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We explore field theories of a single p-form with equations of motions of order strictly equal to 2 and
gauge invariance. We give a general method for the classification of such theories which are extensions to
the p-forms of the Galileon models for scalars. Our classification scheme allows us to compute an upper
bound on the number of different such theories depending on p and on the space-time dimension. We are
also able to build a nontrivial Galileon-like theory for a 3-form with gauge invariance and an action which is
polynomial into the derivatives of the form. This theory has gauge invariant field equations but an action
which is not, like a Chern-Simons theory. Hence the recently discovered no-go theorem stating that there
are no nontrivial gauge invariant vector Galileons (which we are also able here to confirm with our method)
does not extend to other odd-p cases.

DOI: 10.1103/PhysRevD.93.085027

I. INTRODUCTION

There has recently been a lot of interest in building and
studying scalar theories on flat space-times which have
second order field equations nonlinearly depending on the
field and its first and second derivatives (see [1] for the
complete construction and classification of these theories in
arbitrary dimensions and, e.g., [2] for a review of the formal
aspects of these theories). The interest in such theories,
which are for a scalar what Lovelock theories are for a
metric (and are in fact known for a long time at least in four
dimensions [3–6]), has been renewed by the discussions
around the so-called Galileons [7]: scalar fields on flat
space-times with equations of motion only depending on
second derivatives. Such theories can be formulated con-
veniently [8] using the following tensor ϵ2ð2mÞ defined by

ϵa1a2…amb1b2…bm
2ð2mÞ ≡ 1

ðD −mÞ! ϵ
a1a2…amc1c2…cD−m

× ϵb1b2…bm
c1c2…cD−m

ð1Þ

where the totally antisymmetric Levi-Cività tensor (on a
flat space-time of dimension D) is given by

ϵa1a2…aD ≡ δ½a11 δa22 …δaD�D ; ð2Þ

where here and henceforth brackets means antisymmetri-
zation. The above definition (1) makes sense for 0≤m≤D
and, for future reference, we also stress that we will denote
ϵ2ð2DÞ as just ϵ2. Then, the Lagrangians for a scalar Galileon
π can just be taken to be proportional to

ϵa1…amb1…bm
2ð2mÞ ðð∂a1πb1Þð∂a2πb2Þ…ð∂am−1

πbm−1
ÞÞð∂amπÞð∂bmπÞ;

ð3Þ

where πa ≡ ∂aπ. For example, in D ¼ 4 dimensions, there
is a quintic (as well as three more nontrivial theories, each
depending on smaller powers of the scalar; see, e.g., [2])
Galileon scalar Lagrangian proportional to

ϵa1a2a3a4b1b2b3b42 ð∂a1πb1Þð∂a2πb2Þð∂a3πb3Þð∂a4πÞð∂b4πÞ: ð4Þ

Note that our notations imply in particular that
∂aπb ¼ ∂bπa, but also the two key (but trivial for a scalar)
properties

∂ai∂ ½bjπbk� ¼ 0; ð5Þ

∂ ½ai∂aj�πbk ¼ 0: ð6Þ

These properties first lead very simply to the conclusion
that the field equations derived from the Lagrangians (3)
only contain second derivatives: indeed after varying one
term proportional to derivative(s) of π in (3) and integrating
by part, the only possible way to distribute the derivative(s)
acting on this term is to let it (them) hit another π
differentiated only once. All terms containing more than
two derivatives after this distribution will vanish as a
consequence of the identities above, in which the anti-
symmetrization comes from the contraction with the tensor
ϵ2ð2mÞ. These identities also lead to an easy generalization
to the p-forms (single or multifield) explained in [9] (see
also [10–15] for subsequent works on the multiscalar case).
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Indeed, e.g., for a single p-formA one just needs to replace
in (3) πa by some p-form field strength F ¼ dA with
components FA (where A now means a set of pþ 1
indices) and in the last two terms in (3) by the first
derivatives of the form. For example, for a 3-form A we
would get the action (needing nine space-time dimensions)

S ¼
Z
M

d9xϵa1…a9ϵb1…b9ð∂a1FB1
Þð∂b1FA1

Þ

× ð∂a6AB2
Þð∂b6AA2

Þ; ð7Þ

where here A1 ¼ fa2; a3; a4; a5g, A2 ¼ fa7; a8; a9g, B1 ¼
fb2; b3; b4; b5g, and B2 ¼ fb7; b8; b9g.A is by assumption
a 3-form and F ¼ dA is the associated field strength. The
role of the first identity in (5) is here played by the Bianchi
identity for the field strength ∂ ½bFB� ¼ 0, while the
equivalent of the second identity still holds as it is just a
consequence of the commuting of partial derivatives on flat
space-times. The above construction, spelled out in
Ref. [9], allows us to get nontrivial theories for single
even-p-forms and multi-p-forms retaining also gauge
invariance; however, it fails for single odd-p-forms in
particular. Indeed, e.g., the above action (7) has vanishing
field equations.
In Ref. [16] it was in fact proven that no single vector

Galileon could be constructed.1 In other words, under the
assumption that the theory had gauge invariance, an action
principle, and field equations depending only on derivatives
of order less or equal to 2, it was shown that one could only
obtain field equations linear in second derivatives. The
main purpose of this paper is to investigate the same issue
for other odd p (i.e., p odd and greater than 1). In this way
we will provide a method that gives an upper bound on the
number of different Galileon-like theories of single p-
forms (and p of any parity). This will in particular provide a
new proof of the results of [16] but also allows us to
construct a nontrivial Galileon-like theory for a 3-form.
The paper is organized as follows. In the following

section, we derive the necessary conditions in order for a
single p-form theory to have gauge invariant field equa-
tions containing derivatives of order less or equal to 2 and
to have an action principle. These conditions are expressed
as symmetry conditions on the field equations as well as on
derivatives of the field equations. We then (Sec. III)
introduce some tools that we use later to analyze these
symmetries. In the following Sec. IV we derive an upper
bound on the number of allowed theories fulfilling our
criteria. In the last section (Sec. V) we show that our
formalism allows us to give a simple proof of the no-go
theorem stated in Ref. [16] for vector Galileons and to
construct an example of a nontrivial 3-form Galileon-like
theory. We then conclude in Sec. VI. We have gathered in

the appendixes various abstract (some standard and some
less known) results used in the course of our work in order
to make it self-contained.

II. NECESSARY CONDITIONS FOR THE
EXISTENCE OF A NONTRIVIAL

GALILEON p-FORM

A. Derivation

Our goal here is to first derive a set of necessary
conditions for the existence of a Galileon p-form theory.
In other words, we look for a theory of a p-form A ∈ ⋀p

of components Aa½p� (denoting by ⋀p the set of p-forms),
such that the field equations of this p-form do not contain
derivatives of order higher than 2. Note that here and in the
following, a½p� denotes an ordered set of p indices
a1; a2;…ap carried by some object which is antisymmetric
in all the indices in the string of indices a½p�; i.e., for the
case at hand, such that for any permutation σ belonging to
the permutation group Sp of p objects, we have
Aaσð1Þaσð2Þ…aσðpÞ ¼ ϵðσÞAa1a2…ap , where ϵðσÞ is the signature
of the permutation σ. Similarly we will denote simply by
afpg ¼ fa1…apg an ordered string of indices carried by
some object, and by aðpÞ such a string assuming in
addition that the object A which carries this string is
symmetric into the corresponding indices, i.e., such that for
every permutation σ of the symmetric group Sp we have
Aaσð1Þaσð2Þ…aσðpÞ ¼ Aa1a2…ap ≡AaðpÞ. Sometimes, we will
have to pull a given index out of such strings of indices
and wewill denote this operation by the following notation:
a½p�≡ a½p − 1�ap, meaning that the object which carries
the string a½p − 1�ap is antisymmetric on all indices
including ap, but also that the order of the first p − 1

indices is the same in a½p − 1� and a½p�. Furthermore, we
will always denote by lowercase latin letters space-time
indices and, in order to alleviate notations, with an upper
case latin letter a string of “antisymmetric” indices such as
a½p�≡ A or b½p�≡ B. Also, we will then use the same
notation to denote a string of p indices or of a different
length (i.e., B can denote, e.g., a string such as b½p� or
b½p − 1�) whenever there is no risk of ambiguity.2 We will
also use the following notations to denote derivatives of a
quantity such as Ea½p� ≡ EA with respect to Ab½p� ≡AB or
its successive partial derivatives3 (always denoted by a
comma)

EAjB ≡ Ea½p�jb½b� ≡ ∂Ea½p�

∂Ab½p�
≡ ∂EA

∂AB
; ð8Þ

1Note however that nontrivial vector Galileons can be obtained
if one relaxes the hypothesis of gauge invariance [17–23].

2For example a p-form A will always carry p antisymmetric
indices and hence its component will sometimes be denoted as
AA or AB when there is no ambiguity, or equivalently Aa½p� or
Ab½p� when there is.

3These derivatives are noted as usual as AA;b;AA;bc;….
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EAjB;c ≡ Ea½p�jb½p�;c ≡ ∂Ea½p�

∂ð∂cAb½p�Þ
≡ ∂Ea½p�

∂Ab½p�;c
≡ ∂EA

∂AB;c
; ð9Þ

EAjB;cd≡Ea½p�jb½p�;cd≡ ∂Ea½p�

∂ð∂c∂dAb½p�Þ
≡ ∂Ea½p�

∂Ab½p�;cd
≡ ∂EA

∂AB;cd
:

ð10Þ
Having introduced these notations, we first adapt the
derivation of [16] (valid for a 1-form) to the case of an
arbitrary p-form with an action

S ¼
Z

dDxL½AB; ∂aAB; ∂a…∂bAB�; ð11Þ

yielding the equations of motion

EA ≡ δS
δAA

¼ 0: ð12Þ

We demand that these equations do not contain derivatives
of order higher than 2, i.e.,

EA ¼ EAðAB;AB;a;AB;abÞ: ð13Þ

The fact that EA is derived from an action principle gives
nontrivial integrability conditions that we now derive. We
first use the commutativity of the functional derivatives

�
δ

δABðyÞ
;

δ

δAAðxÞ
�
S ¼ 0; ð14Þ

which we can rewrite using

δ

δABðyÞ
δ

δAAðxÞ
S ≡ δEAðxÞ

δABðyÞ
: ð15Þ

Here

δEAðxÞ ¼
Z

dDy0δABðy0Þfδðx − y0ÞEAjBðy0Þ

− ðδðx − y0ÞEAjB;cÞ;c þ ðδðx − y0ÞEAjB;cdÞ;cdg;
ð16Þ

such that

δEAðxÞ
δABðyÞ

¼ δðx − yÞEAjBðyÞ − ðδðx − yÞEAjB;cÞ;c
þ ðδðx − yÞEAjB;cdÞ;cd: ð17Þ

Using a test function GðxÞ to integrate over (14) and
subsequently integrating by parts we get

0 ¼
Z

dDyGðyÞ
��

δ

δABðyÞ
;

δ

δAAðxÞ
�
S
�

¼ GfEAjB − EBjA þ ðEBjA;cÞ;c − ðEBjA;cdÞ;cdg
þ G;cfEAjB;c þ EBjA;c − 2∂dEBjA;cdg
þ G;cdfEAjB;cd − EBjA;cdg; ð18Þ

where in the second equality above all the arguments are
evaluated at the same space-time point x. Since GðxÞ is
arbitrary we get the integrability conditions,

EAjB − EBjA þ ðEBjA;cÞ;c − ðEBjA;cdÞ;cd ¼ 0; ð19Þ

EAjB;c þ EBjA;c − 2∂dEBjA;cd ¼ 0; ð20Þ

EAjB;cd − EBjA;cd ¼ 0: ð21Þ

By taking a derivative of (20) with respect to AC;efg, we
also get

EAjB1;c1
⌢
d1jB2;c2

⌢
d2
⌢

¼ 0 ¼ EAjB1;c1d1
⌢
jB2;c2

⌢
d2
⌢

; ð22Þ

where here and henceforth a horizontal parenthesis, ⌢,
denotes a symmetrization on the corresponding indices.
The above constraints (19)–(22) just express that the field
equations we consider, i.e., (12), are derived from an action.
Note that (21) shows that EAjB;cd is symmetric under the
exchange of the group of indices A and B. This extends
further to the derivatives of EAjB;cd with respect to the
second derivatives of the form. For example, consider
EAjB;cdjC;ef; we have by standard commutations of
derivatives

EAjB;cdjC;ef ¼ EAjC;efjB;cd ð23Þ

while (21) implies obviously that

EAjB;cdjC;ef ¼ EBjA;cdjC;ef: ð24Þ

These two identities can be used further to show the
symmetry under the exchange of A and C as well as B
and C, respectively, as shown below:

EAjB;cdjC;ef ¼ EAjC;efjB;cd ¼ ECjA;efjB;cd ¼ ECjB;cdjA;ef ð25Þ

EAjB;cdjC;ef ¼ EBjA;cdjC;ef ¼ EBjC;efjA;cd ¼ ECjB;efjA;cd

¼ ECjA;cdjB;ef ¼ EAjC;cdjB;ef: ð26Þ

This further shows [using the last identity above as well as
(23)] that EAjB;cdjC;ef is also symmetric under commutations
of the pair of indices fc; dg and fe; fg, namely, that
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EAjB;cdjC;ef ¼ EAjB;efjC;cd: ð27Þ

We now derive some extra constraints demanding that
these field equations shall be gauge invariant. This implies
invariance under

A → A þ dC≡A 0 C ∈ ⋀
p−1

;A;A 0 ∈ ⋀
p

: ð28Þ

In components, this induces the following transformation
on A and its derivatives,

Aa½p−1�ap → Aa½p−1�ap þ C½a½p−1�;ap� ≡A0
a½p−1�ap ; ð29Þ

Aa½p−1�ap;c → Aa½p−1�ap;c þ C½a½p−1�;ap�c ≡A0
a½p−1�ap;c; ð30Þ

Aa½p−1�ap;cd → Aa½p−1�ap;cd þ C½a½p−1�;ap�cd ≡A0
a½p−1�ap;cd:

ð31Þ

We thus demand that

EAðA0
A;A

0
A;c;A

0
A;cdÞ ¼ EAðAA;AA;c;AA;cdÞ: ð32Þ

By taking the derivative of (32) with respect to C½a½p−1�;ap�cd,
C½a½p−1�;ap�c, and C½a½p−1�;ap�, respectively, and setting
Ca½p−1� ¼ 0, we get

