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1 Path sampling algorithm

1.1 Detailed description
We introduce below the details of the sampling procedure we use to obtain paths connecting two fixed sequences in a landscape
described by the probability distribution Pmodel. Starting from a path {vt}, we look at intermediate sequences (starting from
t = 1) and propose a mutation with the constraint that the Hamming distance between vt−1 and vt+1 is not greater than 1.
We accept this move with a probability fixed to ensure detail balance. Different cases have to be considered, depending on
the Hamming distance DH between the new attempted sequence and existing ones:

• DH(vt−1,vt+1) = 0. In this case the new sequence v′t can have a single mutation at any site, compared with the
two adjacent sequences along the path. Hence, we first draw a random site i, then we propose a new sequence v̂t−1
amino-acids for that site v̂it drawn from the distribution ∝ P βmodel(·|v

\i
t−1), where the amino acids are fixed on all the

sites different from i. Then if the old sequence vt already had a mutation with respect to vt−1 at given site j, we accept
the new mutated sequence v̂t (which is equal to vt−1 apart from the amino acid at site i) with a probability

pacc(vt → v̂t) =

= min

(
1,
πtr(vt−1, v̂t)

2β
∑
z P

β
model(M

z
i vt−1)

πtr(vt−1,vt)2β
∑
z P

β
model(M

z
j vt−1)

)
, (1)

where Mz
i indicates the mutation z at site i. If vt or v̂t are equal to vt−1, then the acceptance probability is pacc(vt →

v̂t) = min(1, πtr(vt−1, v̂t)
2β/πtr(vt−1,vt)

2β).

• DH(vt−1,vt+1) = 1. In this case the new sequence v̂t can have a single mutation only at the site i where vt−1 and
vt+1 are different. At that site, we propose a new mutation from the distribution ∝ P βmodel(·|v

\i
t−1) and accept it with

probability pacc = exp[−Λβ(DH(v̂t,vt−1) +DH(v̂t,vt+1)−DH(vt,vt−1)−DH(vt,vt+1))].

• DH(vt−1,vt+1) = 2. In this case the previous and subsequent sequence present two mutations at site i and j. The new
sequence v̂t can be of two forms: it can have the same mutation of vt+1 (with respect to vt−1) at site i or at site j.
Hence, we extract one of the two possibilities with a probability weighted accordingly with P βmodel(v̂t).

1.2 Proof of detailed balance
To prove that dynamics given by our algorithm of path sampling converges to the target distribution we have to prove that
it respects detailed balance, i.e. the reversibility of each Markov step. We consider the transition from a path {vt} to a new
path that differ only by one sequence v′t at time t. we write the detailed balance condition as
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Ppath({vt})ptrans(vt → v′t) = Ppath({v′t})ptrans(v′t → vt)

πλ(vt−1,vt)πλ(vt,vt+1)Pmodel(vt)ptrans(vt → v′t) = πλ(vt−1,v
′
t)πλ(v′t,vt+1)Pmodel(v

′
t)ptrans(v

′
t → vt)

(2)

If DH(vt−1,vt+1) = 0, the new sequence can have a mutation at any site i compared to its neighbour vt−1, while vt will
have the mutation at another site j (note that i and j can be equal. Hence the transition probability in this case will be

ptrans(vt → v′t) =
1

N

Pmodel(v
′
t)∑Q

z=1 Pmodel(M
z
i vt−1)

pacc(vt → v′t), ptrans(v
′
t → vt) =

1

N

Pmodel(vt)∑Q
z=1 Pmodel(M

z
j vt−1)

pacc(v
′
t → vt). (3)

By substituting everything in the detailed balance condition we obtain the acceptance probability described in the main
paper. This will hold similarly when DH(vt−1,vt+1) = 1 (with i = j). For DH(vt−1,vt+1) = 2, the sequences vt and v′t can
either be equal to vt+1 or vt−1, from which the condition presented in the paper descends.

