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Morphological neural networks allow to learn the weights of a structuring function knowing the desired output image. However, those networks are not intrinsically robust to lighting variations in images with an optical cause, such as a change of light intensity. In this paper, we introduce a morphological neural network which possesses such a robustness to lighting variations. It is based on the recent framework of Logarithmic Mathematical Morphology (LMM), i.e. Mathematical Morphology defined with the Logarithmic Image Processing (LIP) model. This model has a LIP additive law which simulates in images a variation of the light intensity. We especially learn the structuring function of a LMM operator robust to those variations, namely : the map of LIP-additive Asplund distances. Results in images show that our neural network verifies the required property.

Introduction

Deep learning [START_REF] Goodfellow | Deep Learning[END_REF] based on convolutional neural networks (CNN) [START_REF] Lecun | Deep learning[END_REF] has emerged as a methodology to learn a model of the data in order to perform a classification or a regression task [START_REF] Hastie | The Elements of Statistical Learning[END_REF]. During the training phase, the model parameters are learnt by minimising a loss between a given truth and the model prediction. In parallel to CNN, several morphological neural nets have been defined and studied. First, fully connected morphological neural nets (where the output depends on all the input pixels) have been defined in [START_REF] Davidson | Morphology neural networks: An introduction with applications[END_REF] and more recently by Charisopoulos et al. [START_REF] Charisopoulos | Morphological perceptrons: Geometry and training algorithms[END_REF], Mondal et al. [START_REF] Mondal | Dense morphological network: An universal function approximator[END_REF] and Zhang et al. [START_REF] Zhang | Max-plus operators applied to filter selection and model pruning in neural networks[END_REF]. Second, Barrera et al. defined morphological neural nets in sliding windows [START_REF] Barrera | Automatic programming of binary morphological machines by design of statistically optimal operators in the context of computational learning theory[END_REF] (where the output only depends on the input pixels in the window). Moreover, deep morphological networks have also been defined by using either approximations of Supported by Lyon Informatics Federation, France, through the "FakeNets" project.

the morphological operations [START_REF] Masci | A learning framework for morphological operators using counter-harmonic mean[END_REF][START_REF] Mellouli | Morph-CNN: A morphological convolutional neural network for image classification[END_REF][START_REF] Mondal | Morphological Network: How Far Can We Go with Morphological Neurons?[END_REF][START_REF] Saeedan | Detail-preserving pooling in deep networks[END_REF][START_REF] Shen | Deep morphological neural networks[END_REF][START_REF] Kirszenberg | Going beyond pconvolutions to learn grayscale morphological operators[END_REF][START_REF] Aouad | Binary morphological neural network[END_REF], or exact morphological operations [START_REF] Franchi | Deep morphological networks[END_REF][START_REF] Nogueira | An introduction to deep morphological networks[END_REF]. Deep morphological networks have been used e.g. for classification in hyperspectral images [START_REF] Nogueira | An introduction to deep morphological networks[END_REF], image de-hazing or de-raining [START_REF] Mondal | Image restoration by learning morphological opening-closing network[END_REF], image denoising [START_REF] Franchi | Deep morphological networks[END_REF]. A morphological network has a constant additive invariance [START_REF] Velasco-Forero | Learnable empirical mode decomposition based on mathematical morphology[END_REF]. In classical neural networks, a CNN was designed to have a shift invariance [START_REF] Chaman | Truly shift-invariant convolutional neural networks[END_REF] and a neural net has a contrast invariance based on quaternion local phase [START_REF] Moya-Sánchez | A bio-inspired quaternion local phase CNN layer with contrast invariance and linear sensitivity to rotation angles[END_REF].

However, morphological neural networks are not intrinsically robust to real lighting variations. The analysis of images presenting such variations is a challenging task that can occur in many settings [START_REF] Jourlin | Logarithmic Image Processing: Theory and Applications[END_REF][START_REF] Zhang | Improving shadow suppression for illumination robust face recognition[END_REF][START_REF] Noyel | Functional asplund metrics for pattern matching, robust to variable lighting conditions[END_REF]: industry, traffic control, underwater vision, face recognition, large public health databases, etc. In this paper, we propose a morphological neural network which is robust to such lighting variations due to a change of light intensity or of camera exposure-time.

