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We explore field theories of a single p-form with equations of motions of order strictly equal to 2 and
gauge invariance. We give a general method for the classification of such theories which are extensions to
the p-forms of the Galileon models for scalars. Our classification scheme allows us to compute an upper
bound on the number of different such theories depending on p and on the space-time dimension. We are
also able to build a nontrivial Galileon-like theory for a 3-form with gauge invariance and an action which is
polynomial into the derivatives of the form. This theory has gauge invariant field equations but an action
which is not, like a Chern-Simons theory. Hence the recently discovered no-go theorem stating that there
are no nontrivial gauge invariant vector Galileons (which we are also able here to confirm with our method)

does not extend to other odd-p cases.

DOI: 10.1103/PhysRevD.93.085027

I. INTRODUCTION

There has recently been a lot of interest in building and
studying scalar theories on flat space-times which have
second order field equations nonlinearly depending on the
field and its first and second derivatives (see [1] for the
complete construction and classification of these theories in
arbitrary dimensions and, e.g., [2] for a review of the formal
aspects of these theories). The interest in such theories,
which are for a scalar what Lovelock theories are for a
metric (and are in fact known for a long time at least in four
dimensions [3-6]), has been renewed by the discussions
around the so-called Galileons [7]: scalar fields on flat
space-times with equations of motion only depending on
second derivatives. Such theories can be formulated con-
veniently [8] using the following tensor €33, defined by

ealaz...amblbz...bm = 1
2(2m) (D _ m)|

S gblbz..-bchzmcp_m (1)

e4182---ay 1€ Cppy

where the totally antisymmetric Levi-Civita tensor (on a
flat space-time of dimension D) is given by

€%1%2--ap = 5&“'5;2...533], (2)

where here and henceforth brackets means antisymmetri-
zation. The above definition (1) makes sense for 0 <m <D
and, for future reference, we also stress that we will denote
€2(2p) as just €;. Then, the Lagrangians for a scalar Galileon
7 can just be taken to be proportional to

2470-0010/2016/93(8)/085027(25)
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e (D, 70, ) Dy, (B, T, ) (D, ) (D, ),
(3)

where 7, = J,z. For example, in D = 4 dimensions, there
is a quintic (as well as three more nontrivial theories, each
depending on smaller powers of the scalar; see, e.g., [2])
Galileon scalar Lagrangian proportional to

5;' @atstibrbabsba (aal ”bl ) (aaz ”bz ) (aa3 ”b3 ) (aa4 ”) (alu ”) . (4)

Note that our notations imply in particular that
d,m, = Op7,, but also the two key (but trivial for a scalar)
properties

8ai8[bj7rbk] = 0, (5)
00,0y, = . (6)

These properties first lead very simply to the conclusion
that the field equations derived from the Lagrangians (3)
only contain second derivatives: indeed after varying one
term proportional to derivative(s) of z in (3) and integrating
by part, the only possible way to distribute the derivative(s)
acting on this term is to let it (them) hit another =
differentiated only once. All terms containing more than
two derivatives after this distribution will vanish as a
consequence of the identities above, in which the anti-
symmetrization comes from the contraction with the tensor
€22m)- These identities also lead to an easy generalization
to the p-forms (single or multifield) explained in [9] (see
also [10-15] for subsequent works on the multiscalar case).

© 2016 American Physical Society
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Indeed, e.g., for a single p-form A one just needs to replace
in (3) z, by some p-form field strength F = d.A with
components F, (where A now means a set of p+ 1
indices) and in the last two terms in (3) by the first
derivatives of the form. For example, for a 3-form A we
would get the action (needing nine space-time dimensions)

5= / Pxetrr-seh-52(0, Fy )0y Fi.)
M
X (04 A, ) (OpyAs, ) (7)

where here A; = {a,, a3, a4,as}, Ay ={as,ag,a9}, B; =
{b,, b3, by, bs}, and B, = {b;, bg, by }. A is by assumption
a 3-form and F = d.A is the associated field strength. The
role of the first identity in (5) is here played by the Bianchi
identity for the field strength O, Fp =0, while the
equivalent of the second identity still holds as it is just a
consequence of the commuting of partial derivatives on flat
space-times. The above construction, spelled out in
Ref. [9], allows us to get nontrivial theories for single
even-p-forms and multi-p-forms retaining also gauge
invariance; however, it fails for single odd-p-forms in
particular. Indeed, e.g., the above action (7) has vanishing
field equations.

In Ref. [16] it was in fact proven that no single vector
Galileon could be constructed.' In other words, under the
assumption that the theory had gauge invariance, an action
principle, and field equations depending only on derivatives
of order less or equal to 2, it was shown that one could only
obtain field equations linear in second derivatives. The
main purpose of this paper is to investigate the same issue
for other odd p (i.e., p odd and greater than 1). In this way
we will provide a method that gives an upper bound on the
number of different Galileon-like theories of single p-
forms (and p of any parity). This will in particular provide a
new proof of the results of [16] but also allows us to
construct a nontrivial Galileon-like theory for a 3-form.

The paper is organized as follows. In the following
section, we derive the necessary conditions in order for a
single p-form theory to have gauge invariant field equa-
tions containing derivatives of order less or equal to 2 and
to have an action principle. These conditions are expressed
as symmetry conditions on the field equations as well as on
derivatives of the field equations. We then (Sec. III)
introduce some tools that we use later to analyze these
symmetries. In the following Sec. IV we derive an upper
bound on the number of allowed theories fulfilling our
criteria. In the last section (Sec. V) we show that our
formalism allows us to give a simple proof of the no-go
theorem stated in Ref. [16] for vector Galileons and to
construct an example of a nontrivial 3-form Galileon-like
theory. We then conclude in Sec. VI. We have gathered in

"Note however that nontrivial vector Galileons can be obtained
if one relaxes the hypothesis of gauge invariance [17-23].
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the appendixes various abstract (some standard and some
less known) results used in the course of our work in order
to make it self-contained.

II. NECESSARY CONDITIONS FOR THE
EXISTENCE OF A NONTRIVIAL
GALILEON p-FORM

A. Derivation

Our goal here is to first derive a set of necessary
conditions for the existence of a Galileon p-form theory.
In other words, we look for a theory of a p-form A € A?
of components Ay, (denoting by /\! the set of p-forms),
such that the field equations of this p-form do not contain
derivatives of order higher than 2. Note that here and in the
following, a[p] denotes an ordered set of p indices
aiy, a,, ...a, carried by some object which is antisymmetric
in all the indices in the string of indices a[p]; i.e., for the
case at hand, such that for any permutation ¢ belonging to
the permutation group S, of p objects, we have
Ay oytnyy = €(0)Aq,a,...a,» Where (o) is the signature
of the permutation ¢. Similarly we will denote simply by
a{p} = {ay...a,} an ordered string of indices carried by
some object, and by a(p) such a string assuming in
addition that the object .A which carries this string is
symmetric into the corresponding indices, i.e., such that for
every permutation ¢ of the symmetric group S p We have
Aaa(l)ﬂam---aa(m = Aalaz___ap = A,(). Sometimes, we will
have to pull a given index out of such strings of indices
and we will denote this operation by the following notation:
a[p] = a[p — 1]a,, meaning that the object which carries
the string a[p — 1]a, is antisymmetric on all indices
including a,, but also that the order of the first p — 1
indices is the same in a[p — 1] and a|[p]. Furthermore, we
will always denote by lowercase latin letters space-time
indices and, in order to alleviate notations, with an upper
case latin letter a string of “antisymmetric” indices such as
alp] = A or b[p] = B. Also, we will then use the same
notation to denote a string of p indices or of a different
length (i.e., B can denote, e.g., a string such as b[p] or
b[p — 1]) whenever there is no risk of ambiguity.” We will
also use the following notations to denote derivatives of a
quantity such as £/ = £4 with respect to Apjp) = Ap or
its successive partial derivatives’ (always denoted by a
comma,)

EAIB = galpl|b[b] =

*For example a p-form A will always carry p antisymmetric
indices and hence its component will sometimes be denoted as
Ay or Ap when there is no ambiguity, or equivalently A, or
Apjp) When there is.

3 . .
These derivatives are noted as usual as Ay ,, Ay pes ...
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ogelrl  ggalrl 9gn
a(ac-Ab[p]) B 8Ab[p],c N 8"43.0 '

gAB.e = galpliblple — (©

~—

gA\BVCd = ga[p]\b[p],cd = 680[1)] = aga[p] = oe .
8<acad“4b[p]) aAb[p],cd 8-'48,011
(10)

Having introduced these notations, we first adapt the
derivation of [16] (valid for a 1-form) to the case of an
arbitrary p-form with an action

S:/deﬁ[AB;aaAB;aa...(?hAB], (11)

yielding the equations of motion

gh= o
5A,

0. (12)

We demand that these equations do not contain derivatives
of order higher than 2, i.e.,

&N = 5A(AB§AB.a§~AB,ab)- (13)

The fact that £ is derived from an action principle gives
nontrivial integrability conditions that we now derive. We
first use the commutativity of the functional derivatives

[ﬁf(”’ﬁ@}g: 0, (14)

which we can rewrite using

5E4(x)

1) o)
S= .
0Ag (J’)

SAp () 6 A4(x)

(15)
Here

5EA(x) = / dPy'3 Ag(y){5(x — ) EVB ()

= (8(x = y)ENBC) 4 (8(x = y)ENB) Ly},

(16)
such that
A X
gle((y)) =8(x— y)EA\B(y) —(8(x - y>gA\B,c)’c
+ (8(x — y)EAIBd) . -

Using a test function G(x) to integrate over (14) and
subsequently integrating by parts we get

PHYSICAL REVIEW D 93, 085027 (2016)

0= / dDyg(y){ [5Aj(y) ﬁs(x)} S}
= G{EAP — EBIA 4 (£81Ae)  — (gBIA<d) )y

+ g,c{(c/'AlB.c 4 EBIAC g, EBAcd
+ g’cd{gA\B,cd _ (c:B|A,cd}’ (18)

where in the second equality above all the arguments are
evaluated at the same space-time point x. Since G(x) is
arbitrary we get the integrability conditions,

SAIB _ gBIA | (gB|A~C)’C - (SBlA‘Cd),Cd =0, (19)
gA\B,C + EB‘A’C _ ZanglA‘Cd — O’ (20)
EAlB.cd _ gBlAcd _ (). (21)

By taking a derivative of (20) with respect to A, we
also get

EABI.cid|By.crdy — () = EAIBI.c1di|Br.crdy (22)

where here and henceforth a horizontal parenthesis, —,
denotes a symmetrization on the corresponding indices.
The above constraints (19)—-(22) just express that the field
equations we consider, i.e., (12), are derived from an action.
Note that (21) shows that EAB-? is symmetric under the
exchange of the group of indices A and B. This extends
further to the derivatives of £AB<? with respect to the
second derivatives of the form. For example, consider
EAlB.cdlCef. e have by standard commutations of
derivatives

gA\B,cd\C,ef — gA\CeﬂB,cd (23)

while (21) implies obviously that

(c/‘A|B,cd|C,ef — (c/‘B\A,cd|C,ef' (24)

These two identities can be used further to show the
symmetry under the exchange of A and C as well as B
and C, respectively, as shown below:

((/’A\B,cd\C,ef _ EA\C,ef\B,cd _ SC\A,ef\B,cd — gClB.cd|Aef (25)

EAIB.cd|Cef _ gBlAcd|Cef _ gBICeflAcd _ gClBeflA.cd
—_ gC|A,cd\B,ef _ 5'A|C,cd\B,ef. (26)
This further shows [using the last identity above as well as

(23)] that EAIB-cdIC.e] j5 also symmetric under commutations
of the pair of indices {c,d} and {e, f}, namely, that

085027-3



DEFFAYET, MUKOHYAMA, and SIVANESAN
5'A|B,cd|C,ef _ €A|B,ef\C,cd_ (27)
We now derive some extra constraints demanding that

these field equations shall be gauge invariant. This implies
invariance under

r—1 p
A-A+dc=A Ce NsA A e\ (28)

In components, this induces the following transformation
on A and its derivatives,

Aa[p_l]ap - Aa[p—l]al, + C[a[p_l]vap] = Ail[p—l]a,,’ (29)
Aa[p—l]a[,,c - -Aa[p—l]a,,,c + C[a[p—l],a,,]c = ‘Ail[p—l]ap.c’ (30)

Aa[p la,.cd = A la,.cd + C[a ~1].a,)cd = A;[p—l]a[,,cd'
(31)
We thus demand that

SA( ,,4; IA,C; fé.cd)

By taking the derivative of (32) with respect to Cig,—

= 5A(-AA; -AA,L‘;AA,cd)‘ (32)