EAjb½p−1�ðbp;cdÞ ¼ 0; ð33Þ

EAjb½p−1�ðbp;cÞ ¼ 0; ð34Þ

EAjB ¼ 0: ð35Þ

Using (21) and (33) we have

EAjb1…br
⌢
…bp;c

⌢
d
⌢

¼ 0 ¼ Ea1…as
⌢
…apjB;c⌢ d

⌢

: ð36Þ

We can use this to further show that EAjB;cd vanishes when
symmetrized on any three arbitrary space-time indices.
Indeed, the above (36) implies obviously that

Ea½p−1�ap⌢ jb½p−1�bp
⌢
;c
⌢
d
⌢

¼ 0; ð37Þ

which we can expand as

Ea½p−1�apjb½p−1�bp
⌢
; c
⌢
d
⌢

þ Ea½p−1�bp
⌢
jb½p−1�ap;c⌢ d

⌢

þ Ea½p−1�c⌢jb½p−1�bp
⌢
;ap d

⌢

þ Ea½p−1�d
⌢
jb½p−1�bp

⌢
;c
⌢
ap ¼ 0: ð38Þ

The first two terms above vanish as a consequence of (36),
while the trivial

EAjB;cd ¼ EAjB;dc ð39Þ

implies the equality of the last two terms on the left-hand
side of (38), yielding

Ea½p−1�ap⌢ jb½p−1�bp
⌢
;c
⌢
d ¼ 0: ð40Þ

Hence, this, together with (36), just completes the proof
that EAjB;cd vanishes when symmetrized on any three
arbitrary space-time indices. This property will play a
key role in the following and in fact extends to the
derivatives of EAjB;cd with respect to the second derivative
of the form, as we now show. We have already obtained the
relations (22). Now consider the relation

Ea½p−1�ap⌢ jb½p−1�bp
⌢
;cdjc½p−1�cp⌢ ;e

⌢
f ¼ 0 ð41Þ

obtained from (40) and (23). Expanding this relation as

0 ¼ Ea½p−1�apjb½p−1�bp
⌢
;cdjc½p−1�cp⌢ ;e

⌢
f

þ Ea½p−1�bp
⌢
jb½p−1�ap;cdjc½p−1�cp⌢ ;e

⌢
f

þ Ea½p−1�cp⌢ jb½p−1�bp
⌢
;cdjc½p−1�ap;e⌢f

þ Ea½p−1�e⌢jb½p−1�bp
⌢
;cdjc½p−1�cp⌢ ;apf; ð42Þ

and noticing that the first three terms vanish by virtue of
(40) and (21), we get that

Ea½p−1�ap⌢ jb½p−1�bp
⌢
;cdjc½p−1�cp⌢ ;ef ¼ 0: ð43Þ

From (36) and (23), we also have

Ea½p−1�ap⌢ jb½p−1�bp
⌢
;cdjc½p−1�cp;e⌢ f

⌢

¼ 0; ð44Þ

which yields, using the same expansion technique as above,

Ea½p−1�ap⌢ jb½p−1�bp
⌢
;cdjc½p−1�cp;e⌢f ¼ 0: ð45Þ

Similarly, from (22), we have

Ea½p−1�ap⌢ jb½p−1�bp;c⌢djc½p−1�cp;e⌢ f
⌢

¼ 0; ð46Þ

which yields, using the same expansion technique as above,

Ea½p−1�ap⌢ jb½p−1�bp;c⌢djc½p−1�cp;e⌢f ¼ 0: ð47Þ

A last property of importance can be obtained from the
following relation, which follows from (22), yielding

EAjB1;c1
⌢
d1
⌢

jB2;c2
⌢
d2jB3;c3

⌢
d3 ¼ 0; ð48Þ

which, after expanding, gives
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EAjB1;c1
⌢
d1jB2;c2

⌢
d2jB3;c3

⌢
d3 ¼ 0: ð49Þ

In the following, we will denote as Em the tensor
obtained by differentiating the field equation operator E
with respect to the second derivatives of the p-form m − 1

times. In other words, one has by definition E1 ≡ E and in
full generality Em is a rank ðpmþ 2ðm − 1ÞÞ contravariant
tensor whose components are given by

ðEmÞAB1c1d1…Bm−1cm−1dm−1 ¼ EAjB1;c1d1j…jBm−1;cm−1dm−1

≡ ∂m−1EA

∂AB1;c1d1…∂ABm−1;cm−1dm−1

:

ð50Þ

As will be summarized in the next subsection, the relations
derived above form ¼ 2, 3, and 4 extend in fact to arbitrary
values of m, and this will be used below to show that, for a
given space-time dimensionD (and a given p), Em vanishes
for a large enough value of m. This means that under the
hypotheses spelled out above, the field equations have to be
polynomial in the second derivatives. We will also further
restrict the possible theories fulfilling these hypotheses.
Introducing here the integer mmax such that Emmaxþ1

vanishes but Emmax does not, the idea is then to use the
method exposed below to construct explicitly nontrivial
tensors Emmax , which do not depend any more on the second
derivatives of the p-form. In the following, we will hence
assume thatmmax (and hence nontrivialm) is always greater
than or equal to 2, since otherwise, the field equations do
not depend on second derivatives of the p-form at all.

B. Summary of the symmetries to be used

As stated at the end of the previous subsection, our
strategy in the rest of the present paper is to seek an explicit
form of the tensor Emmax, which is the (mmax − 1)th
derivative of the field equation E with respect to the second
derivatives of the p-form. After that, we can integrate it
mmax − 1 times with respect to the second derivatives of the
p-form to obtain E. In each step of integration, the
integration “constant” may in principle depend on first
derivatives of the p-form. For simplicity, however, we shall
not introduce such dependence on first derivatives since the
main purpose of the present paper is to develop a general
formalism and just to show an explicit nontrivial example.
The integration constants cannot depend on the p-form
itself without the derivatives that acted on it because of
(35). Therefore, among various symmetry conditions
derived in the previous section, for our purpose it suffices
to concentrate on those that involve only the derivatives of
E with respect to the second derivatives of the p-form and
the starting point is the series of relations derived in the
previous subsection from the conditions on the field
equations in order for them to derive from an action

(19)–(22), be of order at most two in the derivatives
(13), and be gauge invariant (33)–(35). From those relations
it is easy to derive the corresponding relations satisfied by
the tensor Em. It then turns out to be convenient to divide
these symmetry relations possessed by the tensor Em into
three categories defined below. We shall use the notation of
Eq. (50) for the names and the order of the indices of Em.
(1) The first set consists of

(a) Antisymmetry within each group of p indices, A
and Bi

(b) Invariance of the tensor under the p-wise
interchange of the group of indices: Bi ↔ Bj,
i ≠ ji, j ∈ f1;…; ðm − 1Þg, as well as under the
exchange between A and any Bi.

(2) The second set of symmetries consists of
(a) Symmetry of each pair of indices ðci; diÞ
(b) Invariance under the pairwise interchange

of the indices: ðci; diÞ ↔ ðcj; djÞ, i ≠ ji,
j ∈ f1;…; ðm − 1Þg

(3) The last set of symmetries is the condition that
symmetrizing over any three indices in Em yields a
vanishing tensor.

Our goal here is to use these symmetries in order
to further characterize the possible tensors Em and even-
tually construct some explicit examples. To do so, we
will use the theory of representations of the symmetric
group and its link to tensor symmetries. Some elements
about these issues are given below as well as in the
appendixes.

III. TENSOR SYMMETRIES AND PLETHYSMS

A. Generalities about tensor symmetries,
symmetric and antisymmetric tensors

Here, we are mainly interested in characterizing the
symmetries of the tensor Em and hence will only discuss the
case of contravariant tensors. We denote by V the tangent
vector space of space-time vectors at a given point and
stress again that we will work here only on flat space-time.
We denote by V⊗n ¼ V ⊗ V ⊗ � � � ⊗ V the vector space
(over the field R of real numbers) of rank n (contravariant)
tensors considered as the nth tensor product of the vector
space V. The vector space V⊗n has simple vector subspaces
given, respectively, by the set of totally symmetric rank n
tensors that we denote as Symn and the set of totally
antisymmetric rank n tensors that we denote as⋀n. We also
define as fB1;…;BDg (whereD is the dimension of space-
time) base vectors of the vector space V, and f ~B1;…; ~BDg
as the dual basis of the covectors (1-forms) such that
~BcðBdÞ ¼ δcd. Then, the n-tensor products of the B form a
basis of V⊗n. To characterize symmetries of tensors in
general, it is useful to use the fact that the permutation
group Sn of a set of n distinct elements acts in a natural way
on a tensor T of components T a1…an , as, given a
permutation σ inside Sn,
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σ∶ T ≡ T a1…anBa1 ⊗ � � � ⊗ Ban

→ T a1…anBaσ−1ð1Þ
⊗ � � � ⊗ Baσ−1ðnÞ

¼ T aσð1Þ…aσðnÞBa1 ⊗ � � � ⊗ Ban

≡ σðT Þ; ð51Þ

where Einstein summation convention is implied. In other
words, for a given tensor T of components T a1…an , and a
given permutation σ of Sn, σðT Þ is the tensor of compo-
nents ½σðT Þ�a1…an ¼ T aσð1Þ…aσðnÞ . The tensors σðT Þ are
sometimes called the isomers of T (see, e.g., [24]). Note
that this action is an action on the places of indices and not
on their values; e.g., for a 3-tensor T a1a2a3 and the 3-cycle
σ ¼ ð123Þ, one has ½σðT Þ�112 ¼ T 121 (and not T 223). Note
further that with such a definition, the composition of two
permutations ρ and σ obviously acts as follows on a given
tensor T , ½ρðσðT ÞÞ�a1…an ¼ T aρðσð1ÞÞ…aρðσðnÞÞ ; i.e., it acts by
left multiplication on the index labels.
The linear transformations on V⊗n which commute with

the above defined action of the symmetric group Sn on
tensors play an important role in the following. These
transformations are called bisymmetric transformations and
are defined by the following action on a given tensor T ,

T ≡ T a1…anBa1 ⊗ � � � ⊗ Ban

→ Da1…an
b1…bnT

b1…bnBa1 ⊗ � � � ⊗ Ban ; ð52Þ

where the D2n real numbers Da1…an
b1…bn verify the

“bisymmetry” condition

Da1…an
b1…bn ¼ Daσð1Þ…aσðnÞ

bσð1Þ…bσðnÞ ; ð53Þ

for any permutation σ belonging to Sn. Among the
bisymmetric transformations, the one given by
Da1…an

b1…bn ¼ Da1
b1…Dan

bn , where Da
b is an invertible

matrix (considered here as a one-time covariant and one-
time contravariant tensor) corresponds to the natural action
of the general linear group GLD on a tensor T . The set of
bisymmetric transformations is the largest set of trans-
formations which commute with the transformation of Sn
defined as in (51), and conversely, the set of the symmetric
group transformations (51) is the maximal set of trans-
formations which commute with all the bisymmetric trans-
formations (see, e.g., [25], pp. 134–136). This property is at
the heart of the so-called Schur-Weyl duality which allows
us to simultaneously reduce the representations of the
symmetric group and of the general linear group on the
space of tensors V⊗n.
Tensor symmetries can in general be represented by one

or several relations between tensor components, namely,
one or several relations of the type

T a1a2…an ¼
X
σ∈Sn

kσT
aσð1Þ…aσðnÞ ; ð54Þ

where kσ are real numbers indexed by elements σ of the
symmetric group Sn. Relation (54) obviously reads, using
the above defined action of the symmetric group,
T ¼ P

σ∈Snkσ × σðT Þ. For future reference we also define
the vector space (inside V⊗n) of symmetric tensors Symn,
as the set of tensors T ∈ V⊗n obeying σðT Þ ¼ T , for any
σ ∈ Sn,

Symn ¼ spanfT jσðT Þ ¼ T for any σ ∈ Sng: ð55Þ

Similarly, the set of antisymmetric tensors ⋀n (i.e.,
n-forms) is the vector subspace of V⊗n:

⋀
n
¼ spanfT jσðT Þ¼ signðσÞT for any σ ∈ Sng; ð56Þ

where signðσÞ denotes the signature of the permutation σ.
We can define tensor product spaces using these such as

Symm ⊗⋀
n
¼ spanfX ⊗YjX ∈Symm;Y ∈⋀

n
g: ð57Þ

Note that, as explained in Appendix C 2, symmetries of
tensors as defined in (54) can be suitably dealt with using
the group algebra of the symmetric group Sn and its
decompositions into irreducible spaces under the action
of Sn. The decomposition uses Young diagrams and
tableaux which in turn are associated with irreducible
components of the so-called symmetry classes under the
action of the bisymmetric transformations (52). For exam-
ple the symmetry class of totally symmetric tensors Symn is
generated (in the sense explained in Appendix C 2) by the
(only) Young symmetrizer generated from the standard
tableau with one line and n boxes filled with f1; 2;…; ng.
More generally, as explained in the same appendix, one can
consider symmetry classes Vλ generated by some specific
Young symmetrizers corresponding to the tableau λ.