Such a neural net is based on a metric, namely the functional Asplund metric [START_REF] Jourlin | Chapter three -metrics based on logarithmic laws[END_REF] which presents this robustness property. This metric is defined with the Logarithmic Image Processing (LIP) model [START_REF] Jourlin | Logarithmic image processing: The mathematical and physical framework for the representation and processing of transmitted images[END_REF][START_REF] Jourlin | Logarithmic Image Processing: Theory and Applications[END_REF] which models those lighting variations. As the LIP model is based on a famous optical law, namely the Transmittance Law, we shall introduce in this way Physics in those neural nets. In addition, the maps of Asplund distances between an image and a reference template, the probe, are related to Mathematical Morphology [START_REF] Noyel | Functional asplund metrics for pattern matching, robust to variable lighting conditions[END_REF]. We shall see that they are especially related to the newly introduced framework of Logarithmic Mathematical Morphology [START_REF] Noyel | Logarithmic mathematical morphology: A new framework adaptive to illumination changes[END_REF][START_REF] Noyel | Morphological and logarithmic analysis of large image databases[END_REF].

Background

Logarithmic Image Processing

The LIP model is defined for an image f acquired by transmission and, as it is consistent with the human vision [START_REF] Brailean | Evaluating the EM algorithm for image processing using a human visual fidelity criterion[END_REF][START_REF] Jourlin | Logarithmic Image Processing: Theory and Applications[END_REF], it can also be used for images acquired by reflection. In this model, the light is passing through a semi-transparent medium and is captured by the sensor. The resulting image f is a function defined on a domain D ⊂ R 2 with values lying in the interval [0, M [ ⊂ R. It is important to note that the LIP greyscale is inverted with respect to the usual grey scale. 0 corresponds to the white extremity, when all the light passes through the medium. M is the black extremity, when no light is passing. For images digitised on 8-bits, M is always equal to 2 8 = 256.

According to the transmittance law, the transmittance T f + g of the superimposition f + g of two media which generate the images f and g, is equal to the product of the transmittances T f and T g of each image:

T f + g = T f •T g . The trans- mittance T f of any medium generating the image f is equal to T f = 1 -f /M .
From both previous equations, the LIP-addition law is deduced :

f + g = f + g -f • g/M.
(1) As the addition f + f may be written as 2 × f , the LIP-multiplication of an image f by a real number λ is expressed as:

λ × f = M -M (1 -f /M ) λ . (2) 
When λ = -1, the LIP-negative function -f = -1 × f can be defined, as well as the LIP-difference f -g between two images f and g. They are expressed as follows:

-f = (-f )/(1 -f /M ), (3) 
f -g = (f -g)/(1 -g/M ). (4 
) It can be noticed that f -g is an image (i.e. f -g ≥ 0) if and only if f ≥ g.

The LIP model has a strong mathematical property. Let F M = ]-∞, M [ D be the set of real functions defined on the domain D and whose values are less or equal than M . Let I = [0, M [ D be the set of images. The set (F M , + , × ) is a real vector space and the set (I, + , × ) is its positive cone.

The LIP model also possesses a strong physical property. The LIP-negative values -f , where f ≥ 0, acts as light intensifiers. Those values can therefore be used to compensate the image attenuation in scenes captured with a low lighting. In particular, the LIP-addition of a positive constant to an image simulates the effect of a decrease of the light intensity or a decrease of the camera exposure-time. The resulting image is therefore darker than the original one. In an equivalent way, the LIP-subtraction of a positive constant from an image, simulates an increase and the resulting image becomes brighter.