1],a,]cd>

Clajp-1].a))es and Clyp-1]4,), Tespectively, and setting
Cap-1) = 0, we get

EAbIp=1](by.cd) — (), (33)

EABIP=11(b,c) — (), (34)

EAIB = . (35)

Using (21) and (33) we have

EAb1 by bycd — () — gar.dy.a,Bcd (36)
We can use this to further show that £4-? yanishes when
symmetrized on any three arbitrary space-time indices.
Indeed, the above (36) implies obviously that

galp=1ay blp=11b,.c d — () (37)

which we can expand as

1b,|blp-1]a,.c d

galp=1)a, blp=1b,.c d y galp-

+ galp=1Elblp=1lbyapd 4 galp=Uldlblp=1byca, — ), (38)
The first two terms above vanish as a consequence of (36),
while the trivial

SA\B cd _ (C/‘A\B de (39)

PHYSICAL REVIEW D 93, 085027 (2016)

implies the equality of the last two terms on the left-hand
side of (38), yielding

galp=1la,|blp=1lby.cd — () (40)
Hence, this, together with (36), just completes the proof
that £AB? vanishes when symmetrized on any three
arbitrary space-time indices. This property will play a
key role in the following and in fact extends to the
derivatives of EA-? with respect to the second derivative
of the form, as we now show. We have already obtained the
relations (22). Now consider the relation

1]by cdclp-

galp=1]a,|b[p- lepef — (41)

obtained from (40) and (23). Expanding this relation as

0 = gelp=1layblp=1lb,.cdlclp-1]c,.ef
4 galp=11b,|blp=1]a, cdlelp=1]c, e f
4 galp=1le, |blp=11b,cdiclp=1la, e f
4 galp-1le e|b[p- 1] «cd|c[p-1]c,. apf (42)

and noticing that the first three terms vanish by virtue of
(40) and (21), we get that

galp=1)a, blp=11b,.cdle[p-1]c,.ef — () (43)
From (36) and (23), we also have

galp=1la, [blp=1lb,.cdlclp=tle,ce £ — (). (44)
which yields, using the same expansion technique as above,
~1]b,cdlc[p-

galp-1 Ja,|b[p e, ef — 0. (45)

Similarly, from (22), we have
galp=11a, blp=1]b,.cdle[p=1]c,.e f _ 0, (46)
which yields, using the same expansion technique as above,
galp=1la,|blp=1]b, cdlclp=1lc, e f — (). (47)

A last property of importance can be obtained from the
following relation, which follows from (22), yielding

5A|Bl,c7 dA] |By.c2ds|Bs,cxdy — 0, (48)

which, after expanding, gives

085027-4
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5A|Bl-ad1 |B.crd|Bs.c3d3 =0. (49)

In the following, we will denote as &£™ the tensor
obtained by differentiating the field equation operator €
with respect to the second derivatives of the p-form m — 1
times. In other words, one has by definition £! = £ and in
full generality £ is a rank (pm + 2(m — 1)) contravariant
tensor whose components are given by

(8’”)/“3101!11~-~Bm—1Cm—1dm—1 — EAIBr.cidi]. Byt Conmt e
8’“_18A
aABl cqdy - 'aABm-1 Cn—1dp1

(50)

As will be summarized in the next subsection, the relations
derived above for m = 2, 3, and 4 extend in fact to arbitrary
values of m, and this will be used below to show that, for a
given space-time dimension D (and a given p), E™ vanishes
for a large enough value of m. This means that under the
hypotheses spelled out above, the field equations have to be
polynomial in the second derivatives. We will also further
restrict the possible theories fulfilling these hypotheses.
Introducing here the integer my,, such that EMm+t1
vanishes but &M does not, the idea is then to use the
method exposed below to construct explicitly nontrivial
tensors £, which do not depend any more on the second
derivatives of the p-form. In the following, we will hence
assume that m,,, (and hence nontrivial m) is always greater
than or equal to 2, since otherwise, the field equations do
not depend on second derivatives of the p-form at all.

B. Summary of the symmetries to be used

As stated at the end of the previous subsection, our
strategy in the rest of the present paper is to seek an explicit
form of the tensor &£, which is the (mp, — Dth
derivative of the field equation £ with respect to the second
derivatives of the p-form. After that, we can integrate it
Muax — 1 times with respect to the second derivatives of the
p-form to obtain £ In each step of integration, the
integration “constant” may in principle depend on first
derivatives of the p-form. For simplicity, however, we shall
not introduce such dependence on first derivatives since the
main purpose of the present paper is to develop a general
formalism and just to show an explicit nontrivial example.
The integration constants cannot depend on the p-form
itself without the derivatives that acted on it because of
(35). Therefore, among various symmetry conditions
derived in the previous section, for our purpose it suffices
to concentrate on those that involve only the derivatives of
& with respect to the second derivatives of the p-form and
the starting point is the series of relations derived in the
previous subsection from the conditions on the field
equations in order for them to derive from an action

PHYSICAL REVIEW D 93, 085027 (2016)

(19)—(22), be of order at most two in the derivatives
(13), and be gauge invariant (33)—(35). From those relations
it is easy to derive the corresponding relations satisfied by
the tensor £™. It then turns out to be convenient to divide
these symmetry relations possessed by the tensor £ into
three categories defined below. We shall use the notation of
Eq. (50) for the names and the order of the indices of £™.

(1) The first set consists of

(a) Antisymmetry within each group of p indices, A
and B;

(b) Invariance of the tensor under the p-wise
interchange of the group of indices: B; < Bj,
i #ji,je€{l,...,(m— 1)}, as well as under the
exchange between A and any B;.

(2) The second set of symmetries consists of
(a) Symmetry of each pair of indices (c;, d;)

(b) Invariance under the pairwise interchange
of the indices: (c;.d;) < (c;.d;), i# ji,
je{l,....(m=-1)}

(3) The last set of symmetries is the condition that
symmetrizing over any three indices in £™ yields a
vanishing tensor.

Our goal here is to use these symmetries in order
to further characterize the possible tensors £ and even-
tually construct some explicit examples. To do so, we
will use the theory of representations of the symmetric
group and its link to tensor symmetries. Some elements
about these issues are given below as well as in the
appendixes.

III. TENSOR SYMMETRIES AND PLETHYSMS

A. Generalities about tensor symmetries,
symmetric and antisymmetric tensors

Here, we are mainly interested in characterizing the
symmetries of the tensor £” and hence will only discuss the
case of contravariant tensors. We denote by V the tangent
vector space of space-time vectors at a given point and
stress again that we will work here only on flat space-time.
We denote by V®" =V Q® V® --- ® V the vector space
(over the field R of real numbers) of rank n (contravariant)
tensors considered as the nth tensor product of the vector
space V. The vector space V®" has simple vector subspaces
given, respectively, by the set of totally symmetric rank n
tensors that we denote as Sym” and the set of totally
antisymmetric rank n tensors that we denote as /\". We also
define as {By, ..., Bp} (where D is the dimension of space-

time) base vectors of the vector space V, and {Bl, s BD}
as the dual basis of the covectors (1-forms) such that

B (B,) = &5 Then, the n-tensor products of the B form a
basis of V®". To characterize symmetries of tensors in
general, it is useful to use the fact that the permutation
group S, of a set of n distinct elements acts in a natural way
on a tensor 7 of components 7%, as, given a
permutation ¢ inside S,,,

085027-5
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. T=T""B, ®---®B,
N Ta]“'a”Baﬁ_lm R ® Ba”_l(n)
=T nB, ® - @B,
=0(7), (51)

where Einstein summation convention is implied. In other
words, for a given tensor 7~ of components 7 %%, and a
given permutation ¢ of S,,, 6(7) is the tensor of compo-
nents [o(7)]|% = T %% The tensors o(7 ) are
sometimes called the isomers of 7 (see, e.g., [24]). Note
that this action is an action on the places of indices and not
on their values; e.g., for a 3-tensor 7% and the 3-cycle
o = (123), one has [¢(7)]''? = 7'2! (and not 72?%). Note
further that with such a definition, the composition of two
permutations p and ¢ obviously acts as follows on a given
tensor T, [p(a(T))]% % = T %le)%em); j.e., it acts by
left multiplication on the index labels.

The linear transformations on V®" which commute with
the above defined action of the symmetric group S, on
tensors play an important role in the following. These
transformations are called bisymmetric transformations and
are defined by the following action on a given tensor 7,

T = Ta,...anBa] R - ® Ba”
N Da,...anb]mbn'z’hl...h”Bal R ® Ban’ (52)

where the D?" real numbers Dvetny, o verify  the
“bisymmetry” condition
ay...a — Ds(1)---A
Dby, = DIy by (53)

for any permutation o belonging to S,. Among the
bisymmetric transformations, the one given by
Davelny =Dy, ...D%, , where D, is an invertible
matrix (considered here as a one-time covariant and one-
time contravariant tensor) corresponds to the natural action
of the general linear group GLj, on a tensor 7. The set of
bisymmetric transformations is the largest set of trans-
formations which commute with the transformation of S,
defined as in (51), and conversely, the set of the symmetric
group transformations (51) is the maximal set of trans-
formations which commute with all the bisymmetric trans-
formations (see, e.g., [25], pp. 134-136). This property is at
the heart of the so-called Schur-Weyl duality which allows
us to simultaneously reduce the representations of the
symmetric group and of the general linear group on the
space of tensors V&,

Tensor symmetries can in general be represented by one
or several relations between tensor components, namely,
one or several relations of the type

PHYSICAL REVIEW D 93, 085027 (2016)
Tala2~~-an — ZkaTas(l)”-ag(n)’ (54)

c€ES,

where k, are real numbers indexed by elements o of the
symmetric group S,,. Relation (54) obviously reads, using
the above defined action of the symmetric group,
T =) ,es,ks x o(T). For future reference we also define
the vector space (inside V®") of symmetric tensors Sym”,
as the set of tensors 7 € V®" obeying 6(7) = T, for any
ceS,,

Sym" = span{7 |6(7T) =7 forany o€ S,}. (55)

Similarly, the set of antisymmetric tensors A" (i.e.,
n-forms) is the vector subspace of V®":

n

A\ =span{T|c(7T ) =sign(c)7 foranysc€S,}, (56)

where sign(c) denotes the signature of the permutation o.
We can define tensor product spaces using these such as

Sym” @ A\ =span{ X @ Y| X e Sym™, Y e A}. (57)

Note that, as explained in Appendix C 2, symmetries of
tensors as defined in (54) can be suitably dealt with using
the group algebra of the symmetric group S, and its
decompositions into irreducible spaces under the action
of §,. The decomposition uses Young diagrams and
tableaux which in turn are associated with irreducible
components of the so-called symmetry classes under the
action of the bisymmetric transformations (52). For exam-
ple the symmetry class of totally symmetric tensors Sym” is
generated (in the sense explained in Appendix C 2) by the
(only) Young symmetrizer generated from the standard
tableau with one line and n boxes filled with {1,2, ..., n}.
More generally, as explained in the same appendix, one can
consider symmetry classes V, generated by some specific
Young symmetrizers corresponding to the tableau A.

B. Plethysms

Another way to combine symmetric or antisymmetric
tensors goes as follows. Consider first a set of k tensors
X; e \" with i € {1,...,k}. We can define a tensor X’
which is an element in the composite subspace denoted

Sym*(A\") by

X=D X, ® @ Xy (58)

cES;
The tensor X can be written in components

X =x By @ @By) @
® By ®: ®By). >
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where a'[n] = {a...al,} = A" are groups of antisymmetric
indices and the following symmetry under the n-wise
exchange of indices holds:

AT AT = Al ATy ey (60)
Similarly, considering now a set of / symmetric tensors of
rank m, Y; with j € {1, ...,1}, we define an element Y of
the space A\¥(Sym™) by

Y= Zsign(a)yam ® - ® YV, (61)

cES;

In components Y can be expressed as

Y= yal(m)...al(m)(Ba} QR - ® Ba%) Q-

where a/(m) = {a]...aj},} are groups of symmetric indices
and the following antisymmetry under m-wise exchange of
indices holds:

yartlmalm) = gign(g)ya (m-am ¥ 5 eS8, (63)

The symmetries of tensors such as X" or ) are examples of
so-called plethysms (see, e.g., [26]).