B. Plethysms

Another way to combine symmetric or antisymmetric
tensors goes as follows. Consider first a set of k tensors
X i ∈ ⋀n with i ∈ f1;…; kg. We can define a tensor X
which is an element in the composite subspace denoted
Symkð⋀nÞ by

X ≡ X
σ∈Sk

Xσð1Þ ⊗ � � � ⊗ XσðkÞ: ð58Þ

The tensor X can be written in components

X ¼ Xa1½n�…ak½n�ðBa1
1
⊗ � � � ⊗ Ba1nÞ ⊗ � � �

⊗ ðBak
1
⊗ � � � ⊗ BaknÞ; ð59Þ
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where ai½n�≡ fai1…aing≡ Ai are groups of antisymmetric
indices and the following symmetry under the n-wise
exchange of indices holds:

XAσð1Þ…AσðkÞ ¼ XA1…Ak ∀ σ ∈ Sk: ð60Þ

Similarly, considering now a set of l symmetric tensors of
rank m, Yj with j ∈ f1;…; lg, we define an element Y of
the space ⋀kðSymmÞ by

Y ¼
X
σ∈Sl

signðσÞYσð1Þ ⊗ � � � ⊗ YσðlÞ: ð61Þ

In components Y can be expressed as

Y ¼ Ya1ðmÞ…alðmÞðBa1
1
⊗ � � � ⊗ Ba1mÞ ⊗ � � �

⊗ ðBal
1
⊗ � � � ⊗ BalmÞ; ð62Þ

where ajðmÞ≡ faj1…ajmg are groups of symmetric indices
and the following antisymmetry under m-wise exchange of
indices holds:

Yaσð1ÞðmÞ…aσðlÞðmÞ ¼ signðσÞYa1ðmÞ…alðmÞ ∀ σ ∈ Sl: ð63Þ

The symmetries of tensors such as X or Y are examples of
so-called plethysms (see, e.g., [26]).
More general plethysms can be constructed starting from

a set of tensors T i with i ∈ f1;…; kgwhich each belong to
the same symmetry class generated by some Young
symmetrizer associated with some Young tableau λ, Vλ.
Considering now another Young symmetrizer ysym=anti

μ with
k boxes associated with a tableau μ, we can construct the
tensor T μ∘λ defined by

T μ∘λ ¼ ysym=anti
μ ðT 1 ⊗ � � � ⊗ T kÞ; ð64Þ

where the action of the Young symmetrizer ysym=anti
μ is just

given as in the first line of (51), where base vectors Bi are
replaced by tensors T i; i.e., it acts on places of tensors T i
in the tensor product T 1 ⊗ � � � ⊗ T k. In components it can
be defined by treating the collective indices of each tensor
T i as a single unit. The tensor symmetry class correspond-
ing to the symmetries of the tensor T μ∘λ is in general
reducible (as a representation of the bisymmetric trans-
formations—see Appendixes C and D).
The symmetries 1 and 2 of Sec. II B imply that Em has

the symmetry of the plethysm

Symmð⋀
p

Þ ⊗ Symm−1ðSym2Þ; ð65Þ

i.e., it belongs to the symmetry class
VSymmð⋀pÞ⊗Symm−1ðSym2Þ, where the first plethysm entering
in the tensor product, i.e., Symmð⋀pÞ, is associated with

the symmetries 1 of Sec. II B concerning indices with
capital letters A and Bi (i.e., groups of p antisymmetric
indices), and the second plethysm Symðm−1ÞðSym2Þ corre-
sponds to symmetry 2 of Sec. II B and is associated with
lowercase indices.

IV. RESTRICTIONS ON THE FIELD
EQUATIONS FROM THE SYMMETRIES

1, 2, AND 3

After having shown how the different hypotheses made
before lead to the conclusion that the tensor Em had the
symmetries 1, 2, and 3, summarized at the end of Sec. II B,
we will further use these symmetries to characterize Em in a
more detailed way. Our general method is just to decompose
Em into pieces belonging to the irreducible components of
the symmetry class defined by the symmetries 1, 2, and 3.We
first examine the consequence of Em having the symmetry 3.

A. Consequence of Em having the symmetry 3

In order to decompose Em into pieces belonging to the
irreducible components of the symmetry class that it
belongs to, one can act on Em with Young symmetrizers,
as explained in Appendix C. Consider such a symmetrizer
built from a given Young diagram (see Appendix B) with a
number of columns equal to or greater than 3. Such a
symmetrizer will be a linear combination of products of
row group symmetrizers and column group antisymmetr-
izers [see Eqs. (B5)–(B6)]. If the number of columns is
greater than or equal to 3, such an operation (irrespectively
of the choice made between the symmetric or antisym-
metric presentation for the Young symmetrizers) will
always involve a symmetrization on at least three space-
time indices of the tensor Em, which, as a consequence of
the symmetry 3 of Sec. II B, vanishes. Hence, we conclude
that the only Young symmetrizers that can possibly enter
into the decomposition of Em into irreducibles are those
coming from diagrams with one or two columns at most. In
the following, we will denote such a diagram appropriate to
act on the tensor Em, which has a variance mpþ 2ðm − 1Þ
[implying that the considered Young diagram should have
mpþ2ðm−1Þ boxes in total], as ðmpþ2ðm−1Þ−a;aÞt
where a is a positive integer parametrizing the length of the
second column and t denotes the transpose of the diagram
with two lines, the first withmpþ 2ðm − 1Þ − a boxes and
the second with a boxes (see Appendix B).
Having just shown that the irreducible representations of

the symmetric group entering in the decomposition of the
tensor symmetry class of Em are just those characterized by
Young diagrams of the kind ðmpþ 2ðm − 1Þ − a; aÞt, the
next step is to determine the multiplicityma of irreducibles,
each in one-to-one correspondence with a standard Young
tableau built from the Young diagram ðmpþ 2ðm − 1Þ −
a; aÞt entering into this decomposition. To do so wewill use
themachinery of Schur functions to find out thismultiplicity
inside the plethysm (65) as explained in Appendix D.
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B. Multiplicity of irreducibles with two-column
Young diagrams inside Symmð⋀pÞ ⊗ Symm−1ðSym2Þ
In order to determine the multiplicity ma as defined

above, we will proceed in two steps. First, we will
determine the multiplicity of irreducibles with two-
column diagrams inside the plethysms Symmð⋀pÞ and
Symðm−1ÞðSym2Þ separately and then use the Littlewood-
Richardson rule to deal with the tensor product between
these plethysms (see Appendix C 3). This rule implies that
indeed only diagrams with at most two columns inside each
component Symmð⋀pÞ and Symðm−1ÞðSym2Þ can be com-
bined to yield an irreducible corresponding to a Young
diagram with no more than two columns inside the
plethysm Symmð⋀pÞ ⊗ Symm−1ðSym2Þ. We first consider
the first factor of the tensor product Symmð⋀pÞ.

1. Multiplicity of irreducibles with two-column
Young diagrams inside Symmð⋀pÞ

As explained in Appendix D, the Schur function corre-
sponding to the symmetries of the plethysm Symmð⋀pÞ is
given by sðmÞ∘sð1ÞpðxÞ and can be decomposed as

sðmÞ∘sð1Þp ¼
X
μ

mμsμ; ð66Þ

where mμ gives the multiplicity of the irreducible repre-
sentation characterized by the Young diagram μ inside the

plethysm Symmð⋀pÞ. Here we are only interested in the
multiplicities corresponding to the Young diagrams μ
entering the above decomposition with at most two
columns. This can be obtained as follows. First, we apply
the Ω involution operation (see Appendix D) to the above
decomposition (66). We get

ΩðsðmÞ∘sð1ÞpÞ ¼
X
μ

mμΩðsμÞ ¼
X
μ

mμsμt : ð67Þ

Now we see that if we consider two particular variables, say
x1 and x2, among those upon which the Schur functions
depend, the only monomials of the form xα11 xα22 (i.e., which
only depend on x1 and x2 and not on the others xi, i ≠ 1, 2)
which appear on the right-hand side of the above Eq. (67)
all come from the Schur functions corresponding to Young
diagrams μt with at most two rows (because any Schur
function corresponding to a Young diagram with more than
two rows necessarily depends on more than two variables).
And these monomials and their coefficients will be the
same if we just restrict ourselves to considering functions of
just the two variables x1 and x2 and set to zero all other
contributions. This is what will be done in the following,
enabling us to compute the multiplicities mμ of the
irreducibles corresponding to Young diagrams with at most
two columns in the original decomposition (66).
Notice however, using (D14), that we have

ΩðsðmÞ∘sð1ÞpÞ ¼
� sðmÞ∘Ωðsð1ÞpÞ ¼ sðmÞ∘sðpÞ if p is even

ΩðsðmÞÞ∘Ωðsð1ÞpÞ ¼ sð1Þm∘sðpÞ if p is odd
; ð68Þ

and hence, we shall distinguish the case of odd-p- and
even-p-forms.

2. Case of an even-p-form: Decomposition
of ðsðmÞ∘sðpÞÞðx1;x2Þ

First we write sðpÞðx1; x2Þ explicitly, giving

sðpÞðx1; x2Þ ¼
Xp
r¼0

xp−r1 xr2; ð69Þ

and we define an ordered collection of variables yr by

yr ¼ xp−r1 xr2; for 0 ≤ r ≤ p: ð70Þ

The plethysm sðmÞ∘sðpÞðx1; x2Þ is given by the Schur
function sðmÞðyrðxÞÞ, namely, using (D5),

sðmÞ∘sðpÞðx1; x2Þ ¼ sðmÞðyrðxÞÞ
¼

X
0≤r1≤r2≤…≤rm≤p

yr1…yrm: ð71Þ

Note that the degree of sðmÞ∘sðpÞðx1; x2Þ is mp. For a given
a verifying 0 ≤ a ≤ mp, the coefficient of the term
xmp−a
1 xa2 in sðmÞ∘sðpÞðx1; x2Þ, which we denote as
Cðxmp−a

1 xa2Þ, can be deduced from (71) to be the number
of (unordered) partitions of a into m non-negative integers
within f0; 1; 2;…; pg with repetitions allowed. Further-
more sðmÞ∘sðpÞðx1; x2Þ has a unique expansion in terms of
Schur functions that correspond to Young diagrams of at
most two rows. Namely,

sðmÞ∘sðpÞðx1; x2Þ ¼
X½mp

2
�

l¼0

mðmp−l;lÞsðmp−l;lÞðx1; x2Þ; ð72Þ

where ½…� in the upper limit is the Gauss symbol,
ðmp − l; lÞ denotes the Young diagram with the first and
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second row of sizemp − l and l, respectively (in agreement
with our notations of Appendix B), and mðmp−l;lÞ is the
multiplicity of the Schur function

sðmp−l;lÞðx1; x2Þ ¼
Xmp−l

b¼l

xmp−b
1 xb2; ð73Þ

which corresponds to this Young diagram. In order to
determine these multiplicities, we just need to use the
right-hand side of the above equation to get

Cðxmp−a
1 xa2Þ ¼

Xmin ða;mp−aÞ

l¼0

mðmp−l;lÞ: ð74Þ

Now restricting to the case where 1 ≤ a ≤ ½mp
2
� and using

the above recursively we get that

mðmp−a;aÞ ¼ Cðxmp−a
1 xa2Þ − Cðxmp−ða−1Þ

1 xa−12 Þ; ð75Þ

while

mðmp;0Þ ≡mðmpÞ ¼ Cðxmp
1 Þ ¼ 1: ð76Þ

3. Case of an odd-p-form: Decomposition
of sð1Þm∘sðpÞðx1;x2Þ

The decomposition can be performed by using the
similar method as above. Starting as above from
Eqs. (69) and (70) and using (D6) we get

sð1Þm∘sðpÞðx1; x2Þ ¼ sð1ÞmðyrðxÞÞ
¼

X
0≤r1<r2<…<rm≤p

yr1…yrm: ð77Þ

Notice that the crucial difference between this equation and
(71) is that the variables yi have here to be distinct in the
summation. As before, for a given a verifying 0 ≤ a ≤ mp,
let us consider the coefficient C̄ðxmp−a

1 xa2Þ of the term
xmp−a
1 xa2 occurring in this expansion. We find this to be
equal to the number of (unordered) partitions of a into m
distinct non-negative integers within f0; 1;…; pg. Express-
ing now the plethysm sð1Þm∘sðpÞðx1; x2Þ in the Schur
function basis we have

sð1Þm∘sðpÞðx1; x2Þ ¼
X½mp

2
�

l¼0

m̄ðmp−l;lÞsðmp−l;lÞðx1; x2Þ; ð78Þ

where the notations are as before and we are after the
multiplicities m̄ðmp−l;lÞ. The coefficient C̄ðxmp−a

1 xa2Þ verifies
as above

C̄ðxmp−a
1 xa2Þ ¼

Xmin ða;mp−aÞ

l¼0

m̄ðmp−l;lÞ: ð79Þ

Now we can conclude as before that for 1 ≤ a ≤ ½mp
2
�

m̄ðmp−a;aÞ ¼ C̄ðxmp−a
1 xa2Þ − C̄ðxmp−ða−1Þ

1 xa−12 Þ; ð80Þ

while in this case we have

m̄ðmp;0Þ ≡ m̄ðmpÞ ¼ C̄ðxmp
1 Þ ¼ 0: ð81Þ

To summarize what has been achieved above, we have
shown that the multiplicity mðmp−a;aÞt of the irreducible
representation corresponding to the Young diagram
ðmp − a; aÞt inside Symmð⋀pÞ is given by the following
formula,

mðmp−a;aÞt ¼
(
Np

a;m − Np
a−1;m if p is even

Np;distinct
a;m − Np;distinct

a−1;m if p is odd
; ð82Þ

where for r≥0, Np
r;s is the number of (unordered)

partitions of r into s non-negative integers within f0;…; pg
with repetitions allowed and Np;distinct

r;s is the number of
(unordered) partitions of r into s distinct non-negative
integers within f0;…; pg, and we have Np

r;s ¼ 0 and
Np;distinct

r;s ¼ 0 for negative r.