2 Lattice Proteins
To benchmark the performances of this MC procedure to find good transition path between two sequences, we test it on
Lattice Proteins [LD89], a well known toy-model for protein structure. We consider a protein sequence of 27 amino acids
folding into a 3D structure specified as a self-avoiding path over a 3x3x3 lattice where each amino acid occupies one node.
The probability of a sequence v to fold into a specific structure S is given by the interaction energies between amino acids
in contact in the structure (i.e. those who occupy neighbouring nodes of the lattice, but are not adjacent in the protein
sequence). In particular, the total energy of a sequence with respect to a given structure is given by

ELP (v|S) =
∑
i<j

cSijEMJ(vi, vj) (4)

where cS is the contact map (cSij = 1 if sites are in contact and 0 otherwise), while the pairwise energy EMJ(vi, vj) represents
the amino-acid physico-chemical interactions given by the the Miyazawa-Jernigan knowledge-based potential [MJ96]. The
probability to fold into a specific structure is written as

pnat(S|v) =
e−ELP (v|S)∑
S′ e
−ELP (v|S′) , (5)

where the sum is over the entire set of self-avoiding path in the cubic lattice.
The function pnat represents a suitable landscape that maps each sequence to a score measuring the quality of its folding. To
study in more detail this landscape, we will consider an alignment of sequences folding into a specific structure (that we will
call S) sampled from a low temperature MC sampling using −β log pnat(·|S) (with β = 103) as effective energy [JGS+16].

3 Restricted Boltzmann Machines and training parameter
To study the problem of transition paths we first need a model to infer a landscape from our sequence data set. At this scope,
we are going to use Restricted Boltzmann Machines, an unsupervised energy-based model able to learn representations of the
data in a two-layer bipartite graph [FI12]. The first "visible" layer represents the protein sequence v = {v1, ..., vN} where
each unit takes one out of 21 possible states (20 amino acids + 1 alignment gap). The second is the "hidden" layer which
displays the real-valued representations h = {h1, ..., hM}. The joint probability distribution for v and h is

PRBM (v,h) ∝ exp

 N∑
i=1

gi(vi) +
∑
i,µ

wiµ(vi)hµ −
∑
µ

U(hµ)

 (6)

up to a normalization constant. visible and hidden units are coupled through the matrices wiµ and the value of each unit is
biased by the local fields gi and Uµ. In [TCM19] it has been shown that this model is able to recover statistically relevant
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sequence motifs playing crucial roles in the structure and functionality of different protein families. Following their approach,
we choose Uµ to be double Rectified Linear Unit (dReLU) potentials of the form

Uµ(h) =
1

2
γµ,+h

2
+ +

1

2
γµ,−h

2
− + θµ,+h+ + θµ,−h− , where h+ = max(h, 0), h− = min(h, 0), (7)

where we have defined the hyper-parameters γµ,±, θµ,±.
At this point, we need a learning procedure to infer the hyper-parameters that best fit our data. We decided to use a
Persistent Contrastive Divergence algorithm [Tie08] which has been shown to be sufficiently good and robust under cautious
choice of the regularization hyper-parameters [Tub18a]. The code and the data used to train our RBMs for Lattice Proteins
and WW domains can be found in [Tub18b]. The hyper-parameters used for learning are the following:

• For WW (N=31):

– M = 50

– Batch size = 100

– Number of epochs = 500

– Learning rate = 5× 10−3 (which has a decay rate of 0.5 after 50% of iterations)

– L1b regularization = 0.25

– Number of MC step between each update = 10

• For Lattice Protein (N=27):

– M = 100

– Batch size = 100

– Number of epochs = 100

– Learning rate = 5× 10−3 (which has a decay rate of 0.5 after 50% of iterations)

– L1b regularization = 0.025

– Number of MC step between each update = 5

4 Statistic of paths sampled in LP
Here we show the relation between the sequences sampled using the sampling procedure described above (using the RBM
as model) with the mean-field solution described in the main paper. Looking at Figure S1 We see, consistently with the
mean-field solution, that global solutions prefers to activate input 14 more than the direct solution. Furthermore, statistically
this input is more likely to be reduced before activating input 4, which is consistent with the mean-field solution.
Analysing the difference between the direct and global paths along each inputs we notice that global solutions maintain high
scores in terms of pnat by exploiting the interactions between amino-acids at sites 5,6,11 and 22 (see Figure 2 in the main
paper). Global paths are divided in two classes corresponding to the chemical nature of the interaction used to bind these
amino-acids. One cluster (shown in maroon in Figure 2 of the main paper and in Figure S1) uses Cys-Cys bridges to establish
this interactions. Instead the most populated cluster (shown in red in the same figures) exploits electrostatic interactions
that are not initially present in the target sequences (hence forbidden along direct paths). Some of these interactions are
shown in Figure S2. This explains why the Principal Component Analysis shown in Figure 2 of the main paper does not
discriminate between direct paths and most of the global ones (i.e. red cluster).