More general plethysms can be constructed starting from
aset of tensors 7; with i € {1, ..., k} which each belong to
the same symmetry class generated by some Young
symmetrizer associated with some Young tableau A, V.
Considering now another Young symmetrizer y'™ ™™ with
k boxes associated with a tableau i, we can construct the
tensor 7 ., defined by

T o Zyﬁstym/aml(71 ® -7y, (64)
where the action of the Young symmetrizer y™*™ is just
given as in the first line of (51), where base vectors B; are
replaced by tensors 7 ;; i.e., it acts on places of tensors 7 ;
in the tensor product 7; ® - - - ® 7 .. In components it can
be defined by treating the collective indices of each tensor
T ; as a single unit. The tensor symmetry class correspond-
ing to the symmetries of the tensor 7 ,,; is in general
reducible (as a representation of the bisymmetric trans-
formations—see Appendixes C and D).

The symmetries 1 and 2 of Sec. II B imply that £” has
the symmetry of the plethysm

Sym”(A) ® Sym”! (Sym?), (65)

ie., it  belongs to the symmetry class
Vsymn (AP)@symn-1 (sym?)» Where the first plethysm entering
in the tensor product, i.e., Sym™(/\?), is associated with
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the symmetries 1 of Sec. II B concerning indices with
capital letters A and B; (i.e., groups of p antisymmetric
indices), and the second plethysm Sym(*~!)(Sym?) corre-
sponds to symmetry 2 of Sec. II B and is associated with
lowercase indices.

IV. RESTRICTIONS ON THE FIELD
EQUATIONS FROM THE SYMMETRIES
1,2, AND 3

After having shown how the different hypotheses made
before lead to the conclusion that the tensor £ had the
symmetries 1, 2, and 3, summarized at the end of Sec. II B,
we will further use these symmetries to characterize £” in a
more detailed way. Our general method is just to decompose
E™ into pieces belonging to the irreducible components of
the symmetry class defined by the symmetries 1, 2, and 3. We
first examine the consequence of £™ having the symmetry 3.

A. Consequence of £" having the symmetry 3

In order to decompose £™ into pieces belonging to the
irreducible components of the symmetry class that it
belongs to, one can act on £" with Young symmetrizers,
as explained in Appendix C. Consider such a symmetrizer
built from a given Young diagram (see Appendix B) with a
number of columns equal to or greater than 3. Such a
symmetrizer will be a linear combination of products of
row group symmetrizers and column group antisymmetr-
izers [see Egs. (BS)—(B6)]. If the number of columns is
greater than or equal to 3, such an operation (irrespectively
of the choice made between the symmetric or antisym-
metric presentation for the Young symmetrizers) will
always involve a symmetrization on at least three space-
time indices of the tensor £”, which, as a consequence of
the symmetry 3 of Sec. II B, vanishes. Hence, we conclude
that the only Young symmetrizers that can possibly enter
into the decomposition of £” into irreducibles are those
coming from diagrams with one or two columns at most. In
the following, we will denote such a diagram appropriate to
act on the tensor £, which has a variance mp + 2(m — 1)
[implying that the considered Young diagram should have
mp+2(m—1) boxes in total], as (mp+2(m—1)—a,a)
where a is a positive integer parametrizing the length of the
second column and ¢ denotes the transpose of the diagram
with two lines, the first with mp + 2(m — 1) — a boxes and
the second with a boxes (see Appendix B).

Having just shown that the irreducible representations of
the symmetric group entering in the decomposition of the
tensor symmetry class of £™ are just those characterized by
Young diagrams of the kind (mp + 2(m — 1) — a, a)’, the
next step is to determine the multiplicity m, of irreducibles,
each in one-to-one correspondence with a standard Young
tableau built from the Young diagram (mp + 2(m —1) —
a, a)" entering into this decomposition. To do so we will use
the machinery of Schur functions to find out this multiplicity
inside the plethysm (65) as explained in Appendix D.
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B. Multiplicity of irreducibles with two-column
Young diagrams inside Sym™(/\?) ® Sym™~!(Sym?)

In order to determine the multiplicity m, as defined
above, we will proceed in two steps. First, we will
determine the multiplicity of irreducibles with two-
column diagrams inside the plethysms Sym™(A?) and
Sym("=1)(Sym?) separately and then use the Littlewood-
Richardson rule to deal with the tensor product between
these plethysms (see Appendix C 3). This rule implies that
indeed only diagrams with at most two columns inside each
component Sym”(/\?) and Sym"~")(Sym?) can be com-
bined to yield an irreducible corresponding to a Young
diagram with no more than two columns inside the
plethysm Sym”(/A\?) ® Sym™~!(Sym?). We first consider
the first factor of the tensor product Sym™(A?).

1. Multiplicity of irreducibles with two-column
Young diagrams inside Sym™(/\P)
As explained in Appendix D, the Schur function corre-
sponding to the symmetries of the plethysm Sym™(A?) is
given by s(,,)0s(1)»(x) and can be decomposed as

S(m)OS(1yr = Zmﬂsﬂ, (66)
u

where m,, gives the multiplicity of the irreducible repre-
sentation characterized by the Young diagram y inside the
|

Q(s(myosay) = {

and hence, we shall distinguish the case of odd-p- and
even-p-forms.

2. Case of an even-p-form: Decomposition
of (S(m)°S(p)) (X1.%2)
First we write s(,)(x1,x;) explicitly, giving

)4

S (1) = D7, (69)
r=0

and we define an ordered collection of variables y, by

p—=r

y,=x] x5, for0O<r<p. (70)

The plethysm s(,)05(,)(x1,X,) is given by the Schur
function s, (y,(x)), namely, using (D5),

S(m)°R(S(1)r) = S(m)°S(p)
Q(5())oQ(s(1)r) = s(1ymos(p) if pis odd ’
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plethysm Sym™(/\”). Here we are only interested in the
multiplicities corresponding to the Young diagrams py
entering the above decomposition with at most two
columns. This can be obtained as follows. First, we apply
the Q involution operation (see Appendix D) to the above
decomposition (66). We get

Q(smyosay) = > mQs,) => mys,. (67
u 2

Now we see that if we consider two particular variables, say
x; and x,, among those upon which the Schur functions
depend, the only monomials of the form x{'x5* (i.e., which
only depend on x; and x, and not on the others x;, i # 1, 2)
which appear on the right-hand side of the above Eq. (67)
all come from the Schur functions corresponding to Young
diagrams x' with at most two rows (because any Schur
function corresponding to a Young diagram with more than
two rows necessarily depends on more than two variables).
And these monomials and their coefficients will be the
same if we just restrict ourselves to considering functions of
just the two variables x; and x, and set to zero all other
contributions. This is what will be done in the following,
enabling us to compute the multiplicities m, of the
irreducibles corresponding to Young diagrams with at most
two columns in the original decomposition (66).
Notice however, using (D14), that we have

if pis even

|
S(m)°S(p) (X1, X2) = () (v,(x))
= Z VryeoYr,- (71)

Note that the degree of s,,0s(,)(x, X,) is mp. For a given
a verifying 0 <a <mp, the coefficient of the term
X\'P7%§in s(,)08(,) (X1, X2), which we denote as
C(x]""™"x4), can be deduced from (71) to be the number
of (unordered) partitions of a into m non-negative integers
within {0,1,2,..., p} with repetitions allowed. Further-
MOTe S(,;)08 () (X1, %) has a unique expansion in terms of
Schur functions that correspond to Young diagrams of at
most two rows. Namely,

53

M p—t.)S(mp—-1.0) (X1, X2),  (72)
=0

S(m)°S(p) (X1, X2) =

where [...] in the upper limit is the Gauss symbol,
(mp —1,1) denotes the Young diagram with the first and
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second row of size mp — [ and [, respectively (in agreement
with our notations of Appendix B), and m,,,_;; is the

multiplicity of the Schur function

mp—I

zxmp —b b, (73)

S(mp—L.1) X1,X2

which corresponds to this Young diagram. In order to
determine these multiplicities, we just need to use the
right-hand side of the above equation to get

min (a,mp—a)

C(x}"™xg) = Z

1=0

Mmp-11)- (74)

Now restricting to the case where 1 < a < [%F
the above recursively we get that

2] and using

mp—a mp—(a—=1) 4—
Mimp-aa) = COT""x5) = Cx"” : )xz D, (75)

while

Mmpo) = Mmpy = C(x|"7) = 1. (76)

3. Case of an odd-p-form: Decomposition
ofs(l)”’OS(p)(xth)
The decomposition can be performed by using the

similar method as above. Starting as above from
Egs. (69) and (70) and using (D6) we get

5108 (p) (X1, X2) = s(1ym (¥,(x))

= Z YryooVr,- (77)

0<ri<ry<...<r,<p

Notice that the crucial difference between this equation and
(71) is that the variables y; have here to be distinct in the
summation. As before, for a given a verifying 0 < a < mp,

let us consider the coefficient C(x}""™“x4) of the term
x7""7“x4 occurring in this expansion. We find this to be

equal to the number of (unordered) partitions of @ into m
distinct non-negative integers within {0, 1, ..., p}. Express-
ing now the plethysm s(ynos(,) (x;,x;) in the Schur
function basis we have

3

7]
S(1ymos m(mp—l.l)s(mp—l.l) (X],.Xz), (78)
=0

() (X1, %) =

where the notations are as before and we are after the
multiplicities /71, ,; ). The coefficient C(x}""™“x4) verifies
as above
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min (a,mp—a)

Cx}"™xg) = Z

=0

M (p—1.1)- (79)
Now we can conclude as before that for 1 < a < [%7]
Mnp-aa) = O ™) = €OV, (80)
while in this case we have
Mip.0) = Mimp) = C(x7") = 0. (81)

To summarize what has been achieved above, we have
shown that the multiplicity m,,,_,qy of the irreducible
representation corresponding to the Young diagram
(mp —a,a)" inside Sym™(/\”) is given by the following
formula,

Nim—Nb_ if pis even
M(mp-a.a) = distinct distinct ¢ . (82)
NEW™ = NP if pis odd

where for r>0, NP, is the number of (unordered)
partitions of r into s non-negative integers within {0, ..., p}
with repetitions allowed and NZ359"" s the number of
(unordered) partitions of r into s distinct non-negative
integers within {0, ..., p}, and we have NY; =0 and
NP3t — ) for negative r.

4. Multiplicity of irreducibles with two-column
Young diagrams inside Sym™ Y (Sym?)
We proceed as above first by applying the  involution
operation to the plethysm of Schur functions s(,,_1)os(2).
We have

Q(S(m 1)°8(2 ) = S(m-1)°5(1)2- (83)

Then we restrict the variables to (x1,x,) and get for the
second factor above

S(l)z(xl’XZ) = X1X3. (84)

Thus we have only one variable y; to consider in
the following step. Hence we get the very simple
decomposition

S(m=1)08 (12 (X1, %) = x{~ g
= S(m—l,m—l)(xleZ)’ (85)

which leads us to conclude that inside Sym(~")(Sym?)
there is only one irreducible corresponding to Young
diagrams with up to two columns and it is characterized
by the Young diagram with two columns of equal size equal
to (m — 1), i.e., the diagram (m —1,m —1)".
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5. Final result: Application of the
Littlewood-Richardson rule

In order to obtain the multiplicity we are after we just
need to consider the tensor product of a given two-column
diagram (mp — a, a)’ corresponding to one given irreduc-
ible inside Sym™(/\?) by the two-column diagram
(m—1,m—1)" [which itself corresponds to the only irre-
ducible with at most two columns inside Sym(”~!)(Sym?)
indexed by the diagram (m — 1, m — 1)'], and focus only on
the Young diagrams which have one or two columns. A
very simple application of the Littlewood-Richardson rule
yields only one such diagram: the one where the first
column of (m —1,m —1)" is glued at the end of the first
column of the diagram (mp — a, a)" and where the second
column is glued at the end of the second column of
(mp —a,a)" (this is because the Littlewood-Richardson
rule imposes that no boxes stemming from the same row
can be glued to a column where a similar box has
already been glued). Hence for one given irreducible
indexed by the diagram (mp —a,a)" inside Sym™(/A?”)
we get only one irreducible inside the plethysm
Sym™(A”) ® Sym™!(Sym?) indexed by a diagram
(m(p+1)—a—-1,a+m—1)". Hence, by changing
a+m—1 into a, we get the multiplicity M, p12(m-1)-a.a)
of the irreducible corresponding to the Young
diagram (mp +2(m —1)—a,a)" inside the plethysm
Sym™(/A\?) ® Sym”~!(Sym?) given by

M<mP+2(m_1)_“*“)' = M(mp-a+m—1.a-m+1)'
Ny _itm—Nomm  if piseven
- { N 5321111(:; — NPt e pis odd
(86)

Jdistinct .
where the numbers N2 and NZ™"" are defined as in

Eg. (82). Note in particular that in order for N735™ to be
nonzero we need obviously to have s < p + 1 (otherwise
there are fewer integers inside {0, ..., p} than necessary to
get a partition of r into s distinct such integers); this
translates for the odd-p case to the very important condition

m<p+1. (87)

The origin of this condition can be traced back to the step 3
of the above derivation: when condition (87) is not fulfilled
there are fewer variables y, than the number of boxes in the
single column of the Young diagram (1)” and hence one
cannot build the Schur function sy (y,(x)).