Logarithmic Mathematical Morphology

Logarithmic Mathematical Morphology (LMM) was introduced by Noyel in [START_REF] Noyel | Logarithmic mathematical morphology: A new framework adaptive to illumination changes[END_REF][START_REF] Noyel | Morphological and logarithmic analysis of large image databases[END_REF]. LMM consists of defining morphological operations [START_REF] Serra | Image Analysis and Mathematical Morphology[END_REF][START_REF] Heijmans | The algebraic basis of mathematical morphology I. Dilations and erosions[END_REF] b and ε + b are named logarithmic-dilation and logarithmic-erosion, respectively. They are defined by: δ

+ b (f )(x) = ∨ {f (x -h) + b(h), h ∈ D} (5) ε + b (f )(x) = ∧ {f (x + h) -b(h), h ∈ D} . (6) 
In the case of ambiguous expressions, the following conventions will be used:

f (x-h) + b(h) = -∞ when f (x-h) = -∞ or b(h) = -∞, and f (x+h) -b(h) = M when f (x + h) = M or b(h) = -∞.
Both operations form an adjunction, i.e. for all f, g

∈ F M , δ + b (g) ≤ f ⇔ g ≤ ε + b (f ). As a consequence, the composition γ + b = δ + b • ε + b is an opening and the composition ϕ + b = ε + b • δ + b is a closing.
LMM operations are adaptive to lighting variations modelled by the LIP-additive law. We shall see that at least an operation which is robust to those lighting variations can be defined in the LMM framework.

The logarithmic-dilation δ + b and the logarithmic-erosion ε + b , which are defined in the lattice (F M , ≤), are related to the usual functional dilation δ b (or ⊕) and erosion ε b (or ), which are defined in the lattice of real functions (R D , ≤).

These usual dilation and erosion are defined, for all x ∈ D, by :

δ b (f )(x) = (f ⊕ b)(x) = ∨ {f (x -h) + b(h), h ∈ D} (7) ε b (f )(x) = (f b)(x) = ∧ {f (x + h) -b(h), h ∈ D} . (8) 
Such relations are based on the isomorphism ξ : F M → R D and its inverse [START_REF] Jourlin | Image dynamic range enhancement and stabilization in the context of the logarithmic image processing model[END_REF]. The relations between the logarithmic-operations δ + b , ε + b and the usual functional erosion are the following ones [START_REF] Noyel | Logarithmic mathematical morphology: A new framework adaptive to illumination changes[END_REF][START_REF] Noyel | Morphological and logarithmic analysis of large image databases[END_REF]:

ξ -1 : R D → F M , which are expressed by ξ(f ) = -M ln (1 -f /M ) and ξ -1 (f ) = M (1 -exp (-f /M ))
δ + b (f ) = ξ -1 δ ξ(b) [ξ(f )] = ξ -1 [ξ(f ) ⊕ ξ(b)] (9) 
ε + b (f ) = ξ -1 ε ξ(b) [ξ(f )] = ξ -1 [ξ(f ) ξ(b)] , (10) 
where f and b ∈ R D . These relations are not only important from a theoretical point of view but also from a practical point of view. Indeed, they facilitate the programming of the logarithmic operations by using the usual morphological operations which exist in numerous image analysis software.

In Fig. 1, in an image f , the logarithmic-erosion ε + b (f ) and dilation δ + b (f ) are compared to the usual erosion ε b (f ) and dilation δ b (f ). For the logarithmic operations, the amplitude of the structuring function b varies according to the amplitude of the image f ; whereas, for the usual morphological operations, the amplitude of b does not change. In Fig. 1a, when the image intensity is close to the maximal possible value M = 256, the intensity of the logarithmic-dilation of f , δ + b (f ), is less or equal than M , because the structuring function becomes flat ; whereas the intensity of the usual dilation of f , δ b (f ), is greater than M . 

(f ), ε + b (f ) and the dilations δ b (f ), δ + b (f ).

The LIP-additive Asplund metric

The LIP-additive Asplund metric was defined by Jourlin [START_REF] Jourlin | Chapter three -metrics based on logarithmic laws[END_REF].

