
ural proteins, with significantly higher values for global
paths. We then use AlphaFold [27] to assess the qual-
ity of the intermediates sequences; AlphaFold is able to
predict the phenotypic effects of mutations [28], and to
compare the resulting structures to natural folds through
Template Modelling scores (TM-score) [29], ranging from
from 0 -unrelated proteins- up to 1 -perfect match. We
obtain TM-score > 0.5, indicating a high similarity be-
tween the folds of sequences sampled along the path and
of natural WW, see Supplemental Material, Sec. 5.2 for
details.

We next estimate binding affinity for each class using
ProteinMPNN [15], an autoregressive structural-based
probabilistic model that takes as input a backbone struc-
ture of a protein-ligand complex and predicts the affinity
score of a putative protein sequence. Here, we use com-
plexes of known natural WW domains of classes I, II/III,
IV with their cognate peptides, see Fig. 3(h) and Sup-
plemental Material, Sec. 5.3 for details. As expected,
along the I → II/III path the affinities of sequences to

class I (II/III) –cognate peptides decrease (increase), see
Fig. 3(d). Interestingly, Fig. 3(e) shows the existence
of a region on the I → IV path in which the predicted

FIG. 3. Mutational paths of the WW domain using
RBM trained on the PFAM PF00397 family, see Supplemen-
tal Material, Sec. 3 for details about implementation. (a) Nat-
ural sequences v (grey dots) projected in the plane of inputs
I of two hidden units selected to cluster sequences according
to the types of ligands they bind: I (cyan), II/III (orange),
IV (green), see classification in [23]. Blue cross represents the
YAP1 domain. Lines shows the projection of six representa-
tive paths (dashed: direct, solid: global) connecting YAP1 to
sequences in classes I (circle), II/III (square; note the vicin-
ity of the direct path with variants of YAP1 -orange crosses-
tested in [24]) and IV (triangle). Empty symbols show in-
termediate sequences tested also with AlphaFold. All the se-
quences standing for these symbols are shown in Supplemen-
tal Material, Sec. 5.1. Parameters: β = 3, Λ = 0.1.(b)-(c) Log
PRBM for sequences along global and direct paths. (d) Com-
plexes (WW domain and cognate peptides) for classes I (blue
cross) and IV (green triangle) [25]. The atoms correspond-
ing to the two binding pockets are highlighted in the struc-
tures. (e)-(f) Normalized ProteinMPNN scores for binding
affinity, see Supplemental Material, Sec. 5.3. x-axis measures
the affinity to class I reference structure while y-axes show
affinity to classes II/III (e) and IV (f) reference structure re-
spectively. (g)-(h) Log-likelihood along the global paths from
I to II (g) and from I to IV (h) according to RBM trained on
class-specific sequence data (Cyan: I, Orange: II/III, Green:
IV).
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affinities with respect to both complexes are high. This
promiscuity may be favored by the fact that class I and
IV cognate peptides bind two distinct loops of the WW
domain (Fig. 3(h)). To further assess the specificity of
sequences on the sampled path, we train class-specific
RBM models from sequences in the associated quadrants
in Fig. 3(a). The cross-overs between the log-likelihoods
of the class-specific RBMs in Fig. 3(g,h) locate the speci-
ficity switches along the I → II/III and I → IV paths.

Mean-field theory of mutational paths. To better
characterize the typical properties of mutational paths
we resort to mean-field theory, by formally sending N →
∞, while keeping the number T of steps finite. To allow
for O(N) mutations between contiguous sequences we
write the transition factor in Eq. 2 as π(v,v′) = e−NΦ(q),
where the potential Φ is a decreasing function of the over-
lap q = 1

N

∑
i δvi,v′i . Φ controls the elastic properties of

the path, and will be made precise below.

Mean-field theory exploits the bipartite nature of the
RBM architecture and allows us to monitor two sets of
order parameters characterizing the paths V: the mean
values of the hidden-unit inputs, mµ

t = 1
N 〈Iµ(vt)〉, and of

the overlaps (fraction of conserved amino acids between
successive sequences), qt = 1

N

∑
i〈δvi,t,vi,t+1

〉; here, 〈·〉
denotes the average over P(V)β .

The T × (M + 1) order parameters mµ
t and qt are de-

termined through minimization of the path free–energy
density fpath, see Supplemental Material, Sec. 6, with

fpath({mµ
t }, {qt}) = −

∑
t,µ

(
Γµ(mµ

t )−mµ
t Γ′µ(mµ

t )
)

(3)

+
∑
t

(Φ(qt)− qt Φ′(qt))−
1

βN

∑
i

lnZi
(
{mµ

t }, {qt}
)
.

Here, Γµ(m) = 1
N ln

∫
dh eN mh−Uµ(h) and Zi is the fol-

lowing site-dependent partition function,

Zi({mµ
t }, {qt}) =

∑
{vt}

exp

(
β
∑
t

gi(vt) +

+β
∑
t,µ

Γ′µ(mµ
t )wiµ(vt)− β

∑
t

Φ′(qt) δvt,vt+1

)
. (4)

Zi can be efficiently estimated through products of trans-
fer matrices, of sizes 21× 21 for global paths, and 2× 2
for direct paths. The expression of fpath is exact for se-
quence length N →∞ and the numbers of hidden units,
M , and of steps, T remain finite, and is an accurate ap-
proximation even in the cases of LP (N = 27) and WW
(N = 31).

Choice of the elastic potential. The potential Φ can
enforce continuity (Cont) requirements, e.g. successive
sequences along the path differ by, say, K mutations at
most, or mimic the evolutionary (Evo) dynamics of nat-
ural sequences through stochastic mutations.