V. EXPLICIT CONSTRUCTION OF p-FORM
GALILEON THEORIES

The above derived restrictions on the tensor £™ allows us
to count the maximum number of possible theories of
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Galileon p-forms with specific properties. We will defer the
full analysis of this question to another work but we would
like here to consider two particular cases, the one of a
vector (corresponding to p = 1) and the first nontrivial case
of an odd-p-form with p = 3.

A. Vector Galileon: No-go

The case p = 1 has already been studied in [16] where it
was shown that no such nontrivial Galileon theory existed.
These results can be obtained here in a very simple way
using the above results. Indeed, for p = 1 we find from
(87) that we must have m <2 in order to have a non-
vanishing multiplicity (mp 4+ 2(m — 1) — a, a)" inside the
plethysm Sym™(A”) ® Sym™!(Sym?). Recalling that
(m — 1) gives the order of the taken derivatives of the
field equation € with respect to the second derivative of the
gauge field, we find that, under our hypotheses, the field
equations can only depend on the second derivative of the
gauge field linearly, which matches the results of [16].

B. A nontrivial 3-form theory

The next interesting case for odd p corresponds to
p = 3, which we investigate here. In this case, obviously
from (87), we must have m <4 in order to have a
nonvanishing interesting tensor &£™. Moreover, when
p = 3 the rank of this tensor is

(mp+2(m—1)) =5m-2. (88)

By taking large enough m (i.e., enough numbers of
derivatives with respect to the second derivatives of the
p-form), and since we are looking at theories where the
field equations only depend on second derivatives of
the form, we should be able to end up with a tensor
EMmex which is solely built from the metric 7 and the e
tensor, which are the only tensors available besides the
second derivatives of the form. Here we focus on the first
case, and one must then have "1 = 0. However, 7
has obviously an even rank; this should hence be true as
well for the tensor £™m=ex obtained as we just explained.
Hence, in the p = 3 case, we are left with the only two
possibilities m,,,, = 2 and m,, =4 [see Eqgs. (88) and
(87)]. The first possibility does not lead to any interesting
Galileon-like theory of a 3-form since in that case &°
vanishes, which means again that the field equations are at
most linear in second derivatives of the 3-form. So the only
leftover case is for m,,, = 4. In this case, we have from
(88) that £* has rank 18 and should only depend on 7.

The starting point of our construction is hence the tensor
product 779 =7 ® --- ®  (nine factors), from which we
want to build a tensor having all the required symmetries 1,
2, and 3 summarized in Sec. II B. The tensor 79 belong
by construction to the symmetry class of the plethysm
Sym’(Sym?) and using the results of Sec. IV B 4 we see
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that there is only one irreducible inside this plethysm
corresponding to a two-column diagram with two columns
of equal size. It is easy to see how the corresponding
irreducible representation of S;3 can be constructed.

Indeed, we can consider the Young symmetrizer yjfﬁ,

where 4, corresponds to the standard filling of the two-
column diagram (2)° where a given row contains the pair of
indices of one given factor 5 of the tensor product #9. The
action of yj‘km on 19 then simply gives the tensor €;(18) = €,
[where here and below, we consider the simplest case where
space-time has the required minimum D = 9 number of
dimensions; see Eq. (1)] up to an overall constant; i.e., we

have yj;“ing = -2°.9!.¢,, which can be seen using the
identity
Zsigl’l(ﬁ)l’]u“(‘)h' 17(1,,<2)h2 . 'na,,(g)bg — _ea[9] eb[g] — _eg[g]bD] .
0€ESy

(89)

Now, because €, is obviously nonvanishing, we can use
the statements of Appendix C 1 showing that R[S g]e; =
M., provides an irreducible representation of S;g indexed
by the Young diagram (2)°. Using the results of Sec. IV B 5
we see that the plethysm of interest here, given by (for
m=4 and p=3) Sym*(A\*) ® Sym?(Sym?), contains
one and only one equivalent representation indexed by the
same diagram (9,9)" = (2)°. This follows from Eq. (86)
with @ =9, m =4, p =3, yielding No¢*""™ =1 and
NI = 0 simply because 6 =0+ 1 +2+ 3. Let us
consider one given nonvanishing tensor 7 belonging
to this irreducible and to the symmetry class
Sym*(A*) ® Sym?(Sym?). Then, using results summa-
rized in Appendixes C1 and C2 we have that this
irreducible is just given by M. Schur’s lemma and its
corollaries provided in Appendix A 3 then show that there
is a unique (up to scalar multiplication) Sg-isomorphism
between M and M,,, which we call y. Our next aim is to
use y to build the explicit form of a suitable nonvanishing
&4 inside Sym*(A\?) ® Sym?(Sym?).

We first note that if we consider a given S;g-isomorphism
¢ between M1 and M., this map is entirely defined by the
image of the tensor 7', ¢(7"). Indeed, once this image is
defined, the image of any tensor belonging to M+ defined
by > ses,f(0)o(T) is just given by (using the notations of
Appendix B 1 as well as the fact that ¢ is an intertwiner)

¢(Zf<o>a<7>) = Y flo)ol¢(T)).  (90)

cES |3 0ES3

Hence, we see that a complete set of intertwiners for the
vector space of intertwiners between Mz and M., is just
given by the intertwiners ¢, defined by
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¢.(T) = o(ey), o € Si3. (o1)

Namely, any intertwiner between My and M., can be
written as ) s F(0)¢,, where F(o) is a function on S3.

Let us then choose a specific order and labeling for the
18 indices of 7~ which corresponds to the order of the
indices of £* given in Eq. (50) form =4 and p = 3. As T
belongs to Sym*(/A\*) ® Sym?(Sym?), it has in particular
the symmetries 1 and 2 defined in Sec. II B. In order to
picture these symmetries here it turns out easier to first

define (for generic p and m) operators Ogm’p ) and O(2m>
acting as defined below on an arbitrary tensor X. In order to
simplify notations, we first define the following shortcut
X(mJ’)

comp to denote the component of the tensors X with the
following specific labeling,
ximp) = xalpibi{pteidi . by {p}enrdny (92)

comp

where a{p} ={a,.....a,} and b{p} = {b;....

The operators O\ and O{" are then defined as

bip}

(OYH.IJ) (X))ABlCld] < ByiCpo1dip

m—1

_ (m.p)
= SYM(a(p}.b, (p}oms (o0 Malph) L] Aeontoh) (Xeom)-

i=1

(93)

(Ognl) (X))a{p}bl{p}cldl --~bm—l{p}cm—ldm—l

m—1

= SYM((e, )y | | SYM(e,a (Ko, (94)
i=1

where A = a[p] and B; = b;[p] are sets of antisymmetric

indices made, respectively, of a{p} and b;{p};
Sym,, . 4) Means a symmetrization on the arguments
aj, ..., and A, o) an antisymmetrization on the

arguments «;, these arguments being either space-time
indices (e.g., when {ay,....a,} =a{p} ={a;.....a,})
or a list of indices (e.g., when {aj,...,a,}=
{a{p}.b:1{p},....b_1{p}}). One then has

o) =T, (95)
oMN(T) =T, (96)

as a consequence of the fact that 7~ has the symmetries 1
and 2. Note that these operators commute (as they do not
act on the same indices) and are also idempotent elements
(once properly normalized) of the group algebra R[S g].
Their product acts as a projector on the plethysm
Sym™(/\?) ® Sym”~!(Sym?) and constitutes a generating
idempotent of the tensor symmetry class corresponding to
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this plethysm as defined in (C6). Let us then introduce
0y € S;g so that it maps €, to

(50(62))0{3}171 {3}e1diby{3}crdyb3{3}c3ds
_ 6;{3}‘1{3}b1<1bl,zbzld{3}b1.3b2‘2b2.3b3{3} (97)

which corresponds to the filling 4, of the Young tableau
(2)°. Here, 4 is defined by

. Ci1 | C2 | C3 [ay|az | as b1,1 b1,2 52,1
)\O — i
di | do | d3 |b1,3|b22|b23|bs1|b32|bs 3

and we have defined a{3}={a;,a;.a3}, c{3}=
{cr.cr.c3}, d{3} ={di.dr.d3}, and  b{3} =
{bi1.bi5,b;3} for 1<i<3. Concretely, oy € S5 is
defined as og(i) =5i+2, 0o(3+1i) =1, oo(7) =4,
060(8) =5, 060(9) =9, 60(9+1i)=5i+3, 0¢(13) =6,
00(14) =10, 06¢(15) =11, 06((15+i) =13 + i, where
i=1,2 3.

Let us then consider the intertwiners ¢, defined above as
in (91). Because ¢, is an intertwiner, one has

OO (9, (T)) = 9o OV OF(T)) = o (T)
= 00 (6(ey)), (98)

where the first equality follows from the fact that ¢, is an
intertwiner and the second from the fact 7 belongs to the
symmetry class of Sym™ (/) ® Sym”~!(Sym?). Now it is
easy to see that for any ¢ such that 6~'6, belongs to the
column group of the diagram 4 [i.e., is such that the filling
of the tableau (2)° corresponding to o(€,) and the filling
corresponding to oy(€;) only differ by the order of the
indices in each columns] is such that o(e;,) and o (€,) are
equal up to a factor =1 due to the antisymmetry of the two
factor €’s entering into the definition of €,. On the other
hand, whenever 67! 5, does not belong to the column group
of the diagram Ay, one has (’)(14’3>(’)§4) (o(€3)) = 0.Indeed, in
this case, the filling of the tableau (2)° corresponding to
o(€,) is such that either (i) one column contains strictly more
than three indices in the set c{3}Ud{3} [and hence at least
two of these indices c¢; and d; carry the same subindex i, in

which case o (€, ) is annihilated by the action of (924)] orifit
not the case one can first assume that, due to the action of the

symmetrization inside (9(24) allindicesin ¢{3} and all indices
in d{3} of o(e;) are in a different column as in 4, and
then either (ii) at least one column contains the same number
of indices, each belonging to two sets among
{a{3},b{3},D,{3}, b3{3}} [in which case o(e,) is anni-
hilated by the combined action of (’)24) and (’)(14'3)] or (iii) this

43)

is not the case, in which case the action of (’)(24)(’)(1 on

o(€,) is just proportional to Oé4)054’3>(00(€2)).
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As a consequence of the above, of Eq. (98), and of the
fact that we know there exists a unique (up to a constant)
nonvanishing intertwiner between M and M,,, we reach

the important conclusion that (’)<14’3>(9<24)(00(€2)) cannot
vanish. Hence we can set £4 to be equal to

(84)ABlcldleczdngc3d3

_ 0(14’3)024) (65{3}”{3}}%1bl,zhz.ld{3}b1,3h22bz.3b3{3}) . (99)

where A = a[3] and B; = b;[3] are sets of antisymmetric
indices made of a{3} and b;{3}, respectively. It is easy
to see explicitly that this tensor does not vanish. For
this purpose it suffices to show that the component
with ¢; =d; =i, a;=b3;=3+1i, b;=by; =6+1
(i=1, 2, 3) is nonvanishing. First, the operator O
acting on this component is equivalent to the multiplication
by 3!-23 Second, Aagpy)Apyipy) 18 equivalent to the

multiplication by (3!)2. Third, in order to show that
SYM(4ipy.by{p}ba{p).bs{p}) 1S als0 reduced to a multiplication
by a nonvanishing constant, let us rewrite it as a simple sum
over a € S, acting on labels {1,2, 3,4}, where the label 1
corresponds to a{p} and the labels 1+ i correspond to
bi{p} (i =1, 2, 3). Then, for the specific component that
we are currently considering it is obvious that
SYM(4ipy.by {p}ba{p).bs{p}) 18 Teduced to the summation over
{aeSs.t.(a(1),a(4))=(1,4)or(4,1)or(2,3)or(3,2)}, and
thus is equivalent to the multiplication by 4 - 2. Finally, in
order to show that A, ,1)A(,(p)) 18 also a multiplication
by a nonvanishing constant, let us rewrite it as a weighted
sum over f€S8; and ye€S; with the weight
sign(f)sign(y). For the component of interest it is then
easy to see that A, (1) Awp,(p)) is reduced to the simple
sum over =y € S; followed by the multiplication
by 2, where the factor 2 takes care of the interchange
between y(1) and y(2) relative to (1) and $(2). Thus
A, 1p) A, (py) 18 €quivalent to the multiplication by 2 - 31.
This completes the explicit proof that the tensor £* defined
above does not vanish.

