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We investigate the generation of magnetic fields from nonlinear effects around recombination. As tight-
coupling is gradually lost when approaching z≃ 1100, the velocity difference between photons and
baryons starts to increase, leading to an increasing Compton drag of the photons on the electrons. The
protons are then forced to follow the electrons due to the electric field created by the charge displacement;
the same field, following Maxwell’s laws, eventually induces a magnetic field on cosmological scales.
Since scalar perturbations do not generate any magnetic field as they are curl-free, one has to resort to
second-order perturbation theory to compute the magnetic field generated by this effect. We reinvestigate
this problem numerically using the powerful second-order Boltzmann code SONG. We show that: (i) all
previous studies do not have a high enough angular resolution to reach a precise and consistent estimation
of the magnetic field spectrum; (ii) the magnetic field is generated up to z≃ 10; (iii) it is in practice
impossible to compute the magnetic field with a Boltzmann code for scales smaller than 1 Mpc. Finally we
confirm that for scales of a few Mpc, this magnetic field is of order 2 × 10−29 G, many orders of magnitude
smaller than what is currently observed on intergalactic scales.

DOI: 10.1103/PhysRevD.93.103536

I. INTRODUCTION

As magnetic fields have been firmly detected in galaxies
and galaxy clusters, evidence is growing for magnetic fields
in the intergalactic medium (see e.g. the reviews [1–3]).
Lower bounds of the order 10−16 G have been reported (see
e.g. [4–6]) on scales of order 10 Mpc corresponding to the
typical size of voids in the cosmic web, using the delayed
secondary emission of cosmic rays. Conversely, upper
bounds of the order of a few nG have been placed on
the strength of the magnetic field in the intergalactic
medium, using the Faraday rotation that such fields would
induce on the cosmic microwave background polarization
[7,8]. It is all the more important to understand the origin of
intergalactic magnetic fields as they are thought to be the
seed fields at the origin of the stronger magnetic fields
inside galaxies and clusters.
Several mechanisms have been proposed to explain the

origin of these seed fields. Among them, non-conformal
couplings between the inflaton and the electromagnetic field
during inflation have been investigated (see e.g. [9–11]) as
they can generate large coherence scales. However there

are strong constraints on these models since after being
generated, all cosmological magnetic fields decay adiabati-
cally with the expansion as 1=a2. One may thus wonder if
the large-scale seed magnetic fields could be generated much
later after the end of inflation, in the primordial plasma.
Indeed, it has been shown [12–15] that vortical currents

create magnetic fields around recombination. As tight-
coupling between photons and baryons is gradually lost
(see e.g. [16,17]), the photons drag the electrons through
Compton interactions thus generating a vortical electric
field which eventually forces the protons to move with the
electrons. By means of Maxwell’s laws of electromagnet-
ism, the electric field sources a magnetic field which, being
generated around recombination (z ∼ 1100), is present
today diminished by an adiabatic factor of just ∼10−6.
The vortical currents required to form the magnetic field

cannot be generated at first order in the cosmological
perturbations, due to the suppression of vector and tensor
modes. At second order, however, vorticity arises naturally
and eventually leads to a rather small intergalactic magnetic
field, typically a few 10−29 G for scales of order 10 Mpc
today. Nevertheless, this intrinsic magnetic field is unavoid-
able as it is a prediction of the standard cosmological model
not involving speculative physics.
There is an ongoing debate on the asymptotic behavior

of this intrinsic magnetic field. In this paper we compute it
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with the greatest accuracy so far, using the state of the art
second-order Boltzmann code SONG. In Fig. 1, we show
our most important result, the intrinsic magnetic field as a
function of the smoothing scale.
At early times, we recover the analytic limitffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3PBðkÞ

p
∝ k7=2 found numerically for large scales in

Refs. [13,18], hereafter called SITS, and we are able to
find an analytic explanation for this limit. This contrasts
with the limit

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3PBðkÞ

p
∝ k4 derived in Ref. [15], here-

after called FPM, or Ref. [19] where the sub-Hubble modes
were inconsistently ignored. From recombination onwards,
we essentially recover the results of FPM for the shape and
magnitude of the magnetic field spectrum.We find however
that in order to obtain a better precision up to a scale of a
few Mpc, we should increase the angular accuracy of the
Boltzmann code by computing photon multipoles up to
lmax ¼ 100, since the magnetic field keeps being generated
up to z≃ 10. In addition the magnetic field sources at these
times are subject to important higher order corrections on
small scales. Hence, we find that it is impractical to push
the numerical computation in a Boltzmann code beyond
scales of order 1 Mpc as done in SITS.