To deeper characterize the behaviour of global solutions, we also plot in Figure S3 the average distance from the direct
space as a function of time obtained from the paths sampled using Pmodel ∝ PRBM , the likelihood from the trained RBM
model.
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Figure S1: Plot of some relevant inputs as function of time sampled with our Monte-Carlo procedure (Λ = 2 and target
β = 3). The colors respect those presented in Figure 2 in the main paper. Black lines correspond to the average time at
which the input switch value (>0 for I4 and <2 for I14).

Figure S2: Plot of some relevant inputs (and their respective weights logos) as function of time sampled with our Monte-Carlo
procedure (Λ = 2 and target β = 3) exploiting relevant electrostatic interactions forbidden in the direct space. The colors
respect those presented in Figure 2 in the main paper.
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Figure S3: Average value of the distance from direct space as a function of the step along the path connecting the two modes
in the LP landscape. Black and White stars refer to the same sequences as in Figure 2 of the main text.

5 Additional information about mutational paths of the WW domain

5.1 Lists of the tested sequences
Here we present the reference sequences sampled with the MC algorithm and tested using AlphaFold (note that the first
sequence of each list represent the YAP1 wild-type sequence from [ES99], while the last is the natural wild-type specific for
each class):

• From YAP1 to wild-type of class II/III:

– LPAGWEMAKTSS-GQRYFLNHIDQTTTWQDP

– LPAGWEMARTSD-GQVYFINHNTQTTTWQDP

– LPPGWQEARTPD-GRVYYINHNTKTTTWTKP

– -PPEWQEARTPD-GRVYYYNHNTKTTTWTKP

– ---EWQEARTPD-GRVYYYNHNTKQTTWTKP

– ---EWQEAKTPD-GRVYYYNKNTKQTTWEKP

– ---EWQEFKTPA-GKKYYYNKNTKQSRWEKP

• From YAP1 to wild-type of class IV:

– LPAGWEMAKTSS-GQRYFLNHIDQTTTWQDP

– LPPGWEVRYTRS-GRPYFVNHNTKTTTWEDP

– LPPGWEVRYSRSKNRPYFVNHNTKTTTWEDP

– LPPGWEVRHSRSKNRPYFFNHNTKTTTWEPP

– LPPGWEVRHSRSKNRPYFFNHNTKESTWEPP

– LPPPWEVRISRSKNRPYFFNTETKESLWEPP

– LPKPWIVKISRSRNRPYFFNTETHESLWEPP

• From YAP1 to wild-type of class I:

– LPAGWEMAKTSS-GQRYFLNHIDQTTTWQDP

– LPAGWEMAKTSE-GQRYFINHNTQTTTWQDP

– LPPGWEMAYTPE-GERYFINHNTKTTTWLDP
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– LPPGWEMGITRG-GRVFFINHETKSTTWLDP

– LPRSWTYGITRG-GRVFFINHEAKSTTWLHP

– LPRSWTYGITRG-GRVFFINEEAKSTTWLHP

5.2 details on the TM-score
To compare the inferred structures of the sampled sequences along the path with those of the target natural sequences we used
the Template Modelling (TM) score developed in [ZS04] and represents a variation of the Levitt–Gerstein (LG) score [LG98].
Compared to other similarity score (like root-mean-square deviation (RMSD)) it gives a more accurate measure since it relies
more on the global similarity of the full sequence rather than the local similarities.
Practically, we consider a target sequence of length Ltarget and a template one whose structure has to be compared with.
First, we align the two sequences and we take the Lcommon pairs of residues that commonly appear aligned. Then the score
is computed as

TM-score = max
{di}

 1

Ltarget

Lcommon∑
i=1

1

1 +
(

di
d0(Ltarget)

)2
 , (8)

where di is the distance between the ith pair of residues between the template and the target structures after alignment, and
d0(Ltarget) = 1.24(Ltarget − 15)1/3 − 1.8 is a distance scale that normalizes distances. This formula gives a score between 0
and 1. if TM-score< 0.2, the two sequences are totally uncorrelated, while they can be considered to have the same structure
if TM-score> 0.5. In Figure S4 we show the tables of the TM-scores associated with the sequences tested above.