To get the equation of motion we integrate this tensor
three times with respect to the second derivative of the
3-form and thus we get [omitting integration constants
which will be discussed in a future publication as well as
symmetrizations and antisymmetrizations inside the oper-

ators (954'3>(’)§4) which are redundant with the contraction
with the second derivatives of the form]

A — (Sym(A by (312 {3} 81)60{3}Ab1,1h|_2h2,|gd{3}hL3bz,2hsz3)

x ABlvcldl ABzvczdzABz-,Csdz' (100)

Here, as already stated at the beginning of Sec. II B,
we have not introduced dependence of the integration

085027-12



p-FORM THEORIES WITH GAUGE INVARIANT SECOND ...

constants on first derivatives of the p-form for simplicity.
Also as already stated, the integration constants cannot
depend on the p-form itself without derivatives acted on it
because of (35). These equations of motion derive from the
following action (up to an overall constant and a total
derivative),

S_/ ec{3}Aby 101Dy d{3}D1 3220 3B3
M

X ArAp, c,d, AB,.cdsAB; cyds s (101)
where the leftover operator Sym 4 4, (315, 3}.8,) has justbeen
removed, as keeping it would yield an equivalent action up
to a boundary term. Hence we have obtained a nontrivial
Galileon-like theory for a 3-form necessitating at least nine
space-time dimensions. This theory fulfills our initial
criteria: it has an action principle and has field equa-
tions (100) which only contain second derivatives and
which are gauge invariant. The gauge invariance, although
guaranteed by our formalism, can also be explicitly checked
from the field equations (100). Indeed, any replacement
there of one A by the exterior derivative dC of a 2-form C
yields a vanishing expression because the index of the
derivative coming from the operator d is contracted with one
epsilon tensor €, which also contains one of the indices of the
second derivatives acting on the replaced A in Eq. (100). It
is interesting also to stress that the action is only gauge
invariant up to a boundary term which in fact makes our
theory similar to Chern-Simon. To further investigate this
question, one notices that the above action can be written
after suitable integration by parts and relabeling as (leaving
aside an overall sign of combinatorial origin)

s:/ Pxe® PN (D, Fp )(0y, Fa,)
M

X (aa(, Ab7b8a9 ) (abb ‘Aﬂ7agb9 )

where here Bl = {bz, b3, b4, b5} and Al = {Clz, as,day, CZS},
A is by assumption a 3-form, and F = d.A is the associated
field strength. This can be contrasted with the action found
in [9] which was discussed in the introduction, Eq. (7),
where the structure of the index contraction is different for
the last two factors involving the first derivative of the 3-
form field.

(102)

VI. CONCLUSION

In this work we have investigated Galileon-like p-form
theories and provided a first step towards their full
classification. Focusing on the case of single p-forms with
gauge invariant pure second order field equations derived
from an action principle, we have exposed a method to get
an upper bound on the number of such nontrivial theories.
This allowed us in particular to give a new proof of the
no-go theorem obtained in [16] for gauge invariant vector
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Galileons corresponding to p = 1. We also constructed
explicitly a nontrivial theory for a single 3-form, making
explicit that this no-go theorem does not extend to higher
odd p. This work can obviously be extended in various
directions. First, it should be possible to compute the
multiplicities obtained at the end of Sec. IV for all single p-
form theories and ‘“reasonable” space-time dimensions
(say, e.g., D < 11) and possibly to construct all of them
following the method exposed here. In particular one
should be able to investigate the issue of uniqueness of
the even-p-form theories found in [9]. A second direction
of investigation is to covariantize these theories in the spirit
of what has been done in [27] for the scalar case and in [9]
for p-forms.

ACKNOWLEDGMENTS

We thank Gilles Esposito-Farese for interesting and
stimulating discussions. The work of C.D. and V. S. was
supported by the European Research Council under the
European Community’s Seventh Framework Programme
(FP7/2007-2013 Grant No. 307934, NIRG project). The
work of S. M. was supported in part by Grant-in-Aid for
Scientific Research 24540256 and the WPI Initiative,
MEXT Japan. Part of his work has been done within the
Labex ILP (reference ANR-10-LABX-63) part of the Idex
SUPER, and received financial state aid managed by the
Agence Nationale de la Recherche, as part of the pro-
gramme Investissements d’avenir under the reference
ANR-11-IDEX-0004-02. He is thankful to colleagues at
Institut d’ Astrophysique de Paris for warm hospitality.

APPENDIX A: SOME ELEMENTS ABOUT REAL
AND COMPLEX LINEAR REPRESENTATIONS
OF FINITE GROUPS

Let V be a vector space over the field of real numbers R
or the field of complex numbers C. We note as usual
GL (V) the vector space of linear and invertible endomor-
phisms of V (i.e., of automorphisms of V'), and we spell out
in this appendix some standard (and less standard) results
and definitions about linear representation theory of finite
groups that we will use in this work (see, e.g., [28]).

1. Generalities

Suppose G is a finite group. A linear representation of G
into V is a homomorphism, p: G - GL(V). In other
words, p is a map from G to GL(V) which preserves the
group structure and hence verifies
(A1)

p(9192) = p(g1)p(g2) for all gy, g, €G.

Below, we will sometimes also use the notation p,, to denote
the image of g by p, p(9) =p, (such that one has
Pggy = Pg,Pg,) as well as the more correct “(V,p)” to
designate the representation of G under consideration.
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Consider (V,p),(W,p'), two representations of the
group G. A linear map ¢: V — W, that commutes with
the group action, i.e., such that

pyp(V) =¢p(p,V) YgeG and VVEV (A2)
is called an intertwiner map from V to W (such a map is
also said to be equivariant or also a G-map or a G-
homomorphism).

Let V, W be vector spaces of equal dimension and
¢: V> W be a vector space isomorphism. Given a
representation p of group G on V, the map ¢ induces a
unique representation p’ of G on W via

Py =doped™  geG. (A3)
The two representations p and p’ are said to be equivalent.

Let UCV be a vector subspace of V and p be a
representation of G acting on V. We say that U is an
invariant subspace of V under p (or that U is stable under
p), iff

p(g)VelU VVelU, Vged. (A4)
Obviously, then p provides a representation of G into the
vector space U. If U is such that it does not contain any
subvector space other than itself (and the trivial {0}) that is
stable under G, we say, U furnishes an irreducible
representation of G.

An important theorem states that any representation of a
finite group is a direct sum of irreducible representations.
In other words, the vector space V defining the represen-
tation under consideration can always be written as

V: @Wi,

i

(AS)

where W; are irreducible representations of the group G.
Another way to state this result is that any representation of
a finite group is completely reducible. Note that this
decomposition is not unique; however, any other similar
decomposition gives a decomposition into irreducible
representations. Moreover, some of the W; entering the
direct sum in (AS5) can give equivalent representations.
Hence, we can denote by W ; the vector spaces entering into
the direct sum (AS) which furnish inequivalent representa-
tions (i.e., such that W; and Wj are inequivalent irreducible
representations whenever i # j). This implies that for a
given irreducible representation W ., there are m ; (with
m; > 1) equivalent irreducibles entering into the direct sum
(A5), which we can write as

V=W (A6)
J
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The number m; of vector spaces W,- contained in V
corresponding to the same irreducible up to equivalence
is called the multiplicity of W,.

A simple lemma given below will also be used in the
following: let us consider two representations (V,p),
(W,p') and a G-homomorphism y between them, and
assume that V is irreducible. Then (i) the image Im(V) of V
by w is an invariant subspace of W and (ii) if Im(V') does
not reduce to O it is irreducible. Indeed, consider first an
arbitrary element W of Im(V); then there exists YV € V
such that W = y/(V). For an arbitrary element g of G, one
thus has pj,(W) = p,(w(V)) = yw(p,(V)). But since V is
irreducible, then it is also invariant and hence p (V) €V,
which proves (i). Similarly, consider now an invariant
subspace W’ inside Im(V); then it is easy to see that its
reciprocal image yw~!(W’) is an invariant subspace of V.
However, since we have assumed that V is irreducible, its
only nontrivial invariant subspace is itself, which means
that one must have W' = Im(V), which ends the proof
of (ii).

2. Absolute irreducibility

Let us now assume further that the base field of V is the
field of real numbers R (and, we stress, not its algebraic
closure C). In order to make this clear we denote as Vi the
vector space V with R as a base field. We assume that
(Vg,p) is a representation of the group G over V. The
vector space Vp can be extended (or “complexified”) to
become a vector space V¢ over C. Formally, the complex-
ification V¢ of Vi is defined as

VC - C ®[R V[Rv (A7)
where the tensor product above can just be considered as a
tensor product between two vector spaces Vi and C over
the field of real numbers (hence the notation ®p). Hence,
an arbitrary vector in V¢ is just given by an arbitrary
linear combination of some tensor product z Qg V,
where z € C and V is some vector in V. For three
arbitrary complex numbers z;, z,, and z3 and two arbitrary
vectors V; and V, inside Vp, the composition law
21((z2+23) ®r Vi +V2)) = (2122 +2123) ®r (Vi +V2)
gives to V¢ a structure of a C-vector space. A simpler
notation for an arbitrary vector V of Vg is just
VY =LV, +il,V,, where /| and [, are real numbers and
VY, and V, are elements of V. Furthermore, we can
write Ve =C Qr Vr = Vr®iVkr. An endomorphism ¢
of Vp can also be complexified into an endomorphism
¢pc of Ve, defining ¢c(z®r V) =2 ®r ¢(V) =
Re(z)¢(V) + ilm(z)¢(V) and extending this by linearity.
Now considering a representation (V, p) of the group G on
the vector space Vp realized over the field R, we obtain a
new representation of G, (V¢, p®), on the vector space V¢
by defining forall g € G, p®(g) = (p(g))c. If an irreducible
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representation (Vg,p) is such that (V¢,p®) is also irre-
ducible, we say that it is absolutely irreducible. That is, an
irreducible vector space remains irreducible under the
complexification described above.! This can be shown to
be the case for representations of the symmetric group.5

3. Schur’s lemma and some corollaries

Let (V,p), (W, p') be two irreducible representations of
the group G and ¢: V- W be a linear map that
intertwines with the group action, i.e., which is an inter-
twiner map as defined in the above Sec. A 1. Then

(1) ¢ is either O or an isomorphism.

(2) In the particular case when (V, p) = (W, p’), and the
base field of the vector space V is C, then ¢ = 11,
with A € C and 1 the identity in GL(V). That is, ¢ is
a scalar multiple of the identity.

The proof of the above lemma can be found in a variety of
references (e.g., in [28]). However, for the sake of clarity
and of the understanding of the remaining of this sub-
section, we found it useful to give it explicitly below.

Proof.—The map ¢ = 0 is a trivial intertwiner. Suppose
¢ # 0 and consider the kernel of ¢, Ker(¢). If V € Ker(¢)
then 0= p(¢(V)=0)=(p,(V))Vg€G.  Hence
Ker(¢) C V is an invariant subspace of the representation
(V,p). Since this representation is irreducible by hypoth-
esis, any invariant subspace is either the null space or the
entire space V; the second case, i.e., the case with
Ker(¢p) =V is excluded as ¢ # 0. By a similar argument
we can conclude that the image of ¢ is the entire space W,
i.e., Im(¢p) = W. The properties Ker(¢) = 0 and Im(¢) =
W imply that ¢ is a G-isomorphism which proves the first
part of the lemma. Consider now the case where V = W
and p = p/, and define the map ¢’ = ¢ — A1, where 1 € C
is a nonzero eigenvalue of ¢ (which always exists since C is
algebraically closed). Then ¢’ is an intertwiner and has a
nonzero kernel. These properties can only be satisfied if
¢’ = 0, which implies that ¢ = AT. O

The above Schur lemma also extends as follows to the
case of an absolutely irreducible representation on the real
field. Indeed, let (Vp,p) be an absolutely irreducible
representation. Then, any G-homomorphism ¢: Vi — Vi
is necessarily a scalar multiple of the identity inside R, i.e.,

¢p=1 reR. (A8)

Proof—1Let us consider the representation (V¢, p®) as
defined above and the complexification ¢ of the map ¢.

*“The notions introduced in this subsection and in the following
one can be extended to vector spaces over an arbitrary field F and
an arbitrary field extension of it.