Definition 1 (LIP-additive Asplund metric). Let f and g ∈ F M be two functions. One of them, e.g. g, is chosen as a probing function. Both following numbers are then defined by: c 1 = inf {c, f ≤ c + g} and c 2 = sup {c, c + g ≤ f }, where c lies within the interval ] -∞, M [. The LIP-additive Asplund metric d + asp is defined by

d + asp (f, g) = c 1 -c 2 . ( 11 
)
Property 1 (Robustness to lighting variations [START_REF] Jourlin | Chapter three -metrics based on logarithmic laws[END_REF]). Importantly, this metric is invariant under lighting changes modelled by a LIP-addition of a constant:

∀k ∈] -∞, M [, d + asp (f, g) = d + asp (f + k, g) and d + asp (f, f + k) = 0. ( 12 
)
Those changes correspond to a modification of the light intensity or of the camera exposure-time.

Learning of the structuring function in morphological operations

For machine learning in Mathematical Morphology (MM), the functions are defined in discrete grids of Z 2 ; f :

D → R and b : D b → R, where D b ⊂ D ⊂ Z 2 .
Let the cardinal of the set D b be equal to 2n+1. The bidimensional functions can always be represented as unidimensional arrays, e.g. by concatenating their rows. The structuring function are therefore written as follows: b = {b -n , . . . , b n }. The dilation δ b and the erosion ε b layers can be expressed by [START_REF] Franchi | Deep morphological networks[END_REF][START_REF] Mondal | Image restoration by learning morphological opening-closing network[END_REF]:

δ b (f )(x) = max i∈[[-n,n]] {f (x -i) + b i } (13) 
ε b (f )(x) = min i∈[[-n,n]] {f (x + i) -b i } . ( 14 
)
An image f is passed through a dilation layer or an erosion layer that gives an output equal to g (i.e. g = δ b (f ) or g = ε b (f )). The weights of the structuring function b are learnt so that the loss L(b) = L(g, g) between the output g of the neural net layer and the desired output g, is minimised. The loss minimisation is performed by a stochastic gradient descent algorithm [START_REF] Goodfellow | Deep Learning[END_REF], which requires to compute the derivative of each weight to the loss:

∂L ∂b i = x ∂ g(x) ∂b i ∂L ∂ g(x) = x ∇ g(x) ∂L ∂ g(x) . (15) 
Let us denote

i x * = arg max i∈[[-n,n]] {f (x-i)+b i } or i x * = arg min i∈[[-n,n]] {f (x+ i) -b i },
the index for which the dilation or the erosion takes its value. For the dilation, the gradient ∇ g is equal to :

∇ g(x) = 1 if g(x) = f (x -i x * ) + b i x * 0, otherwise (16) 
and for the erosion to

∇ g(x) = -1 if g(x) = f (x + i x * ) -b i x * 0, otherwise. ( 17 
)
The structuring function is therefore updated as : b(x) = b(x) -α∂L/∂b(x).

3 Maps of LIP-additive Asplund distances b : F M → I defined by: Asp

+ b f (x) = d + asp (f |D b (x) , b), (18) 
where f |D b (x) is the restriction of f to the neighbourhood D b (x) centred on x ∈ D. The LIP addition + makes the map of distances robust to contrast variations due to exposure-time changes

: ∀c ∈ ]-∞, M [ , Asp + b (f + c) = Asp + b (f ).

Link with Logarithmic Mathematical Morphology

The map of Asplund distances is related to Mathematical Morphology (MM) [START_REF] Noyel | Double-sided probing by map of Asplund's distances using logarithmic image processing in the framework of mathematical morphology[END_REF][START_REF] Noyel | Functional asplund metrics for pattern matching, robust to variable lighting conditions[END_REF]. Noyel as shown in [START_REF] Noyel | Morphological and logarithmic analysis of large image databases[END_REF] that it is specifically related to LMM as follows. 

