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E. Suchyta,1,2‹ E. M. Huff,1,2‹ J. Aleksić,3 P. Melchior,1,2 S. Jouvel,4 N. MacCrann,5

A. J. Ross,2 M. Crocce,6 E. Gaztanaga,6 K. Honscheid,1,2 B. Leistedt,4 H.V. Peiris,4

E. S. Rykoff,7,8 E. Sheldon,9 T. Abbott,10 F. B. Abdalla,4,11 S. Allam,12
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ABSTRACT
Accurate statistical measurement with large imaging surveys has traditionally required throw-
ing away a sizable fraction of the data. This is because most measurements have relied on
selecting nearly complete samples, where variations in the composition of the galaxy pop-
ulation with seeing, depth, or other survey characteristics are small. We introduce a new
measurement method that aims to minimize this wastage, allowing precision measurement
for any class of detectable stars or galaxies. We have implemented our proposal in BALROG,
software which embeds fake objects in real imaging to accurately characterize measurement
biases. We demonstrate this technique with an angular clustering measurement using Dark
Energy Survey (DES) data. We first show that recovery of our injected galaxies depends on
a variety of survey characteristics in the same way as the real data. We then construct a flux-
limited sample of the faintest galaxies in DES, chosen specifically for their sensitivity to depth
and seeing variations. Using the synthetic galaxies as randoms in the Landy–Szalay estimator
suppresses the effects of variable survey selection by at least two orders of magnitude. With
this correction, our measured angular clustering is found to be in excellent agreement with
that of a matched sample from much deeper, higher resolution space-based Cosmological
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No DES galaxy left behind 787

Evolution Survey (COSMOS) imaging; over angular scales of 0.◦004 < θ < 0.◦2, we find a
best-fitting scaling amplitude between the DES and COSMOS measurements of 1.00 ± 0.09.
We expect this methodology to be broadly useful for extending measurements’ statistical reach
in a variety of upcoming imaging surveys.

Key words: methods: data analysis – methods: miscellaneous – techniques: image
processing – galaxies: statistics.

1 IN T RO D U C T I O N

Wide-field optical surveys have played a central role in modern as-
tronomy. The Sloan Digital Sky Survey (SDSS; York et al. 2000)
alone has furnished nearly 6000 publications across a wide variety
of subjects: from star formation, to galaxy evolution, to measuring
cosmological parameters; among a multitude of others. The discov-
ery of cosmic acceleration (Riess et al. 1998; Perlmutter et al. 1999)
has motivated several expansive imaging surveys for the future: for
instance, the Large Synoptic Survey Telescope,1 the Wide-Field In-
frared Survey Telescope (Dressler et al. 2012), and Euclid (Laureijs
et al. 2012). The legacy of these next-generation imaging efforts
will almost certainly yield an even richer harvest than what has
come before them.

With large surveys, astronomical sample sizes have grown, in-
creasing the statistical power of their measurements; with great
power comes great responsibility2 (see e.g. Lee et al. 1962) for con-
trol of systematic errors. Taking full advantage of these data means
ensuring that the precision of these measurements is matched by
their accuracy. At present time, however, high-precision measure-
ments are generally made with samples drawn from only the fraction
of the data that is nearly complete. We argue that the current state of
the art in survey astronomy is in many ways wasteful of information,
and lay out a general method for improvement.

This paper focuses on measurements of the galaxy angular cor-
relation function for highly incomplete, flux-limited samples of
galaxies, especially near the detection threshold. We have chosen
this approach for two reasons. First, this measurement is an es-
pecially challenging example of systematic error mitigation; we
show below that, for our faintest galaxies, we will have to elim-
inate systematic biases that are much larger than our signal, and
do so over a wide range of survey conditions. The second reason
is that systematic effects relevant for angular clustering measure-
ments also directly impact probes of cosmic acceleration (Weinberg
et al. 2013), where the requirements on systematic error control are
particularly strict.

1.1 The current state of the art

Astronomers have been measuring galaxy clustering for several
decades, since at least Zwicky (1937). The angular two-point cor-
relation function, w(θ ), is a common tool used to characterize the
anisotropies in the galaxy ensemble. From the very beginning, ef-
forts to measure w(θ ) have been challenged by the presence of
anisotropies in the data arising from imperfect measurements, or
from astrophysical complications unrelated to large-scale structure.

1 http://www.lsst.org/lsst/
2 Though we have referenced Lee, Ditko & Kirby (1962) as an example,
we note, the phrase did not originate with Spiderman. The quote is often
attributed to different sources, including (likely incorrectly) Voltaire, and
can be traced back as far as at least the Gospel of Luke (12:48).

A complete list of sources of systematic effects is difficult (if
not impossible) to compile, but some issues are common to all
extragalactic measurements, like star–galaxy separation and photo-
metric calibration. Because the point spread function (PSF) varies
across the survey area, the accuracy with which galaxies can be
distinguished from stars will vary, introducing anisotropies asso-
ciated with stellar contamination. Accurate, uniform photometric
calibration for a multi-epoch wide-field optical survey is difficult to
accomplish (Schlafly et al. 2012), and given the variations in see-
ing, airmass, transparency, and other observing conditions, uniform
depth is generally unachievable. A wide variety of schemes have
been used to ameliorate these complicating effects.

For a w(θ ) measurement with the Automated Plate Measure-
ment survey – among the earliest digitized sky surveys – Maddox,
Efstathiou & Sutherland (1996) built models of the selection func-
tion, including plate measurement effects (e.g. the variation of the
photographic emulsion’s sensitivity across each plate), observa-
tional effects (atmospheric extinction) and astrophysical effects
(Galactic extinction). For each of these, they estimated the con-
tribution of the systematic effect to the final w(θ ) measurement.
Stellar contamination was dealt with by subtracting estimated stel-
lar densities from the map of galaxy counts in cells, and adjusting
the amplitude of the final w(θ ) measurement to compensate for the
estimated dilution due to stellar contamination.

Similar measurements of w(θ ) were made for validation purposes
in the early SDSS data (Scranton et al. 2002). The authors here cross-
correlated the measured galaxy densities with a number of known
sources of systematic errors in order to determine which regions of
the survey to mask.

Many subsequent SDSS analyses were based on a volume-limited
sample of luminous red galaxies, from which ∼120 000 objects
were targeted for SDSS spectroscopy (Eisenstein et al. 2001). Here
again (see also Padmanabhan et al. 2007 for the properties of the
parent photometric sample) the strategy was to use cross-correlation
techniques to remove data that would imperil the analysis, leaving
an essentially complete sample.

The targets selected for the larger SDSS-III Baryon Oscillation
Spectroscopic Survey (BOSS) measurements (Schlegel, White &
Eisenstein 2009) were substantially fainter, and the systematic er-
ror corrections for these samples necessarily more sophisticated.
Ross et al. (2011) explored several mitigation strategies for SDSS
data. A linear model for the dependence of the galaxy counts as a
function of potential sources of systematic errors was built, allow-
ing for subtraction of the systematic effects from the final galaxy
w(θ ) measurement. For the most important systematic effects (con-
strained again by cross-correlation with the galaxies), galaxies in
the w(θ ) estimator were upweighted by the inverse of their detection
probability. The BOSS baryon acoustic oscillation scale measure-
ment in Ross et al. (2012) made use of this weighting scheme. With
the exception of stellar occultation, these effects were mostly per-
turbative, and the errors on the angular clustering were large enough
that the stellar occultation corrections only had to be characterized
at the ∼10 per cent level.
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The imaging systematic error mitigation used by the WiggleZ
spectroscopic survey (Blake et al. 2010) came closest to the spirit
of this paper. Their spectroscopic target catalogue was built by a
combination of SDSS and Galaxy Evolution Explorer3 (GALEX)
measurements. The blue emission-line galaxies targeted by Wig-
gleZ were faint enough to be substantially affected by variations
in the SDSS completeness, so the GALEX catalogues were used to
estimate the variation of the target selection probability with vari-
ous survey properties. Models were fit to this dependence, and the
results were directly incorporated into the window function used in
power spectrum estimation. The resulting corrections had an ∼0.5σ

effect on the final power spectrum, and so like SDSS only needed
to be accurate at the ∼10 per cent level.

This list is not exhaustive, but we believe it gives a fair picture
of the state of the art. Generally, for their extragalactic clustering
measurements, modern photometric surveys have relied on selecting
a relatively complete sample, and then applying small corrections
late in the analysis. We believe that this approach is a poor fit to the
age of precision cosmology with ‘big data’. The rest of this paper
will present our proposed alternative.

1.2 Modeling the DES selection function

We propose to measure the selection function of imaging surveys by
embedding a realistic ensemble of fake star and galaxy images in the
real survey data. The resulting measurement catalogues comprise a
Monte Carlo sampling of the selection function and measurement
biases of the survey, and can naturally account for systematic effects
arising from the photometric pipeline, detector defects, seeing, and
other sources of observational systematic errors. Several of the
major systematic errors examined in the above measurements can
be straightforwardly estimated and removed using the embedded
catalogues, though astrophysical effects like dust and photometric
calibration must of course be modelled using external data.

We test this technique using Dark Energy Survey (DES) imaging.
DES is a 5-year optical and near-infrared survey of 5000 deg2 of the
South Galactic Cap, to iAB ≤ 24 (Dark Energy Survey Collaboration
2005). The survey instrument, the Dark Energy Camera (DECam;
Flaugher et al. 2015), was commissioned in fall 2012. During the
Science Verification (SV) phase, which lasted from 2012 Novem-
ber to 2013 February, data were taken over ∼250 deg2 in a manner
mimicking the full 5-year survey, but with substantial depth varia-
tions (see e.g. Leistedt et al. 2015), mainly due to weather and early
DECam operational challenges. Co-add images in each of the five
bands, as well as a detection image combining the riz filters, were
produced from the ∼10 single-epoch exposures per filter.

Our work is complementary to that of Chang et al. (2015), who
used generative modelling, in combination with outputs from the
Blind Cosmology Challenge (Busha et al. 2013) and the Ultra Fast
Image Generator (Bergé et al. 2013), to simulate DES-like data
which were then run through the DES analysis pipeline (Desai et al.
2012; Mohr et al. 2012). A fully generative approach does have
some advantages over the Monte Carlo sampling of the images
described here. With a generative model, one can explore coun-
terfactual realizations of the survey. This helps, for instance, in
mapping out the interaction between the survey selection function
and the galaxy population (for instance, how the angular clustering
of galaxies interacts with the deblending and sky-subtraction algo-

3 http://www.galex.caltech.edu/

rithms). By construction, our embedding strategy considers only
the single DES-realization of the survey properties.

However, the generative modelling approach is more sensitive to
model mis-specification errors; it requires models not only for the
noise, photometric calibration, star, and galaxy ensemble properties,
etc. but also for cosmic rays, bright stellar diffraction spikes, CCD
defects, satellite trails, and other non-physical signatures that are
difficult to model accurately. The embedded simulations, by con-
trast, inherit many of the properties of the image that are otherwise
difficult to model. To keep the embedded population as realistic as
possible, we draw our simulated stars and galaxies from catalogues
made from high-resolution Hubble Space Telescope imaging.