This is a consequence of the fact that irreducible representa-
tions of the symmetric group are defined on Q and stay
irreducible on any extensions of @ of characteristic 0, such as
R and C.
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The map ¢¢ is a G-homomorphism of the irreducible
representation (V¢, p©); hence Schur’s lemma states that it
must be of the form ¢ = A1, with 1 some complex
number. Hence, for an arbitrary nonvanishing complex
number z and vector V of Vi one has ¢c(z Qr V) =
A(z ®g V), which reads also (Re(z) + ilm(z))p(V) =
(Re(1) + iIm(4)(Re(z) + ilm(z))V = (Re(z)Re(4) —
Im(z)Im(4))V + i(Re(z)Im(1) + Im(z)Re(4))V, and
implies Im(4) =0 and also ¢(V) =1V, ending the
proof. O

The above lemmas lead to the following corollaries.
First, let (V, p1), (V2, p») be equivalent irreducible repre-
sentations over C or equivalent absolutely irreducible
representations over R. Then the G-isomorphism that exists
between them is unique up to scalar multiplication. Indeed,
letg;: V, — V,yi = 1,2 be two G-isomorphisms. Then the
map ¢5'o¢p;: Vi — V, is a G-automorphism. It follows
from Schur’s lemma that one must have ¢35'og; = A1,
implying ¢; = A¢,, 4 € C (or R).

Secondly, let us consider an irreducible representation
(V,p)andlet W =V ,@®---®V,,, where V; is isomorphic
to VVie{l,...,m}. Then the number of linearly inde-
pendent G-homomorphisms w,;: W = V is exactly m.
Indeed, let ¢;: V; -V be nonzero G-isomorphisms
(which are guaranteed to exist since V;=1V). Let
;. W — V,, be the canonical projections on V;, and we
further define z;: W — W such that YW € W, z;(W) =
7;(W) (i.e., m; are the compound of 7; by the inclusion
map of V; inside W). The identity map inside W, Ty, is
just given by Ty = > .z Now consider an arbitrary G-
homomorphism w: W — V. One has using the above
decomposition of Ty,

(A9)

v=> v
=1

where y; = wor; are maps between W and V. The restri-
ction of y; to V;, defined to be y;, is a G-homomorphism
and hence, thanks to the preceding lemma, we have that
Wi = A;¢;, with 4; some real number, which ends the proof.

APPENDIX B: THE GROUP ALGEBRA
OF THE SYMMETRIC GROUP AND ITS
REGULAR REPRESENTATIONS

1. Definitions of the group algebra of S,

The so-called group algebra (also called the Frobenius
algebra [see, e.g., [29], p. 43] or the group ring) of S,
which is usually noted as R[S, ] (for reasons that will also
appear clear below), plays a crucial role in elucidating the
link between tensor symmetries and representations of the
symmetric group that we use in this work.

A first definition of the group algebra is as follows: first,
out of §, we can define a vector space Vg over R by
considering each different element o; of S,, as a base vector
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noted here e, (note that in the following we will sometimes
use the slight abuse of notation consisting in identifying the
permutation ¢; with e, , the corresponding basis element of
R[S,]) and defining the elements of Vg (which will turn
out to be identical® R[S,]) as just arbitrary linear
combinations of the e{,i with real coefficients of the form
Zfi{" l;€5,, where [, are n! real numbers (and the product
and sum appearing in this definition are formal so far—see
below). The addition of two such vectors and multiplication
by a real number, /, are just then defined in a natural way as

(Z fos ) + (Z e ) = Sk 1)e, (B)
i=1 i=1 i=1
i=n! i=n!

z(Z kgie(,‘) = lkye,, (B2)
i=1 i=1

Using then the composition law of §, as a internal
composition law on Vg as (note that below and in the
following we note this law with the x symbol, but we will
also later omit this symbol in order to alleviate notations)

nli=n!

(Zk € )X(Zi!lqeg,.)ZZ(k 1,)

Jj=11i

(B3)

gives to Vg the structure of an algebra. We note that S, is
obviously included into its group algebra R[S, ], and, if we
consider the element of the group algebra in the left
parenthesis of the left-hand side of Eq. (B3) just to be
given by an element of S, (i.e., setting all but one k(,j to

zero), we can interpret (B3) as defining a representation of
the permutation group S, on the vector space Vg , where
the action of a group element on an element of the group
algebra (considered as a vector space) is simply given here
by the left product of the group element by the vector. This
representation is called the (left) regular representation of
S,- The same action [now extended to a given element of
the group algebra in the left parenthesis of the left-hand side
of equality (B3), i.e., allowing for arbitrary kgj] clearly also

provides a representation of the full group algebra acting on
itself (as a vector space) by left multiplication. In general
every representation of the group algebra also contains one
of the group itself (because the group is contained in the
group algebra) and conversely for any representation of the
group there exists a unique representation of the group
algebra in which it is contained (which is just obtained by

®In the following we use sometimes the notation Vg instead of
R[S,] when we want to stress that we only use the vector space
structure of the group algebra, but we stress here again that the
two sets Vg and R[S,] are just identical. In the literature, R[S, ] is
usually called either the group algebra, the group ring, or the
Frobenius algebra associated with S,,.
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considering formal linear combinations of matrices asso-
ciated with the considered group representation). One can
further show that if a representation is irreducible or
reducible as a representation of the group algebra, then
it has the same property as a representation of the group.

There is another definition of the group algebra which is
handy for us. R[S,] can just be defined as the set of real
functions on the symmetric group S,,. Indeed, because S, is
finite, any such function f is fully defined by n! real
numbers f(c;), where o; runs over all the elements of S,,.
This provides a one-to-one map between the set of real
functions on S, and R[S,], which sends a given function f
to the group algebra element Y =" f(s;)e, . Using this
definition, there is a natural operation that can be defined on
the group algebra and that will play a role in the following:
it is called the * involution map: it sends the group algebra

clement a = Y70 f(o)e,, to a* = S22 f(o))e,

2. Young diagrams, Young tableaux,
and Young symmetrizers

As it will be recalled later, the regular representation of
the group algebra R[S,] is fully reducible and its decom-
position into irreducibles allows us to fully classify tensor
symmetries and operate a similar decomposition of a given
space-time tensor. This decomposition in practice relies on
the use of special elements of the group algebra which are
called Young symmetrizers and which will be defined
below. To do so, we first need to introduce some basic
notions about partitions, Young tableaux, and diagrams.
These notions, as well as some properties to be given
below, will also be used in this article when dealing with
plethysms and symmetric functions as well as to derive our
main results.

We first recall that, given a positive integer n,
a partition A of n, denoted by Al n, is a sequence of
positive integers, (4,4, ...4,), such that 4, >4, >--- >4,
and ﬂ.] +j.2 +ﬂr = n.

A Young diagram is a finite collection of boxes
arranged in left-justified rows, with the row sizes weakly
decreasing (this being the so-called “English” notation for
Young diagrams, while the “French” convention is upside
down with respect to the English one).” Each Young
diagram corresponds uniquely to a partition and will
sometimes be noted as the corresponding partition
A= (41,42,...4,). The Young diagram associated to a
given A is the one that has r rows (using the notation of the
above definition) and A; boxes on the ith row. For
example, the partition (3,2,2) corresponds to the following
Young diagram.

7See, e.g., Refs. [30,31] for nice reviews on Young diagrams
and tableaux.
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With the above notation, a Young diagram with one line of
m boxes will just be denoted (when it is clear from the
context that we consider a Young diagram and not an
integer) as (m). We will sometimes use a simplifying
notation to designate Young diagrams with several lines
each of the same length m. Such a diagram with p such
lines will be denoted as (m)?.

Given a Young diagram corresponding to a partition
(A1, ..-4,), the comjugate or transpose of this Young
diagram is given by the reflection of the original diagram
along its main diagonal, denoted (4,...4,)", where the
superscript ¢ stands for transpose. The transpose of our
above example is simply (3,2,2)" and corresponds to the
following Young diagram.

Given n ordered labels such as a{n}:={a;,...,a,}, a
Young tableau 2 = A,y is a filling of the Young diagram
|
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A with labels a;, one in each box, such that a given label a;
can be used several times to fill a box. In the notation 4, the
subscript k labels different Young tableaux derived from the
same Young diagram A but different fillings. For example,
given the labels {1,2,3} and a partition (2,1), admissible
Young tableaux are

21\ 22\ 12| 31|
3 2 2 2

A standard Young tableau is a Young tableau filled such
that the order is preserved strictly along the rows (from left
to right) and the columns (from top to bottom) and that each
label occurs at most once. For example, given the labels
{1,2,3} (ordered using the natural order on N) and a
partition (2,1), all the associated standard Young tableaux
are

12\ 13\

For a given Young diagram 4 (and a set of labels) we denote
by ST, the set of all standard Young tableaux built from A.

A semistandard Young tableau is a Young tableau filled
such that the order is preserved strictly along columns but
only weakly along the rows. For example, all the semi-
standard Young tableaux built from the partition (2,1) and
with entries in the labels {1,2,3} are

1|2 13| 11| 11\

22 1]2] 1]3] 23]

Considering a given semistandard Young tableau filled with
integers {1,2,3, ...}, this tableau is said to have type a =
(@y, ey, ...) if the number of occurrences of the integer i is
equal to a;.

Consider now a given Young diagram 4 and some Young
tableau 4y = 4, obtained from it and an ordered list of
labels a{n}. There is a natural action of S, on 4; defined

.....

o is an element of S, and this action is simply defined by
the permutation of the labels of the boxes of the tableau
using o. Furthermore, let R; C S, be the row group
associated to the Young tableau 4, defined as the subgroup
of §,,, which leaves the set of elements in each row invariant
(i.e., it can only change the order of the elements in a given
row). Similarly, let C;, C S, be the column group, i.e., the
subgroup of S, that preserves the set of elements of each
column. Out of R; and C, associated to a given tableau,
we can define the following elements belonging to the
group algebra R[S, ]:

r, = Zeacﬁk = Z sign(o)e,.

UGR;L]‘ aECAk

(B4)

For a given tableau A;, one can further define a
(“symmetric”’) Young symmetrizer as the element of the
group algebra given by

J’Zm =T XCe),. (B5)

Due to the order of the multiplication above, this element is
such that it is automatically symmetric in the labels
corresponding to the rows of the Young tableau, which
justifies the upper “sym” in our notation. This corresponds
to the definition of Young symmetrizers used in most
references; however, another set of Young symmetrizers
can be used which are this time explicitly antisymmetric in
the labels corresponding to columns. These “antisymmet-
ric” Young symmetrizers are defined by
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it = X, (B6)

By the action of the * involution on a given Young
symmetrizer, one has obviously (r, )* =r,, (¢; )" =¢,
and (V| x V,)* = (Vp)* x (V1)*VV, € R[S,], and thus
OGP =y and () =yPm. (BY)

A Young symmetrizer is what is called an essentially
idempotent of the group ring, i.e., an element y of RIS,,]
which verifies y? = ly where [ is a real number. It is such
thaty = y/[ is an idempotent, i.e., verifies y> = y (see, e.g.,
[25], p. 103). Accordingly, we call S’Zm/ “ the idempotent

associated to the essentially idempotent yj"k’m/ anti,

3. Ideals of R][S,] and the full reduction
of the regular representation

We first recall that a left (respectively, right) ideal inside
a ring X (for us, the relevant ring to consider here is the
group ring which is the same as the group algebra R[S,]) is
a subset / of the ring such that (i) it is a subgroup of the ring
for the addition law (i.e., the internal law for which X is a
group) and (ii) for any x belonging to X and any i belonging
to I the product x x i (respectively, i x x, where x denotes
the internal product of the ring) belongs to 1. A two-sided
ideal is an ideal which is at the same time a left and a
right ideal. An ideal (left, right, or two-sided) is said to be
minimal when it contains no other ideal (of the same
kind) besides the trivial ideals, i.e., itself and the null
ideal.

There is an easy way to construct ideals: consider a given
element g of the group algebra and then the set of all the
right products of an arbitrary elementx of R[S, ] with g, i.e.,
{x xg,x € R}. This set can be noted R[S,]g and is
obviously a left ideal. It is said to be generated by g.
Similarly, the set of the solutions x of the equationx xg =0
(where 0 is the null vector and g is a given element of the
ring) also constitutes a left ideal. One can show that every
ideal can be generated in both ways. In particular, it can be
shown that every left ideal 7 of R[S, | contains an element e
such that e is an idempotent (i.e., verifies e’ = e) and
generates I (i.e., I = R[S,]e) (see [25], pp. 58-59). The
element e is called a generating idempotent of I. If the ideal
I is minimal, then every generating idempotent of [ is
primiz‘ive.8 And conversely any primitive idempotent e
generates a minimal left ideal R[S, ]e. Note also that the
intersection of a finite number of left (respectively right or
two-sided) ideals is an ideal of the same type.