4. Multiplicity of irreducibles with two-column
Young diagrams inside Symðm−1ÞðSym2Þ

We proceed as above first by applying the Ω involution
operation to the plethysm of Schur functions sðm−1Þ∘sð2Þ.
We have

Ωðsðm−1Þ∘sð2ÞÞ ¼ sðm−1Þ∘sð1Þ2 : ð83Þ

Then we restrict the variables to ðx1; x2Þ and get for the
second factor above

sð1Þ2ðx1; x2Þ ¼ x1x2: ð84Þ

Thus we have only one variable yi to consider in
the following step. Hence we get the very simple
decomposition

sðm−1Þ∘sð1Þ2ðx1; x2Þ ¼ xm−1
1 xm−1

2

¼ sðm−1;m−1Þðx1; x2Þ; ð85Þ

which leads us to conclude that inside Symðm−1ÞðSym2Þ
there is only one irreducible corresponding to Young
diagrams with up to two columns and it is characterized
by the Young diagram with two columns of equal size equal
to (m − 1), i.e., the diagram ðm − 1; m − 1Þt.
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5. Final result: Application of the
Littlewood-Richardson rule

In order to obtain the multiplicity we are after we just
need to consider the tensor product of a given two-column
diagram ðmp − a; aÞt corresponding to one given irreduc-
ible inside Symmð⋀pÞ by the two-column diagram
ðm−1;m−1Þt [which itself corresponds to the only irre-
ducible with at most two columns inside Symðm−1ÞðSym2Þ
indexed by the diagram ðm − 1; m − 1Þt], and focus only on
the Young diagrams which have one or two columns. A
very simple application of the Littlewood-Richardson rule
yields only one such diagram: the one where the first
column of ðm − 1; m − 1Þt is glued at the end of the first
column of the diagram ðmp − a; aÞt and where the second
column is glued at the end of the second column of
ðmp − a; aÞt (this is because the Littlewood-Richardson
rule imposes that no boxes stemming from the same row
can be glued to a column where a similar box has
already been glued). Hence for one given irreducible
indexed by the diagram ðmp − a; aÞt inside Symmð⋀pÞ
we get only one irreducible inside the plethysm
Symmð⋀pÞ ⊗ Symm−1ðSym2Þ indexed by a diagram
ðmðpþ 1Þ − a − 1; aþm − 1Þt. Hence, by changing
aþm−1 into a, we get the multiplicity Mðmpþ2ðm−1Þ−a;aÞt
of the irreducible corresponding to the Young
diagram ðmpþ 2ðm − 1Þ − a; aÞt inside the plethysm
Symmð⋀pÞ ⊗ Symm−1ðSym2Þ given by

Mðmpþ2ðm−1Þ−a;aÞt ¼ mðmp−aþm−1;a−mþ1Þt

¼
(
Np

a−mþ1;m −Np
a−m;m if p is even

Np;distinct
a−mþ1;m −Np;distinct

a−m;m if p is odd
;

ð86Þ

where the numbers Np
r;s and Np;distinct

r;s are defined as in
Eq. (82). Note in particular that in order for Np;distinct

r;s to be
nonzero we need obviously to have s ≤ pþ 1 (otherwise
there are fewer integers inside f0;…; pg than necessary to
get a partition of r into s distinct such integers); this
translates for the odd-p case to the very important condition

m ≤ pþ 1: ð87Þ

The origin of this condition can be traced back to the step 3
of the above derivation: when condition (87) is not fulfilled
there are fewer variables yr than the number of boxes in the
single column of the Young diagram ð1Þm and hence one
cannot build the Schur function sð1ÞmðyrðxÞÞ.

V. EXPLICIT CONSTRUCTION OF p-FORM
GALILEON THEORIES

The above derived restrictions on the tensor Em allows us
to count the maximum number of possible theories of

Galileon p-forms with specific properties. We will defer the
full analysis of this question to another work but we would
like here to consider two particular cases, the one of a
vector (corresponding to p ¼ 1) and the first nontrivial case
of an odd-p-form with p ¼ 3.

A. Vector Galileon: No-go

The case p ¼ 1 has already been studied in [16] where it
was shown that no such nontrivial Galileon theory existed.
These results can be obtained here in a very simple way
using the above results. Indeed, for p ¼ 1 we find from
(87) that we must have m ≤ 2 in order to have a non-
vanishing multiplicity ðmpþ 2ðm − 1Þ − a; aÞt inside the
plethysm Symmð⋀pÞ ⊗ Symm−1ðSym2Þ. Recalling that
(m − 1) gives the order of the taken derivatives of the
field equation E with respect to the second derivative of the
gauge field, we find that, under our hypotheses, the field
equations can only depend on the second derivative of the
gauge field linearly, which matches the results of [16].

B. A nontrivial 3-form theory

The next interesting case for odd p corresponds to
p ¼ 3, which we investigate here. In this case, obviously
from (87), we must have m ≤ 4 in order to have a
nonvanishing interesting tensor Em. Moreover, when
p ¼ 3 the rank of this tensor is

ðmpþ 2ðm − 1ÞÞ ¼ 5m − 2: ð88Þ

By taking large enough m (i.e., enough numbers of
derivatives with respect to the second derivatives of the
p-form), and since we are looking at theories where the
field equations only depend on second derivatives of
the form, we should be able to end up with a tensor
Emmax which is solely built from the metric ηab and the ϵ
tensor, which are the only tensors available besides the
second derivatives of the form. Here we focus on the first
case, and one must then have Emmaxþ1 ¼ 0. However, ηab

has obviously an even rank; this should hence be true as
well for the tensor Emmax obtained as we just explained.
Hence, in the p ¼ 3 case, we are left with the only two
possibilities mmax ¼ 2 and mmax ¼ 4 [see Eqs. (88) and
(87)]. The first possibility does not lead to any interesting
Galileon-like theory of a 3-form since in that case E3

vanishes, which means again that the field equations are at
most linear in second derivatives of the 3-form. So the only
leftover case is for mmax ¼ 4. In this case, we have from
(88) that E4 has rank 18 and should only depend on ηab.
The starting point of our construction is hence the tensor

product η9 ¼ η ⊗ � � � ⊗ η (nine factors), from which we
want to build a tensor having all the required symmetries 1,
2, and 3 summarized in Sec. II B. The tensor η9 belong
by construction to the symmetry class of the plethysm
Sym9ðSym2Þ and using the results of Sec. IV B 4 we see
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that there is only one irreducible inside this plethysm
corresponding to a two-column diagram with two columns
of equal size. It is easy to see how the corresponding
irreducible representation of S18 can be constructed.
Indeed, we can consider the Young symmetrizer yantiλk

,
where λk corresponds to the standard filling of the two-
column diagram ð2Þ9 where a given row contains the pair of
indices of one given factor η of the tensor product η9. The
action of yantiλk

on η9 then simply gives the tensor ϵ2ð18Þ ¼ ϵ2
[where here and below, we consider the simplest case where
space-time has the required minimum D ¼ 9 number of
dimensions; see Eq. (1)] up to an overall constant; i.e., we
have yantiλk

η9 ¼ −29 · 9! · ϵ2, which can be seen using the
identity

X
σ∈S9

signðσÞηaσð1Þb1ηaσð2Þb2…ηaσð9Þb9 ¼ −ϵa½9�ϵb½9� ¼ −ϵa½9�b½9�2 :

ð89Þ

Now, because ϵ2 is obviously nonvanishing, we can use
the statements of Appendix C 1 showing that R½S18�ϵ2 ≡
Mϵ2 provides an irreducible representation of S18 indexed
by the Young diagram ð2Þ9. Using the results of Sec. IV B 5
we see that the plethysm of interest here, given by (for
m ¼ 4 and p ¼ 3) Sym4ð⋀3Þ ⊗ Sym3ðSym2Þ, contains
one and only one equivalent representation indexed by the
same diagram ð9; 9Þt ¼ ð2Þ9. This follows from Eq. (86)
with a ¼ 9, m ¼ 4, p ¼ 3, yielding N3;distinct

6;4 ¼ 1 and

N3;distinct
5;4 ¼ 0 simply because 6 ¼ 0þ 1þ 2þ 3. Let us

consider one given nonvanishing tensor T belonging
to this irreducible and to the symmetry class
Sym4ð⋀3Þ ⊗ Sym3ðSym2Þ. Then, using results summa-
rized in Appendixes C 1 and C 2 we have that this
irreducible is just given by MT . Schur’s lemma and its
corollaries provided in Appendix A 3 then show that there
is a unique (up to scalar multiplication) S18-isomorphism
between MT and Mϵ2 , which we call ψ . Our next aim is to
use ψ to build the explicit form of a suitable nonvanishing
E4 inside Sym4ð⋀3Þ ⊗ Sym3ðSym2Þ.
We first note that if we consider a given S18-isomorphism

ϕ betweenMT andMϵ2 , this map is entirely defined by the
image of the tensor T , ϕðT Þ. Indeed, once this image is
defined, the image of any tensor belonging to MT defined
by

P
σ∈S18fðσÞσðT Þ is just given by (using the notations of

Appendix B 1 as well as the fact that ϕ is an intertwiner)

ϕ

�X
σ∈S18

fðσÞσðT Þ
�

¼
X
σ∈S18

fðσÞσðϕðT ÞÞ: ð90Þ

Hence, we see that a complete set of intertwiners for the
vector space of intertwiners between MT and Mϵ2 is just
given by the intertwiners ϕσ defined by

ϕσðT Þ ¼ σðϵ2Þ; σ ∈ S18: ð91Þ

Namely, any intertwiner between MT and Mϵ2 can be
written as

P
σ∈S18FðσÞϕσ, where FðσÞ is a function on S18.

Let us then choose a specific order and labeling for the
18 indices of T which corresponds to the order of the
indices of E4 given in Eq. (50) for m ¼ 4 and p ¼ 3. As T
belongs to Sym4ð⋀3Þ ⊗ Sym3ðSym2Þ, it has in particular
the symmetries 1 and 2 defined in Sec. II B. In order to
picture these symmetries here it turns out easier to first

define (for generic p and m) operators Oðm;pÞ
1 and OðmÞ

2

acting as defined below on an arbitrary tensorX. In order to
simplify notations, we first define the following shortcut

X ðm;pÞ
comp to denote the component of the tensors X with the

following specific labeling,

X ðm;pÞ
comp ≡ Xafpgb1fpgc1d1…bm−1fpgcm−1dm−1 ; ð92Þ

where afpg ¼ fa1;…; apg and bifpg ¼ fbi;1;…; bi;pg.
The operators Oðm;pÞ

1 and OðmÞ
2 are then defined as

ðOðm;pÞ
1 ðXÞÞAB1c1d1…Bm−1cm−1dm−1

≡ Symðafpg;b1fpg;…;bm−1fpgÞΛðafpgÞ
Ym−1

i¼1

ΛðbifpgÞðX ðm;pÞ
comp Þ;

ð93Þ

ðOðmÞ
2 ðXÞÞafpgb1fpgc1d1…bm−1fpgcm−1dm−1

≡ Symðfc1;d1g;…;fcm−1;dm−1gÞ
Ym−1

i¼1

Symðci;diÞðX
ðm;pÞ
comp Þ; ð94Þ

where A ¼ a½p� and Bi ¼ bi½p� are sets of antisymmetric
indices made, respectively, of afpg and bifpg;
Symðα1;…;αkÞ means a symmetrization on the arguments
α1;…; αk and Λðα1;…;αkÞ an antisymmetrization on the
arguments αi, these arguments being either space-time
indices (e.g., when fα1;…; αpg ¼ afpg ¼ fa1;…; apg)
or a list of indices (e.g., when fα1;…; αmg ¼
fafpg; b1fpg;…; bm−1fpgg). One then has

Oð4;3Þ
1 ðT Þ ¼ T ; ð95Þ

Oð4Þ
2 ðT Þ ¼ T ; ð96Þ

as a consequence of the fact that T has the symmetries 1
and 2. Note that these operators commute (as they do not
act on the same indices) and are also idempotent elements
(once properly normalized) of the group algebra R½S18�.
Their product acts as a projector on the plethysm
Symmð⋀pÞ ⊗ Symm−1ðSym2Þ and constitutes a generating
idempotent of the tensor symmetry class corresponding to
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this plethysm as defined in (C6). Let us then introduce
σ0 ∈ S18 so that it maps ϵ2 to

ðσ0ðϵ2ÞÞaf3gb1f3gc1d1b2f3gc2d2b3f3gc3d3
¼ ϵ

cf3gaf3gb1;1b1;2b2;1df3gb1;3b2;2b2;3b3f3g
2 ; ð97Þ

which corresponds to the filling λ0 of the Young tableau
ð2Þ9. Here, λ0 is defined by

and we have defined af3g¼fa1;a2;a3g, cf3g¼
fc1;c2;c3g, df3g ¼ fd1; d2; d3g, and bif3g ¼
fbi;1; bi;2; bi;3g for 1 ≤ i ≤ 3. Concretely, σ0 ∈ S18 is
defined as σ0ðiÞ ¼ 5iþ 2, σ0ð3þ iÞ ¼ i, σ0ð7Þ ¼ 4,
σ0ð8Þ ¼ 5, σ0ð9Þ ¼ 9, σ0ð9þ iÞ ¼ 5iþ 3, σ0ð13Þ ¼ 6,
σ0ð14Þ ¼ 10, σ0ð15Þ ¼ 11, σ0ð15þ iÞ ¼ 13þ i, where
i ¼ 1, 2, 3.
Let us then consider the intertwiners ϕσ defined above as

in (91). Because ϕσ is an intertwiner, one has

Oð4;3Þ
1 Oð4Þ

2 ðϕσðT ÞÞ ¼ ϕσðOð4;3Þ
1 Oð3Þ

2 ðT ÞÞ ¼ ϕσðT Þ
¼ Oð4;3Þ

1 Oð4Þ
2 ðσðϵ2ÞÞ; ð98Þ

where the first equality follows from the fact that ϕσ is an
intertwiner and the second from the fact T belongs to the
symmetry class of Symmð⋀pÞ ⊗ Symm−1ðSym2Þ. Now it is
easy to see that for any σ such that σ−1σ0 belongs to the
column group of the diagram λ0 [i.e., is such that the filling
of the tableau ð2Þ9 corresponding to σðϵ2Þ and the filling
corresponding to σ0ðϵ2Þ only differ by the order of the
indices in each columns] is such that σðϵ2Þ and σ0ðϵ2Þ are
equal up to a factor �1 due to the antisymmetry of the two
factor ϵ’s entering into the definition of ϵ2. On the other
hand, whenever σ−1σ0 does not belong to the column group

of the diagram λ0, one hasO
ð4;3Þ
1 Oð4Þ

2 ðσðϵ2ÞÞ ¼ 0. Indeed, in
this case, the filling of the tableau ð2Þ9 corresponding to
σðϵ2Þ is such that either (i) one column contains strictlymore
than three indices in the set cf3g∪df3g [and hence at least
two of these indices ci and di carry the same subindex i, in

which case σðϵ2Þ is annihilated by the action ofOð4Þ
2 ] or if it

not the case one can first assume that, due to the action of the

symmetrization insideOð4Þ
2 all indices in cf3g and all indices

in df3g of σðϵ2Þ are in a different column as in λ0 and
then either (ii) at least one column contains the same number
of indices, each belonging to two sets among
faf3g; b1f3g; b2f3g; b3f3gg [in which case σðϵ2Þ is anni-
hilated by the combined action ofOð4Þ

2 andOð4;3Þ
1 ] or (iii) this

is not the case, in which case the action of Oð4Þ
2 Oð4;3Þ

1 on

σðϵ2Þ is just proportional to Oð4Þ
2 Oð4;3Þ

1 ðσ0ðϵ2ÞÞ.