1.3 Angular clustering in the DES

Crocce et al. (2016) present a DES benchmark measurement of
w(θ ), adopting a standard approach to their clustering analysis by
choosing a relatively complete sample (i < 22.5) and masking po-
tential sources of systematic errors traced by maps of the DES
observing properties measured by Leistedt et al. (2015). In this pa-
per, we use our Monte Carlo simulation framework to correct for
the spatially dependent completeness inhomogeneities, and then
measure clustering signals at magnitudes well below the nominal
limiting depth of i < 22.5 used by Crocce et al. (2016).

The paper is organized as follows. In Section 2, we present
BALROG,4 our software pipeline for embedding simulations into as-
tronomical images. In Section 3, we describe our empirical proce-
dure for generating a realistic ensemble of simulated sources, then
prototype BALROG by injecting ∼40 000 000 simulated objects into
178 deg2 of DES SV co-add images. We generate a synthetic cat-
alogue using the same procedure as is used for generation of the
DES science catalogues. Section 4 validates that the photometric
properties of the synthetic catalogues are a close match to those
of the real DES catalogues for a wide range of quantities. If these
synthetic catalogues really capture the variation in the survey selec-
tion function and measurement biases, it should be possible to use
them as randoms to measure w(θ ) accurately even for the faintest
galaxies in the survey. We do exactly this in Section 5, demonstrat-
ing that our clustering measurements for the faintest DES galaxies
(23 < i < 24) show excellent agreement with higher resolution
external space-based data, which are complete over the selection
range. The shapes of our w(θ ) curves match general expectation.
Section 6 concludes with a discussion of our results.

2 BALRO G I M P L E M E N TAT I O N

BALROG is a PYTHON-based software package for embedding simu-
lations into astronomical images; Fig. 1 shows a diagram of the
pipeline’s workflow. BALROG begins with an observed survey image,
then inserts simulated objects with known truth properties into the
image. Source detection and analysis software is run over the im-
age, measuring the observed properties of the simulated objects.
We emphasize that because a real survey image has been used, BAL-
ROG’s output catalogue automatically inherits otherwise difficult to
simulate features, such as oversubtraction of the sky background
by the measurement software, proximity effects of nearby objects,
unmasked cosmic rays, etc.

4 https://github.com/emhuff/Balrog. BALROG is not an acronym. The software
was born out of the authors digging too deeply and too greedily into their
data, ergo the name.
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No DES galaxy left behind 789

Figure 1. High-level overview of BALROG’s processing. Shape usage follows standard flowchart notation. White parallelograms are inputs, dark grey parallel-
ograms are outputs, and light grey rectangles are processes/commands. (The simulation truth catalogue is coupled with the measurement software because by
default BALROG runs SEXTRACTOR in association mode, using the simulation positions as the matching list, cf. Section 2.3.)

The remainder of this section further details how we implement
these injection simulations in BALROG. The discussion is organized
according to three components of BALROG’s functionality, each of
which is devoted a section to follow:

(i) input survey information, such as reduced images, their PSFs,
and flux calibrations (Section 2.1);

(ii) simulation specifications, defining how to generate the sim-
ulated object population (Section 2.2);

(iii) measurement software (Section 2.3).

We have designed BALROG with ease of use and generality in mind,
allowing for a wide range of simulation implementations, and we
provide thorough documentation with the software. BALROG employs
software widely used throughout the astronomical community: in-
ternally it calls SEXTRACTOR (Bertin & Arnouts 1996) for source
detection and measurement, and the object simulation framework
is built on GALSIM (Rowe et al. 2015).

2.1 Survey information

The top left of Fig. 1 lists the survey data required by BALROG.
First are the reduced images and their weight maps – the inverse of
the noise variance of the image at background level. The latter are
required for reliable measurements of object properties; BALROG does
not modify the weight maps, but passes them as input arguments
to SEXTRACTOR. Both the images and weight maps are expected to
conform to the Flexible Image Transport System (FITS) standard
(Hanisch et al. 2001; Greisen & Calabretta 2002).

All simulated BALROG objects are convolved with a PSF prior to
being drawn into the image. Currently, BALROG requires a PSF model
generated by PSFEX (Bertin 2011) to be given as the input defining
the convolution kernel. These models encode a set of basis images
to represent the spatial-dependence of the PSF, with an adjustable-
degree polynomial for interpolation of the basis coefficients across
the image. BALROG’s PSF convolution calls GALSIM’s Convolve
method, and the implementation operates in World Coordinates,
where the astrometric solution to use is read from the image’s
FITS header. We note that GALSIM’s PSF functionality is not limited
to images generated by PSFEX; it accepts a wide variety of other
possibilities as well. We have chosen to implement the PSFEX models
in our initial version of BALROG, because they are used in DES.
However, BALROG could be extended to accept a broader range of
PSF model types.

A photometric zero-point (zp) is required to transform simulated
object magnitudes (m) into image fluxes (F), by applying the usual
conversion between the two quantities:

F = 10(zp−m)/2.5. (1)

Natively, the conversion assumes that all pixels share this same
calibration,5 whereby the images should have standard reductions,
such as bias subtraction and flat-field division, applied prior to run-
ning BALROG (in order to remove pixel-dependent variations across
the image). By default, BALROG tries to read the zero-point from the
FITS header, but also accepts command line arguments.

In addition to the noise inherited from the image, BALROG also adds
Poisson noise to the simulated objects’ pixel flux values, where the
noise level is set by the image’s effective electron/ADU gain. This
added Poisson noise is only significant when the object flux level
is well above the background variation level. Like the zero-point,
BALROG can read the gain from the FITS header or accept a command
line argument.

2.2 Simulating images

The right-hand side of Fig. 1 depicts image simulation and in-
jection. BALROG simulates objects as a superposition of arbitrarily
many elliptical Sérsic profiles. Users are free to assign the mag-
nitude, half-light radius, Sérsic index, orientation angle and axis
ratio of each Sérsic component. (To be explicitly clear, the Sérsic
quantities are pre-convolution values.) Each object also includes
three adjustable quantities that are shared between the components:
a centre coordinate, lensing shear, and magnification.

Assigning object properties is accomplished by PYTHON code in-
side a configuration file which BALROG parses and executes. We
have packaged example configuration files with the software to
demonstrate its usage: for instance, assigning to constants, arrays,
or jointly sampling from a catalogue. Users are also able to write
any PYTHON function of their own and use it as a sampling rule,
allowing generality and arbitrary complexity to the simulations.

BALROG uses GALSIM to perform all the routines necessary to trans-
form a catalogue of truth quantities into images of these simulated
objects. GALSIM rendering is extensively validated in Rowe et al.

5 With BALROG’s user-defined function API, one can implement non-uniform
photometric calibrations across an image, such as we do in Section 3.3
with stellar locus regression zero-point offsets. We refer readers to the code
repository and documentation therein for details.
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790 E. Suchyta et al.

Figure 2. BALROG’s object simulation schema. This figure is effectively a ‘zoom in’ of the ‘Draw simulated objects into image’ node of Fig. 1. The truth
catalogue is generated by BALROG based on the user’s configuration setup. White parallelograms are inputs to the pipeline, dark orange rectangles call GALSIM

commands, and light orange nodes are PYTHON code. Diamonds are decision points. There are two loops: index i loops over the number of simulated objects,
Nobj; index j loops over the number of Sérsic components for each object, Ncomp. The final output is the image in the bottom left of the diagram, after all
the simulated objects have been embedded.

(2015), and demonstrated to be accurate enough for simulation of
weak lensing data in Stage III and IV dark energy surveys, including
DES. Beyond accuracy alone, GALSIM is ideal for BALROG because it
is highly modular; BALROG’s range of simulation customizations are
built upon this modularity.

Here, we overview the most important simulation steps in BAL-
ROG, and refer readers to the BALROG code repository and GALSIM

documentation for complete details. Fig. 2 is a diagram summariz-
ing the process. In the text, our convention is to denote GalSim
methods using typewriter font. First, each Sérsic compo-
nent is initialized as a circularly symmetric Sersic object, with
a given flux, half-light radius, and Sérsic index (right-hand side of
Fig. 2). Next, the components are stretched to their specified axis
ratios and rotated to their designated orientation angles using the
applyShear method. Once all components have been built, they
are added together and the given lensing shear and magnification
are applied to the composite object, calling applyShear and ap-
plyMagnification, respectively (left-hand side of Fig. 2). The
Convolve method is called to convolve the object with the PSF.
GALSIM’s GSParams argument can be adjusted within the BALROG

configuration file, to be passed as an argument to GALSIM when de-
termining the target accuracy of the convolution. GALSIM’s draw
then creates an image of the simulated object. The CCDNoise
method adds Poisson noise to the object’s image, setting the gain
equal to that of the input image and the read noise to zero. Finally,
the noisy object’s image is assigned a centre coordinate within the
original input image, and its flux is added to the original image on
a pixel-by-pixel basis.

2.3 Measurement software

The final step in the BALROG pipeline is source detection and mea-
surement. The configuration settings of the measurement software
are an important component of this process. Accordingly, users can
pass BALROG any of the configuration files SEXTRACTOR accepts as

input and will use them to configure SEXTRACTOR runs, automati-
cally making any modifications to the files necessary for running in
the BALROG environment. For convenience, users can also override
SEXTRACTOR settings from the BALROG configuration file.

By default, prior to inserting simulated objects, BALROG runs
SEXTRACTOR in association mode over the original image. In this
mode, we pass SEXTRACTOR a list of coordinates of the objects to
be simulated, and real objects whose positions lie within 2 pixels6

of any of the BALROG positions are extracted into a catalogue. This
allows users to check for blending between real and BALROG objects,
and if preferred, remove such instances from their analyses.

Once the simulated objects are injected into the image, BALROG’s
default behaviour makes another SEXTRACTOR run in association
mode, again extracting only sources whose detected positions are
within 2 pixels of one of the BALROG positions. The resulting cata-
logue is BALROG’s primary output, a table of the simulated objects’
measured properties. By running in association mode, execution
time is saved, skipping measurement of all the sources already
present in the image prior to the simulations. This is most relevant
if the user configures SEXTRACTOR to perform measurements that
involve fitting a model to the sources, which is computationally
expensive.

We emphasize that BALROG is not doing forced photometry in as-
sociation mode; we intend BALROG to be usable for probing detection
probability. SEXTRACTOR always runs detection over the full image.
Measurement happens later in a separate step. Association mode
matching then decides if a detected object should be measured or
not; only detections with positions near the given association list –
here the BALROG simulation positions – are extracted. Association
with the BALROG positions is why the truth catalogue enters as input
to the measurement steps in Fig. 1.

6 Two pixels is the SEXTRACTOR default, and substantially larger than our
typical centroid errors.
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No DES galaxy left behind 791

By default, BALROG runs in single-image mode, meaning simulated
objects are injected into a single image, then SEXTRACTOR’s detection
and measurement are made using that same image. BALROG can
also be configured to run SEXTRACTOR in dual-image mode, where
detection and measurement occur in different images. Doing this
is common in surveys; for example, DES builds a multiband riz
co-add for detection, which increases the depth of detections, and
then makes measurements in each of the pass bands.