¥See [25], p. 60, for a proof. A primitive idempotent g is an
idempotent which cannot be written as a sum of two different
(and nonvanishing) idempotent g’ and g” which would in addition
be orthogonal, i.e., verify g’ xg” =0 and g” x g’ = 0.
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The ideals of the group ring R[S,] play a crucial role in
the decomposition of the regular representation defined
above. Indeed, the invariant subspaces of this representa-
tion can be shown to be left ideals, while irreducible spaces
are minimal such ideals. The whole group ring is a direct
sum of minimal left ideals. This decomposition is unique
except for the order and up to equivalence between minimal
left ideals.” Indeed, the group algebra can be decomposed
in the following way,

R[Sn] = @Iﬂn

Mn

(B8)

where the sum runs over all the partitions A of n (which are
in one-to-one correspondence with Young diagrams, and
which we note here as An) and I, is a two-sided ideal in
one-to-one correspondence with a given Young diagram A.
Each ideal 7, can be further decomposed in a direct sum of
left ideals L, as follows:

(B9)

Li= @ L, L =R[Sy™™

WEST,

where the sum now runs over the set of all standard Young
tableaux ST; which can be built out of a given partition 4,
sym/anti
andy;
standard Young tableau 4, in the antisymmetric or sym-

. . 10 . ti -
metric presentation. - Each Young symmetrizer yjfm/ ™Misa

generating essentially idempotent of the ideal L, =
R[Sn]yjzm/ % and this ideal is minimal. Note further that

while Young symmetrizers associated to different Young
diagrams are mutually orthogonal, the young symmetrizers
associated to the same Young diagram but different
standard tableaux are not mutually orthogonal. Putting it
all together we then have the full decomposition of the
regular representation into irreducible representations of
the symmetric group (or of the group algebra), each
defined by the left action (B3) on the irreducible spaces

RIS, ] yZm/ ot given by

is the Young symmetrizer constructed from the

R[Sn] = @ @ [R[Sn]yzzm/ami.

M=n 4L, €ST,

(B10)

One can show that for a given Young diagram 4/, the
dimension of R[Sn]yjzm/ M as a vector space over R is the
same as the number of different standard Young tableaux

"Two ideals are said to be equivalent in this context if there is a
linear map between them which is compatible with left multi-
plication. In other words, if any element i of one ideal is mapped
to the element ¢’ of the other ideal, then x x i is mapped to x x i’
for any x belonging to the group ring R[S,]. One can show that
any such map is a right multiplication.

Note that the same presentation should be chosen for all the
Young symmetrizers entering into the decomposition.

085027-18



p-FORM THEORIES WITH GAUGE INVARIANT SECOND ...

that can be built out of 4, which also gives the number of
isomorphic (but inequivalent) left ideals R[Sn}yjzm/ anti
entering into the decomposition of the group ring.

A similar decomposition can be obtained using right
ideals (i.e., decomposing the two-sided ideals 7, into direct

sums of right ideals). Indeed, one has analogously to (B8)

RIS,] =@ @ y"Y"R[S,].

1 MEST,

(B11)

This decomposition can be obtained by applying the
involution map to (B10) and using (B7). Indeed, the x
involution map maps idempotents to idempotents, direct
sums of left (right) ideals to direct sums of right (left)
ideals, and minimal ideals to minimal ideals.

If one multiplies to the right the above equality (B8) by
some arbitrary element g of the group algebra, one obtains a
decomposition of the left ideal L = R[S, ]g generated by g
(i.e., of any left ideal of R[S, ], since any such ideal has a
generating idempotent) as

L=R[S,Jg=> > R[S, xg.

A AMEST,

(B12)

However, the sum on the right-hand side above is no longer
direct. Still, this can be used to obtain a decomposition of L
into a direct sum of minimal left ideals. This decomposition
can be obtained from the above (B12) just by removing
there a sufficient number of the minimal ideals

[R[S,,]yjzm/ anti g (one can indeed show that these ideals

are minimal). Fiedler [24,32] gives an algorithm to carry
out this decomposition. It uses the fact that the minimal left
ideals R[S, ]y"/™™ x g and R[S, ]lys""/¥™ x g are in direct
sum if 4 and 4 are standard tableaux, each corresponding to
different partitions of n (i.e., to different Young diagrams).

anti/sym

Hence, it is only the ideals of the form R[S, ]y;’ X g
with the 4, corresponding to the same Young diagram (but
to different standard tableaux) which are not necessarily in
direct sum in the expression above, depending on the
considered element g of the group algebra. This means in
particular that it is only whenever, for a given fixed Young
diagram, there is more than one standard Young tableau
entering in the sum (B9) that one possibly has to remove
corresponding terms in the sum (B12). The algorithm
devised by Fiedler goes then as follows: for a given
partition AFn, keep the first nonvanishing ideal
R[Sn]yff:“/ Y™ x g entering in the sum on the right-hand
side of (B12), and call it L. The next nonvanishing ideal in
the sum can be shown to be either contained in L or not. In
the latter case, call it L,. L and L, are in direct sum and
one can call L, their direct sum. The algorithm continues

then in the same way by replacing L; by L, until one has
exhausted all the left ideals on the right-hand side of (B12)
corresponding to the same partition 4 of n, the ideals
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corresponding to different partitions being automatically in
direct sum. The algorithm given in [24,32] enables us also
to construct a generating idempotent e of the left ideal L
and its decompositions into primitive pairwise orthogonal
idempotents e; such that e =e; 4+ --- +¢; and that the
ideals L, generated by each e, are in direct sum and sum up
to L.

A similar decomposition can also be achieved for right
ideals. Indeed, one way to proceed considering an arbitrary
right ideal R is to decompose the left ideal L = R* as
shown above and then come back to R by acting again on
the decomposition of L into a direct sum of the minimal left
ideal with the % involution map.

This decomposition for left or right ideals can be used to
decompose any space-time tensor into components with
given symmetries, as we now explain.

APPENDIX C: TENSORS, TENSOR
SYMMETRIES, AND THE GROUP
ALGEBRA R[S,]

1. From abstract and space-time tensors
to the group algebra of S,

The group algebra can be defined in a way that makes its
links to the tensor more explicit, namely, as follows:
consider first a chosen ordered list of labels a{n} =
{ai,...,a,} which do not yet have any meaning as
space-time indices. Then we can identify the identity inside
S, with this list and further any permutation ¢ of S,, with the
ordered list {@(1)@s(2)...An(n) }- We can then think of these
as lists to be carried by some object T, such that the list
{@5(1)@6(2) - -ao(n) } is just identified with the list carried by
T that we note as T91)%@%w_ Here the object T is not
considered as a space-time tensor, but just as an “abstract
tensor” in the spirit of Ref. [33], i.e., just an object of
undetermined nature indexed by a string of characters. With
such an identification, the group algebra is isomorphic (as
an algebra) to the set of all (formal) linear combinations
with real coefficients of all the indexed objects
T4 4@)-4%n when ¢ varies over S,, which can also be
defined as the set My = span{c(T)|o € S, }, where span
means that we take the set of all possible linear combina-
tions with real coefficients, and T and &(T) are defined
(formally, since here, so far we deal only with abstract
tensors T as opposed to space-time tensors noted with curly
characters such as 7) as in (51). So defined, M is just the
same as the group algebra RI[S,]. So defined, we also
have an action of S, on this set defined by
peS,: 7o)} 5 Talpxe(P)} which is also identical to
the action discussed above of S, on a given Young tableau
(which can be considered as an abstract tensor in the
sense above).

A set like My also makes sense if we now consider a
given space-time tensor 7. More precisely, given a space-
time tensor 7 we define the set
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My =span{o(T)|c € S, } = R[S, |T (C1)

and o(7) defined as in (51). This set M, is a vector
subspace (linear subspace) of the vector space of
tensors V®". It is also the orbit of 7 under the left
action of the group algebra RI[S,] of S,, where the left
action is defined through (51) and its natural linear
extension. As such it provides a representation of R[S,]
(see, e.g., Ref. [28], p. 5). The map w: RI[S,| > M,
which sends a permutation ¢ to ¢(7) and is extended
by linearity to linear combinations, is trivially an S,-
homomorphism.

Note that the My and M+ should not be confused. On
one hand, My is equivalent to the group algebra R[S,]. On
the other hand, as a vector space on R, the group algebra
has dimension n!, V®* has dimension D", and thus in
general M7 is not isomorphic (as a vector space) to R[S, ].
[Consider, e.g., the case with n! > D", and also the cases
where the space-time tensor 7~ appearing in the definition
of M+ obeys some relations of the type (54). In this case
the images of all the ¢’s by y are not all independent.
Moreover, in general a space-time tensor is not the same as
an abstract tensor, since the former has real components
while the latter is just a list of labels.] However, the fact that
the map y defined in the previous paragraph is an §,-
homomorphism allows one to decompose M into irre-
ducible representations of §,, which corresponds, as we
will see below, to subspaces of so-called tensor symmetry
classes. Indeed, according to the last lemma of
Appendix A 1, and using the decomposition of the group
algebra (B10), one sees that for any tensor 7~ such that

yij/ T does not vanish, the image of the left ideal

R[S, ]yiym/ ™4 by, which we can note RIS, ]ysym/ iy
provides an irreducible representation of S, (see, e.g.,
Ref. [31], p. 73).

Given a tensor 7 there is another useful way to build a
corresponding subset inside the group algebra. Consider
indeed first an arbitrary set of n 1-forms V = {V', ..., V"},
where we allow repetition and linear dependence among
the forms V', ..., V". Out of 7 and the n- tuplet VY we
can easily bu11d a function on S, as follows: to each
permutation ¢ we associate the real number 7 ,(c)=

yo (1 \yo (1
b ...b, v ( ) vb( )
the element of the group algebra given by > i=1' T5,(c))e,,.,

which we denote as 7,. Note that if we choose a given
ordered list of space-time index values a{p} (i.e., where

We identify then this function with

each g; is an integer between 1 and D), and the set V' to be
equal to the dual base covector B% (for which we have
By = 8,"), we have that T, (c) = ’T”""””f)‘,:fl)...\}‘;i") =
T atotn) = (¢(T )4 [see (51)]. It is quite obvious
that two tensors 7 and S (of the same valence) are equal iff

they verify 75, = S, for any V [24]. Another result of
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interest for us is the following formula (demonstrated in
[24]) valid for any element a of the group algebra acting on
a tensor 7 :

(aT)y =Ty xa*. (C2)

2. Tensor symmetries and tensor symmetry classes

Our main tool in this work is the characterization of
tensor symmetries and the purpose of this subsection is to
explain how such symmetries are connected to the decom-
position of the group algebra into irreducible representa-
tions of the symmetric group. To this aim, consider a tensor
T fulfilling one or several identities of the form (54), which
can also be encoded as

u(T)=0, forj=1,..m (C3)

where the u; are m elements of the group algebra R[S, | and
where the action of #; on 7 is defined by (51) and linearity.
Alternatively, these identities encoding the symmetries of
7T can be written as
(T)=7T, forj=1,....m (C4)
where v; are m elements of the group algebra R[S,]. The
group algebra elements u; or v; characterize the symmetry
of the considered tensor T and for future reference we
define the set u and v as the sets of group algebra elements
u=A{uy,...u,}t and v={v,...,v,}, respectively. It is
then natural to define the set of tensors of V®" which are
invariant under the same symmetries as 7'; i.e., this set can
be defined as V" by

V" ={X eV® Vy,ev v(X)=2X}. (C5)
It is easy to see that V" is a linear subspace of V®" that is
invariant under the action of the bisymmetric transforma-
tions (52), simply because any such transformation com-
mutes with any element of R[S, and in particular with the
elements of v. Now consider a subspace W of V®" invariant
under the bisymmetric transformations. It can be shown
[25] that (i) this subspace possesses generating idempotents
e € R[S,], in the sense that

VX € Vo,
and VX eW,

e(X)eWw

e(X)=2X. (Co)
The so-defined idempotent e is also generating idempotents
of the group algebra R[S ] One can also show (ii) that W
is such that the set R of elements r of R[S, ], defined by

A practical way to construct such an idempotent is to
consider the projection on W along any other linear space with
which W is in direct sum to the full tensor space V®". This
projection is then given by the product of some element of R[S,,]
and the idempotent that one is looking for.

085027-20



p-FORM THEORIES WITH GAUGE INVARIANT SECOND ...