As a consequence of the above, of Eq. (98), and of the
fact that we know there exists a unique (up to a constant)
nonvanishing intertwiner between MT and Mϵ2 , we reach

the important conclusion that Oð4;3Þ
1 Oð4Þ

2 ðσ0ðϵ2ÞÞ cannot
vanish. Hence we can set E4 to be equal to

ðE4ÞAB1c1d1B2c2d2B3c3d3

¼ Oð4;3Þ
1 Oð4Þ

2

�
ϵ
cf3gaf3gb1;1b1;2b2;1df3gb1;3b2;2b2;3b3f3g
2

	
; ð99Þ

where A ¼ a½3� and Bi ¼ bi½3� are sets of antisymmetric
indices made of af3g and bif3g, respectively. It is easy
to see explicitly that this tensor does not vanish. For
this purpose it suffices to show that the component
with ci ¼ di ¼ i, ai ¼ b3;i ¼ 3þ i, b1;i ¼ b2;i ¼ 6þ i

(i ¼ 1, 2, 3) is nonvanishing. First, the operator Oð4Þ
2

acting on this component is equivalent to the multiplication
by 3! · 23. Second, ΛðafpgÞΛðb3fpgÞ is equivalent to the
multiplication by ð3!Þ2. Third, in order to show that
Symðafpg;b1fpg;b2fpg;b3fpgÞ is also reduced to a multiplication
by a nonvanishing constant, let us rewrite it as a simple sum
over α ∈ S4 acting on labels f1; 2; 3; 4g, where the label 1
corresponds to afpg and the labels 1þ i correspond to
bifpg (i ¼ 1, 2, 3). Then, for the specific component that
we are currently considering it is obvious that
Symðafpg;b1fpg;b2fpg;b3fpgÞ is reduced to the summation over
fα∈S4s:t:ðαð1Þ;αð4ÞÞ¼ð1;4Þorð4;1Þorð2;3Þorð3;2Þg, and
thus is equivalent to the multiplication by 4 · 2. Finally, in
order to show that Λðb1fpgÞΛðb2fpgÞ is also a multiplication
by a nonvanishing constant, let us rewrite it as a weighted
sum over β ∈ S3 and γ ∈ S3 with the weight
signðβÞsignðγÞ. For the component of interest it is then
easy to see that Λðb1fpgÞΛðb2fpgÞ is reduced to the simple
sum over β ¼ γ ∈ S3 followed by the multiplication
by 2, where the factor 2 takes care of the interchange
between γð1Þ and γð2Þ relative to βð1Þ and βð2Þ. Thus
Λðb1fpgÞΛðb2fpgÞ is equivalent to the multiplication by 2 · 3!.
This completes the explicit proof that the tensor E4 defined
above does not vanish.
To get the equation of motion we integrate this tensor

three times with respect to the second derivative of the
3-form and thus we get [omitting integration constants
which will be discussed in a future publication as well as
symmetrizations and antisymmetrizations inside the oper-

ators Oð4;3Þ
1 Oð4Þ

2 which are redundant with the contraction
with the second derivatives of the form]

EA ¼ ðSymðA;b1f3g;b2f3g;B3Þϵ
cf3gAb1;1b1;2b2;1ϵdf3gb1;3b2;2b2;3B3Þ

×AB1;c1d1AB2;c2d2AB3;c3d3 : ð100Þ

Here, as already stated at the beginning of Sec. II B,
we have not introduced dependence of the integration
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constants on first derivatives of the p-form for simplicity.
Also as already stated, the integration constants cannot
depend on the p-form itself without derivatives acted on it
because of (35). These equations of motion derive from the
following action (up to an overall constant and a total
derivative),

S ¼
Z
M

ϵcf3gAb1;1b1;2b2;1ϵdf3gb1;3b2;2b2;3B3

×AAAB1;c1d1AB2;c2d2AB3;c3d3 ; ð101Þ

where the leftover operator SymðA;b1f3g;b2f3g;B3Þ has just been
removed, as keeping it would yield an equivalent action up
to a boundary term. Hence we have obtained a nontrivial
Galileon-like theory for a 3-form necessitating at least nine
space-time dimensions. This theory fulfills our initial
criteria: it has an action principle and has field equa-
tions (100) which only contain second derivatives and
which are gauge invariant. The gauge invariance, although
guaranteed by our formalism, can also be explicitly checked
from the field equations (100). Indeed, any replacement
there of one A by the exterior derivative dC of a 2-form C
yields a vanishing expression because the index of the
derivative coming from the operator d is contractedwith one
epsilon tensor ϵ, which also contains one of the indices of the
second derivatives acting on the replacedA in Eq. (100). It
is interesting also to stress that the action is only gauge
invariant up to a boundary term which in fact makes our
theory similar to Chern-Simon. To further investigate this
question, one notices that the above action can be written
after suitable integration by parts and relabeling as (leaving
aside an overall sign of combinatorial origin)

S ¼
Z
M

d9xϵa½9�ϵb½9�ð∂a1FB1
Þð∂b1FA1

Þ

× ð∂a6Ab7b8a9Þð∂b6Aa7a8b9Þ ð102Þ

where here B1 ¼fb2;b3;b4;b5g and A1¼fa2;a3;a4;a5g,
A is by assumption a 3-form, andF ¼ dA is the associated
field strength. This can be contrasted with the action found
in [9] which was discussed in the introduction, Eq. (7),
where the structure of the index contraction is different for
the last two factors involving the first derivative of the 3-
form field.

VI. CONCLUSION

In this work we have investigated Galileon-like p-form
theories and provided a first step towards their full
classification. Focusing on the case of single p-forms with
gauge invariant pure second order field equations derived
from an action principle, we have exposed a method to get
an upper bound on the number of such nontrivial theories.
This allowed us in particular to give a new proof of the
no-go theorem obtained in [16] for gauge invariant vector

Galileons corresponding to p ¼ 1. We also constructed
explicitly a nontrivial theory for a single 3-form, making
explicit that this no-go theorem does not extend to higher
odd p. This work can obviously be extended in various
directions. First, it should be possible to compute the
multiplicities obtained at the end of Sec. IV for all single p-
form theories and “reasonable” space-time dimensions
(say, e.g., D ≤ 11) and possibly to construct all of them
following the method exposed here. In particular one
should be able to investigate the issue of uniqueness of
the even-p-form theories found in [9]. A second direction
of investigation is to covariantize these theories in the spirit
of what has been done in [27] for the scalar case and in [9]
for p-forms.
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APPENDIX A: SOME ELEMENTS ABOUT REAL
AND COMPLEX LINEAR REPRESENTATIONS

OF FINITE GROUPS

Let V be a vector space over the field of real numbers R
or the field of complex numbers C. We note as usual
GLðVÞ the vector space of linear and invertible endomor-
phisms of V (i.e., of automorphisms of V), and we spell out
in this appendix some standard (and less standard) results
and definitions about linear representation theory of finite
groups that we will use in this work (see, e.g., [28]).

1. Generalities

SupposeG is a finite group. A linear representation ofG
into V is a homomorphism, ρ∶ G → GLðVÞ. In other
words, ρ is a map from G to GLðVÞ which preserves the
group structure and hence verifies

ρðg1g2Þ ¼ ρðg1Þρðg2Þ for all g1; g2 ∈ G: ðA1Þ

Below, we will sometimes also use the notation ρg to denote
the image of g by ρ, ρðgÞ≡ ρg (such that one has
ρg1g2 ¼ ρg1ρg2) as well as the more correct “ðV; ρÞ” to
designate the representation of G under consideration.
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Consider ðV; ρÞ; ðW; ρ0Þ, two representations of the
group G. A linear map ϕ∶ V → W, that commutes with
the group action, i.e., such that

ρ0gϕðVÞ ¼ ϕðρgVÞ ∀ g ∈ G and ∀V ∈ V ðA2Þ

is called an intertwiner map from V to W (such a map is
also said to be equivariant or also a G-map or a G-
homomorphism).
Let V, W be vector spaces of equal dimension and

ϕ∶ V → W be a vector space isomorphism. Given a
representation ρ of group G on V, the map ϕ induces a
unique representation ρ0 of G on W via

ρ0g ¼ ϕ∘ρg∘ϕ−1 g ∈ G: ðA3Þ

The two representations ρ and ρ0 are said to be equivalent.
Let U ⊂ V be a vector subspace of V and ρ be a

representation of G acting on V. We say that U is an
invariant subspace of V under ρ (or that U is stable under
ρ), iff

ρðgÞV ∈ U ∀V ∈ U; ∀g ∈ G: ðA4Þ

Obviously, then ρ provides a representation of G into the
vector space U. If U is such that it does not contain any
subvector space other than itself (and the trivial f0g) that is
stable under G, we say, U furnishes an irreducible
representation of G.
An important theorem states that any representation of a

finite group is a direct sum of irreducible representations.
In other words, the vector space V defining the represen-
tation under consideration can always be written as

V ¼ ⨁
i
Wi; ðA5Þ

where Wi are irreducible representations of the group G.
Another way to state this result is that any representation of
a finite group is completely reducible. Note that this
decomposition is not unique; however, any other similar
decomposition gives a decomposition into irreducible
representations. Moreover, some of the Wi entering the
direct sum in (A5) can give equivalent representations.
Hence, we can denote by W̄j the vector spaces entering into
the direct sum (A5) which furnish inequivalent representa-
tions (i.e., such that W̄i and W̄j are inequivalent irreducible
representations whenever i ≠ j). This implies that for a
given irreducible representation W̄j, there are mj (with
mj ≥ 1) equivalent irreducibles entering into the direct sum
(A5), which we can write as

V ¼ ⨁
j
W̄

⊕mj

j : ðA6Þ

The number mj of vector spaces W̄j contained in V
corresponding to the same irreducible up to equivalence
is called the multiplicity of W̄j.
A simple lemma given below will also be used in the

following: let us consider two representations ðV; ρÞ;
ðW; ρ0Þ and a G-homomorphism ψ between them, and
assume that V is irreducible. Then (i) the image ImðVÞ of V
by ψ is an invariant subspace of W and (ii) if ImðVÞ does
not reduce to 0 it is irreducible. Indeed, consider first an
arbitrary element W of ImðVÞ; then there exists V ∈ V
such that W ¼ ψðVÞ. For an arbitrary element g of G, one
thus has ρ0gðWÞ ¼ ρ0gðψðVÞÞ ¼ ψðρgðVÞÞ. But since V is
irreducible, then it is also invariant and hence ρgðVÞ ∈ V,
which proves (i). Similarly, consider now an invariant
subspace W 0 inside ImðVÞ; then it is easy to see that its
reciprocal image ψ−1ðW 0Þ is an invariant subspace of V.
However, since we have assumed that V is irreducible, its
only nontrivial invariant subspace is itself, which means
that one must have W 0 ¼ ImðVÞ, which ends the proof
of (ii).

2. Absolute irreducibility

Let us now assume further that the base field of V is the
field of real numbers R (and, we stress, not its algebraic
closure C). In order to make this clear we denote as VR the
vector space V with R as a base field. We assume that
ðVR; ρÞ is a representation of the group G over VR. The
vector space VR can be extended (or “complexified”) to
become a vector space VC over C. Formally, the complex-
ification VC of VR is defined as

VC ¼ C ⊗R VR; ðA7Þ

where the tensor product above can just be considered as a
tensor product between two vector spaces VR and C over
the field of real numbers (hence the notation ⊗R). Hence,
an arbitrary vector in VC is just given by an arbitrary
linear combination of some tensor product z ⊗R V,
where z ∈ C and V is some vector in VR. For three
arbitrary complex numbers z1, z2, and z3 and two arbitrary
vectors V1 and V2 inside VR, the composition law
z1ððz2þ z3Þ⊗R ðV1þV2ÞÞ¼ ðz1z2þ z1z3Þ⊗R ðV1þV2Þ
gives to VC a structure of a C-vector space. A simpler
notation for an arbitrary vector V of VC is just
V ¼ l1V1 þ il2V2, where l1 and l2 are real numbers and
V1 and V2 are elements of VR. Furthermore, we can
write VC ≡ C ⊗R VR ¼ VR⊕iVR. An endomorphism ϕ
of VR can also be complexified into an endomorphism
ϕC of VC, defining ϕCðz ⊗R VÞ≡ z ⊗R ϕðVÞ ¼
ReðzÞϕðVÞ þ iImðzÞϕðVÞ and extending this by linearity.
Now considering a representation ðVR; ρÞ of the groupG on
the vector space VR realized over the field R, we obtain a
new representation of G, ðVC; ρCÞ, on the vector space VC

by defining for all g ∈ G, ρCðgÞ ¼ ðρðgÞÞC. If an irreducible
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representation ðVR; ρÞ is such that ðVC; ρCÞ is also irre-
ducible, we say that it is absolutely irreducible. That is, an
irreducible vector space remains irreducible under the
complexification described above.4 This can be shown to
be the case for representations of the symmetric group.5

3. Schur’s lemma and some corollaries

Let ðV; ρÞ; ðW; ρ0Þ be two irreducible representations of
the group G and ϕ∶ V → W be a linear map that
intertwines with the group action, i.e., which is an inter-
twiner map as defined in the above Sec. A 1. Then
(1) ϕ is either 0 or an isomorphism.
(2) In the particular case when ðV; ρÞ ¼ ðW; ρ0Þ, and the

base field of the vector space V is C, then ϕ ¼ λ1,
with λ ∈ C and 1 the identity inGLðVÞ. That is, ϕ is
a scalar multiple of the identity.

The proof of the above lemma can be found in a variety of
references (e.g., in [28]). However, for the sake of clarity
and of the understanding of the remaining of this sub-
section, we found it useful to give it explicitly below.
Proof.—The map ϕ ¼ 0 is a trivial intertwiner. Suppose

ϕ ≠ 0 and consider the kernel of ϕ, KerðϕÞ. If V ∈ KerðϕÞ
then 0 ¼ ρ0gðϕðVÞ≡ 0Þ ¼ ϕðρgðVÞÞ∀g ∈ G. Hence
KerðϕÞ ⊂ V is an invariant subspace of the representation
ðV; ρÞ. Since this representation is irreducible by hypoth-
esis, any invariant subspace is either the null space or the
entire space V; the second case, i.e., the case with
KerðϕÞ ¼ V is excluded as ϕ ≠ 0. By a similar argument
we can conclude that the image of ϕ is the entire space W,
i.e., ImðϕÞ ¼ W. The properties KerðϕÞ ¼ 0 and ImðϕÞ ¼
W imply that ϕ is a G-isomorphism which proves the first
part of the lemma. Consider now the case where V ¼ W
and ρ ¼ ρ0, and define the map ϕ0 ≡ ϕ − λ1, where λ ∈ C
is a nonzero eigenvalue of ϕ (which always exists sinceC is
algebraically closed). Then ϕ0 is an intertwiner and has a
nonzero kernel. These properties can only be satisfied if
ϕ0 ¼ 0, which implies that ϕ ¼ λ1. □

The above Schur lemma also extends as follows to the
case of an absolutely irreducible representation on the real
field. Indeed, let ðVR; ρÞ be an absolutely irreducible
representation. Then, any G-homomorphism ϕ∶VR→VR
is necessarily a scalar multiple of the identity inside R, i.e.,

ϕ ¼ λ1 λ ∈ R: ðA8Þ

Proof.—Let us consider the representation ðVC; ρCÞ as
defined above and the complexification ϕC of the map ϕ.