Dual-mode BALROG operates slightly differently than the de-
fault single-mode. One uses a two-call approach in order to self-
consistently add the simulated objects to both images. First one
builds a detection image with simulated objects; this is then passed
as the detection image to a subsequent BALROG call which adds the
simulated objects to the measurement image.

This two-step approach to BALROG’s dual-mode is a code-level
choice made by the authors, but a well-motivated one. In the case of
a multiband detection image, adding objects directly to the detection
image is not fundamentally correct. One should add the BALROG

objects to each single-band image individually and then recoadd
to build the BALROG detection image; this approach most faithfully
reproduces the real data’s processing. For instance, different bands
have different PSFs and this approach convolves each separately,
whereas adding to the detection image directly would apply a single
‘average’ convolution. Accordingly, we opted to implement dual-
mode as described.

3 D ES + BALRO G

Both the validation work in Section 4 and the clustering measure-
ments presented in Section 5 make use of a common sample, con-
sisting of DES data and associated BALROG simulations. Here, we
detail our data products and how they are generated. In Section 3.1,
we explain the input we pass to BALROG to populate the simula-
tion sample. Next, Section 3.2 discusses the DES imaging and its
processing. Section 3.3 then specifies how we configure and run
BALROG on this DES data. We describe how we construct our DES
and BALROG catalogues in Section 3.4, including the cuts we make
to the samples.

3.1 Input ensemble

Our strategy for populating simulated object parameters is to sam-
ple magnitudes, sizes, and other Sérsic properties from a catalogue
whose probability distribution function (PDF) over the parameter
space is reasonably representative of that of the Universe on large
scales. We begin with the COSMOS mock catalogue (CMC) com-
piled by Jouvel et al. (2009), who used LE PHARE (Ilbert et al. 2006)
to fit template spectral energy distributions to 30-band Cosmolog-
ical Evolution Survey (COSMOS) photometry (Ilbert et al. 2009).
The template fits were convolved with the transmission curves of
several instruments, in order to generate synthetic magnitude mea-
surements of the COSMOS galaxies using different cameras. The
measurements include Suprime-Cam’s (Miyazaki et al. 2002) griz
filter bands, comparable to DECam’s griz pass bands, and we adopt
the Suprime-Cam magnitudes to sample our simulation population’s
fluxes. At the time of the simulation, the CMC photometry was not
available for DECam’s filters, but this has since changed, and future
versions of these synthetic catalogues will use the DECam filters.

In order to assign realistic morphology to the CMC galaxies, we
match them (simple angular coordinate matching) to the morphol-
ogy catalogue of Mandelbaum et al. (2014), consisting of single-
component elliptical Sérsic fits to deconvolved COSMOS images.

The morphology catalogue is not complete, so we perform a nearest-
neighbour four-dimensional reweighting to the matched catalogue
(using seven nearest neighbours7), such that the galaxies’ griz mag-
nitude distributions in the matched catalogue reproduce those of the
CMC. The reweighting is analogous to reweighting spectroscopic
redshift distributions for use in calibrating photometric redshifts,
as presented in e.g. Lima et al. (2008, and applied to DES data in
Sánchez et al. 2014), and we will use similar methodology again in
Section 5.4. The catalogue of Sérsic fits is for a selection of galax-
ies only, and we do not reweight the CMC stars. They are assigned
to be point objects with vanishing half-light radii. In our BALROG

simulations for this paper, we did not use the CMC quasars, but we
will include them in subsequent runs.

We make a few quality cuts prior to reweighting the galaxy sam-
ple, and for consistency, apply the same cuts to the stellar sample
where relevant. First, we require all three CMC colours, g − r, r − i,
and i − z, to be between −1 and 4. We also reject objects whose
half-light radii in the Sérsic catalogue are larger than 100 arcsec.
Finally, we require i ≤ 25. Beyond this limit, the morphology cat-
alogue is substantially incomplete, and we lack adequate statistics
for the four-dimensional reweighting. After applying these cuts,
our (CMC + morphology) matched catalogue contains ∼70 000
objects, and the final reweighted version of the catalogue given to
BALROG totals ∼200 000 objects: ∼190 000 galaxies and ∼10 000
stars. In Section 4, we find that this catalogue is of adequate size
to span the parameter space used in our analysis, and in future BAL-
ROG runs, we will construct the catalogue to span an even larger
space.

For the purpose of this work, we populate our BALROG simula-
tions by jointly sampling brightnesses, half-light radii, ellipticities,
orientation angles, and Sérsic indexes from our reweighted CMC
+ morphology-matched catalogue, and simulate objects as single
component elliptical Sérsic objects with no lensing. The simulated
positions are randomly distributed over the celestial sphere in our
footprint, i.e. we are populating randoms which have no intrinsic
clustering. Each object is added at the same location in the g, r, i,
and z DES images, and drawn with the same morphology in each
band, inheriting its colours from the CMC.

3.2 DES imaging

The imaging data we consider were taken during the DES SV period,
which occurred prior to the start of first-year survey operations
(Diehl et al. 2014); SV was used to verify that DECam is able
to deliver data of sufficient quality to meet DES’ science goals.
We have run BALROG on 178 deg2 of the SV footprint, in an area
north of the Large Magellanic Cloud (LMC) and within the SPT-E
field – the largest contiguous area of the SV footprint. The SPT-E
area overlaps with the coverage of the South Pole Telescope (SPT;
Ruhl et al. 2004), and its depth approaches that of DES full-survey
depth in some areas. Fig. 3 shows a map of the detected DES
and BALROG galaxy number density over our selected area, where
we have applied the cuts discussed in Section 3.4. The following
several paragraphs focus on the processing of the DES imaging
from which these samples are derived.

The DES SV data were processed through the DES Data Manage-
ment (DESDM) reduction pipeline (Desai et al. 2012; Mohr et al.

7 This number was selected as optimal to best match the CMC; we note,
however, that the results of the reweighting method are rather insensitive to
the number of nearest neighbours.
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792 E. Suchyta et al.

Figure 3. Map (declination versus right ascension) of the density of detected DES (left) and BALROG galaxies (right) on the SPT-E footprint used in this
analysis. While the two maps are very similar, there is an excess in counts in DES data at declination δ < −58; this is due to increased stellar contamination
caused by the nearby LMC. Our BALROG run has made no attempt to model anisotropic stellar counts.

2012); we briefly outline salient reductions and refer readers to the
references for further details. First, single-epoch images are over-
scan subtracted, a cross-talk correction is made, and a look up table
removes non-linear CCD responses to incident flux levels. Bias
frames are applied to subtract out any remaining additive offsets,
dome flats correct for multiplicative variations in pixel sensitivity,
and a ‘star flat’ (e.g. Manfroid 1995) divides out the illumination
pattern across the detector. Artefacts such as cosmic rays, satel-
lite trails, and stellar diffraction spikes are masked. Astrometric
solutions are computed by SCAMP (Bertin 2006) matching stellar po-
sitions to the UCAC4 reference catalogue (Zacharias et al. 2013).
The pipeline outputs reduced images, along with inverse-variance
weight maps and masks.

DES’ photometric calibration is described in detail in Tucker et al.
(2007). Briefly, SDSS photometric standards fields are observed at
the beginning and end of each night. Stars from the DES images are
matched to SDSS standard stars, fitting each band’s absolute zero-
point as a linear function of airmass over all overlapping matches.
The zero-point for each CCD in every image is then refit by jointly
minimizing the magnitude differences between (1) DES objects
common to multiple exposures and (2) any DES objects that match
to SDSS standards.

DESDM builds co-adds of the single-epoch images with SWARP

(Bertin et al. 2002), using the discussed astrometric solutions and
photometric calibrations as input. Each co-add image, known as a
tile, is ∼0.5 deg2 in area. SWARP computes the effective gain noise
level of each tile as well as the combined inverse-variance weight
map. PSFEX (Bertin 2011) is then run over the co-adds to fit the PSF
model, using a second-degree polynomial for interpolation over the
tile. Finally, DESDM runs SEXTRACTOR in dual-image mode, using
a multiband riz image for detection, to produce the catalogues of
DES objects.

The SV photometric calibration for the co-adds was supple-
mented with stellar-locus regression (SLR), which uses the near
universality of the colours of Milky Way halo stars as a means to fit
for photometric zero-points (e.g. High et al. 2009). Our SLR correc-
tions (Rykoff et al. in preparation) were implemented with a mod-
ified version of the BIG-MACS stellar-locus fitting code (Kelly et al.
2014). All corrections were made relative to an empirical reference
locus derived from calibrated standard stars observed on a photo-

metric night. We recompute co-add zero-points over the full SV
footprint on a HEALPIX (Górski et al. 2005) grid of NSIDE = 256,
using bilinear interpolation to correct all objects in the catalogue
at a scale of better than ∼14 arcmin. We use J-band magnitudes
from the Two Micron All Sky Survey (2MASS) stellar catalogue
(Skrutskie et al. 2006) as an absolute calibration reference, which
yields absolute calibration uniformity of better than 2 per cent, with
colour uniformity ∼1 per cent.

3.3 Running BALROG

The input we give to BALROG is made up of the data products
discussed in the previous section: the co-added SV images from
DESDM, as well as their inverse-variance weight maps, PSF mod-
els, astrometry, photometric zero-points, and effective gains. We
self-consistently add the same BALROG objects to the g, r, i, and z

images, build an riz detection image for each realization using iden-
tical SWARP configuration as DESDM, and then run BALROG over each
band with SEXTRACTOR configurations, which again match those of
DESDM.

We make use of the SLR offsets introduced in Section 3.2 in
our imaging simulations. We employ BALROG’s user-defined func-
tion API to read the SLR zero-points and make position-dependent
modifications to the simulated fluxes in each image, in addition the
usual single zero-point used by BALROG. This takes an input truth
magnitude and adjusts it back to the pre-SLR flux scale, i.e. the
original calibration for the co-add images.

In each BALROG realization, we add only 1000 objects to the
image (of area ∼0.5 deg2), in order to keep the BALROG–BALROG

blending rate low. We iterate each co-add tile 100 times, simulating
a total of 100 000 objects per DES co-add tile. Combining the
results generates a BALROG output measurement catalogue which is
approximately the same size as the DES measurement catalogue.
The total run time for our BALROG simulations was approximately
30 000 CPU-hours, much less than the time needed by DESDM to
process the data.

Admittedly, injecting our BALROG objects directly into the co-adds
instead of self-consistently into each overlapping single-epoch im-
age is less ideal. For example, the co-add PSF is not as reliable
of a model of the data as is simultaneously using the full set of
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No DES galaxy left behind 793

single-epoch PSFs. However, the single-epoch version of BALROG is
roughly 10 times more computationally expensive, and we opt to
test the simpler approach first. Using BALROG in other DES analyses
which are more sensitive to the PSF and which directly use single-
epoch level information (such as weak lensing ones) will require
running on all the single-epoch images. In this work, our measure-
ments are focused on galaxy clustering, and we demonstrate that
the co-add approximation is sufficient in this context.