R={reR[S,], suchthat VX € V® r(X)e W},

(€7)

is a right ideal which is generated by any idempotent of W
as defined above. When R is built as above from the
invariant subspace V&" corresponding to a given set of
symmetries v of some given tensor 7, we will denote it as
R,. Given aright ideal R inside R[S,,], we can define the set
Ve as

Ve = {r(X), foralreR and X e€V®}. (C8)
This set is called a fensor symmetry class and is invariant
under the bisymmetric transformations. When considering
such a set built from an ideal R, we will note the associated
tensor symmetry class as V, instead of the heavier V}?v". We
will use an alternative notation when the symmetries
considered in v are of the plethysm type defined in
Sec. III B. For example, when we consider the plethysm
Sym™(A”) ® Sym™~!(Sym?), we will denote by
RSym”’(/\”)@Sym'”‘l(Symz) and VSym”(/\”)@Sym”“l(Symz) the cor-
responding right ideal and symmetry class. Similarly, when

sym/anti

considering the right ideal R; =y, x R[S,] gener-

ated by some specific Young symmetrizer y‘zm/ ant

ciated with a given Young tableau 4;, we will denote as V,
the corresponding symmetry class.

What matters for us is that R, and the associated
symmetry class Vg" can be simultaneously reduced,
respectively, as representations of S, and of the bisym-
metric (or GLp) transformations. One way to proceed is to
decompose the right ideal R, into a direct sum of minimal
ideals R, , R, = &, R,, , each generated by the idempotent
e, (e.g., using the method explained at the end of B 3).
Then V%” is decomposed into a direct sum of vector
subspaces, each generated by one e, in the sense of (C6),
and each of these subspaces being an irreducible vector
space under the action of the bisymmetric transformations.

Alternatively, in order to use left ideals which are more
easily connected with irreducible representations of the
group algebra, one can use the following correspondence
between tensor symmetry classes and left ideals essentially
due to Weyl (see, e.g., [34]) and nicely explained in
[24,25,32]. For a given tensor 7 and its associated
symmetry set u defined as above, as well as a given n-
tuplet V defined as above, all 7~ 1 belong to the left ideal L
defined as the intersection of the ideals L ; defined by the set
of elements of the group algebra which are annihilated by
the group algebra elements wu}. In other words,
L; = {u € R[S,] such thatu x u; = 0}. Using (C2) one
can then show that the relations (C3) are equivalent to

asso-

VYV, Tyxu;=0 forallj=1,..m  (C9)
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This shows that for a tensor obeying the symmetries (C3)
all the 75, belong to the intersection L of the ideals L;.
Using the results summarized after Eq. (B8), one can find a
generating idempotent e¢ of this ideal which can be
decomposed into primitive pairwise orthogonal idempo-
tents e, such that e =e; + ...e,. These idempotents
decompose every 75, as

T{, = T{,e = T{,el + -+ ’T{,em. (ClO)
This decomposition is equivalent to
T=e7T+ - +e,T, (C11)

and gives a decomposition of the tensor 7~ into tensors that
each belong to a symmetry class [25] generated by the
idempotent e; and in one-to-one correspondence with an
irreducible representation of S, [24,32].

3. Tensor product and the
Littlewood-Richardson rule

Consider two tensors, each belonging to some tensor
symmetry class generated by some standard tableaux 4 and
u, respectively (i.e., speaking more properly, generated by
the Young symmetrizers associated with the corresponding
standard Young tableaux). As such, these symmetry classes
are irreducible, but the tensor product of these two tensors
belongs to a symmetry class which is in general reducible.
The rule to obtain the decomposition of the tensor product
into irreducibles is known as the Littlewood-Richardson
rule and goes as follows.

(i) Since tensor products are commutative (and asso-
ciative) one can choose a convenient order of the
tensor product. Then label all the boxes of each row
of the second tableau with the same letter following
some canonical order, e.g., a,b,c, ..., and going
from top to bottom.

(i) Add the boxes of the second tableau one by one,
starting from «’s then b’s and so on, to the first
Young diagram such that (i) the resulting diagram is
a valid Young diagram, (ii) no column contains
the same label, and (iii) in the resulting diagram,
when read from right to left and top to bottom, the
number of a’s encountered > the number of b’s
encountered > ....

Applying this rule, we obtain a set of Young diagrams
(filled in part with letters a, b, c, ...), each representing one
particular irreducible component in direct sum decompos-
ing the tensor product of the symmetry classes correspond-
ing to the two tensors considered initially. In particular, the
multiplicity m, corresponding to the representation asso-
ciated with a given Young diagram p is given by the number
of times (counted after the removal of the letters a, b, c, ...)
this diagram p is created by the application of the
Littlewood-Richardson rule.
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As an example, the tensor product (denoted here by ®)

PHYSICAL REVIEW D 93, 085027 (2016)

&

is decomposed as follows into irreducibles:

(C12)

alalg lala]g ale

® |a|@

a | a
b b

We see in particular that the Young diagram

appears two times above and hence the corresponding

representation has multiplicity 2 in the tensor prod_uct (C12).

The above described method does work for mere tensor
products; however, it is not appropriate to decompose
plethysms. Indeed, due to the extra symmetry existing
for plethysms as compared to simple tensor products, a
plethysm has in general a decomposition in terms of
irreducibles that is smaller than the mere tensor product
it is built from. In order to decompose plethysms, we will
use in this work the link between symmetric functions and
representations of the symmetric group summarized in the
next section.

APPENDIX D: SYMMETRIC FUNCTIONS,
REPRESENTATION OF THE PERMUTATION
GROUP, AND PLETHYSMS

1. Symmetric and Schur functions

We first define an ordered partition of an integer n
which, in the context of this work, is a sequence of positive
(and, we stress, possibility null, i.e., element of N) numbers
a = (aj,a,, ...) whose sum is equal to n and where the
order of the numbers o, matters; i.e., partitions containing
the same integers {a,a,,...} in a different order are
considered as different. It is easy to see that the set of
all the types of all semistandard Young tableaux built from
a given Young diagram u with n boxes filled with integers
{1,2,3, ...} is a subset of the set of all ordered partitions of
n and we shall call this set 8,,. For example, considering the

Young diagram # = | we get, filling it in a semi-

standard way with entries in the labels {1, 2,3}, the set of
ordered partitions N,={(2,1,0),(2,0.1),(1.,2,0).(1,1,1),
(1,0,2),(0,2,1),(0,1,2),(1,1,1)}. Notice, e.g., that the
partition (3,0,0) does not belong to this set and also that
the partition {1, 1,1} does appear twice as it corresponds

112
to the two different standard Young tableaux 3
13
and .
2

A homogeneous symmetric function of degree n is a
formal power series of a set of variables x = (x,x,, ...)

) = S e, (D1)

a

where a = (@, a,,...) is an ordered partition of n, x“
denotes the monomial x'x32... and the coefficients c,, are
chosen such that any permutation of the variables leaves the
function invariant. For example consider n =2 and
x = (x;,x,). Then a ranges over the ordered partitions
of 2 given by (0,2),(2,0),(1,1) and we choose C(0.2) = €(2.0)
in order to obtain the symmetric function of degree 2 in two
variables given by

9(x1,%2) = (11X X2 + c00)(xX] + X3). (D2)
A Schur function s, (see, e.g., [35]) corresponding to a

Young diagram 4 is a special kind of homogeneous
symmetric function defined by

S; = E x%,

aeR;

(D3)

where the sum ranges over elements of the set X, which are
in one-to-one correspondence with the semistandard Young
tableaux generated by filling the Young diagram, A. For
example, when x = (xy, x,, x3) and for the Young diagram
u defined above we have the corresponding Schur function
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Sy = x%xz + x%x3 + xlx% + xlxg + x%x3 + xzxg + 2X1X5X3.

(D4)

Other examples of Schur functions that will be used here
are those corresponding, respectively, to the Young dia-
grams (m) and (1)™. Applying the above definition, we get
for these two cases and p variables x;, 1 <i < p,

Somy(X;) = Z Xip oo X s (D5)
1<i1<i<...<i,,<p
S(1>nz (.X'i) = Z .xil ....xim, <D6)

1<i|<i<...<i,<p

where one sees in particular that the Schur function
s(1y=(x;) is only nontrivial if the number of variables x;
is greater than or equal to m. One can show that the Schur
functions form a basis of the homogeneous symmetric
functions (see, e.g., [30], Sec. VI).

2. Schur functions, representation
of the permutation group, and tensors

Schur functions provide a powerful way of describing
the representations of the permutation group, which can
be used to decompose tensor symmetry classes into
irreducibles.

Let us first consider the case of tensor products between
elements of the symmetry classes V, and V,, each
corresponding to some specific Young diagrams A (with
n boxes) and u (with m boxes). The decomposition of this
tensor product into irreducible spaces (corresponding to
minimal ideals irreducible under the action of S,.,,) is
obtained from the Littlewood-Richardson rule, as explained
above. The use of the Schur functions allows us to compute
as well this decomposition (including the multiplicities m,
of the irreducible representation characterized by the Young
diagram p in the tensor product). To do so is enough to
consider the ordinary product of Schur functions corre-
sponding to the Young diagrams 4, u,

538, = E m,s,,
P

from which m,, can be read (see, e.g., [30], Sec. V). By the
definition of the Schur functions it is obvious that the
number of variables on both sides of this equation agrees
with the number of labels from which the entries in the
semistandard Young tableau with the shapes A and yu are
chosen. Since all entries in a column in semistandard
tableau must be distinct, a Schur function s,(x) on the
right-hand side identically vanishes if the number of rows
in p is greater than the number of variables. This implies
that the formula (D7), when restricted to a specific number
or variables, does not provide a way to calculate the

(D7)
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multiplicity m, for a particular Young diagram p if the
number of rows in p is greater than the number of variables.
The formula (D7) itself is valid for any number of variables.

Schur functions are also very useful to decompose
plethysms into irreducibles. Indeed, consider a given
plethysm poA as introduced in Sec. III B (where pol just
denotes the symmetries of the tensor symmetry class
corresponding to 7 ,., introduced there). There is a
corresponding homogeneous symmetric function denoted
5,05, and obtained via the so-called characteristic map (see,
e.g., [36] and [37], pp. 167-169, 175) denoted s,,0s,. It can
be given a combinatorial formulation as follows. We
consider s, as defined in (D3), and choose some ordering
for the element « of the set X, entering the sum in (D3). We
call @) the ith ordered partition « in this set [note that a(?)

is a partition, and hence a sequence of integers
(i (i)

a) = (a)’,a;’,...)], and we define the variables y; as
numerous as the a). Then we considered the Schur
function s, in the ordered variables y;. The plethysm

5,05, is then just obtained from this function s,, where
y; is replaced by x®". This yields a symmetric function in
the variables x;. This symmetric function can then be
decomposed on the basis of Schur functions as

5,08,(x) = Zmpsp(x). (D8)

This gives both the decomposition of the plethysm poA into
irreducibles corresponding to the Young diagrams p which
appear in the right-hand side of the above, as well as the
multiplicity m, of the corresponding representation. An
identical decomposition with the same multiplicity holds
for the decomposition of the tensor symmetry class V..
In order to illustrate this, let us consider the following
plethysm s(3) 0512 (xy, x,) in two variables x', x%. We have
S (X1, %) = x1x7. (D9)
Taking y; = x;x, we write 5(3)05(1)2 as () in one variable
Yi-

5(2) (y1) = y% = x%x% = s(z)os(l)z(xl,xz). (D10)
We further have that
S(z)os(l)z(xhxz) = s(z)z(xl,xz), (D11)

which shows that the only irreducible inside the plethysm
(2)o(1)? is given by one irreducible representation char-
acterized by a specific standard filling of the Young

diagram, . This corresponds to the symmetries of

the Riemann tensor.
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3. Involution on symmetric functions

In this work we will use the following map inside the set
of homogeneous symmetric functions that will be called the
involution map € (as it turns out to be an involution, i.e., it
verifies Q? = 1). Consider a homogeneous symmetric
function f(x) which has the following expansion in terms
of Schur functions s,. Since Schur functions furnish a basis
for the homogeneous symmetric functions (see, e.g., [30],
Sec. VI), one can always obtain such a decomposition:

£ = ks, (x). (D12)

where k, are real numbers indexed by the Young diagrams
u. Then we define Q(f) = ¢ as the homogeneous sym-
metric function defined by

PHYSICAL REVIEW D 93, 085027 (2016)

Qf)(x) = g(x) = Y _kys (%), (D13)

where we recall (see Appendix B) that y is the conjugate of
the Young diagram u.

So defined, the map € is obviously linear and it acts in a
nontrivial way on plethysms. Indeed, if s,,s, are Schur
functions of degree m, n, respectively, then (see, e.g., [36],
p. 136)

5,00(s,)
Q(5)°Q(s,,)

if nis even,

o (D14)
if nis odd
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