In the Cont scenario the potential Φ should forbid large
jumps along the paths. We thus consider a hard-wall

FIG. 4. Mean-field theory of mutational paths for the
RBM model trained on WW domain. (a) Sketches of the
potentials ΦEvo (black) and ΦCont (gray) vs. q. (b) Same two-
dimensional representation as in Fig. 3(a) for the mean-field
paths with Evo (black lines) and Cont (grey lines) potentials.
(c)-(d) Cumulative numbers of mutations vs. t. Here, µ =
10−5 and γ = 0.9, so that the cumulative numbers match
for t = T . (e) Log-probability of joining class I and class IV
natural WW domains in T steps with the profile (triangles)
and RBM (circles) models. Jumps signal the onset of several
new mutations, e.g. 4 in the mean-field free path at T = 10 .

repulsive potential (Fig. 4(a)),

ΦCont(q) =
φ(T )

q − qc(T )
if qc(T ) < q ≤ 1, +∞ otherwise.

(5)
The location of the hard wall, qc(T ) = 1 − γ/T , allows
the path to explore at most K ≡ T × N(1 − qc) = γN
mutations in T steps. Choosing γ ≥ D/N (D being the
Hamming distance between vstart and vend), is therefore
sufficient to interpolate between the two edge sequences,
with larger values of γ authorizing more flexible paths.
The proportionality constant φ(T ) = 1/T 2 is set to guar-
antee the existence of a well defined limit for large T .

In the Evo scenario, the potential should emulate
Kimura’s model of neutral evolution [30], while the
Pmodel factors in Eq. 2 correspond to selection. Denot-
ing the mutation rate (over a time interval corresponding
to one step of the path) by µ we show in Supplemental
Material, Sec. 7, that the potential is given by [31]

ΦEvo(q) = (1− q) ln

(
1 +

A

eµA/(A−1) − 1

)
, (6)

where A = 21 is the number of amino acids plus the gap
state. It is linearly decreasing with q, see Fig. 4(a).

Cont and Evo mean-field paths between class-specific
WW domains are shown in Fig. 4(b); both follow simi-
lar traces in the specificity plane, in agreement with the
sampled paths in Fig. 3(a). However, the distribution of
mutations along the paths largely differ between the two
scenarios, compare Fig. 4(c-d). Mutations are homoge-
neously spread along the Cont path, with ' Nγ/T mu-
tations at each step. Conversely, the Evo path is highly
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heterogeneous, with some steps accumulating many mu-
tations and others barely any, see Supplemental Material,
Sec. 6.1 for the list of consensus sequences computed with
the mean-field theory. Interestingly, most steps along
the Evo path I→IV are concentrated in the region char-
acterized by promiscuous sequences binding both ligand
classes as mentioned above, which could then correspond
to ancestral, not yet specialized sequences [6].

Mean-field based estimation of evolutionary distance.
As an application of our mean-field approach we show
how it can be used to estimate evolutionary distances
between sequences with complex data-driven models,
including epistatic interactions between residues. The
probability that sequence vend be reached after T steps
of stochastic mutations with rate µ starting from vstart
is given by

P (vstart → vend|T ) ∼ exp
[
−N(f constrainedpath − ffreepath )

]
,

(7)
where f constrainedpath is the free energy in Eq. 4 (with poten-
tial ΦEvo) minimized under boundary conditions match-

ing both vstart and vend, while ffreepath is obtained by re-
leasing the boundary condition at the end extremity of
the path. Details on the numerical optimization are given
in Supplementary Material, Sec. 6.2.

This probability can be computed as a function of T
to determine the optimal time (evolutionary distance)
T ∗ at which it is maximal. For purely neural evolution,
ffreepath = 0 and the probability P (vstart → vend|T ) can be
exactly computed; T ∗ then coincides with the predictions
of Kimura’s theory of neutral evolution [30], see Supple-
mental Material, Sec. 7. Kimura’s result can be easily
extended to the case of profile models [16], where selec-
tion acts independently from site to site, see Fig. 4(e)
for an illustration of WW. Our mean-field theory the-
ory allows us to go well beyond profile models, and to
compute the probability P in the presence of epistatis
effects in the RBM model inferred from WW sequence
data. Figure 4(e) shows that the evolutionary distance
T ∗ may then substantially differ from its profile coun-
terpart, showing the effectiveness of our mean-field ap-
proach to deal with complex sequence models.

Conclusion. In this work we have introduced numer-
ical and analytical tools to sample and characterize mu-
tational paths in data-driven models (RBM) of protein
sequences. Our sampling algorithm was illustrated on
the WW domain, but can be applied to longer enzymes,
with > 100 amino acids. We have validated the struc-
tural and functional properties of intermediate sequences
along the paths with AlphaFold and ProteinMPNN, two
deep-learning-based computational methods. A poten-
tially interesting biological finding is that the path inter-
polating between specificity classes I and IV go through
a region apparently deprived of natural sequences, al-
beit corresponding to high RBM likelihood[32] and high
ProteinMPNN scores for both ligands (Fig. 3). These
intermediate sequences are putatively unspecialized, and
possibly similar to ancestral proteins. Investigating ex-
perimentally their properties would be very interesting.

In addition, we have shown how RBM models are
amenable to mean-field analysis, through the determi-
nation of the time-trajectory of the mean inputs to the
hidden units and of the overlaps between successive se-
quences along the path. Mean field is a powerful compu-
tational scheme in the presence of strong interactions be-
tween residues, e.g. to estimate evolutionary distances.
This result opens the way to ancestral reconstruction and
to the prediction of phylogenetic trees [16] with data-
driven, epistatic models.
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