II. MAGNETIC FIELD GENERATION IN THE
PRIMORDIAL PLASMA

Before recombination, electrons and photons are tightly
coupled by Compton scattering. Due to the overabundance
of photons, the electrons follow the fluid of photons. On the
other hand, the much heavier protons are almost unaffected
by the photons. The Compton scattering thus creates a
tension between the electrons and protons which sources an
electric field that counters the displacement of charges.
When comparing the various time scales of the problem, it is

found that the protons follow the electrons nearly instantly,
and together they can thus be considered as a fluid of
baryons. The resulting electric field Eμ seen by a cosmo-
logical observer with four-velocity uμ is given by [13,15,19]

eneEμ ¼ hμν∇αTαν
b ¼ hμνCν

γ→b; hμν ≡ δμν þ uμuν; ð1Þ
where ne is the number of free electrons, Tμν

b the stress-
energy tensor of baryons and Cμ

γ→b the collision term
induced by the Compton interaction of photons on baryons.
The evolution of the magnetic field is then inferred from the
Maxwell equations, more precisely from the structure
equation

∇½αFμν� ¼ 0: ð2Þ
In order to obtain quantitative results for the primordial

magnetic field, Eqs. (1) and (2) must be expressed in a
cosmological context. To this end we consider a homo-
geneous and isotropic background, on which we add scalar
perturbations. The corresponding metric is

ds2 ¼ aðηÞ2½−ð1þ 2ΦÞdη2 þ ð1 − 2ΨÞδijdxidxj�; ð3Þ

where η is the conformal time, aðηÞ is the scale factor which
encodes the expansion of the universe, andΦ andΨ are two
gravitational potentials which are nearly equal for most of
the cosmological history and are identified with the
Newtonian potential on small scales.
Since the electric and magnetic field are frame depen-

dent, we need to specify with respect to which observer
they are defined. In the cosmological context, it is natural to
define these fields with respect to an observer whose
velocity is given by uμ ∝ dημ, and we are eventually
interested in the time evolution of the magnetic field seen
by these cosmological observers. From (2), the time
evolution of the intrinsic magnetic field is simply given by

∂ða2BiÞ
∂η ¼ −a2εijk∂j½ð1þ Φ −ΨÞEk�: ð4Þ

In this expression, all indices except the one on the
derivative are taken in a local orthonormal frame and
εijk is the antisymmetric tensor with ε123 ¼ 1.
A first consequence is that we need to compute the

electric field up to second-order in cosmological perturba-
tions. Indeed at first order, since we have only scalar
perturbations, Ei ∝ ∂iΦ which from (4) implies that no
magnetic field is generated and it simply decays adiabati-
cally as 1=a2.

III. POWER SPECTRA AND AVERAGED
MAGNETIC FIELD

The full set of second-order equations including all types
of matter (cold dark matter, baryons, photons, neutrinos)
with the perturbations of the metric up to second order can
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FIG. 1. The averaged magnetic field BðλÞ as a function of the
averaging scale for various redshifts. We apply a factor ð1þ zÞ2
to cancel the adiabatic decay of the magnetic field. The curves at
1þ z ¼ 10 and 1þ z ¼ 1 overlap since there are no sources for
the magnetic field at late times. In contrast, there is a significant
difference between the magnetic field after recombination at 1þ
z ¼ 1000 and 1þ z ¼ 100 demonstrating the continuation of the
sources after recombination.
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be found in [20–23]. We need to integrate these equations
numerically to obtain the sources (1) of the electric field,
including all second-order effects. In order to integrate
ordinary differential equations, instead of partial differ-
ential equations, the calculation is performed in Fourier
space, and the contributions of the various Fourier modes
are summed at the end. Since relativistic particles cannot be
consistently described by a perfect fluid, photons and
neutrinos are described statistically and their evolution is
given by a Boltzmann equation. The codes evolving the
perturbations of the metric and of the fluids in Fourier space
are thus called Einstein-Boltzmann codes and we base our
numerical analysis on SONG [24–26].
In practice, it proves easier to decompose the magnetic

field on two polarization vectors e� which are orthogonal to
the direction k̂ of the Fourier mode considered, given that
the magnetic field is divergenceless. We thus use that in
Fourier space B ¼ Bþeþ þ B−e−. The result of the second-
order numerical integration is given by transfer functions
T � which are defined as the convolution kernels of the
magnetic field:

B�ðk; ηÞ ¼
Z

d3q
ð2πÞ3 T

�
B ðq; k − q; ηÞΦinðkÞΦinðk − qÞ: ð5Þ

Note that the T �ðk1; k2; ηÞ can be chosen to be symmetric
in k1 and k2 as the antisymmetric part does not contribute to
B�ðkÞ and hereafter we choose to work with such sym-
metric transfer functions.
The statistical properties of the magnetic field are then

inferred from the nonstatistical transfer functions and from
the statistical properties of the initial gravitational potential
in Fourier space ΦinðkÞ. For statistically homogeneous and
isotropic initial conditions, the two-point correlation func-
tion in Fourier space of the initial potential is of the form

hΦinðkÞΦ⋆
inðk0Þi ¼ ð2πÞ3δðk − k0ÞPðkÞ; ð6Þ

where PðkÞ is by definition the initial power spectrum. The
two-point correlation of the magnetic field in Fourier space
is immediately deduced from Eqs. (5) and (6). It is of the
form

hBðk; ηÞB⋆ðk0; ηÞi ¼ ð2πÞ3δðk − k0ÞPBðk; ηÞ; ð7Þ
where PBðk; ηÞ is the magnetic field power spectrum at a
given time η, and it is given by

PBðk; ηÞ ¼ 4

Z
d3q
ð2πÞ3 jT

þ
B ðq; k − q; ηÞj2PðqÞPðjk − qjÞ:

ð8Þ
Eventually we are interested in the shape and magnitude

of the magnetic field spectrum today or more generally
at low redshift. However, since measurements of the
intergalactic magnetic field are made in terms of its

magnitude in real space, we need to find a way to relate
the Fourier power spectrum to the real space observations.
Hence, we define the averaged magnetic field over a scale λ
by the convolution of the magnetic field with a sphere of
radius λ:

BλðxÞ≡
�
4

3
πλ3

�
−1 Z

Bðxþ yÞθðλ − jyjÞd3y; ð9Þ

where θ is the Heaviside step function. From (7) and (9) we
find that the average fluctuations of the smoothed magnetic
field are given by

B2
λðηÞ≡ hBλðx; ηÞBλðx; ηÞi

¼ 1

2π2

Z
k3PBðk; ηÞW2ðkλÞd ln k; ð10Þ

withWðxÞ ¼ 3j1ðxÞ=x. The smoothing scale λ introduces a
cutoff scale as the contributions of modes with kλ ≫ 1 are
effectively removed by the window functionWðxÞ which is
unity when x → 0 and vanishes when x → ∞. The defi-
nition (9) and its counterpart in Fourier space (10) are
similar to the standard definitions used for the smoothed
density field of matter (see e.g. [27] for the definition of σ8),
but note that they are different from the smoothing
definitions of Ref. [15]. In Eq. (10) we notice that

Qðk; ηÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3PBðk; ηÞ=ð2π2Þ

q
ð11Þ

characterizes the contribution of a given Fourier mode to
the averaged magnetic field Bλ. When representing mag-
netic field power spectra, we thus plot Qðk; ηÞ.

IV. NUMERICAL RESULTS FROM SONG

We compute the magnetic field using the second-order
Einstein-Boltzmann code SONG,1which was originally
designed for the numerical computation of the intrinsic
bispectrum and intrinsic B-mode polarization of the cosmic
microwave background [24–26]. SONG has been intensely
tested by performing various consistency checks, numerical
convergence runs, the matching of several analytic limits
and most importantly by direct comparison to independent
state of the art second-order codes [28–30].
The mechanism generating the intrinsic magnetic field

from nonlinear perturbations is mainly efficient around the
epoch of recombination but, as opposed to the cosmic
microwave background fluctuations, the sources extend far
beyond recombination. Indeed they are only suppressed by
the slow decay of the radiation density over the matter
density. The time dependence of the sources is highlighted
in Fig. 1, showing the magnetic field at different redshifts