Figure S4: Table of the TM-scores measured between the structures inferred from AlphaFold.
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5.3 Visualization of mean-field paths
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Figure S5: Mean-field paths for the RBM model trained over WW domain dataset. Solid and dashed lines stand, respectively,
for global and direct solutions. Here β = 3, α = 1, λ = 1, γ = 2 and T = 30. Same edge sequences as in Figure 3 of the main
text.

6 Derivation of mean-field equations for path sampling with a RBM model
To exploit the nature of the RBM as a mean-field model we rewrite the probability distribution of the model as

PRBM (v) =
1

ZRBM

∫ ∏
µ

dhµ exp

∑
i

gi(vi) +
∑
i,µ

wiµ(vi)hµ −
∑
µ

Uµ(hµ)

 (9)

=
1

ZRBM
exp

(∑
i

gi(vi) +N
∑
µ

Γµ
( 1

N
Iµ
))

, (10)

where γ is defined in the main text.
By introducing the order parameters mµ

t = Iµ,t/N , qt = 1
N

∑
i δvi,t,vi,t+1

as well as the overlap potential Φ, we can write
the probability for a path in the order parameter space as (in the large N limit)

Ppath({mt, qt}Tt=1;β) ∝
∑
{vt}

∏
t,µ

δ

(
1

N

∑
i

wiµ(vi,t)−mµ
t

)∏
t

δ

(
1

N

∑
i

δvi,t,vi,t+1 − qt

)
P βRBM (vt)π

β(vt,vt+1) (11)

= exp

[
βN

(∑
t,µ

Γ(mµ
t )−

∑
t

Φ(qt)

)]
× (12)

×
∫ (∏

µ,t

dm̂µ
t

∏
t

dq̂t

)∑
{vt}

exp

∑
i,t

gi(vi,t) +N
∑
t,µ

m̂µ
t

(
1

N

∑
i

wiµ(vi,t)−mµ
t

)
+N

∑
t

q̂t

(
1

N

∑
i

δvi,t,vi,t+1 − qt

) (13)

≈ exp

[
βN

(∑
t,µ

Γ(mµ
t )−

∑
t

Φ(qt)

)
+NS({mt, qt}Tt=1)

]
= exp (−Nβfpath({mt, qt})) , (14)
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where

S({mt, qt}Tt=1) = min
{m̂t,q̂t}

1

N

∑
i

logZi({m̂t, q̂t})−
∑
t,µ

mµ
t m̂

µ
t −

∑
t

qtq̂t (15)

and

Zi({m̂t, q̂t}) =
∑

v1,..,vt,...,vT

exp

[∑
t

gi(vt) +
∑
t,µ

m̂µ
t wiµ(vt) +

∑
t

q̂tδvt,vt+1

]
. (16)

Under minimization we find the result shown in the main paper. To obtain numerically the set of magnetizations and overlap
that minimize the free energy, we note that the saddle point equation for fpath leads to the following self-consistent equation:

mµ
t =

1

N

∑
i

1

Zi

∑
v1,..,vt,...,vT

wiµ(vt) exp

[∑
t

gi(vt) +
∑
t,µ

m̂µ
t wiµ(vt) +

∑
t

q̂tδvt,vt+1

]
(17)

qt =
1

N

∑
i

1

Zi

∑
v1,..,vt,...,vT

δvt,vt+1
exp

[∑
t

gi(vt) +
∑
t,µ

m̂µ
t wiµ(vt) +

∑
t

q̂tδvt,vt+1

]
, (18)

where q̂t = −βΦ′(qt) and m̂µ
t = βΓ′µ(mµ

t ). We solve this set of equations using gradient descent. To compute the LHS we
first compute the partition functions Zi using the transfer matrix method and then we take their gradient using automatic
differentiation technique built in the Python library JAX [BFH+18].
To obtain the average distance from the direct space, we need to compute at each time at each site the probability of a
specific state a = 1, ..., A. This can be computed as

fi,t(a|{mt, qt}) =
1

Zpath({mt, qt})
∑
{vt}

δvi,t,a
∏
t,µ

δ

(
1

N

∑
i

wiµ(vi,t)−mµ
t

)∏
t

δ

(
1

N

∑
i

δvi,t,vi,t+1
− qt

)
(19)