The map ϕC is a G-homomorphism of the irreducible
representation ðVC; ρCÞ; hence Schur’s lemma states that it
must be of the form ϕC ¼ λ1, with λ some complex
number. Hence, for an arbitrary nonvanishing complex
number z and vector V of VR one has ϕCðz ⊗R VÞ ¼
λðz ⊗R VÞ, which reads also ðReðzÞ þ iImðzÞÞϕðVÞ ¼
ðReðλÞ þ iImðλÞðReðzÞ þ iImðzÞÞV ¼ ðReðzÞReðλÞ −
ImðzÞImðλÞÞV þ iðReðzÞImðλÞ þ ImðzÞReðλÞÞV, and
implies ImðλÞ ¼ 0 and also ϕðVÞ ¼ λV, ending the
proof. □

The above lemmas lead to the following corollaries.
First, let ðV1; ρ1Þ; ðV2; ρ2Þ be equivalent irreducible repre-
sentations over C or equivalent absolutely irreducible
representations overR. Then theG-isomorphism that exists
between them is unique up to scalar multiplication. Indeed,
let ϕi∶ V1 → V2i ¼ 1, 2 be twoG-isomorphisms. Then the
map ϕ−1

2 ∘ϕ1∶ V1 → V1 is a G-automorphism. It follows
from Schur’s lemma that one must have ϕ−1

2 ∘ϕ1 ¼ λ1,
implying ϕ1 ¼ λϕ2, λ ∈ C (or R).
Secondly, let us consider an irreducible representation

ðV; ρÞ and let W ¼ V1⊕ � � �⊕Vm, where Vi is isomorphic
to V∀i ∈ f1;…; mg. Then the number of linearly inde-
pendent G-homomorphisms ψ i∶ W → V is exactly m.
Indeed, let ϕi∶ Vi → V be nonzero G-isomorphisms
(which are guaranteed to exist since Vi ≃ V). Let
~πi∶ W → Vi, be the canonical projections on Vi, and we
further define πi∶ W → W such that ∀W ∈ W, πiðWÞ ¼
~πiðWÞ (i.e., πi are the compound of ~πi by the inclusion
map of Vi inside W). The identity map inside W, 1W , is
just given by 1W ¼ P

iπi. Now consider an arbitrary G-
homomorphism ψ∶ W → V. One has using the above
decomposition of 1W ,

ψ ≡Xm
i¼1

ψ i; ðA9Þ

where ψ i ¼ ψ∘πi are maps between W and V. The restri-
ction of ψ i to Vi, defined to be ~ψ i, is a G-homomorphism
and hence, thanks to the preceding lemma, we have that
~ψ i ¼ λiϕi, with λi some real number, which ends the proof.

APPENDIX B: THE GROUP ALGEBRA
OF THE SYMMETRIC GROUP AND ITS

REGULAR REPRESENTATIONS

1. Definitions of the group algebra of Sn
The so-called group algebra (also called the Frobenius

algebra [see, e.g., [29], p. 43] or the group ring) of Sn,
which is usually noted as R½Sn� (for reasons that will also
appear clear below), plays a crucial role in elucidating the
link between tensor symmetries and representations of the
symmetric group that we use in this work.
A first definition of the group algebra is as follows: first,

out of Sn we can define a vector space VSn over R by
considering each different element σi of Sn as a base vector

4The notions introduced in this subsection and in the following
one can be extended to vector spaces over an arbitrary field F and
an arbitrary field extension of it.

5This is a consequence of the fact that irreducible representa-
tions of the symmetric group are defined on Q and stay
irreducible on any extensions of Q of characteristic 0, such as
R and C.

p-FORM THEORIES WITH GAUGE INVARIANT SECOND … PHYSICAL REVIEW D 93, 085027 (2016)

085027-15



noted here eσi (note that in the following we will sometimes
use the slight abuse of notation consisting in identifying the
permutation σi with eσi , the corresponding basis element of
R½Sn�) and defining the elements of VSn (which will turn
out to be identical6 to R½Sn�) as just arbitrary linear
combinations of the eσi with real coefficients of the formP

i¼n!
i¼1 lσieσi , where lσi are n! real numbers (and the product

and sum appearing in this definition are formal so far—see
below). The addition of two such vectors and multiplication
by a real number, l, are just then defined in a natural way as

�Xi¼n!

i¼1

kσieσi

�
þ
�Xi¼n!

i¼1

lσieσi

�
¼

Xi¼n!

i¼1

ðkσi þ lσiÞeσi ðB1Þ

l

�Xi¼n!

i¼1

kσieσi

�
¼

Xi¼n!

i¼1

lkσieσi : ðB2Þ

Using then the composition law of Sn as a internal
composition law on VSn as (note that below and in the
following we note this law with the × symbol, but we will
also later omit this symbol in order to alleviate notations)

�Xj¼n!

j¼1

kσjeσj

�
×

�Xi¼n!

i¼1

lσieσi

�
¼
Xj¼n!

j¼1

Xi¼n!

i¼1

ðkσj lσiÞeσjσi ðB3Þ

gives to VSn the structure of an algebra. We note that Sn is
obviously included into its group algebra R½Sn�, and, if we
consider the element of the group algebra in the left
parenthesis of the left-hand side of Eq. (B3) just to be
given by an element of Sn (i.e., setting all but one kσj to
zero), we can interpret (B3) as defining a representation of
the permutation group Sn on the vector space VSn , where
the action of a group element on an element of the group
algebra (considered as a vector space) is simply given here
by the left product of the group element by the vector. This
representation is called the (left) regular representation of
Sn. The same action [now extended to a given element of
the group algebra in the left parenthesis of the left-hand side
of equality (B3), i.e., allowing for arbitrary kσj] clearly also
provides a representation of the full group algebra acting on
itself (as a vector space) by left multiplication. In general
every representation of the group algebra also contains one
of the group itself (because the group is contained in the
group algebra) and conversely for any representation of the
group there exists a unique representation of the group
algebra in which it is contained (which is just obtained by

considering formal linear combinations of matrices asso-
ciated with the considered group representation). One can
further show that if a representation is irreducible or
reducible as a representation of the group algebra, then
it has the same property as a representation of the group.
There is another definition of the group algebra which is

handy for us. R½Sn� can just be defined as the set of real
functions on the symmetric group Sn. Indeed, because Sn is
finite, any such function f is fully defined by n! real
numbers fðσiÞ, where σi runs over all the elements of Sn.
This provides a one-to-one map between the set of real
functions on Sn and R½Sn�, which sends a given function f
to the group algebra element

P
i¼n!
i¼1 fðσiÞeσi . Using this

definition, there is a natural operation that can be defined on
the group algebra and that will play a role in the following:
it is called the � involution map: it sends the group algebra
element a ¼ P

i¼n!
i¼1 fðσiÞeσi to a� ¼ P

i¼n!
i¼1 fðσiÞeσ−1i .

2. Young diagrams, Young tableaux,
and Young symmetrizers

As it will be recalled later, the regular representation of
the group algebra R½Sn� is fully reducible and its decom-
position into irreducibles allows us to fully classify tensor
symmetries and operate a similar decomposition of a given
space-time tensor. This decomposition in practice relies on
the use of special elements of the group algebra which are
called Young symmetrizers and which will be defined
below. To do so, we first need to introduce some basic
notions about partitions, Young tableaux, and diagrams.
These notions, as well as some properties to be given
below, will also be used in this article when dealing with
plethysms and symmetric functions as well as to derive our
main results.
We first recall that, given a positive integer n,

a partition λ of n, denoted by λ ⊢ n, is a sequence of
positive integers, ðλ1; λ2;…λrÞ, such that λ1 ≥ λ2 ≥ � � �≥ λr
and λ1 þ λ2…þ λr ¼ n.
A Young diagram is a finite collection of boxes

arranged in left-justified rows, with the row sizes weakly
decreasing (this being the so-called “English” notation for
Young diagrams, while the “French” convention is upside
down with respect to the English one).7 Each Young
diagram corresponds uniquely to a partition and will
sometimes be noted as the corresponding partition
λ ¼ ðλ1; λ2;…λrÞ. The Young diagram associated to a
given λ is the one that has r rows (using the notation of the
above definition) and λi boxes on the ith row. For
example, the partition (3,2,2) corresponds to the following
Young diagram.

6In the following we use sometimes the notation VSn instead of
R½Sn� when we want to stress that we only use the vector space
structure of the group algebra, but we stress here again that the
two sets VSn and R½Sn� are just identical. In the literature,R½Sn� is
usually called either the group algebra, the group ring, or the
Frobenius algebra associated with Sn.

7See, e.g., Refs. [30,31] for nice reviews on Young diagrams
and tableaux.
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With the above notation, a Young diagram with one line of
m boxes will just be denoted (when it is clear from the
context that we consider a Young diagram and not an
integer) as ðmÞ. We will sometimes use a simplifying
notation to designate Young diagrams with several lines
each of the same length m. Such a diagram with p such
lines will be denoted as ðmÞp.
Given a Young diagram corresponding to a partition

ðλ1;…λrÞ, the conjugate or transpose of this Young
diagram is given by the reflection of the original diagram
along its main diagonal, denoted ðλ1…λrÞt, where the
superscript t stands for transpose. The transpose of our
above example is simply ð3; 2; 2Þt and corresponds to the
following Young diagram.

Given n ordered labels such as afng≔ fa1;…; ang, a
Young tableau λk ≡ λafng is a filling of the Young diagram

λ with labels ai, one in each box, such that a given label ai
can be used several times to fill a box. In the notation λk, the
subscript k labels different Young tableaux derived from the
same Young diagram λ but different fillings. For example,
given the labels f1; 2; 3g and a partition (2,1), admissible
Young tableaux are

A standard Young tableau is a Young tableau filled such
that the order is preserved strictly along the rows (from left
to right) and the columns (from top to bottom) and that each
label occurs at most once. For example, given the labels
f1; 2; 3g (ordered using the natural order on N) and a
partition (2,1), all the associated standard Young tableaux
are

For a given Young diagram λ (and a set of labels) we denote
by STλ the set of all standard Young tableaux built from λ.
A semistandard Young tableau is a Young tableau filled

such that the order is preserved strictly along columns but
only weakly along the rows. For example, all the semi-
standard Young tableaux built from the partition (2,1) and
with entries in the labels f1; 2; 3g are

Considering a given semistandard Young tableau filled with
integers f1; 2; 3;…g, this tableau is said to have type α ¼
ðα1;α2;…Þ if the number of occurrences of the integer i is
equal to αi.
Consider now a given Young diagram λ and some Young

tableau λk ≡ λafng obtained from it and an ordered list of
labels afng. There is a natural action of Sn on λk defined
(with obvious notations) by σðλafngÞ ¼ λfaσð1Þ;…;aσðnÞg, where
σ is an element of Sn and this action is simply defined by
the permutation of the labels of the boxes of the tableau
using σ. Furthermore, let Rλk ⊂ Sn be the row group
associated to the Young tableau λk defined as the subgroup
of Sn, which leaves the set of elements in each row invariant
(i.e., it can only change the order of the elements in a given
row). Similarly, let Cλk ⊂ Sn be the column group, i.e., the
subgroup of Sn that preserves the set of elements of each
column. Out of Rλk and Cλk associated to a given tableau,
we can define the following elements belonging to the
group algebra R½Sn�:

rλk ¼
X
σ∈Rλk

eσcλk ¼
X
σ∈Cλk

signðσÞeσ: ðB4Þ

For a given tableau λk, one can further define a
(“symmetric”) Young symmetrizer as the element of the
group algebra given by

ysymλk
≡ rλk × cλk : ðB5Þ

Due to the order of the multiplication above, this element is
such that it is automatically symmetric in the labels
corresponding to the rows of the Young tableau, which
justifies the upper “sym” in our notation. This corresponds
to the definition of Young symmetrizers used in most
references; however, another set of Young symmetrizers
can be used which are this time explicitly antisymmetric in
the labels corresponding to columns. These “antisymmet-
ric” Young symmetrizers are defined by
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yantiλk
≡ cλk × rλk : ðB6Þ

By the action of the � involution on a given Young
symmetrizer, one has obviously ðrλkÞ� ¼ rλk, ðcλkÞ� ¼ cλk
and ðV1 × V2Þ� ¼ ðV2Þ� × ðV1Þ�∀V1;2 ∈ R½Sn�, and thus

ðysymλk
Þ� ¼ yantiλk

and ðyantiλk
Þ� ¼ ysymλk

: ðB7Þ

A Young symmetrizer is what is called an essentially
idempotent of the group ring, i.e., an element y of R½Sn�
which verifies y2 ¼ ly where l is a real number. It is such
that ~y ¼ y=l is an idempotent, i.e., verifies ~y2 ¼ ~y (see, e.g.,
[25], p. 103). Accordingly, we call ~ysym=anti

λk
the idempotent

associated to the essentially idempotent ysym=anti
λk

.

