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Understanding how protein functionalities vary along mutational paths is an important issue in
evolutionary biology and in bioengineering. We here propose an algorithm to sample mutational
paths in the sequence space, realizing a trade-off between protein optimality and path stiffness. The
algorithm is benchmarked on exactly solvable models of proteins in silico, and applied to data-driven
models of natural proteins learned from sequence data. Using mean-field theory, we monitor the
projections of the sequence on relevant modes along the path, allowing for an interpretation of the
protein sequence trajectory. Qualitative changes observed in paths as their lengths are varied can
be explained by the existence of a phase transition in infinitely-long strings of strongly coupled
Hopfield models.

Introduction. Designing proteins with controlled
properties, such as stability, binding affinity and speci-
ficity is a central goal in bioengineering. Directed evo-
lution setups result in the discovery of new proteins
with enhanced activities or affinities to a specific sub-
strate [1]. Over the past years, much progress was
made using data-driven models, intended to capture the
relation between protein sequences and functionalities.
In particular, unsupervised machine-learning approaches
such as Boltzmann Machines (BM) or Variational Auto-
Encoders trained on homologous sequence data (defin-
ing a protein family) were shown to be robust generative
models, able to design new proteins with functionalities
comparable to natural proteins [2, 3].

By comparison, the (even) harder problem of design-
ing paths of sequences, interpolating between two homol-
ogous proteins has received little attention (Fig. 1), see
however [4]. Yet solving this problem would be impor-
tant from an evolutionary point of view, and would shed
light on the navigability of the sequence landscape [5],
and on how specificity emerged from ancestral, promis-
cuous proteins [6]. Informally speaking, a path is a suc-
cession of mutations interpolating between two fixed se-
quences at the edges, such that the intermediate pro-
teins maintain good functionality. Due to the huge num-
ber of possible paths mutagenesis experiments generally
restrict to direct paths going through the 2D mutants
containing the amino acids appearing in the two edge se-
quences (differing on D sites), see Fig. 1 [7]. However,
constraining paths to be direct may preclude the discov-
ery of much better global paths, involving mutations and
their reversions and reaching more favorable regions in
the sequence space (Fig. 1).

While various methods exist for building transition
paths between the minima of a multi-dimensional con-
tinuous landscape [8, 9] they cannot be easily adapted to
the case of discrete configurations. We hereafter propose
a Monte Carlo algorithm to sample mutational paths in
sequence space. We first benchmark our sampling pro-
cedure on an exactly solvable model of lattice proteins
[10], and demonstrate its capability to find high-quality
paths between two proteins belonging to different sub-

FIG. 1. Mutational paths between two subfamilies in
the sequence landscape associated to a protein fam-
ily. Darker blue levels correspond to increasing values of the
protein fitness. Paths are either direct (green: each site car-
ries the amino acid present at the same position in the initial
or in the final sequence) or global (red: no restriction on
amino acids), making possible the exploration of high-fitness
regions).

families. We then apply our algorithm to the WW do-
mains, a small binding module involved in the regulation
of protein complexes [11] and studied in early works on
sequence-based design [12]. The paths obtained between
proteins with different specificities have high likelihoods
and folding scores according to AlphaFold [13]. Further-
more, we show how mean-field theory can be applied to
track informative projections of the multi-dimensional
trajectories of sequences along the paths. Last of all,
we observe that global paths, if long enough, signifi-
cantly outperform direct paths. This crossover is related
to the existence of a thermodynamic phase transition
in infinitely-long strings of coupled Hopfield-like models
that we analytically solve.

Algorithm for mutational path sampling. We assume
the sequence landscape is modeled through a probabil-
ity distribution Pmodel(v) over amino-acid sequences v
of length L. Informally speaking, Pmodel quantifies the
probability that v is a member of the protein family
of interest, i.e. share its common structural and func-
tional properties, and can be learned from homologous
sequence data [14, 15]. For natural protein families, exact
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expressions for Pmodel are not available, but approximate
distributions can be inferred from multi-sequence align-
ments (MSA) using unsupervised learning techniques.