=
1

Zpath

∫ (∏
µ,t

dm̂µ
t

∏
t

dq̂t

)
exp

(
−N

∑
µ,t

m̂µ
tm

µ
t −N

∑
t

q̂tqt

)∑
{vt}

δvi,t,a exp

∑
i,t,µ

m̂µ
t wiµ(vi,t) +

∑
t,i

q̂tδvi,t,vi,t+1

 =

(20)

=
1

Zpath({mt, qt})
∂gi,a exp

[
N min

(
−
∑
µ,t

m̂µ
tm

µ
t −

∑
t

q̂tqt +
1

N

∑
i

logZ
gi,a
i

)]
= (21)

= ∂gi,a log
∑

v1,...,vT−1

exp

[∑
t,a

gi,aδvt,a +
∑
t,µ

m̂µ
t wiµ(vt) +

∑
t

q̂tδvt,vt+1

]∣∣∣∣∣∣
gi=0

(22)

Once fi,t is computed, we obtain the average distance from direct space at time t through

dDS(t) =
1

N

∑
i

∑
a6={vstarti ,vendi }

fi,t(a) . (23)

Finally, up to now we have note defined Φ in this section in order to leave the computation as general as possible. Below
we will define the potential as

Φ(q) = λ|q − (1− γ/T )|−αT−α−1 (24)

(with γ > 1) to ensure a good scaling as T → ∞. We note that this is a generalisation of the potential shown in the main
paper where we have fixed the exponential α = 1 and λ = 1.
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7 Analysis of the Hopfield-Potts model

7.1 The model
To deeper explore the relation between direct and global path we consider an Hopfield-Potts model with M = 2 patterns and
A ≥ 3 states per site (called a, b and c and so on) . We will consider the thermodynamic limit N →∞. each pattern wµ is
constructed as follows:

w1i(vi) = δvi,a + ωδvi,c

w2i(vi) = δvi,b + ωδvi,c

(25)

The energy of the model is given by

E(v) = −1

2

∑
µ

∑
i,j

wiµ(vi)wjµ(vj) . (26)

This model is equivalent to a RBM with M hidden units and quadratic local potentials:

E(v,h) = −
∑
i,µ

wiµ(vi)hµ +
1

2

∑
µ

h2µ . (27)

Hence we can compute the optimal path between the target sequences using the mean field approach described above.
Denoting mµ

t (v) (with µ = 1, 2, 3) the projection along the vectors δvi,a, δvi,b, ωδvi,c and qt the usual overlap defined above,
we rewrite the free energy of the path as

fpath({mt}, {qt}) =
∑
t

((m1
t )

2/2 + (m2
t )

2/2 + (m3
t )

2 +m3
t (m

1
t +m2

t )) +
∑
t

(Φ(qt)− qtΦ′(qt))−
1

β
logZ1D , (28)

where

Z1D =
∑
{vt}

exp

[
β
∑
t

m1
t (δvt,a + ωδvt,c) +m2

t (δvt,b + ωδvt,c) +m3
t (δvt,a + δvt,a + 2ωδvt,c)− Φ′(qt)δvt,vt+1

]
(29)

As boundary condition, we set the target sequences to be v0 = {a}N and vT+1 = {b}N .
As we shall see, this model undergoes a first order phase transition at ω = ωc in the limit β×T →∞. In this limit, when

ω < ωc, the minimum of the free energy corresponds to the direct solution from v0 to vT+1 that one obtains by restricting
the sum in Z1D over the first two colors only. We will refer to this solution as #2. When ω > ωc, this solution is no longer a
minimum of the free energy, and the latter is minimized by global paths introducing novel mutations at intermediate steps
with non zero value of m3

t . Moreover, we will see how ωc will depend on the parameters of Φ in (24).