Asp + b f = δ + -b (f ) -ε + b (f ). (19) 
b is the reflected structuring function defined by ∀x ∈ D b , b(x) = b(-x). In the case of ambiguous expressions, the following conventions will be used:

Asp + b f (x) = M when δ + -b (f )(x) = M or ε + b (f )(x) = -∞, and Asp + b f (x) = 0 when δ + -b (f )(x) = ε + b (f )(x).

Neural net of map of Asplund distances

From equations ( 19), ( 9), [START_REF] Heijmans | The algebraic basis of mathematical morphology I. Dilations and erosions[END_REF] and knowing that ξ( -b) = -ξ(b) and ξ(f -g) = ξ(f ) -ξ(g), one deduces that:

Asp + b f = ξ -1 δ -ξ(b) ξ(f ) -ε ξ(b) ξ(f ) . (20) 
We then create a map of Asplund distance layer Asp + b , where we apply this layer to the input image f in order to give an output g = Asp + b (f ). The structuring function b is learnt so as to minimise a loss L(b) = L(g, g) between g and a desired output g = Asp + br (f ), where b r is a reference structuring function. The goal is to learning b in order to discover b r .

In morphological neuron implementations [START_REF] Franchi | Deep morphological networks[END_REF], learning b is equivalent to learn the weight matrix W ∈ R A×B , where W (x) = b(x), for all x ∈ D b and W (x) = -∞, otherwise. A × B is the window size in pixels of D W ⊂ D. However, in equation [START_REF] Mondal | Image restoration by learning morphological opening-closing network[END_REF], in the term δ + -b , we also expect that for all x / ∈ D b , -W (x) = -∞, which is not compatible with the current definition of W .

We therefore introduce a definition of b relying on two learnt kernels: the height kernel W h and the mask kernel W m ∈ R A×B . First, W h corresponds to the height-map of the probe satisfying W h (x) = b(x), for all x ∈ D b . Second, W m characterises the definition domain of the probe

D b = {x ∈ D Wm | W m (x) > 0}.
We then rewrite equation [START_REF] Mondal | Morphological Network: How Far Can We Go with Morphological Neurons?[END_REF] as:

Asp + b f = ξ -1 [δ b dil (ξ(f )) -ε bero (ξ(f ))] , (21) 
where, ∀x ∈ D Wm :

b dil (x) = -ξ(W h )(x) if W m (x) > 0 -∞ otherwise , b ero (x) = ξ(W h )(x) if W m (x) > 0 -∞ otherwise . ( 22 
)
In order to ensure that the gradient descent is smooth, a soft-binarisation function χ : R A×B →]0, 1[ A×B , such as the sigmoid χ(v) = 1/(1 + exp (-v)), is applied to the mask kernel W m instead of a threshold. We therefore define

V = χ(W m ) ∈ ]0, 1[
A×B as the soft-mask of the probe in the window of size A × B. Because V is not a binary mask, -∞ cannot be used when computing b ero or b dil . As f is an image, we have for all

x ∈ D, f (x) ∈ [0, M -1]. This implies that ξ(f (x)) ∈ [0, ξ(M -1)]. A bottom value ⊥ = -ξ(M -1) is chosen such that ξ(f )(x) -⊥ ≥ ξ(M -1)
. This implies that ξ(f )(x) + ⊥ ≥ ξ(0). We then define the approximations bdil and bero of b dil and b ero as follows:

bdil = -ξ(W h ) • V + ⊥ • (1 -V ) (23) bero = ξ(W h ) • V + ⊥ • (1 -V ).
(24) From equations ( 21), ( 23), ( 24), an expression of g is deduced:

g = ξ -1 δ bdil (ξ(f )) -ε bero (ξ(f )) . ( 25 
)
It only contains components with derivatives and which can be used in the back-propagation algorithm. In practice, W h and W m are both initialised as null matrices.

Remark 1. In order to push the weights of the kernel W h away from zero, one might introduce a mean Gaussian or a mean squared Gaussian, as a regularisation function of W m . This idea will be explored in future works.