Hereafter, we use Restricted Boltzmann Machines
(RBM) [16], a class of generative models based on
two-layer graphs [17]. RBM define a joint probability
distribution of the protein sequence v (carried by the
visible layer) and of its M -dimensional latent represen-
tation h (present on the hidden layer) as

PRBM ∝ exp

(∑
i

gi(vi) +
∑
µ

hµIµ(v)−
∑
µ

Uµ(hµ)

)
,

(1)
where Iµ(v) =

∑
i wi,µ(vi) is the input to hidden unit

µ. The gi’s and Uµ’s are local potentials acting on,
respectively, visible and hidden units, and the wiµ’s
are the interactions between the two layers. They
are learned by maximizing the marginal probabilities
Pmodel(v) =

∫
dhPRBM (v,h) over the sequences v in

a multi-sequence alignment of the family. While other
unsupervised procedures providing approximate Pmodel
can be used, such as Direct Coupling Analysis [14, 15],
RBM offer a convenient way to interpret and to visualize
the changes in sequences along mutational paths, as we
will see below.

We define the probability of a mutational path of T
sequences, V = {v1,v2, ...,vT } through

P[V|vstart,vend] ∝
T∏
t=1

Pmodel(vt)×

π(vstart,v1)×
T−1∏
t=1

π(vt,vt+1)× π(vT ,vend) (2)

where π(v,v′) = 1 if the sequences v and v′ are identical,
e−Λ if they differ by one mutation (with Λ > 0), and 0 if
they are two or more mutations apart. The probability
P(V) can be sampled as follows. Starting from a path
V0, we randomly pick up an intermediate sequences vt
and attempt at mutating one amino acid, under the con-
straint that the Hamming distances of the trial sequence
v′ with vt−1 and vt+1 be at most 1. The mutation is
then rejected or accepted, i.e. vt ← v′ according to de-
tailed balance. Note that for global paths amino acids
can take any values. For direct paths each amino acid
has to coincide with the one either in vstart or in vend on
the same site, and the length T of the path matches the
Hamming distance D between the two edge sequences.

To improve the quality of the sampled mutational
paths we introduce a fictitious inverse temperature β and
resort to simulated annealing. We then sample paths
from P(V)β , where the value of β is initially very small
and progressively ramped up to some target value. The
complete procedure and the proof of detailed balance are
given in Supplemental Material, Sec. 1.

Benchmarking mutational path sampling on in silico
proteins. We benchmark the performances of our MC
procedure on a model of Lattice Proteins (LP) [10, 18].
In LP a sequences of 27 amino acids may fold into ' 105

FIG. 2. Mutational paths for lattice proteins,
joining sequences I=DRGIQCLAQMFEKEMRKKRRKCYLECD and
H=RECCAVCHQRFKDKIDEDYEDAWLKCN. Red and blue colors re-
spectively correspond to negatively and positively charged
amino acids. Cysteine is denoted by a green C. (a) Pro-
jections of 104 LP sequences (grey dots) along the top two
PC of their correlation matrix. Green lines represent direct
paths, while red and maroon lines show some global paths
sampled from Eq. (2); here, target β = 3, Λ = 2, Tdirect = 24,
Tglobal = 82. The relative numbers of maroon (2) and red (10)
paths respect the statistics over all sampled paths. Sides:
histograms of projections along PC1 (top) and PC2 (right).
Inset: folding probability pnat along each path vs. number
of mutations/T . (b,c) Native folds of the sequences in the
family, corresponding to opposite alternating configurations
of charges along PC1. (d,e) Logos of the top two PCs.

different self-avoiding conformations going through the
nodes of a 3×3×3 cubic lattice. The sequence landscape
associated to a conformation S (Fig. 2(a)) is defined by
the probability pnat(v|S) that a sequence v has S as
its native fold; pnat can be exactly computed from the
energies of interactions between adjacent amino acids,
see Supplemental Material, Sec. 2 for details.

We first generate many sequences v with high pnat
values for the fold S of Figs. 2(b,c) following the pro-
cedure of [19]. We next compute the top two Principal
Components (PC) of these sequence data (Figs. 2(d,e)):
PC1 corresponds to an extended electrostatic mode, and
PC2 identifies possible Cys-Cys bridges. Projecting the
sequences onto these two PCs reveals two sub-families
separated along PC1 (Fig. 2(a)), associated to opposite
chains of alternating charges along the electrostatic mode
(Figs. 2(b,c)). We will use our path sampling procedure
to interpolate between the two sub-families, see start
(white star) and end (black star) sequences in Fig. 2(a).