3. Ideals of R½Sn� and the full reduction
of the regular representation

We first recall that a left (respectively, right) ideal inside
a ring X (for us, the relevant ring to consider here is the
group ring which is the same as the group algebra R½Sn�) is
a subset I of the ring such that (i) it is a subgroup of the ring
for the addition law (i.e., the internal law for which X is a
group) and (ii) for any x belonging to X and any i belonging
to I the product x × i (respectively, i × x, where × denotes
the internal product of the ring) belongs to I. A two-sided
ideal is an ideal which is at the same time a left and a
right ideal. An ideal (left, right, or two-sided) is said to be
minimal when it contains no other ideal (of the same
kind) besides the trivial ideals, i.e., itself and the null
ideal.
There is an easy way to construct ideals: consider a given

element g of the group algebra and then the set of all the
right products of an arbitrary element x ofR½Sn�with g, i.e.,
fx × g; x ∈ Rg. This set can be noted R½Sn�g and is
obviously a left ideal. It is said to be generated by g.
Similarly, the set of the solutions x of the equation x×g¼ 0
(where 0 is the null vector and g is a given element of the
ring) also constitutes a left ideal. One can show that every
ideal can be generated in both ways. In particular, it can be
shown that every left ideal I of R½Sn� contains an element e
such that e is an idempotent (i.e., verifies e2 ¼ e) and
generates I (i.e., I ¼ R½Sn�e) (see [25], pp. 58–59). The
element e is called a generating idempotent of I. If the ideal
I is minimal, then every generating idempotent of I is
primitive.8 And conversely any primitive idempotent e
generates a minimal left ideal R½Sn�e. Note also that the
intersection of a finite number of left (respectively right or
two-sided) ideals is an ideal of the same type.

The ideals of the group ring R½Sn� play a crucial role in
the decomposition of the regular representation defined
above. Indeed, the invariant subspaces of this representa-
tion can be shown to be left ideals, while irreducible spaces
are minimal such ideals. The whole group ring is a direct
sum of minimal left ideals. This decomposition is unique
except for the order and up to equivalence between minimal
left ideals.9 Indeed, the group algebra can be decomposed
in the following way,

R½Sn� ¼ ⨁
λ⊢n

Iλ; ðB8Þ

where the sum runs over all the partitions λ of n (which are
in one-to-one correspondence with Young diagrams, and
which we note here as λ⊢n) and Iλ is a two-sided ideal in
one-to-one correspondence with a given Young diagram λ.
Each ideal Iλ can be further decomposed in a direct sum of
left ideals Lλk as follows:

Iλ ¼ ⨁
λk∈STλ

Lλk ; Lλk ¼ R½Sn�ysym=anti
λk

; ðB9Þ

where the sum now runs over the set of all standard Young
tableaux STλ which can be built out of a given partition λ,
and ysym=anti

λk
is the Young symmetrizer constructed from the

standard Young tableau λk in the antisymmetric or sym-
metric presentation.10 Each Young symmetrizer ysym=anti

λk
is a

generating essentially idempotent of the ideal Lλk≡
R½Sn�ysym=anti

λk
, and this ideal is minimal. Note further that

while Young symmetrizers associated to different Young
diagrams are mutually orthogonal, the young symmetrizers
associated to the same Young diagram but different
standard tableaux are not mutually orthogonal. Putting it
all together we then have the full decomposition of the
regular representation into irreducible representations of
the symmetric group (or of the group algebra), each
defined by the left action (B3) on the irreducible spaces
R½Sn�ysym=anti

λk
given by

R½Sn� ¼ ⨁
λ⊢n

⨁
λk∈STλ

R½Sn�ysym=anti
λk

: ðB10Þ

One can show that for a given Young diagram λ, the
dimension of R½Sn�ysym=anti

λk
as a vector space over R is the

same as the number of different standard Young tableaux

8See [25], p. 60, for a proof. A primitive idempotent g is an
idempotent which cannot be written as a sum of two different
(and nonvanishing) idempotent g0 and g00 which would in addition
be orthogonal, i.e., verify g0 × g00 ¼ 0 and g00 × g0 ¼ 0.

9Two ideals are said to be equivalent in this context if there is a
linear map between them which is compatible with left multi-
plication. In other words, if any element i of one ideal is mapped
to the element i0 of the other ideal, then x × i is mapped to x × i0
for any x belonging to the group ring R½Sn�. One can show that
any such map is a right multiplication.

10Note that the same presentation should be chosen for all the
Young symmetrizers entering into the decomposition.
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that can be built out of λ, which also gives the number of
isomorphic (but inequivalent) left ideals R½Sn�ysym=anti

λk
entering into the decomposition of the group ring.
A similar decomposition can be obtained using right

ideals (i.e., decomposing the two-sided ideals Iλ into direct
sums of right ideals). Indeed, one has analogously to (B8)

R½Sn� ¼ ⨁
λ

⨁
λk∈STλ

yanti=symλk
R½Sn�: ðB11Þ

This decomposition can be obtained by applying the �
involution map to (B10) and using (B7). Indeed, the �
involution map maps idempotents to idempotents, direct
sums of left (right) ideals to direct sums of right (left)
ideals, and minimal ideals to minimal ideals.
If one multiplies to the right the above equality (B8) by

some arbitrary element g of the group algebra, one obtains a
decomposition of the left ideal L≡R½Sn�g generated by g
(i.e., of any left ideal of R½Sn�, since any such ideal has a
generating idempotent) as

L≡R½Sn�g ¼
X
λ

X
λk∈STλ

R½Sn�ysym=anti
λk

× g: ðB12Þ

However, the sum on the right-hand side above is no longer
direct. Still, this can be used to obtain a decomposition of L
into a direct sum of minimal left ideals. This decomposition
can be obtained from the above (B12) just by removing
there a sufficient number of the minimal ideals
R½Sn�ysym=anti

λk
× g (one can indeed show that these ideals

are minimal). Fiedler [24,32] gives an algorithm to carry
out this decomposition. It uses the fact that the minimal left
ideals R½Sn�yanti=symλ × g and R½Sn�yanti=symμ × g are in direct
sum if μ and λ are standard tableaux, each corresponding to
different partitions of n (i.e., to different Young diagrams).
Hence, it is only the ideals of the form R½Sn�yanti=symλk

× g
with the λk corresponding to the same Young diagram (but
to different standard tableaux) which are not necessarily in
direct sum in the expression above, depending on the
considered element g of the group algebra. This means in
particular that it is only whenever, for a given fixed Young
diagram, there is more than one standard Young tableau
entering in the sum (B9) that one possibly has to remove
corresponding terms in the sum (B12). The algorithm
devised by Fiedler goes then as follows: for a given
partition λ⊢n, keep the first nonvanishing ideal
R½Sn�yanti=symλk

× g entering in the sum on the right-hand
side of (B12), and call it L1. The next nonvanishing ideal in
the sum can be shown to be either contained in L1 or not. In
the latter case, call it L2. L1 and L2 are in direct sum and
one can call ~L2 their direct sum. The algorithm continues
then in the same way by replacing L1 by ~L2 until one has
exhausted all the left ideals on the right-hand side of (B12)
corresponding to the same partition λ of n, the ideals

corresponding to different partitions being automatically in
direct sum. The algorithm given in [24,32] enables us also
to construct a generating idempotent e of the left ideal L
and its decompositions into primitive pairwise orthogonal
idempotents ei such that e ¼ e1 þ � � � þ ek and that the
ideals Lk generated by each ek are in direct sum and sum up
to L.
A similar decomposition can also be achieved for right

ideals. Indeed, one way to proceed considering an arbitrary
right ideal R is to decompose the left ideal L ¼ R� as
shown above and then come back to R by acting again on
the decomposition of L into a direct sum of the minimal left
ideal with the � involution map.
This decomposition for left or right ideals can be used to

decompose any space-time tensor into components with
given symmetries, as we now explain.

APPENDIX C: TENSORS, TENSOR
SYMMETRIES, AND THE GROUP

ALGEBRA R½Sn�
1. From abstract and space-time tensors

to the group algebra of Sn
The group algebra can be defined in a way that makes its

links to the tensor more explicit, namely, as follows:
consider first a chosen ordered list of labels afng ¼
fa1;…; ang which do not yet have any meaning as
space-time indices. Then we can identify the identity inside
Sn with this list and further any permutation σ of Sn with the
ordered list faσð1Þaσð2Þ…aσðnÞg. We can then think of these
as lists to be carried by some object T, such that the list
faσð1Þaσð2Þ…aσðnÞg is just identified with the list carried by
T that we note as Taσð1Þaσð2Þ…aσðnÞ . Here the object T is not
considered as a space-time tensor, but just as an “abstract
tensor” in the spirit of Ref. [33], i.e., just an object of
undetermined nature indexed by a string of characters. With
such an identification, the group algebra is isomorphic (as
an algebra) to the set of all (formal) linear combinations
with real coefficients of all the indexed objects
Taσð1Þaσð2Þ…aσðnÞ when σ varies over Sn, which can also be
defined as the set MT ¼ spanfσðTÞjσ ∈ Sng, where span
means that we take the set of all possible linear combina-
tions with real coefficients, and T and σðTÞ are defined
(formally, since here, so far we deal only with abstract
tensors T as opposed to space-time tensors noted with curly
characters such as T ) as in (51). So defined, MT is just the
same as the group algebra R½Sn�. So defined, we also
have an action of Sn on this set defined by
ρ ∈ Sn∶ TafσðpÞg → Tafρ×σðpÞg, which is also identical to
the action discussed above of Sn on a given Young tableau
(which can be considered as an abstract tensor in the
sense above).
A set like MT also makes sense if we now consider a

given space-time tensor T . More precisely, given a space-
time tensor T we define the set
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MT ≡ spanfσðT Þjσ ∈ Sng ¼ R½Sn�T ðC1Þ

and σðT Þ defined as in (51). This set MT is a vector
subspace (linear subspace) of the vector space of
tensors V⊗n. It is also the orbit of T under the left
action of the group algebra R½Sn� of Sn, where the left
action is defined through (51) and its natural linear
extension. As such it provides a representation of R½Sn�
(see, e.g., Ref. [28], p. 5). The map ψ∶ R½Sn� → MT ,
which sends a permutation σ to σðT Þ and is extended
by linearity to linear combinations, is trivially an Sn-
homomorphism.
Note that the MT and MT should not be confused. On

one hand, MT is equivalent to the group algebra R½Sn�. On
the other hand, as a vector space on R, the group algebra
has dimension n!, V⊗n has dimension Dn, and thus in
general MT is not isomorphic (as a vector space) to R½Sn�.
[Consider, e.g., the case with n! > Dn, and also the cases
where the space-time tensor T appearing in the definition
of MT obeys some relations of the type (54). In this case
the images of all the σ’s by ψ are not all independent.
Moreover, in general a space-time tensor is not the same as
an abstract tensor, since the former has real components
while the latter is just a list of labels.] However, the fact that
the map ψ defined in the previous paragraph is an Sn-
homomorphism allows one to decompose MT into irre-
ducible representations of Sn, which corresponds, as we
will see below, to subspaces of so-called tensor symmetry
classes. Indeed, according to the last lemma of
Appendix A 1, and using the decomposition of the group
algebra (B10), one sees that for any tensor T such that
ysym=anti
λk

T does not vanish, the image of the left ideal

R½Sn�ysym=anti
λk

by ψ, which we can note R½Sn�ysym=anti
λk

T ,
provides an irreducible representation of Sn (see, e.g.,
Ref. [31], p. 73).
Given a tensor T there is another useful way to build a

corresponding subset inside the group algebra. Consider
indeed first an arbitrary set of n 1-forms ~V ≡ f ~V1;…; ~Vng,
where we allow repetition and linear dependence among
the forms ~V1;…; ~Vn. Out of T and the n-tuplet ~V we
can easily build a function on Sn as follows: to each
permutation σ we associate the real number T ~VðσÞ≡
T b1…bn ~Vσð1Þ

b1
… ~VσðnÞ

bn
. We identify then this function with

the element of the group algebra given by
P

i¼n!
i¼1 T ~VðσiÞeσi,

which we denote as T ~V . Note that if we choose a given
ordered list of space-time index values afpg (i.e., where
each ai is an integer between 1 and D), and the set ~V

i to be
equal to the dual base covector ~Bai (for which we have
~Bai
μ ¼ δaiμ ), we have that T ~VðσÞ ¼ T b1…bn ~Vσð1Þ

b1
… ~VσðnÞ

bn
¼

T aσð1Þ…aσðnÞ ¼ ðσðT ÞÞa1…an [see (51)]. It is quite obvious
that two tensors T and S (of the same valence) are equal iff
they verify T ~V ¼ S ~V for any ~V [24]. Another result of

interest for us is the following formula (demonstrated in
[24]) valid for any element a of the group algebra acting on
a tensor T :

ðaT Þ ~V ¼ T ~V × a�: ðC2Þ

2. Tensor symmetries and tensor symmetry classes

Our main tool in this work is the characterization of
tensor symmetries and the purpose of this subsection is to
explain how such symmetries are connected to the decom-
position of the group algebra into irreducible representa-
tions of the symmetric group. To this aim, consider a tensor
T fulfilling one or several identities of the form (54), which
can also be encoded as

ujðT Þ ¼ 0; for j ¼ 1;…; m; ðC3Þ
where the uj arem elements of the group algebra R½Sn� and
where the action of uj on T is defined by (51) and linearity.
Alternatively, these identities encoding the symmetries of
T can be written as

vjðT Þ ¼ T ; for j ¼ 1;…; m; ðC4Þ
where vj are m elements of the group algebra R½Sn�. The
group algebra elements uj or vj characterize the symmetry
of the considered tensor T and for future reference we
define the set u and v as the sets of group algebra elements
u ¼ fu1;…; umg and v ¼ fv1;…; vmg, respectively. It is
then natural to define the set of tensors of V⊗n which are
invariant under the same symmetries as T ; i.e., this set can
be defined as V⊗n

v by

V⊗n
v ¼ fX ∈ V⊗n;∀vi ∈ v viðXÞ ¼ Xg: ðC5Þ

It is easy to see that V⊗n
v is a linear subspace of V⊗n that is

invariant under the action of the bisymmetric transforma-
tions (52), simply because any such transformation com-
mutes with any element of R½Sn� and in particular with the
elements of v. Now consider a subspaceW of V⊗n invariant
under the bisymmetric transformations. It can be shown
[25] that (i) this subspace possesses generating idempotents
e ∈ R½Sn�, in the sense that

∀X ∈ V⊗n; eðXÞ ∈ W

and ∀X ∈ W; eðXÞ ¼ X : ðC6Þ
The so-defined idempotent e is also generating idempotents
of the group algebra R½Sn�.11 One can also show (ii) thatW
is such that the set R of elements r of R½Sn�, defined by