3.4 Catalogue selection

To construct the DES sample, we download the SV co-add data from
the DESDM data base of SEXTRACTOR measurements, returning
detections from the same areas where BALROG was run. We then apply
the SLR zero-point shifts to both the DES and the BALROG catalogues.
At this point, the full BALROG and DES catalogues total ∼16 million
detections each.

Next, we apply some quality cuts to both samples. In Section 5,
we undertake galaxy clustering measurements, and the quality cuts
we make are similar to ones made in the benchmark DES clustering
analysis of Crocce et al. (2016). We base our cuts on a subset of
their selection criteria as means to help achieve a reasonably well-
behaved source population.

First is a simple colour selection:8

−1 < MAG AUTO G− MAG AUTO R < 3

AND − 1 < MAG AUTO R− MAG AUTO I < 2

AND − 1 < MAG AUTO I− MAG AUTO Z < 2.

This helps to eliminate objects inside regions which are contami-
nated in one filter band’s image, but not the others, such as satellite
or airplane trails.

Furthermore, we make a cut based on SEXTRACTOR position mea-
surements. Among the SEXTRACTOR detections, there exists a class
of objects whose windowed centroid measurements are significantly
offset in different filter bands,9 up to over a degree in the worst cases.
This is to be expected for objects with low signal-to-noise ratios,
since detection occurs in riz, while measurement occurs in each
band independently, and the centroid measurement for a dropout in
a given band is essentially unconstrained. However, large positional
offsets persist at all signal-to-noise levels, such that about 2 per cent
of all objects at any signal-to-noise have significant offsets. We re-
ject any object with large (>1 arcsec) offset between the g- and
i-band centroids, which has been detected with >5σ significance in
g band.

We also apply the mask used by Crocce et al. (2016). (Specif-
ically, we use the mask as it exists prior to introducing redshift
dependence.) The details of the mask’s construction are found in
Appendix A; in brief, it is based on five criteria:

(i) coordinate cuts to select SPT-E area north of the LMC,
(ii) excising regions with the highest density of large positional

offset objects discussed above,
(iii) removing objects in close proximity to bright stars,
(iv) selecting regions with 10σ -limiting magnitude of i > 22.5,

and
(v) requiring detections over a significant fraction of the local

area.

8 Crocce et al. (2016) use DETMODEL colours, but we choose to use AUTO
colours.
9 We suggest astrometric colour as the name for this effect.

The cuts we have mentioned in this section are not strictly nec-
essary for the validation tests presented in Section 4 to follow. In
fact, BALROG is able to populate objects like the ones that have been
cut into the simulated sample. However, we are most interested in
BALROG’s behaviour for objects which will survive into a science
analysis. Therefore, we choose to exclude them from the clustering
study presented in Section 5.

Throughout the remainder of our analysis, we also remove any
objects from the BALROG simulation catalogue which have a matched
counterpart in the catalogue generated by running SEXTRACTOR prior
to inserting any simulated objects (cf. Section 2.3). Doing so re-
moves approximately 1 per cent of the BALROG catalogue. Some of
these objects are genuine BALROG objects, some are DES objects, and
others are blends of the two, depending on the relative brightness
of the input BALROG object compared to the DES object found in
the image at the simulation location. This choice does have a small
impact (∼1 per cent) on the clustering: including the ambiguous
matches effectively mixes some real galaxies into the randoms used
for clustering, artificially suppressing the clustering signal; exclud-
ing the ambiguous matches has the opposite effect. We discuss this
issue along with other fundamental limitations of the embedding
simulation approach in Section 5.1.

The final selection mechanism we use is star–galaxy separation.
Star–galaxy separation is accomplished with the MODEST_CLASS
classifier, which is explained in e.g. Chang et al. (2015), and uti-
lized in additional DES analyses such as Vikram et al. (2015) and
Leistedt et al. (2015).10 The classifier has been tested with DES
imaging of COSMOS fields. Table 1 lists the full MODEST_CLASS
selection criteria. It incorporates SEXTRACTOR’s default star–galaxy
classifier CLASS_STAR, which is based on a pre-trained neural
network, as well as morphological information about how well
the object resembles the PSF; for each object, SPREAD_MODEL
measures a normalized linear discriminant between the best-fitting
local PSF model derived with PSFEX, and a slightly more extended
model made from the PSF convolved with a circular exponential
disc (see e.g. Desai et al. 2012; Bouy et al. 2013; Soumagnac
et al. 2015). SPREADERR_MODEL is the error estimate for the
SPREAD_MODEL measurement.

Including the cut on SPREADERR_MODEL, in addition to
SPREAD_MODEL alone, improves the faint end galaxy complete-
ness. Including the MAG_PSF cut improves the purity at the bright
end. Soumagnac et al. (2015) investigate more sophisticated means
of star–galaxy separation, such as machine learning techniques
beyond SEXTRACTOR’s pre-trained CLASS_STAR, and in a subse-
quent publication (Aleksić et al. in preparation), we will present a
neural network approach trained on BALROG data. In Section 5.5,
we demonstrate that MODEST_CLASS suffices for our current
analysis.

After applying all the cuts discussed in this section, the DES and
BALROG galaxy catalogues total ∼10 million objects each. These are
the samples whose number densities we mapped in Fig. 3. We use
these catalogues as our primary data products in Sections 4 and 5.

4 BALRO G VA L I DAT I O N

To validate BALROG’s functionality, we analyse the catalogues con-
structed in Section 3.4, testing if the properties of the BALROG objects

10 As noted in Appendix C, Crocce et al. (2016) use a new quantity –
WAVG_SPREAD_MODEL – for star–galaxy separation.
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Table 1. MODEST_CLASS selection.

Galaxies Stars

(FLAGS_I ≤3) AND NOT (FLAGS_I ≤3) AND
( ((CLASS_STAR_I >0.3) AND (MAG_AUTO_I <18)) ( (CLASS_STAR_I >0.3)
OR ((SPREAD_MODEL_I + 3*SPREADERR_MODEL_I) <0.003) AND (MAG_AUTO_I <18)
OR ((MAG_PSF_I >30.0) AND (MAG_AUTO_I <21.0)) AND (MAG_PSF_I <30.0)
) OR (((SPREAD_MODEL_I + 3*SPREADERR_MODEL_I) <0.003) AND

((SPREAD_MODEL_I + 3*SPREADERR_MODEL_I) > −0.003)))
)

Figure 4. Top: magnitude distributions (PDFs) of DES and BALROG galaxies in four DES filters. Bottom: illustration of the difference between DES and BALROG

magnitude distributions is shown in black; errors are estimated from jackknife resampling, as described in Appendix B. The yellow band shows the sample
variance of the DES catalogues, also jackknife estimated.

are representative of the DES data. For our BALROG runs, we have at-
tempted to build an input catalogue which is deeper than our actual
DES data. If this input distribution is indeed an adequately repre-
sentative sample, and our DES calibrations (PSF, flux calibration,
etc.) are well measured, running the simulations through BALROG

should successfully reproduce measurable properties of the DES
catalogues.

The BALROG and DES comparison tests presented in this section
are as follows: Section 4.1 plots one-dimensional distributions of
measured SEXTRACTOR quantities, Section 4.2 does similarly for
two-dimensional distributions, and Section 4.3 considers number
density fluctuations. Sections 4.2 and 4.3 include assessments of
the populations’ behaviour as a function of observing conditions
of the survey. The one- and two-dimensional distributions offer a
general overview of the agreement between BALROG and DES, and
the number density tests validate that the agreement is sufficient
to use our BALROG galaxies as randoms in Section 5’s clustering
measurements.

We also make note of Appendix B, where we explain our jack-
knifing procedure, used to estimate errors in this section, as well as
in Section 5. To summarize, we use a k-means algorithm to separate

our data sample into 24 spatial regions of roughly equal cardinality,
then leave one region out in each jackknife realization and calculate
the covariance over the realizations.

4.1 One-dimensional distributions

We compare the griz magnitude (MAG_AUTO) distributions of
galaxies, for both the DES and the BALROG samples in Fig. 4. The
top row of the figure plots each band’s log10p, the logarithm of
the PDF, and the second row plots the difference in this quantity
between BALROG and DES, i.e. the fractional deviation between the
two PDFs. The error bars plotted are the square root of the diagonal
elements of the jackknife covariance matrix, as described in Ap-
pendix B, where we have jackknifed the difference curve, �log10p.
For MAG_AUTO� 21 – the region of the parameter space occupying
the bulk of the galaxies – BALROG reproduces the DES distribution
to better than 5 per cent differences, approaching 1 per cent over
some intervals. The yellow bands in bottom row of Fig. 4 show the
jackknife errors of the DES PDFs plotted in the top row. In the dens-
est parameter space regions, many of data points of the differences
between BALROG and DES are within the DES variance, particularly
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No DES galaxy left behind 795

Figure 5. Top: an idiosyncratic selection of measured photometric properties. The logarithmic PDFs for DES and BALROG in each panel have been shifted by an
additive constant. From left to right: reported errors in one of SEXTRACTOR’s stellarity measures, i-band size, z-band size, and i − z colour. We expect the filter
mismatch described in Section 3.1 to drive at least some of the colour residuals. Cosmic variance in the COSMOS field is also present, though we have made
no rigorous attempt to estimate its impact here. Bottom: analogous to Fig. 4; in black, we show the difference between the DES and BALROG distributions in the
top panel. The yellow band indicates the sample variance of the DES measurements. All errors are estimated from jackknife resampling. (See Appendix B for
further details.)

in the i and z bands. This means that in these regions of magnitude
space, BALROG galaxies are statistically indistinguishable from DES
galaxies.

We also make plots analogous to Fig. 4, using measured quan-
tities other than single-band magnitudes (Fig. 5). In each of the
top panels, we have shifted log10p for both the DES and BALROG

curves by an additive constant, so all the panels share a simi-
lar range on the y-axis. We plot distributions in (MAG_AUTO_I
- MAG_AUTO_Z) colour, i-band SPREADERR_MODEL, as well as
i- and z-band FLUX_RADIUS. FLUX_RADIUS measures the PSF
convolved half-light radius. SPREADERR_MODEL is the error in
the SPREAD_MODEL measurement introduced in Section 3.2. We
again find that BALROG reproduces DES to ∼5 per cent differences
or better in the bulk of the distributions; this result holds across
bands and across different SEXTRACTOR quantities. We chose to in-
clude SPREADERR_MODEL in our comparison because it is not
obviously straightforward to simulate directly; it is the error in a
measurement unique to SEXTRACTOR. Nevertheless, BALROG is able
to recover a distribution similar to DES.