Illustration and results

We have illustrated our LMM network by using the Fashion MNIST dataset composed of a training set of 60 000 images and a test set of 10 000 images [33]. Each image is digitised with a 8-bit greyscale and has a size of 28 × 28 pixels.

The goal was to learn a structuring function (or probe) b (represented by both matrices W h and W m ) so as to discover a reference structuring function b r . This reference structuring function was defined as follows, for all x ∈ D W br , where D W br ⊂ D and W br is a matrix of size 7 × 7: br (f ) (i.e. a ground-truth) were computed in both train and test datasets. In the train set, the weights of b were learnt by minimising a loss L(g, g). In the test set, the map of Asplund distance layer g = Asp + b (f ) was applied to the images f with the learnt structuring function b. The average of a validation metric V al m was computed between the estimated outputs g and the ground-truth g. For the loss L and the validation metric V al m , we used the mean square error M SE or the LIP-mean square error LIP M SE [START_REF] Pinoli | Metrics, scalar product and correlation adapted to logarithmic images[END_REF]:

b r (x) = h(x) if h(x) ≥ 0, where h(x) = -β √ 7 x 2 + c -∞ otherwise. ( 26 
) Let D br = {x ∈ D W br | h(x) ≥ 0}
M SE(g, g) = 1 P P i=1 [g i -g i ] 2 (27) 
LIP M SE(g, g) = M 2 P P i=1 ln M -g i M -g i 2 , ( 28 
)
where P is the number of pixels of g. The results of the validation metrics are shown in table 1. In order to verify the robustness to lighting variations of our neural network, we have performed two other experiments with the same train set, but two additional test sets. We had therefore three test sets. i) The first test set is the initial test set. ii) The second test set is composed of the images of the first test set which were darkened by LIP-adding to them a constant of 100.

iii) The third test set is composed of the images of the first test set which were brightened by LIP-subtracting from them a constant of 100. In table 1, one can notice that the averaged validation metrics between the three test sets are similar with a residual difference less than 1.2 × 10 -6 grey levels. Our neural network is therefore robust to lighting variations which are modelled by the LIP-addition of a constant. The error E pr (W h , W h,r ) between the height kernels of the learnt probe b and of the reference probe b r is defined as follows:

E pr (W h , W h,r ) = 1 A.B   min k x∈D br (W h,r (x) -(W h (x) + k)) 2 + x / ∈D br W 2 h (x)   (29 
) It takes into account that the map of Asplund distances is invariant under the LIP-addition of a constant to its probe. Table 2 shows the average errors between the kernels W m and W h of the learnt structuring function b and the kernels W m,r and W h,r of the reference structuring function b r , in the train set. One can notice that the average MSE between the soft mask kernels W m and W m,r is very small, with a value in 1 × 10 -5 . The average error between the height kernels W h and W h,r has a value in 1 × 10 -4 grey levels. This means that the learnt kernels W m and W h are similar to the reference kernels W m,r and W h,r . The learnt probe b is therefore similar to the reference probe b r . Figure 2 shows an image f of the test set (Fig. 2a). This image was darkened f + 100 (Fig. 2b) or brightened f -100 (Fig. 2c). The ground-truth g was computed with the map of Asplund distances with the reference probe b r : g = Asp + br f (Fig. 2d). The predictions g of the maps of Asplund distances were made with the learnt structuring function b: (i) in the initial image: Asp + b f 1 (Fig. 2e), (ii) in the darkened images: Asp + b (f 1 + 100) (Fig. 2f) and (iii) in the brightened image: Asp + b (f 1 -100) (Fig. 2g). These images show that there is no noticeable differences between the predictions Asp + b f , Asp + b (f + 100), Asp + b (f -100) and the ground-truth g = Asp + br f and that the predictions are robust to lighting variations which are modelled by the LIP-addition or the LIP-subtraction of a constant. Figure 3 shows that the height kernels W h,br of the reference probe b r and W h of the learnt probe b are similar. The mask kernels W m,br and W m are also similar.