11A practical way to construct such an idempotent is to
consider the projection on W along any other linear space with
which W is in direct sum to the full tensor space V⊗n. This
projection is then given by the product of some element of R½Sn�
and the idempotent that one is looking for.
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R ¼ fr ∈ R½Sn�; such that ∀X ∈ V⊗n rðXÞ ∈ Wg;
ðC7Þ

is a right ideal which is generated by any idempotent of W
as defined above. When R is built as above from the
invariant subspace V⊗n

v corresponding to a given set of
symmetries v of some given tensor T , we will denote it as
Rv. Given a right ideal R insideR½Sn�, we can define the set
V⊗n

R as

V⊗n
R ¼ frðXÞ; for all r ∈ R and X ∈ V⊗ng: ðC8Þ

This set is called a tensor symmetry class and is invariant
under the bisymmetric transformations. When considering
such a set built from an ideal Rv, we will note the associated
tensor symmetry class as Vv instead of the heavier V

⊗n
Rv
. We

will use an alternative notation when the symmetries
considered in v are of the plethysm type defined in
Sec. III B. For example, when we consider the plethysm
Symmð⋀pÞ ⊗ Symm−1ðSym2Þ, we will denote by
RSymmð⋀pÞ⊗Symm−1ðSym2Þ and VSymmð⋀pÞ⊗Symm−1ðSym2Þ the cor-
responding right ideal and symmetry class. Similarly, when
considering the right ideal Rλk ≡ ysym=anti

λk
×R½Sn� gener-

ated by some specific Young symmetrizer ysym=anti
λk

asso-
ciated with a given Young tableau λk, we will denote as Vλk
the corresponding symmetry class.
What matters for us is that Rv and the associated

symmetry class V⊗n
Rv

can be simultaneously reduced,
respectively, as representations of Sn and of the bisym-
metric (or GLD) transformations. One way to proceed is to
decompose the right ideal Rv into a direct sum of minimal
ideals Rek , Rv ¼ ⊕ekRek , each generated by the idempotent
ek (e.g., using the method explained at the end of B 3).
Then V⊗n

Rv
is decomposed into a direct sum of vector

subspaces, each generated by one ek in the sense of (C6),
and each of these subspaces being an irreducible vector
space under the action of the bisymmetric transformations.
Alternatively, in order to use left ideals which are more

easily connected with irreducible representations of the
group algebra, one can use the following correspondence
between tensor symmetry classes and left ideals essentially
due to Weyl (see, e.g., [34]) and nicely explained in
[24,25,32]. For a given tensor T and its associated
symmetry set u defined as above, as well as a given n-
tuplet ~V defined as above, all T ~V belong to the left ideal L
defined as the intersection of the ideals Lj defined by the set
of elements of the group algebra which are annihilated by
the group algebra elements u�j . In other words,
Lj ¼ fu ∈ R½Sn� such thatu × u�j ¼ 0g. Using (C2) one
can then show that the relations (C3) are equivalent to

∀ ~V; T ~V × u�j ¼ 0 for all j ¼ 1;…; m: ðC9Þ

This shows that for a tensor obeying the symmetries (C3)
all the T ~V belong to the intersection L of the ideals Lj.
Using the results summarized after Eq. (B8), one can find a
generating idempotent e of this ideal which can be
decomposed into primitive pairwise orthogonal idempo-
tents ek such that e ¼ e1 þ…em. These idempotents
decompose every T ~V as

T ~V ¼ T ~Ve ¼ T ~Ve1 þ � � � þ T ~Vem: ðC10Þ

This decomposition is equivalent to

T ¼ e�1T þ � � � þ e�mT ; ðC11Þ

and gives a decomposition of the tensor T into tensors that
each belong to a symmetry class [25] generated by the
idempotent e�k and in one-to-one correspondence with an
irreducible representation of Sn [24,32].

3. Tensor product and the
Littlewood-Richardson rule

Consider two tensors, each belonging to some tensor
symmetry class generated by some standard tableaux λ and
μ, respectively (i.e., speaking more properly, generated by
the Young symmetrizers associated with the corresponding
standard Young tableaux). As such, these symmetry classes
are irreducible, but the tensor product of these two tensors
belongs to a symmetry class which is in general reducible.
The rule to obtain the decomposition of the tensor product
into irreducibles is known as the Littlewood-Richardson
rule and goes as follows.

(i) Since tensor products are commutative (and asso-
ciative) one can choose a convenient order of the
tensor product. Then label all the boxes of each row
of the second tableau with the same letter following
some canonical order, e.g., a; b; c;…, and going
from top to bottom.

(ii) Add the boxes of the second tableau one by one,
starting from a’s then b’s and so on, to the first
Young diagram such that (i) the resulting diagram is
a valid Young diagram, (ii) no column contains
the same label, and (iii) in the resulting diagram,
when read from right to left and top to bottom, the
number of a’s encountered ≥ the number of b’s
encountered ≥ ….

Applying this rule, we obtain a set of Young diagrams
(filled in part with letters a; b; c;…), each representing one
particular irreducible component in direct sum decompos-
ing the tensor product of the symmetry classes correspond-
ing to the two tensors considered initially. In particular, the
multiplicity mρ corresponding to the representation asso-
ciated with a given Young diagram ρ is given by the number
of times (counted after the removal of the letters a; b; c;…)
this diagram ρ is created by the application of the
Littlewood-Richardson rule.

p-FORM THEORIES WITH GAUGE INVARIANT SECOND … PHYSICAL REVIEW D 93, 085027 (2016)

085027-21



As an example, the tensor product (denoted here by ⊗)

ðC12Þ

is decomposed as follows into irreducibles:

We see in particular that the Young diagram appears two times above and hence the corresponding

representation has multiplicity 2 in the tensor product (C12).

The above described method does work for mere tensor
products; however, it is not appropriate to decompose
plethysms. Indeed, due to the extra symmetry existing
for plethysms as compared to simple tensor products, a
plethysm has in general a decomposition in terms of
irreducibles that is smaller than the mere tensor product
it is built from. In order to decompose plethysms, we will
use in this work the link between symmetric functions and
representations of the symmetric group summarized in the
next section.

APPENDIX D: SYMMETRIC FUNCTIONS,
REPRESENTATION OF THE PERMUTATION

GROUP, AND PLETHYSMS

1. Symmetric and Schur functions

We first define an ordered partition of an integer n
which, in the context of this work, is a sequence of positive
(and, we stress, possibility null, i.e., element of N) numbers
α ¼ ðα1; α2;…Þ whose sum is equal to n and where the
order of the numbers αk matters; i.e., partitions containing
the same integers fα1; α2;…g in a different order are
considered as different. It is easy to see that the set of
all the types of all semistandard Young tableaux built from
a given Young diagram μ with n boxes filled with integers
f1; 2; 3;…g is a subset of the set of all ordered partitions of
n and we shall call this set ℵμ. For example, considering the

Young diagram we get, filling it in a semi-

standard way with entries in the labels f1; 2; 3g, the set of
ordered partitions ℵμ¼fð2;1;0Þ;ð2;0;1Þ;ð1;2;0Þ;ð1;1;1Þ;
ð1;0;2Þ;ð0;2;1Þ;ð0;1;2Þ;ð1;1;1Þg. Notice, e.g., that the
partition (3,0,0) does not belong to this set and also that
the partition f1; 1; 1g does appear twice as it corresponds

to the two different standard Young tableaux

and .

A homogeneous symmetric function of degree n is a
formal power series of a set of variables x ¼ ðx1; x2;…Þ

fðxÞ ¼
X
α

cαxα; ðD1Þ

where α ¼ ðα1; α2;…Þ is an ordered partition of n, xα

denotes the monomial xα11 xα22 … and the coefficients cα are
chosen such that any permutation of the variables leaves the
function invariant. For example consider n ¼ 2 and
x ¼ ðx1; x2Þ. Then α ranges over the ordered partitions
of 2 given by (0,2),(2,0),(1,1) and we choose cð0;2Þ ¼ cð2;0Þ
in order to obtain the symmetric function of degree 2 in two
variables given by

gðx1; x2Þ ¼ cð1;1Þx1x2 þ cð2;0Þðx21 þ x22Þ: ðD2Þ

A Schur function sλ (see, e.g., [35]) corresponding to a
Young diagram λ is a special kind of homogeneous
symmetric function defined by

sλ ¼
X
α∈ℵλ

xα; ðD3Þ

where the sum ranges over elements of the set ℵλ which are
in one-to-one correspondence with the semistandard Young
tableaux generated by filling the Young diagram, λ. For
example, when x ¼ ðx1; x2; x3Þ and for the Young diagram
μ defined above we have the corresponding Schur function
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sμ ¼ x21x2 þ x21x3 þ x1x22 þ x1x23 þ x22x3 þ x2x23 þ 2x1x2x3:

ðD4Þ

Other examples of Schur functions that will be used here
are those corresponding, respectively, to the Young dia-
grams ðmÞ and ð1Þm. Applying the above definition, we get
for these two cases and p variables xi, 1 ≤ i ≤ p,

sðmÞðxiÞ ¼
X

1≤i1≤i2≤…≤im≤p
xi1…xim; ðD5Þ

sð1ÞmðxiÞ ¼
X

1≤i1<i2<…<im≤p
xi1…xim; ðD6Þ

where one sees in particular that the Schur function
sð1ÞmðxiÞ is only nontrivial if the number of variables xi
is greater than or equal to m. One can show that the Schur
functions form a basis of the homogeneous symmetric
functions (see, e.g., [30], Sec. VI).

2. Schur functions, representation
of the permutation group, and tensors

Schur functions provide a powerful way of describing
the representations of the permutation group, which can
be used to decompose tensor symmetry classes into
irreducibles.
Let us first consider the case of tensor products between

elements of the symmetry classes Vλ and Vμ, each
corresponding to some specific Young diagrams λ (with
n boxes) and μ (with m boxes). The decomposition of this
tensor product into irreducible spaces (corresponding to
minimal ideals irreducible under the action of Snþm) is
obtained from the Littlewood-Richardson rule, as explained
above. The use of the Schur functions allows us to compute
as well this decomposition (including the multiplicities mρ

of the irreducible representation characterized by the Young
diagram ρ in the tensor product). To do so is enough to
consider the ordinary product of Schur functions corre-
sponding to the Young diagrams λ, μ,

sλsμ ¼
X
ρ

mρsρ; ðD7Þ

from which mρ can be read (see, e.g., [30], Sec. V). By the
definition of the Schur functions it is obvious that the
number of variables on both sides of this equation agrees
with the number of labels from which the entries in the
semistandard Young tableau with the shapes λ and μ are
chosen. Since all entries in a column in semistandard
tableau must be distinct, a Schur function sρðxÞ on the
right-hand side identically vanishes if the number of rows
in ρ is greater than the number of variables. This implies
that the formula (D7), when restricted to a specific number
or variables, does not provide a way to calculate the

multiplicity mρ for a particular Young diagram ρ if the
number of rows in ρ is greater than the number of variables.
The formula (D7) itself is valid for any number of variables.
Schur functions are also very useful to decompose

plethysms into irreducibles. Indeed, consider a given
plethysm μ∘λ as introduced in Sec. III B (where μ∘λ just
denotes the symmetries of the tensor symmetry class
corresponding to T μ∘λ introduced there). There is a
corresponding homogeneous symmetric function denoted
sμ∘sλ and obtained via the so-called characteristic map (see,
e.g., [36] and [37], pp. 167–169, 175) denoted sμ∘sλ. It can
be given a combinatorial formulation as follows. We
consider sλ as defined in (D3), and choose some ordering
for the element α of the set ℵλ entering the sum in (D3). We
call αðiÞ the ith ordered partition α in this set [note that αðiÞ
is a partition, and hence a sequence of integers

αðiÞ ¼ ðαðiÞ1 ; αðiÞ2 ;…Þ], and we define the variables yi as
numerous as the αðiÞ. Then we considered the Schur
function sμ in the ordered variables yi. The plethysm
sμ∘sλ is then just obtained from this function sμ, where

yi is replaced by xα
ðiÞ
. This yields a symmetric function in

the variables xj. This symmetric function can then be
decomposed on the basis of Schur functions as

sμ∘sλðxÞ ¼
X
ρ

mρsρðxÞ: ðD8Þ

This gives both the decomposition of the plethysm μ∘λ into
irreducibles corresponding to the Young diagrams ρ which
appear in the right-hand side of the above, as well as the
multiplicity mρ of the corresponding representation. An
identical decomposition with the same multiplicity holds
for the decomposition of the tensor symmetry class Vμ∘λ.
In order to illustrate this, let us consider the following

plethysm sð2Þ∘sð1Þ2ðx1; x2Þ in two variables x1; x2. We have

sð1Þ2ðx1; x2Þ ¼ x1x2: ðD9Þ

Taking y1 ¼ x1x2 we write sð2Þ∘sð1Þ2 as sð2Þ in one variable
y1:

sð2Þðy1Þ ¼ y21 ¼ x21x
2
2 ¼ sð2Þ∘sð1Þ2ðx1; x2Þ: ðD10Þ

We further have that

sð2Þ∘sð1Þ2ðx1; x2Þ ¼ sð2Þ2ðx1; x2Þ; ðD11Þ

which shows that the only irreducible inside the plethysm
ð2Þ∘ð1Þ2 is given by one irreducible representation char-
acterized by a specific standard filling of the Young

diagram, . This corresponds to the symmetries of

the Riemann tensor.
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3. Involution on symmetric functions

In this work we will use the following map inside the set
of homogeneous symmetric functions that will be called the
involution map Ω (as it turns out to be an involution, i.e., it
verifies Ω2 ¼ 1). Consider a homogeneous symmetric
function fðxÞ which has the following expansion in terms
of Schur functions sμ. Since Schur functions furnish a basis
for the homogeneous symmetric functions (see, e.g., [30],
Sec. VI), one can always obtain such a decomposition:

fðxÞ ¼
X
μ

kμsμðxÞ; ðD12Þ

where kμ are real numbers indexed by the Young diagrams
μ. Then we define ΩðfÞ ¼ g as the homogeneous sym-
metric function defined by

ΩðfÞðxÞ≡ gðxÞ ¼
X
μ

kμsμtðxÞ; ðD13Þ

where we recall (see Appendix B) that μt is the conjugate of
the Young diagram μ.
So defined, the map Ω is obviously linear and it acts in a

nontrivial way on plethysms. Indeed, if sλ; sμ are Schur
functions of degree m, n, respectively, then (see, e.g., [36],
p. 136)

Ωðsλ∘sμÞ ¼
�
sλ∘ΩðsμÞ if n is even;

ΩðsλÞ∘ΩðsμÞ if n is odd
: ðD14Þ
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