If BALROG were a perfect model of the data, �log10p would be
consistent with zero everywhere, but in practice, we do not expect
to recover this result. Even in the limit of perfect survey calibrations
(PSF, photometric calibration, etc.), one would need a completely
representative input population to recover perfect agreement. We
have made the assumption that single component elliptical Sérsic
objects fully describe the galaxy population, but this is not strictly
true. Moreover, COSMOS (point) sources begin saturating for i �
19 (Capak et al. 2007; Leauthaud et al. 2007). The CMC does not

include such objects, and thus our reweighted catalogue is not ex-
pected to be entirely complete at bright magnitudes. Furthermore,
COSMOS is a small field (∼2 deg2): with limited statistics and cos-
mic variance, it is not necessarily entirely representative of a larger
area survey like DES, especially at brighter and larger size limits;
this could be another contributing factor why BALROG’s brighter and
larger galaxies are less representative of DES than its fainter and
smaller ones. Finally, we have also used Subaru filters for our input
magnitudes, (because DECam ones were not available), which will
introduce some error when comparing BALROG and DES distribu-
tions.

Figs 4 and 5 plotted galaxy selections, but our BALROG run also
included stars. Fig. 6 shows the i-band DES and BALROG stellar dis-
tributions. We have normalized the BALROG curve in the top panel in
the following way: N in each bin of the BALROG curve is multiplied
by the detected star-to-galaxy number ratio in DES divided by the
detected star-to-galaxy number ratio in BALROG, where we have se-
lected detections from 23 < MAG AUTO I < 24. (This is the same
way we normalize when estimating the DES stellar contamination
ratio of our faint clustering sample in Section 5.5.)

There is more variation in the stellar distributions compared to the
galaxy distributions, and this is to be expected. First, we see a large
deficit due to the effects of saturation in the COSMOS imaging at i
� 19, as mentioned above. Stars are more compact than galaxies and
thus more heavily affected by saturation. Furthermore, the stellar
population intrinsically fluctuates much more strongly across the
sky than the galaxy population, and the small stellar sample from
the COSMOS field need not be entirely representative of DES as a
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796 E. Suchyta et al.

Figure 6. Stellar magnitude distributions in DES and BALROG, i band. The
BALROG curve has been normalized by selecting 23 < MAG AUTO I < 24
objects, and multiplying by the detected DES star-to-galaxy number ratio
divided by the detected BALROG star-to-galaxy number ratio (as in Section 5.5
when estimating DES stellar contamination levels). At the bright end, the
difference is primarily a result of the lack of bright stars (i < 19) in the
CMC catalogue (due to saturation in the COSMOS images) used to seed
the BALROG simulations. Furthermore, the stellar density varies substantially
across the SV field (see Fig. 12), so the COSMOS stellar population is not
necessarily representative.

whole. Indeed, the DES catalogue contains more detected stars than
the BALROG catalogue.11 For this analysis, we are primarily interested
in galaxies and the COSMOS stellar population suffices; however,
in a broader context, we offer it as an example of how one should be
mindful to use BALROG with an input simulation population which is
appropriate for one’s science case.

4.2 Two-dimensional distributions and observing conditions

In addition to validating BALROG’s ability to recover DES’ distribu-
tions of measured quantities, we also need to test if BALROG behaves
like DES as a function of observing properties of the survey. Leistedt
et al. (2015) have constructed HEALPIX maps of several character-
istics of the DES SV observations, including PSF full width at
half-maximum (FWHM), 10σ limiting magnitude in 2 arcsec aper-
tures (m2′′

10σ ),12 airmass, sky brightness, and sky variance (where the
square root of sky variance is called sky σ ). Each map computes an
average of a given quantity in the overlapping single-epoch obser-
vations for any pixel in the map, using either an ordinary mean or a
weighted mean, where the weights are taken from the single-epoch

11 ∼35 per cent more, with increased deviation near the LMC.
12 These measurements are analogous to the MANGLE depths (discussed in
Appendix A), without quite as fine a resolution.

inverse-variance maps. We use the maps of Leistedt et al. (2015),
available at a resolution of NSIDE = 4096, and compare BALROG’s
behaviour against DES’ behaviour as a function of the observing
conditions.

First, we split our DES and BALROG galaxy samples into two di-
visions according to the local 10σ magnitude limit, selecting the
top and bottom 25 percentiles. The depth histograms for these two
samples are shown in the bottom row of Fig. 7, with the shallower
sample in the left-hand column. The first two rows of this left-
most column show normalized BALROG and DES two-dimensional
histograms in the i-band size–magnitude plane for the shallower
magnitude limit selection. The top two rows of the middle column
show likewise for the deeper selection. The third row quantifies
the fractional difference between the BALROG and DES rows. Like
the one-dimensional examples, in the densest regions of parame-
ter space BALROG and DES largely agree. Moreover, simultaneous
agreement in both depth samples offers evidence that BALROG traces
the distribution’s properties as a function of magnitude limit. The
rightmost column of Fig. 7 further tests this: the top two rows in this
column plot the BALROG and DES differences of the shallower and
deeper distributions, and the third row plots the fractional difference
between the two rows above, i.e. this panel compares the DES and
BALROG magnitude–size derivative with respect to magnitude limit.
Except in regions of sharp change, agreement in well-sampled ar-
eas of parameter space is typically ∼10 per cent differences, offering
additional evidence that BALROG reasonably tracks the DES changes
with observing conditions.

We have made analogous plots to Fig. 7, splitting on properties
other than magnitude limit, and find similar results. Fig. 8 offers
another example, dividing the sample based on PSF FWHM. The
figure is largely reminiscent of Fig. 7.

4.3 Number density and observing conditions

To conclude this section, we test BALROG’s ability to recover DES-
like number density fluctuations as a function of the survey proper-
ties mapped by Leistedt et al. (2015), i.e. we investigate if BALROG

recovers DES’ window function over the observing conditions. If
this check is successful, it means BALROG galaxies can be used as
a set of random points in a clustering analysis in order to correct
for varying detection probability over the footprint. In Sections 4.1
and 4.2, we demonstrated that BALROG is largely, but not perfectly,
representative of the DES data; assessing whether or not agreement
is good enough depends on one’s science case. Here, we investigate
if the agreement is at an adequate level such that BALROG detection
rates are representative of DES detection rates, within the respective
error estimates.

Fig. 9 plots number density fluctuations in our full DES and
BALROG galaxy samples as a function of i-band survey properties,
binning in each survey property over the 2–98 percentile range.
Alongside these number density plots, we also include the his-
tograms of the survey observing conditions over the same range.
For each number density bin, we count the number of galaxies in
the given pixels, divide by the area covered by those pixels, and
normalize by the average density over the full sample. We plot both
the DES and BALROG samples, where the points have been slightly
offset for visual clarity. The error bars on each set of points are
estimated by 24 jackknife realizations of the curve, as described in
Appendix B. We find that the DES and BALROG results are consistent
with each other within the errors estimates, which demonstrates
BALROG’s modelling as adequate to recover the DES window func-
tion over the tested sample. We have repeated this exercise using

MNRAS 457, 786–808 (2016)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/457/1/786/988891 by C
N

R
S - ISTO

 user on 23 M
ay 2022



No DES galaxy left behind 797

Figure 7. Top-left block: these six panels show the sensitivity of the i-band size–magnitude distributions of DES and BALROG galaxies to survey depth. The
colour scale in the upper four panels shows normalized counts. Bottom block: histograms of the depth selection in each column; we split into two samples:
the deepest 25 per cent of the area and the shallowest 25 per cent of the area. Right-hand block: differences between the left-hand panels. The bottom panel
shows the difference between the above two differences. While these histograms are noisy, this figure shows that BALROG well captures the effect of depth on
the measured galaxy properties. The systematic differences visible here are mainly due to the small differences between the DES and CMC catalogues.

Figure 8. Analogous to Fig. 7, but instead showing the (i-band size–magnitude) dependence on average seeing in the co-add images. Again, BALROG

successfully captures the dependence of the measured galaxy properties on observing conditions. The systematic differences visible here are mainly due to the
small differences between the DES and CMC catalogues.
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798 E. Suchyta et al.

Figure 9. Number density fluctuations in the DES and BALROG galaxy samples as a function of i-band survey properties, binning the survey properties over the
2–98 percentile range. (The DES and BALROG curves have been slightly offset for visual clarity.) For each number density bin, we count the number of galaxies
in the given pixels, divide by the area covered by those pixels, and normalize by the average density over the full sample. Error bars are estimated from 24
jackknife resamplings of the curves (cf. Appendix B). Alongside the number density plots are histograms of the survey observing conditions, again binned
over the 2–98 percentile range.

the survey properties across other filter bands, finding consistent
results.

5 A N G U L A R C L U S T E R I N G

The final test of the BALROG catalogues described in this paper is
their use in systematic error amelioration for an angular cluster-
ing measurement. Selecting the BALROG catalogue in the same way
as the real catalogue produces a sample with a nearly identical

window function as the data’s. The BALROG catalogues have inher-
ited systematic errors in the imaging and analysis pipelines, but
otherwise have no intrinsic clustering themselves. Hence, using
them as randoms in a two-point estimator is a simple and effi-
cient way of removing the systematic errors while maintaining the
real clustering signal. The rest of this section describes how this is
done.

We describe what we believe are the practical and fundamental
limitations of embedding simulations for clustering measurements
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No DES galaxy left behind 799

in Section 5.1. Section 5.2 discusses the algorithms we use to make
our w(θ ) measurements. In Section 5.3, we select two magnitude-
limited DES samples and perform tests in Section 5.5 to show
that stellar contamination is unimportant for the measured angu-
lar clustering signals. In Section 5.4, we select similar populations
from the public COSMOS galaxy catalogue of Capak et al. (2007)
(∼2 deg2 in area) and match them to our DES samples. Section 5.6
then demonstrates that over the measurable range of angular sep-
arations, our BALROG-corrected DES measurements reproduce the
much deeper COSMOS measurements, but with substantially im-
proved accuracy and range, owing to the larger survey volume. The
shapes of our w(θ ) results follow model predictions.

5.1 Caveat likelihood

Fundamentally, our simulated galaxies are sampling the likelihood
function that connects the measured parameters (αmeas) of stars and
galaxies to the underlying true parameters (αt ) of objects in the DES
images. In general, the detection probability and measurement bi-
ases for some particular galaxy depend on the rest of the galaxies in
the image, even including objects that may not be detected. Denot-
ing the set of all relevant object parameters by {α}, and expressing
the dependence on position on the sky θ explicitly, we can write:

L = p(αmeas | {αt } , θ ). (2)

L is meant to incorporate sample selection criteria, so the probability
p(θ) of any object being selected for analysis is the likelihood
integrated over the true and observed properties:

p(θ) =
∫

p(αmeas | {αt } , θ ) dαmeasd{αt }. (3)

This is also sometimes called the window function, and it is this
function that the random catalogues used in correlation function
estimators (like equation 6) are meant to be sampling.

The likelihood sampled by the BALROG catalogues is only an ap-
proximation of the true L. In part, this is a result of simplifications
made in the simulation. Our input catalogue, for instance, is limited
in its realism by the galaxy templates used to generate the synthetic
colours in the CMCs and by the finite size of the COSMOS field.
This limitation is equivalent to integrating in equation (3) only over
the regions of αt covered by COSMOS. This issue is one of several
described above that can in principle be addressed with improve-
ments to the simulations.