Conclusion

We have introduced a logarithmic morphological neural network which is robust to real lighting variations. Those variations are modelled by the LIP-addition of a constant and they are caused by a change in the light intensity or in the camera exposure-time. Such a neural net is based on the functional Asplund metric defined with the LIP-additive law. In the future, by combining several logarithmic morphological layers, we will define neural nets for numerous practical applications where the light is uncontrolled. We will also study neural nets for the LIP-multiplicative Asplund metric, which is invariant under changes of opacity. Such changes are modelled by the LIP-multiplication by a scalar.
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Fig. 1 :

 1 Fig. 1: In an image f , comparison between functional MM and LMM for the (a) erosions ε b (f ), ε + b (f ) and (b) dilations δ b (f ), δ + b (f ). (a) and (b) For both signal peaks, the structuring function b is represented (after an horizontal translation) for the erosions ε b (f ), ε + b (f ) and the dilations δ b (f ), δ + b (f ).
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 12 Map of LIP-additive Asplund distances). Let f ∈ F M be a function and b ∈ ]-∞, M [ D b a probe, where D b ⊂ D. The map of Asplund distances is the mapping Asp +

Proposition 1 .

 1 Let f ∈ F M be a function and b ∈ F M be a structuring function, where for all x ∈ D b , D b ⊂ D, b(x) > -∞. The map of Asplund distances between the function f and the structuring function b is equal to:

  be the domain of the probe. The mask kernel W m,r and the height kernel W h,r of the reference structuring function b r are defined by W m,r = 1 D br and ∀x ∈ D W br , W h,r (x) = b r (x), if x ∈ D br and W h,r (x) = 0, otherwise. 1 D br is the indicator function of the set D br . By varying the parameters β ∈ {0.2, 0.4, . . . , 1.2} and c ∈ {10, 25, . . . , 250}, a total of 102 reference structuring functions b r were generated. With those b r , the desired outputs g = Asp +

b

  Fig. 2: (a) Image f coming from the Fashion MNIST test dataset. (b) f + 100 darkened image. (c) f -100 brightened image. (d) Asp + br f : ground-truth g, i.e. map of Asplund distances with the reference probe b r . Predictions g, i.e. maps of Asplund distances with the learnt probe b : (e) in the initial image Asp + b f ; (f) in the darkened image Asp + b (f + 100); (g) in the brightened image Asp + b (f -100).
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Fig. 3 :

 3 Fig. 3: In the inverted grey scale, height kernels (a) W h,br of the reference probe b r and (b) W h of the learnt probe b. Mask kernels (c) W m,br of the reference probe b r and (d) W m of the learnt probe b. As W m is a soft mask, a color scale was used.

Table 1 :

 1 Comparison of the validations metrics V al m in three test sets: average, standard deviation and absolute average differences with the ground truth of the 1 st test set. Parameters: 15 epochs, Adam optimiser, learning rate α = 0.5, batch size: 20.

	Test sets	Metrics	Averages	Std dev.	Abs. av. diff.
	1 st test set	M SE	9.740 × 10 -5 0.673 × 10 -3	
	(initial, f )	LIP M SE	6.528 × 10 -4 2.580 × 10 -3	
	2 nd test set	M SE	9.740 × 10 -5 0.673 × 10 -3 0
	(dark, f + 100)	LIP M SE	6.529 × 10 -4 2.581 × 10 -3 7 × 10 -8
	3 rd test set	M SE	9.740 × 10 -5 0.673 × 10 -3 1 × 10 -10
	(bright, f -100) LIP M SE	6.516 × 10 -4 2.576 × 10 -3 1.2 × 10 -6

Table 2 :

 2 In the train set, comparison of the average errors between the kernels W m and W h of the learnt probe b and the kernels W m,r , W h,r of the reference probe b r . A total of 102 probes b have been learnt. Epr 6.89 × 10 -5 4.50 × 10 -4 Soft mask of the probe Wm M SE 2.23 × 10 -4 7.74 × 10 -4

	Kernels	Errors	Averages	Std dev.
	Heights of the probe W h