7.2 Mimimization of the path free energy in the direct subspace
To do so, we first have to find a solution of the direct problem #2 = {m1

t ,m
2
t , qt}. The direct solution is given by solving the

following coupled equations:

m1
t =

1

Zdir1D

∑
{vt=a,b}T−2

δvt,a exp

[
β
∑
t

m1
t δvt,a +m2

t δvt,b − Φ′(qt)δvt,vt+1

]
(30)

qt =
1

Zdir1D

∑
{vt=a,b}T−2

δvt,vt+1
exp

[
β
∑
t

m1
t δvt,a +m2

t δvt,b − Φ′(qt)δvt,vt+1

]
, (31)

where the partition function Zdir1D is the same as in (29) but with the sum running over the first two colors a and b only.
Moreover we have m2

t = 1−m1
t .
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First we guess that the direct solution is of the form:

m1,dir
t =


1 for t/T < x̂

1− t/T−x̂
1−2x̂ + η(t/T ) for t/T ∈ (x̂, 1− x̂)

0 for t/T > 1− x̂
, qdirt =


1 for t/T < x̂

1 + 1
T

(
− 1

1−2x̂ + η′(t/T )
)

for t/T ∈ (x̂, 1− x̂)

1 for t/T > 1− x̂
, (32)

where we impose qdirτ=t/T = 1+∂τm
1,dir
τ /T , while η is a perturbation of the order of 1/T 1/(α+1). We first note that x̂ is related

to the value of Θ shown in the main paper through Θ = 1− 2x̂. We then inject this Ansatz into the equation for m1 and try
to find η and x̂ which closes the equation at the zeroth order in T . Plugging this Ansatz into the definition of the partition
function Zdir1D we notice that −Φ′(qdir(τ)) = λα|γ−1/(1−2x̂)+η′(τ)|−α−1. By rewriting γ−1/(1−2x̂)+η′(τ) = ξ(τ)/T

1
α+1 ,

we have −Φ′(qdir(τ)) ∼ T . The linear term in T in the coupling interactions of our 1D model forces the partition function to
be dominated by the configurations vt = a for t < x̂T and vt = b for t > x̂T . Hence the partition function can be rewritten
as follows:

Zdir1D = T

∫ 1

0

dτ exp

[
βT

(∫ τ

0

dym1,dir
y +

∫ 1

τ

dy(1−m1,dir
y )− λα

|ξ(τ)|α+1

)]
. (33)

We can neglect the first order correction in T and maximize the argument in the exponential to obtain the leading term of
the partition function. This amounts to solving the following differential equation in τ ∈ (x̂, 1− x̂):

− 2
τ − x̂
1− 2x̂

+ 1 +
λα(α+ 1)ξ′(τ)

ξ(τ)α+2
= 0 . (34)

Solving this differential equation leads to

ξ(τ) =

[
1

ξ(x̂)α+1
− τ2 − x̂2 − (τ − x̂)

λα(1− 2x̂)

] −1
α+1

. (35)

In order to ensure the continuity of Φ′(qτ ) in τ = x̂, we fix ξ(x̂) = γT 1/(α+1). By definition of ξ we have ξ/T 1/(α+1) =
γ − 1/(1− 2x̂) + η′. Rewriting x̂ = 1/2− 1/(2γ) + ζ/T 1/(α+1) + o(T 1/(α+1)) we can fix η at the first order as

η(τ)− η(x̂) =
1

T 1/(α+1)

[∫ τ

x̂

ξ(y)dy + 2ζγ2(τ − x̂)

]
+ o

(
1

T 1/(α+1)

)
. (36)

By imposing the boundary condition η(x̂) = η(1 − x̂) = 0 we can also fix ζ at first order. It is easy to check that (30),(31)
are fulfilled at zeroth order by this solution.

7.3 The direct-to-global phase transition
We now write the first derivative of the free energy along the third magnetization m3

t :

∂fpath
∂m3

t

∣∣∣∣
#2

= 1− 〈δvt,a + δvt,b + 2ωδvt,c〉1D|#2
. (37)

By studying this derivatives we will show the existence of a critical ωc discriminating a regime where all the derivatives vanish
(ω < ωc) and a regime with negative derivatives (ω > ωc).