To mimick the procedure followed for natural proteins
we train a RBM on the LP sequence data generated
above, to infer an approximate expression for pnat from
the data; see Supplemental Material, Sec. 3 for details
about the inference of the RBM model. We then use our
sampling algorithm to produce global mutational paths,
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FIG. 3. Mutational paths of the WW domain using
RBM trained on the PFAM PF00397 family, see Supplemen-
tal Material, Sec. 3 for details about implementation. (a) Nat-
ural sequences v (grey dots) projected in the plane of inputs
I of two hidden units selected to cluster sequences according
to the types of ligands they bind: I (cyan), II/III (orange),
IV (green), see classification in [20]. Blue cross represents the
YAP1 domain. Lines shows the projection of six representa-
tive paths (dashed: direct, solid: global) connecting YAP1 to
sequences in classes I (circle), II/III (square; note the vicin-
ity of the direct path with variants of YAP1 -orange crosses-
tested in [21]) and IV (triangle). Empty symbols show inter-
mediate sequences tested with AlphaFold in (d). Parameters:
β = 3, Λ = 0.1. (b)-(c) Log PRBM for sequences along global
and direct paths. (d) AlphaFold confidence scores of pre-
dicted folds for intermediate sequences vs. nb. of mutations
along the path.

see Fig. 2(a). The algorithm is able to find excellent
global mutational paths in terms of the ground truth
folding probability pnat. By fixing the target inverse
temperature β to a value larger than one, we are able
to obtain pnat values along the path higher than those
of the extremity sequences. Repeated runs of the sam-
pling procedure give different paths that cluster into two
classes, shown in red and maroon in Fig. 2(a). While
few global paths boost pnat by transiently introducing
Cys-Cys interactions (maroon cluster), most (red clus-
ter) stabilize the structure by realizing more contacts
between positively and negatively-charged amino acids
than direct paths (Supplemental Material, Sec 4).

Mutational path sampling from data-driven models of
natural proteins. We next show that our path sampling
procedure can be applied to natural proteins. To do so
we train a RBM from MSA data of the WW family, a
protein domain binding specifically proline-rich peptides
[11, 20] and sample mutational paths, either global or
direct, between the Human YAP1 domain and three nat-
ural sequences known to have different binding specifici-
ties [22]. The quality of the sequences along the path is
assessed from their probabilities PRBM within the RBM
model, and from 3D structure predictions obtained us-
ing AlphaFold [13]. Figure 3(a) shows some sampled
paths in the 2-dimensional space spanned by the inputs
I(v) to two RBM hidden units chosen to cluster nat-
ural WW sequences depending on their binding speci-
ficities [17]. Figures 3(b,c) show the probabilities of se-
quences along global and direct paths are comparable to

the ones of natural proteins, with significantly higher val-
ues for global paths. We report AlphaFold’s confidence
scores of intermediate sequences along global paths in
Fig. 3(d), indicating that these sequences have well de-
fined folds. Furthermore, we compare these predicted
folds to that of natural WW using Template Modelling
scores (TM-score) [23], which measure structure similar-
ity from 0 -unrelated proteins- up to 1 -perfect match.
We obtain TM-score > 0.5, indicating a high similar-
ity between the folds of sequences along the path and of
natural WW.

Mean-field characterization of mutational paths. To
understand how mutational paths explore the sequence
space we introduce a mean-field theory exploiting the
bipartite nature of the RBM architecture. Mean field al-
lows us to monitor two sets of order parameters charac-
terizing the paths V: the mean values of the hidden-unit
inputs, mµ

t = 1
N 〈Iµ(vt)〉, and of the overlaps (fraction

of conserved amino acids between successive sequences),
qt = 1

N

∑
i〈δvi,t,vi,t+1〉; here, 〈·〉 denotes the average over

P (V)β .