There are more fundamental limitations to this procedure, how-
ever. When a simulated galaxy and a real galaxy overlap, it is not
always possible to determine whether the resulting catalogue entry
belongs in the BALROG catalogue. If the real object is largely unmodi-
fied by the presence of the simulated galaxy, then associating it with
the truth properties of the simulated galaxy results in an incorrect
measurement of L. If the real object is substantially modified by
the presence of the simulated galaxy, the resulting catalogue entry
could be used to infer the likelihood function for blends, though we
have not built the inference machinery necessary to do so. Finally,
if the simulated object’s properties are not substantially modified
by the presence of the real object, then associating the resulting
catalogue entry to the simulated object’s truth properties results in
a useful measurement of L at that location.

These ambiguous matches tend to introduce a small amount of
real galaxy contamination into the randoms, and result in a small
multiplicative bias to the clustering of roughly twice the contam-
ination rate. Excluding them excludes some BALROG galaxies in a
manner that reverses the sign of the multiplicative bias, with similar

amplitude. Ambiguous matches comprise only ∼1 per cent of our
BALROG galaxies, resulting in a multiplicative bias that is smaller
than the statistical error on the amplitude of the w(θ ) measurement
presented below. For this reason, we do not apply any correction
for this effect.

Finally, and most fundamentally, BALROG samples the likelihood
under slightly different conditions than the real data. If the image
contains n real objects, the measurement likelihood for the nth is

L = p(αn,meas | αt,1, αt,2, . . . , αt,n−1, θ ), (4)

while the likelihood sampled in this image by a single added BALROG

galaxy is

L = p(αn+1,meas | αt,1, αt,2, . . . , αt,n−1, αt,n, θ ). (5)

If the likelihood really is strongly non-local – that is, if the measured
properties of each galaxy depend strongly on the properties of other
nearby objects – then the BALROG catalogues will not be sampling
the same likelihood as the data, and we should not expect w(θ )
estimates made with them to be correct. All correlation function es-
timators that use random catalogues assume that the window func-
tion and the density field are statistically independent, however, so
a coupling between L and the galaxy density field would also make
equation (6) invalid for any random catalogue.

These complications should all be much less severe for catalogues
made with the high-resolution space-based COSMOS imaging. In
so far as this is true, we can regard any measured difference between
the COSMOS angular clustering and that measured with BALROG as
evidence that the simulated catalogues are not sampling the same
likelihood function as the data.

5.2 Estimation algorithms

We adopt the Landy & Szalay (1993) estimator for the correlation
function:

w(θ ) = DD − 2DR + RR

RR
, (6)

with D labelling the data and R labelling the randoms. The randoms
sample the window function for an intrinsically unclustered sample,
and are used to remove any signal induced by non-uniform detec-
tion probability. For our DES data, we will compare estimates of
w(θ ) made using BALROG randoms to the same measurements using
uniform randoms that sample the survey geometry only (by apply-
ing the same spatial masking to the uniform randoms as applied
to the data). We have not run BALROG on the COSMOS imaging,
and hence all our COSMOS w(θ ) measurements use the standard
uniform randoms.

We compute equation (6) using TREECORR (Jarvis, Bernstein &
Jain 2004), a software package implementing a k-d tree algorithm
for efficient calculation of correlation functions over large data sets.
We adjust the bin_slop parameter, which controls the fraction of
the bin width by which pairs are allowed to miss the correct bin, such
that bin slop× bin size < 0.1, in order to reduce the binning
errors made by the algorithm. We run TREECORR over each of the 24
k-means jackknife realizations, as explained in Appendix B, in order
to estimate the correlation function’s covariance.

As a cross-check, we have also computed our correlation func-
tions with ATHENA (Schneider et al. 2002), another tree-code which
implements its own internal jackknife algorithm to estimate the co-
variance, where the data’s area is divided into squares on a grid of
N rows × M columns, leaving out one of the squares in each

MNRAS 457, 786–808 (2016)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/457/1/786/988891 by C
N

R
S - ISTO

 user on 23 M
ay 2022



800 E. Suchyta et al.

jackknife iteration. Using either code, we measure consistent w(θ )
signals.

As discussed in Crocce et al. (2016), jackknife resampling is a
noisy estimate of the covariance of w(θ ), which is reasonably well
suited for the diagonal elements, but theory-based errors are better
suited for the off-diagonal terms. Because we attempt no physical
interpretation of our clustering signals, we omit any theoretical
modelling, and do not explore noise estimates beyond jackknife
resampling.

5.3 DES sample selection

We choose two separate DES samples for our clustering mea-
surements: a bright sample (21 < MAG AUTO I < 22), which is
a subset of the magnitude selection used in the DES benchmark
clustering analysis of Crocce et al. (2016), and a faint sample
(23 < MAG AUTO I < 24), where the DES catalogues are substan-
tially incomplete, and, as we will see in Section 5.6, the variation
in the observed galaxy density across the sky is dominated by vari-
ations in the selection function. We should expect the bright clus-
tering signal measured with BALROG randoms to easily reproduce
the signal measured with uniform randoms (as done in the DES
benchmark clustering analysis) and to agree with COSMOS; this is
primarily a sanity check. Our faint selection is a strong test of the
methodology – success here would indicate accurate measurement
of spatial clustering even where, because of the low signal-to-noise
ratio of the sample, anisotropies in the window function strongly
affect the intrinsic clustering signal. Neither sample is identical to
the DES benchmark sample; in Appendix C we offer a brief look at
this sample.

5.4 COSMOS sample selection

We use the public COSMOS multiwavelength photometry catalogue
(Capak et al. 2007) to validate our clustering measurements. First,
we make a few basic quality cuts, selecting objects with

blend mask = 0

AND star = 0

AND auto flag > -1.

At the time of this writing, we did not have an appropriate angular
mask for the COSMOS field. We have used the positions of objects
flagged as problematic in the COSMOS photometric catalogue as
our mask definition. When constructing our sample, we first exclude
any COSMOS galaxy within 10 arcsec of an object flagged as bad.
Visual inspection shows good agreement between this set of bad
objects and problematic regions in the COSMOS imaging. Unfor-
tunately, this shortcut makes the small-scale COSMOS clustering
difficult to interpret, so we elect not to use COSMOS measurements
of w(θ ) for θ < 10 arcsec in the analyses. We have increased the
10 arcsec separation cut, and verified that our results on scales larger
the masking radius are not sensitive to the value chosen.

Small changes in the properties of the selected galaxies can
have significant effect on the amplitude of w(θ ), so we take care to
ensure that the sample we select from COSMOS is well matched
to the DES galaxies. Our technique for doing this is a resampling
scheme based on and motivated by that described in e.g. Lima
et al. (2008) and Sánchez et al. (2014), and analogous to how we
reweighted our Sérsic catalogue in Section 3.1.

First, we make the same cuts on the BALROG galaxies as we have
for the DES galaxies (cf. Section 5.3). For each BALROG galaxy,

Figure 10. COSMOS sample selection. The heat map coloured histograms
plot normalized counts. Top left: i-band magnitudes and r − i colours for
the full COSMOS catalogue after basic quality cuts. Top right: distribution
of i-band magnitude and r − i colours using truth catalogue properties of
BALROG galaxies in our faint sample. Bottom left: (unnormalized) weights
applied in the i, r − i colour plane to COSMOS galaxies in order to match
the DES truth distribution. Bottom right: i-band magnitudes, r − i colours
of the reweighted COSMOS sample.

we also have the truth magnitudes and colours used to generate the
galaxy, which are directly comparable to the magnitudes and colours
from the COSMOS photometric catalogue (cf. Section 3.1). Match-
ing the properties of the BALROG and COSMOS catalogues in this
space should ensure similar samples with comparable clustering.
We choose to work in two dimensions: i-band magnitude and r − i
colour, selecting i_mag_auto and (r mag− i mag)13 from the
COSMOS catalogue as the complements to our BALROG truth quan-
tities. The top row of Fig. 10 presents the COSMOS measurements
alongside our faint BALROG selection for the chosen quantities.

To match the samples, for each COSMOS galaxy we calculate the
distance to the 50th-nearest BALROG galaxy in this colour–magnitude
space. The number of COSMOS galaxies inside this distance is pro-
portional to the ratio of the two distributions, and when properly
normalized, equal to the weight required to match them. Normal-
ization is such that the ensemble of weights sums to unity. We
then randomly resample the COSMOS catalogue, using the calcu-
lated weights as the selection probability for each object,14 which
generates our DES-matched COSMOS sample.

We repeat this process separately for both the bright sample and
the faint sample; Fig. 10 presents our results for the faint sample.
Using the weights in the bottom-left panel, we resample the COS-
MOS catalogue in the top-left panel. After doing so, we recover the
bottom-right panel, which is a good match to the top-right panel –
the faint BALROG sample. We have confirmed that, after this match-
ing, the g- and z-band magnitude distributions are also strikingly
similar to the BALROG truth distributions. We have also matched on
quantities other than r − i colour and i-band magnitude, as well
as varied the number of nearest neighbours to query, and measured
consistent clustering signals.

13 i_mag_auto quantifies a total magnitude, while r mag and i mag are
3 arcsec aperture measurements.
14 We resample to five times the number of objects with non-zero weights.
However, results are insensitive to this choice; upping the sampling density
arbitrarily high is unnecessary.
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No DES galaxy left behind 801

Figure 11. Map (declination versus right ascension) of the DES stellar
number density across the SPT-E footprint. An additional parallel has been
drawn at δ = −58◦, indicating the cut we make in our clustering measure-
ments to eliminate the area of highest stellar contamination.

5.5 Stellar contamination

Stars that are accidentally included in the galaxy clustering analy-
sis can have a significant impact on the measured clustering (e.g.
Maddox et al. 1996; Scranton et al. 2002). An unclustered stel-
lar population simply dilutes the measured angular clustering. If
the stars themselves cluster non-trivially, the measured signal is a
mixture of the true galaxy and stellar clustering, with mixture co-
efficients set by the fraction f of the galaxy sample that has been
mis-classified as stars. We refer readers to appendix D of Crocce
et al. (2016) for a detailed treatment of the subject.

To estimate the stellar contamination in our DES samples, we use
the BALROG simulations. From the BALROG truth catalogue, we can
infer the fraction of BALROG objects which were simulated as stars
but misclassified as galaxies. However, because the DES and BALROG

stellar densities vary (cf. Section 4.1), we need to renormalize this
BALROG contamination rate; we multiply by the detected DES star-
to-galaxy number ratio and divide by the detected BALROG star-to-
galaxy number ratio.

In both the bright and faint DES samples, we find f ∼ 5 per cent.
Inspection of the magnitude-FHWM plane in the COSMOS data in-
dicates that stellar contamination is small (∼0.1 per cent for i < 22),
so we omit any corrections due to this contamination in the COS-
MOS measurements.

As shown in Fig. 11, the stellar density varies dramatically across
the DES survey area examined in this analysis. The edge of the LMC
intrudes at δ < −58, so we have removed this extreme region from
the clustering analysis, and for the following tests we divide the
remainder of the area into three declination-selected strips:

(i) δ > −50,
(ii) −55 < δ < −50,
(iii) −58 < δ < −55,

in order to test if our clustering signals are robust against stellar
population size. The two northernmost regions are roughly equal in
stellar density, while the southernmost’s is about 35 per cent greater.