As above, the average in the RHS of (37) is dominated, for T →∞, by the ground state path. Two classes of competing
configurations must be considered: the usual direct configurations that start in v0 = a and turn into b at some point t such
that t/T ∈ (x̂, 1− x̂); another one starting in a then changing to c at some point t = xT (x ∈ (0, 1/2)) and then turning into
b when t = (1− x)T . The energy of the first set of configurations (for T � 1) is given by:

E1 = −T
(
x̂+

1

2

)
+

λα

γα+1
, (38)

while the second configuration has energy

E2(x) =

{
−T (2x+ ω(1− 2x)) + 2λα

γα+1 for x ≤ x̂
−T

(
2x̂+ 2

∫ x
x̂

dy (1− y−x̂
1−2x̂ ) + ω(1− 2x)− 2λα

|ξ(x)|α+1

)
for x ∈ (x̂, 1/2)

(39)
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Figure S6: Average value of the free energy derivative along m3
t . Here β = 3, γ = 2, α = 1 and λ = 3.

which is minimized for x = x̂ when ω ∈ (1/4, 1) and at x = 0 when ω > 1. Here the condition E2 < E1 leads to a phase
transition at the critical value ωc = 1/2 + λα/(Tγα+1(1− 2x̂)).

The last argument holds until x̂ > 0. For finite T we could be in a regime where x̂ = 0. This leads to a different solution
for the phase transition. To study this regime we consider λ = λ̂T (α+2)/(α+1). Injecting it into the expression for the partition
function Zdir1D and expanding the force in terms of η′ = η̂′/T 1/(α+1, we have

Zdir1D = T

∫ 1

0

dτ exp

[
βT

(∫ τ

0

dym1,dir
y +

∫ 1

τ

dy(1−m1,dir
y )− T 1/(α+1) λ̂α

|γ − 1|α+1
+
λ̂α(α+ 1)η̂′(τ)

|γ − 1|α+2

)]
. (40)

Maximization leads to the following solution for η:

η(τ) =
|γ − 1|α+2

T 1/(α+1)λ̂α(α+ 1)

[
τ3

3
− τ2

2
+
τ

6

]
, (41)

where we have imposed the boundary condition η(0) = η(1) = 0. The condition −Φ′(q) > λα
γα+1 leads to the condition

λα >
T

6

(
1

|γ − 1|α+1
− 1

γα+1

)−1
, (42)

which is valid in the case λ = λ̂T (α+2)/(α+1) and T →∞. The derivative of the free energy in eq. (37) can be done as above
by considering the two classes of relevant configurations. The energy of the first class is

E1 = −2T

3
+

λα

|γ − 1|α+1
(43)

while the second class corresponds to energy

E2 = −T
(
ω +

1

3

)
+

λα

|γ − 1|α+1
. (44)

The condition E2 < E1 leads to a new critical value ωc = 1/3 +λα/(T |γ− 1|α+1). Merging together the two regimes studied
above, we find that the critical line at the first order in 1/T is given by:

ωc = max

(
1

2
+

λα

Tγα+1Θ
,

1

3
+

λα

T |γ − 1|α+1

)
, (45)

where Θ = 1− 2x̂. In Figure S6 we plot the behavior of the derivative of the free energy for different value of ω, showing the
instability at the corresponding critical ωc.

11



Figure S7: Average log-likelihood and distances to direct space (inset) of intermediate sequences as a function of β × T .
Symbols stands for different T (circles for T=20, diamonds for T=30 and pluses for T=40). Green symbols represents direct
solutions (which are of course independent of ω), Red symbols represents global solutions with ω = 0.4 and maroon symbols
represent global solutions for ω = 0.7. The other parameters are set to α = 1, γ = 2, λ = 1.

The crossover is visible in Figure S7, where can observe the coincidence of the average log-likelihoods of intermediate
sequences along direct and global paths at large T for small ω, and the higher quality of global paths for large ω. Notice
that these results are valid when T is sent to large values while keeping β fixed. If β is small, e.g. of the order of 1

T , the
domination of global paths on direct paths is due to the larger entropy of the former. Figure S7 shows that, for small β × T ,
global paths are indeed of lesser quality (probability) than their direct counterparts, even at high ω.
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8 Appendix A: Weights Logo for the WW domain
link to the RBM trained on WW domain data.
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9 Appendix B: Weights Logo for the Lattice Proteins
link to the RBM trained on LP domain data.
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