In the mean-field framework a step along the path can
involve multiple mutations. The transition factor π in
Eq. (2) is defined through

π(v,v′) = e−N Φ(q) , where q =
1

N

∑
i

δvi,v′i (3)

the potential Φ forbids small overlaps q � 1, i.e. dis-
continuous jumps along the paths. We impose q >
qc = 1 − γ/T , allowing for the path to explore at most
T × N(1 − qc) = γN mutations in T steps. Choos-
ing γ ≥ D/N is therefore sufficient to interpolate be-
tween the two edge sequences, with larger values of
γ authorizing more flexible paths. In practice we set
Φ(q) = 1/(T 2|q − qc|); Other choices of potentials with
hard wall constraints give similar results.

The T × (M + 1) order parameters mµ
t and qt are de-

termined through minimization of the path free–energy
density fpath, see Supplemental Material, Sec. 6, with

fpath({mµ
t }, {qt}) = −

∑
t,µ

(
Γµ(mµ

t )−mµ
t Γ′µ(mµ

t )
)

(4)

+
∑
t

(Φ(qt)− qt Φ′(qt))−
1

βN

∑
i

lnZi
(
{mµ

t }, {qt}
)
.

Here, Γµ(m) = 1
N ln

∫
dh eN mh−Uµ(h) and Zi is the fol-

lowing site-dependent partition function,

Zi({mµ
t }, {qt}) =

∑
{vt}

exp

(
β
∑
i

gi(vt) +

+β
∑
t,µ

Γ′µ(mµ
t )wiµ(vt)− β

∑
t

Φ′(qt) δvt,vt+1

)
. (5)

Zi can be efficiently estimated through products of A×A-
dimensional transfer matrices, where A is the number of
Potts states. For global paths, A = 21 (20 amino acids
plus the gap symbol), while A = 2 for direct paths. The
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FIG. 4. Mean-field description of mutational paths in
lattice proteins. (a)-(b) Values of two inputs similar to PC
in Fig. 2 vs. number t of mutations along paths of length
T = 40. Red and green lines correspond to, respectively,
global and direct paths. Parameters: β = 3, γ = 3.5 chosen
so that the average distance to the direct space of the mean-
field solutions is the same as in Fig. 2. (c)-(d). Logos of the
attached weights wi,µ(v). (e) Log-likelihoods of sequences
along the same paths as in panels (a),(b). (f) Overlap qt
(left scale) and average number of mutations DH = N(1−qt)
(right scale) between sequences at steps t and t+1 vs. t; The
dark line shows qc.

derivation of fpath is exact when the sequence length
N → ∞ and the numbers of hidden units, M , and of
steps, T remain finite, and is an accurate approximation
even in the cases of LP (N = 27) and WW (N = 31), as
shown below.

The trajectories of the inputs mµ
t and of the over-

laps qt reveal which and when latent factors of RBM
enter into play throughout the interpolation between
the initial and final sequences. Figures 4(a,b) show
the trajectories of inputs associated to the weights in
Figs. 4(c,d) for the lattice protein studied in Fig. 2. The
dynamics explains how optimal paths exploit Cysteine-
Cysteine interactions (not present in the initial and final
sequences) in order to maintain the structure of the pro-
tein when the signs of the charge along the electrostatic
chain are reversed (Fig. 4(a,b)), and agrees with the av-
erage behaviour of the paths sampled in Fig. 2(a), see
Supplemental Material, Sec. 4.

Sequences along global paths have substantially higher
probabilities than along direct paths (Fig. 4(e)). The ex-
ploration of favourable regions in the landscape is made
possible by the slightly higher number of mutations be-
tween successive sequences in the former case than in
the latter, see Fig. 4(f). Along global paths, most of
the intermediate mutational steps do not abruptly af-
fect the inputs nor the probability, with the exception
of the bump in the overlap q at step ∼10, possibly re-

lated to the presence of preparatory mutations for the
Cys-related transition in Fig. 4(b,d).

Crossover between global and direct paths. The re-
sults reported in Figs. 2, 3, 4 indicate that sequences
along global mutational paths have larger scores than
along direct paths, see Fig. 3(b,c). To better under-
stand the differences between global and direct paths we
introduce and analyze in details a toy-model capturing
the effects of extra dimensions with respect to the direct
subspace of sequences. This Hopfield-Potts (HP) model
includes M = 2 patterns, and A ≥ 3 Potts symbols. De-
noting the first three symbols by a, b, c, the patterns are
set to w1,i(v) = δv,a + ω δv,c and w2,i(v) = δv,b + ω δv,c,
uniformly over sites i, and define the sequence distribu-
tion PHP (v) ∝ exp

[
1
2

∑
i,j

∑
µ=1,2 wµ,i(vi)wµ,j(vj)

]
.