We measure the stellar autocorrelation wss in each of the
declination-selected samples. The expected spurious clustering

from stellar contamination is proportional to this signal, but sup-
pressed by the square of the contamination fraction (Myers et al.
2006; Crocce et al. 2016). We find that f 2wss is well below errors in
the angular correlation function for both the bright and faint sam-
ples; the faint measurements, which have larger stellar clustering, as
well as slightly higher stellar contamination, are shown in Fig. 12.15

(For visual clarity, Fig. 12 only plots f 2wss in the southernmost re-
gion, the most pessimistic case.) To account for dilution from stellar
contamination, we apply a (1 + f)2 correction (Myers et al. 2006;
Crocce et al. 2016) to the galaxy autocorrelation functions. We
show in the bottom of Fig. 12 that after applying the correction,
the differences between the galaxy signals for the three regions are
small compared to the autocorrelation errors, further indicating that
stellar contamination is not a significant source of systematic bias.

5.6 Clustering measurements

We now present our w(θ ) measurements. Angular clustering mea-
surements for flux-limited samples generally see power-law be-
haviour at small angular separations, steepening above degree scales
(e.g. Maddox et al. 1996; Scranton et al. 2002; McCracken et al.
2007). We expect that significant residual additive systematic errors
should produce a deviation from a constant power-law behaviour
below degree scales, while residual multiplicative biases should
produce a corresponding multiplicative offset between the DES and
COSMOS measurements.

Our bright sample galaxies are a subset of the DES benchmark
sample, which has been extensively studied in a separate analysis
(Crocce et al. 2016). The limiting magnitude of the benchmark
sample (i < 22.5) was made, in the conservative tradition of large-
scale structure measurements, in order to produce a clean sample
with relatively uniform selection; as shown in Fig. 13, this selection
indeed produces a reliable clustering signal at large scales.

The top panel of Fig. 13 shows measurements of the angular
clustering for our bright (21 < i < 22) sample. We plot w(θ ) es-
timated using BALROG randoms in red, and that estimated using the
uniform randoms in black. An overall correction to the amplitude of
both these DES curves has been applied in order to correct for the
effects of stellar dilution (cf. Section 5.5). The shaded region shows
the 1σ confidence interval (inferred from jackknife resampling, cf.
Appendix B) from the matched COSMOS photometric sample.

These three estimates are statistically consistent with one another
within the range probed by our COSMOS clustering measurement.
Any excess systematic power traced by the BALROG catalogues here
is evidently not significant for the measurements above θ � 15 arc-
sec (0.◦004). Below this scale, the uniform and BALROG curves di-
verge; the measurements made using the BALROG sample continue
the power-law behaviour down to ∼7 arcsec, where blending ef-
fects start to become significant. We have not attempted to diagnose
this behaviour in detail. However, we remark that COSMOS mea-
surements made by McCracken et al. (2007) for a similar, but not
identical sample, also suggest little deviation from a power law
down to these scales; we include their measurements with our re-
sults in Fig. 13. They select the same range of i-band magnitudes,

15 MODEST_CLASS stellar selection is not entirely pure at 23 <

MAG AUTO I < 24, so a portion of the plotted stellar signal is actually
from galaxies. We have also selected brighter magnitude ranges where the
stellar selection is pure and found f 2wss to be smaller than what is shown in
Fig. 12; i.e. we have plotted the most pessimistic signal. At any rate, even if
our plotted f 2wss were more than a factor of 2 underestimated, it would still
be below the level of errors in the galaxy–galaxy autocorrelation functions.
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802 E. Suchyta et al.

Figure 12. Testing stellar contamination. All error bars in the figure are estimated with jackknife resampling (cf. Appendix B). Top: the bar-only points
show galaxy angular correlation function measurements for our faint (23 < MAG AUTO I < 24) DES sample over different declination ranges: δ > −50 in
blue, −55 < δ < −50 in red, and −58 < δ < −55 in black. (For visual clarity, only every other point has been plotted, and there is a slight offset between
points at the same angular scale. Legend labels denote the southern edge of the regions.) Stellar density varies between the regions (cf. Fig. 11), and a stellar
contamination dilution correction has been applied to each curve (cf. Section 5.5). The contamination fractions for each region are: f−50 = 0.044, f−55 = 0.048,
f−58 = 0.058. The black stars plot the stellar autocorrelation function multiplied by the square of the galaxy stellar contamination fraction, in the region of
highest stellar density and highest stellar clustering. (To maintain readability, we omit the stellar autocorrelations over the other two regions, and choose to
focus on the most pessimistic case.) If large enough, the stellar autocorrelation quantity can induce an additive bias to the galaxy clustering measurements, and
we note that it is comparably small over the range of scales where we are able to make a statistically significant measurement. Bottom: differences between the
stellar contamination dilution corrected galaxy autocorrelation function measurements in the top panel. There is no significant difference between the resulting
measurements, suggesting that stellar contamination is not a significant source of systematic bias for this measurement.

but we note that the sample is not reweighted to match the DES
one (cf. Section 5.4), and thus need not exhibit an identical signal.
Therefore, the McCracken et al. (2007) results offer strong evidence,
but not definitive proof, to validate the small-scale power-law-like
BALROG results.

Our faint sample (23 < i < 24) is close to the formal limiting
magnitude for the survey. As is evident from Fig. 4, DES is sub-
stantially incomplete in this regime, and this is where we should
expect the spatial variation in survey properties to matter the most.
We include the clustering signal measured using uniform randoms
purely as an estimate of the of the importance of systematic errors
for this faint sample.

The bottom panel of Fig. 13 presents our angular clustering results
for this faint selection. BALROG and the faint-sample matched COS-
MOS results are in excellent agreement, and the former continues
its power-law behaviour down to almost 4 arcsec (0.◦001). Subject

to the same caveats discussed above, we again plot a COSMOS
measurement from McCracken et al. (2007), using an unmatched
sample over the same magnitude range, noting similar power-law
behaviour down to small scales.

The amplitude of the signal in the faint clustering measurement
closely follows our COSMOS signal. We note that the systematic
error has a substantially different shape than the galaxy autocorre-
lation, and so where it is significant, it should produce a deviation
from the power-law behaviour. This suggests that the residual ad-
ditive systematic error in the faint sample BALROG measurement is
small compared to the latter’s jackknife errors. At 0.◦5, the BALROG

clustering errors are ∼0.0005, and so the spurious clustering has
been suppressed by about two orders of magnitude from its value
(∼0.01 at the peak of the grey curve in Fig. 13).

To show that the shape of our clustering measurements matches
general expectations, we have included model w(θ ) curves – the
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No DES galaxy left behind 803

Figure 13. Angular clustering results. Black and red points show w(θ ) measurements for our DES galaxies, with uniform and BALROG randoms, respectively.
(Points at the same separation have been slightly offset for visual clarity.) The yellow band measures the 1σ confidence interval on w(θ ) in a matched COSMOS
sample (cf. Section 5.4). All errors are estimated with jackknife resampling, (see Appendix B). The grey dashed lines are COSMOS measurements from
McCracken et al. (2007), which we note are not matched to the DES sample, but which could be measured to a smaller scale than our DES-matched COSMOS
measurements. (See Sections 5.4 and 5.6 for more details.) Dashed green lines are �CDM model predictions, not fits to the data (cf. Section 5.6). Insets show
the distribution of true BALROG (light blue) and observed DES (blue) magnitudes, with selection regions highlighted. In both panels, we have multiplied the
signal by its approximate power-law slope. Top: clustering of the bright, fairly complete sample. As expected, variations in the DES window function, as
measured by the BALROG randoms, do not appear significant for the clustering above 15 arcsec (0.◦004). Bottom: clustering of the faint sample, which is near
or at the magnitude limit of the survey, and ∼35 per cent incomplete on average. It is strongly impacted by systematic effects due to the spatial variations of
DES survey properties. We include the measurement using uniform randoms purely as an estimate of the of the importance of systematic errors, noting that
it would be inappropriate to use uniform randoms to measure w(θ ) for a 23 < i < 24 sample selected with 10σ limiting magnitude i > 22.5. The BALROG

randoms appear to capture essentially all of the extra power, suppressing it by roughly two orders of magnitude (see Section 5.6 for further explanation). Note
the excellent agreement with the matched COSMOS measurements. Like McCracken et al. (2007), BALROG suggests little deviation from a power law down to
small scales. The shape of BALROG results also agree with the shapes of the models.

dotted green lines in Fig. 13 – for �CDM cosmology (σ 8 = 0.8,
�m = 0.31). These have been generated assuming the broad dN/dz

used in (Nock, Percival & Ross 2010; Ross et al. 2011) for a DES-
like selection of galaxies. For separations r > 10 Mpc h−1, we use
a linear-theory correlation function, ξ (r), derived by Fourier trans-

forming the CAMB (Lewis, Challinor & Lasenby 2000) power
spectrum, with ξ (r) ∝ r−γ for r < 10 Mpc/h. Projection to angular
separations follows equations (9)– (13) in Crocce et al. (2011). w(θ )
was scaled by an arbitrary factor, to account for galaxy bias and the
true underlying dN/dz (both of which are expected to have nearly
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804 E. Suchyta et al.

Figure 14. MCMC power-law fits for the w(θ ) measurements shown in Fig. 13. Contours are the 68 and 95 per cent intervals. The DES measurements (red)
use BALROG randoms, and the COSOMS measurements (yellow) are for the sample matched to DES. The text displays the best-fitting marginalized parameter
values. Left: bright sample. Right: faint sample.

constant proportional effects on the amplitude as a function of θ ),
with the curve set to be a power law at θ < 0.◦03. In Fig. 13, the
shapes of the measured w(θ ) curves indeed trace those of the model
predictions. In follow-up work, we will assess the impact on cosmo-
logical parameter sensitivity using our new methodology. Here, the
uncertainties in w(θ ) at large angular scales, where cosmological
sensitivity is the greatest, are too large for us to draw interesting
conclusions on the topic.

Fig. 14 plots the results when we fit power laws to our w(θ )
measurements:

w(θ ) = Aθα. (7)

The darker contours show the 68 per cent confidence intervals on the
amplitude (A) and the power-law index (α), while the lighter con-
tours show the 95 per cent confidence intervals for these quantities.
We also indicate the best-fitting (marginalized) parameter values in
the figure. The COSMOS results are those of the DES-matched sam-
ple, and the DES results are calculated using the BALROG randoms.
The fits are made using emcee (Foreman-Mackey et al. 2013), an
affine-invariant Markov chain Monte Carlo (MCMC) sampler. We
find the off-diagonal components of the jackknife covariance esti-
mates to be unstable in the fits (cf. Section 5.2; Crocce et al. 2016),
so we have restricted the χ2 likelihood sampling to diagonal ele-
ments only. The fits extend over the range of angular scales probed
by the COSMOS measurements (0.◦004 < θ < 0.◦2).