The initial and final sequences are chosen, respectively,
as vstarti = a and vendi = b; hence, ω quantifies the at-
tractiveness of the global direction c (orthogonal to the
direct subspace spanned by a, b). We then couple T such
HP models to form a 1D-string with controlled stiffness
(through the transition factors π in Eq. (3)), and an-
chored in vstart and vend.

As HP models are a special case of RBM with
quadratic potentials U(h) ∝ h2 [24] the path free-energy
for trajectories over the inputs and the overlaps in Eq. (5)
is exact when N → ∞. The optimal trajectories can
be analytically studied in great details, see Supplemen-
tal Material, Sec. 7, with the following results. For
ω < ωc = 1

2 , mutational paths typically lie within the
direct subspace (Fig. 1): the attraction along the c di-
rection is too weak to counterbalance the stiffness of the
path imposed by the potential Φ. For ω > ωc optimal
paths leave the direct subspace and explore the global
space if their lengths exceed

Tc.o. = max

(
1

γ2Θ
(
ω − 1

2

) , 1

(γ − 1)2
(
ω − 1

3

)) , (6)

where 1/γ < Θ ≤ 1 is the fraction of the T steps in which
the sequences vt along direct paths are distinct from
vstart and vend, see Supplemental Material, Sec. 7.3.

The resulting phase diagram is shown in Fig. 5(a). As
expected, for lower values of γ, paths become stiffer, and
Tc.o. increases. The average distance to the direct sub-
space, dDS = 1

N

∑
i〈(1 − δvi,vstarti

)(1 − δvi,vendi
)〉, and

the average log-probability of intermediate sequences,
〈 1
N logPHP 〉 are shown in Fig. 5(b); their behaviours con-

firm the existence of the crossover at Tc.o.. This crossover
is also observed for natural proteins, such as WW, when
keeping the length T fixed and varying the flexibility γ of
the path, see Fig. 5(c). As in the HP model case the non-
orthogonality of the weight vectors learned by the RBM
provides multiple opportunities for mutational paths to
escape the direct subspace.

Conclusion. In this work we have shown how data-
driven, in particular, RBM models of protein sequence
data can be used to sample mutational paths. Though
our sampling procedure was illustrated on short proteins,
it can be easily applied to longer enzymes, with > 100
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FIG. 5. Crossover between direct and global muta-
tional paths. (a). Behavior of Tc.o. vs. ω for the HP model
and two values of γ, see Eq. (6). The black dots show the
crossovers for ω = 3

4
. (b) dDS (Top) and (logPHP )/N aver-

aged over intermediate sequences (Bottom; solid line: global,
dashed: direct) vs. path length T ; same parameters as in (a).
(c) Mean-field estimates of dDS (Top) and of (logPRBM )/N
(Bottom; red: global paths, green: direct) vs. γ for muta-
tional paths of the WW domain of length T = 10. Initial
sequence: YAP 1, final sequence: green triangle in Fig. 3. In
all panels β = 3.

amino acids, whose functionalities could be experimen-
tally tested.

The analytical study of a toy Hopfield-Potts model re-
veals the existence of a qualitative change in mutational
paths with their length. Long paths can explore favor-
able detours in the global sequence landscape, which are
not accessible to shorter paths. An illustration, in the
WW case, is the high-quality global green path going
through a region with few natural sequences in Fig. 3(a).
It would be very interesting to test this striking predic-
tion experimentally.

In addition, the use of mean-field theory allows us to
follow the dynamics of relevant latent factors along the
paths, and understand how the transition from one func-
tionality to another is implemented through sequential
changes of few residues at a time. Extending our mean-
field analysis to the case of an extensive number of RBM
weight vectors (finite M/N) would allow for better mon-
itoring the dynamics of the few inputs of interest along
paths interpolating between subfamilies.
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