In both the bright and faint samples, the DES results fall inside the
1σ COSMOS contours. Owing to the much increased survey area,
the DES measurements shrink the uncertainty contours consider-
ably, by about a factor of 5 or more in both α and A. When we fix the
power-law index to the best-fitting DES value, and fit for the scaling
amplitude between the two samples, we find this amplitude to be
1.04 ± 0.11 in the bright sample, and 1.00 ± 0.09 in the faint sample.

6 D ISCUSSION

We have developed a Monte Carlo injection simulation software
package designed to allow accurate inference of galaxy ensemble
properties where the catalogues are likely to be highly biased and
incomplete. Our simulations are computationally tractable, requir-

Figure 15. Area as a function of (10σ i band) depth for our DES cluster-
ing samples. Traditionally clustering analyses select magnitudes ≤ to the
depth. We have included MAG AUTO I < 24 galaxies, beyond the limiting
magnitude of any or our area.

ing approximately 3 CPU seconds per simulated galaxy, and the
resulting catalogues have the same pattern of systematic variation
with image quality as the real data.

We demonstrate that the use of these simulated catalogues as ran-
doms in a clustering measurement is an effective and operationally
simple way to suppress systematic errors in the angular clustering
signal. We use BALROG catalogues generated with DES data to re-
produce the known angular clustering of faint galaxies previously
measured with high-quality space-based imaging data. We show that
this measurement agrees with the COSMOS measurement, even for
galaxies for which DES is substantially incomplete.

Fig. 15 plots the area coverage of our DES sample as function of
depth. In the conservative approach, clustering analyses often select
only galaxies brighter than the magnitude limit. We have included
galaxies as faint as MAG AUTO I = 24, for which there is no area
in our sample reaching this depth.
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This procedure extends the reach of clustering measurements in
ground-based surveys like DES to much deeper samples, enabling
statistical science for rare, faint, and high-redshift objects near the
survey limit, fully exploiting the great data volume of the surveys.
This is the first time, as far as we are aware, that accurate angu-
lar clustering measurements have been made with a substantially
incomplete sample.

The data represented here are a small fraction of the final DES
data volume. In future work, we will generate BALROG catalogues
covering all the imaging data. Several simple improvements over
the analysis presented here are planned, including folding in pho-
tometric redshifts into the measurements (see Sánchez et al. 2014;
Bonnett et al. 2015 as references describing photometric redshift
estimation for DES); using an input catalogue with galaxy colours
matched to the DECam filters; embedding the simulations into the
full stack of single-epoch images instead of directly into the co-
adds; and adopting input catalogues spanning a larger range of
galaxy properties, in order to avoid the intrinsic sample variance of
catalogues drawn from the small COSMOS field.

We anticipate that injection simulations similar to BALROG will be
useful for a wide variety of measurements beyond clustering. Ac-
curate models of biases and completeness can, we hope, let modern
surveys take full advantage of all the available data.
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Bergé J., Gamper L., Réfrégier A., Amara A., 2013, Astron. Comput., 1, 23
Bertin E., 2006, in Gabriel C., Arviset C., Ponz D., Enrique S., eds, ASP

Conf. Ser. Vol. 351, Astronomical Data Analysis Software and Systems
XV. Astron. Soc. Pac., San Francisco, p. 112

Bertin E., 2011, in Evans I. N., Accomazzi A., Mink D. J., Rots A. H.,
eds, ASP Conf. Ser. Vol. 442, Astronomical Data Analysis Software and
Systems XX. Astron. Soc. Pac., San Francisco, p. 435

Bertin E., Arnouts S., 1996, A&AS, 117, 393
Bertin E., Mellier Y., Radovich M., Missonnier G., Didelon P., Morin B.,

2002, in Bohlender D. A., Durand D., Handley T. H., eds, ASP Conf.
Ser. Vol. 281, Astronomical Data Analysis Software and Systems XI.
Astron. Soc. Pac., San Francisco, p. 228

Blake C. et al., 2010, MNRAS, 406, 803
Bonnett C. et al., 2015, preprint (arXiv:1507.05909)
Bouy H., Bertin E., Moraux E., Cuillandre J.-C., Bouvier J., Barrado D.,

Solano E., Bayo A., 2013, A&A, 554, A101
Busha M. T., Wechsler R. H., Becker M. R., Erickson B., Evrard A. E.,

2013, Am. Astron. Soc., 221, 341.07
Capak P. et al., 2007, ApJS, 172, 99
Chang C. et al., 2015, ApJ, 801, 73
Crocce M. et al., 2016, MNRAS, 455, 4301
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APPENDIX A : MASKING

We apply the mask of Crocce et al. (2016) to our data. This mask is
made in a five-step process.

Figure B1. k-means jackknife regions. Each point is a DES galaxy, coloured
according to which of the 24 k-means clusters it is assigned membership. The
algorithm divides the footprint into regions with roughly uniform cardinality.

(i) Coordinate cuts are made to select area in the SV SPT-E region
(cf. Section 3.2). The relevant cut for the area over which we have
run BALROG is δ > −60. This avoids areas of high stellar density
from the LMC.

(ii) As mentioned in Section 3.4, SEXTRACTOR detections include
a population with large offsets between windowed centroid mea-
surements in different bands. The SV footprint was pixelized at
HEALPIX resolution NSIDE = 4096, masking the 4 per cent of the
pixels with the highest density of objects with

FLUX AUTO G/FLUXERR AUTO G AND

‖ (ALPHAWIN J2000 G,DELTAWIN J2000 G)

−(ALPHAWIN J2000 I,DELTAWIN J2000 I) ‖ > 1 arcsec.

About 25 per cent of the large outlier population is within these
regions.

(iii) The mask eliminates areas in close proximity to bright stars
from the 2MASS catalogue (Skrutskie et al. 2006). A circular exclu-
sion region is drawn around each 2MASS star with radius (−10 MJ

+ 150) arcsec, where MJ is the J-band magnitude, setting a max-
imum radius of 120 arcsec and eliminating all circles with radius
<30 arcsec. The footprint is pixelized at NSIDE = 4096 resolu-
tion, and HEALPixels whose centres fall within 10 arcsec of any
exclusion zone are flagged as bad in the mask.

(iv) The mask selects regions with 10σ limiting depth of
MAG AUTO I > 22.5, where the depths are calculated according
to procedure presented in Rykoff et al. (in preparation). Briefly, the
SEXTRACTOR MAGERR_AUTO versus MAG_AUTO distribution is fit
in pixels of HEALPIX resolution NSIDE = 1024 to determine the
depth on a coarse scale. The random forest algorithm implemented
in SKLEARN16 is used to find coefficients on this pixelation scale
which fit the depth as a function of:

16 http://scikit-learn.org

MNRAS 457, 786–808 (2016)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/457/1/786/988891 by C
N

R
S - ISTO

 user on 23 M
ay 2022

http://arxiv.org/abs/1507.05647
http://scikit-learn.org


No DES galaxy left behind 807

Figure C1. Angular clustering measurements using a sample similar to that of Crocce et al. (2016), with BALROG (red points) and uniform randoms (black points).
The figure is similar to Fig. 13. Selection cuts are discussed in Section 3.4 and Appendix A. Shown in the inset, a magnitude cut of 18 < MAG AUTO I < 22.5
has been applied; blue is the observed magnitude distribution and light blue is the truth magnitude distribution from BALROG. The correlation functions have
been scaled by the approximate power-law slope. The results suggest that the measurements made in Crocce et al. (2016) are unaffected by significant sources
of systematic bias at scales θ > 0.◦01.

(a) the MANGLE (Swanson et al. 2008) 10σ limiting magnitude
measurements in 2 arcsec apertures available from DESDM,

(b) maps of the survey observing properties (e.g. airmass, PSF
size, etc.) compiled by Leistedt et al. (2015) (see also Section 4.2).

These products are generated at a finer resolution than the
MAGERR_AUTO versus MAG_AUTO curve can be fit: the maps of
Leistedt et al. (2015) at NSIDE = 4096, and MANGLE to arbi-
trary resolution, meaning the survey depth can then be mapped more
finely using the coefficients of these quantities.

(v) The mask selects regions where at least 80 per cent of the
area includes detections. Each region is defined on a HEALPIX grid
of NSIDE = 4096, checking for detections within each of the 64
subpixels of an NSIDE = 32768 pixelized MANGLE mask.

A P P E N D I X B: JAC K K N I F E ER RO R S

Several instances of the work in this paper make use of jackknife er-
ror estimates. We generate jackknife regions for our data’s footprint
using a k-means algorithm,17 a method to partition n data points into
k-clusters, assigning each data point into the cluster with the nearest
mean; here, the region closest in angular distance. The set of clusters,
S = {S1, S2, . . . , Sk}, with centres μ = {μ1, μ2, . . . , μk}, is gener-
ated by minimizing the within-cluster sum of distance squares:

arg min
S

k∑
i=1

∑
x∈Si

‖x − μi‖2. (B1)

Each datum is associated with the region whose centre is nearest
on the celestial sphere, where a cluster’s set of associated points
has been labelled as x. For approximately uniform data, k-means
produces cluster sets roughly equal in number of associated points.
Fig. B1 shows k-means classification for our DES galaxies, after
applying the cuts described in Section 3.4; galaxies are coloured
according to which cluster they were assigned.

After generating k-means jackknife regions, we proceed in the
usual way to estimate jackknife errors. One Sn and its associated

17 https://github.com/esheldon/kmeans_radec/

x is left out in each realization, and we find the covariance of the
vector of interest over the realizations:

Cij = (N − 1)

N

N∑
n=1

[
fn(xi) − f (xi)

][
fn(xj ) − f (xj )

]
, (B2)

where f is the measurement over the full area, without removing any
of the sample, and fn is the realization with Sn removed. N is the
number of jackknife regions; we use N = 24 throughout this work.

A P P E N D I X C : B E N C H M A R K C O M PA R I S O N

Some of the ongoing and planned clustering analyses of DES
data make use of the benchmark sample, which is described
in full in Crocce et al. (2016). This sample uses the mask de-
scribed in Appendix A. Galaxies are selected with a magnitude cut
18 < MAG AUTO I < 22.5. Star–galaxy separation is performed
using a new quantity, termed WAVG_SPREAD_MODEL, which is
a weighted average of the SEXTRACTOR SPREAD_MODEL quantity
estimated from stars in the single-epoch DES images. Crocce et al.
(2016) measures the angular clustering of this sample, recovering
results that are in general agreement with prior measurements.

We present here an additional, approximate validation of the
DES benchmark results. Without BALROG galaxies embedded in
single-epoch images, we cannot perfectly capture the effects of
the star–galaxy separation used in selecting the benchmark sample.
However, we measure and adjust for the stellar contamination as in
Section 5.5, thus we do not expect any substantial difference in the
resulting measurement.

A comparison between the clustering signals of our benchmark-
like sample, measured with uniform and with BALROG randoms, is
shown in Fig. C1. The results are quantitatively similar to those
shown in Fig. 13. There is no significant correction introduced
by BALROG above 0.◦01, suggesting that the benchmark sample is
unaffected by significant measurement biases at moderate and large
scales. This is consistent with the independent measurements from
Crocce et al. (2016).
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