1A prerelease version is freely available at https://github.com/
coccoinomane/song.
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multiplied by a factor of ð1þ zÞ2 to cancel the decay of the
magnetic field due to the expansion of the Universe. The
curves overlap in the absence of sources. We find that
magnetic field sources are still present after recombination,
vanishing only after 1þ z ≈ 10.
The free streaming of photons after recombination

quickly generates small-scale oscillations characterized
by large multipole moments, which have to be taken into
account to correctly compute the magnetic field sources at
low redshifts. While for the cosmic microwave background
the photon hierarchy can typically be cut at lmax ≈ 10, the
magnetic field requires lmax ≈ 100 at the scales of interest.
For instance, if we consider sources at z≃ 100, the number
of multipoles needed in the Boltzmann hierarchy is of order
kmaxðηz¼100 − ηzrecÞ≃ kmax × 1000 Mpc, so for a typical
Fourier mode k ¼ 0.1 Mpc−1, we would need lmax ≃ 100.
Considering sources at lower redshift and larger Fourier
modes in principle needs even more multipoles in the
hierarchy. However the intrinsic magnetic field is only
sourced by the multipoles entering Eq. (1), that is the
velocity l ¼ 1 and anisotropic stress l ¼ 2, simplifying
the problem as we only need to compute the backreaction
of the high multipoles on the low multipoles accurately. In
practice we find that lmax ≃ 100 is sufficient for the
magnetic field on all analysed scales, while it is not
sufficient for the full photon hierarchy at the same scales.
This complication was missed in the previous studies (SITS
and FPM), where only a few multipoles were considered,
and leads to corrections larger than 10% on a large range of
scales as demonstrated in Fig. 2.
The magnetic field is growing approximately by a power

law on scales larger than keq, the Fourier mode entering the

Hubble radius at radiation/matter equivalence, indicated as
a vertical dashed line in Fig. 2. On smaller scales we find
rich features including several oscillations imprinted from
the interactions between the baryon and photon fluids.
Finally, at the very small scales these oscillations are
damped due to Silk damping.
In Fig. 3, we show the temporal evolution of the

magnetic field for various values of k. The magnetic field
grows on superhorizon scales and starts to decay once it
enters the horizon. Recombination creates a sharp bump in
the magnetic field after which the magnetic field is still
being sourced, combating the decay due to the expansion of
the Universe until the amount of residual radiation is too
small and the magnetic fields decay once more adiabati-
cally as 1=a2.

V. COMPARISON WITH ANALYTICAL RESULTS
AND PREVIOUS LITERATURE

There has been a tension in the literature concerning the
superhorizon limit at early times. In SITS it is found that
Qðk; ηÞ ∝ k3.5 while FPM finds a k4 dependence thus
questioning the validity of these results. We confirm the
k3.5 behavior found in SITS numerically and provide
hereafter, for the first time, an analytical argument explain-
ing this superhorizon limit, valid for all magnetic field
sources.
At second-order, the contributions to the electric field Ei

are of the form ∂iðABÞ, A∂iB or ð∂i∂jAÞð∂jBÞ, where A
and B are general first-order perturbations (see e.g.
Eqs. (4–5) of Ref. [15]). From Eq. (4), it can be seen that
the former do not contribute to the magnetic field. Let us
focus first on the terms of the type A∂iB. The symmetric
convolution kernel T i

B ≡ T þ
Be

iþ þ T −
Be

i
− [related to its

FIG. 2. Stability of the magnetic field with respect to the
angular resolution in SONG, represented by the maximum
multipole lmax considered in the Boltzmann hierarchy. Large
scales are not sensitive to this cut, whereas small scales need a cut
at lmax ≈ 50 to reach percent level accuracy.

FIG. 3. The time evolution of the magnetic field power
spectrum for several k-modes. Solid lines are from bottom to
top k=keq ¼ 0.1, 1, 10, dashed lines are k=keq ¼ 0.4, 4 and dotted
lines k=keq ¼ 2, 20. All modes grow at a constant rate while
superhorizon and begin to decay once they enter the horizon. The
peak is due to the generation of magnetic fields during recombi-
nation, and subsequently the evolution reverts back to constant
decay once the photon density is negligible.
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definition (5) in the polarization basis] associated with this
type of term is of the form

T i
B ∝ εijkk1;jk2;k½T aðk1ÞT bðk2Þ − T bðk1ÞT aðk2Þ�; ð12Þ

with T aðkÞ and T bðkÞ being the linear transfer functions of
A and B [e.g. Aðk; ηÞ ¼ Taðk; ηÞΦinðkÞ]. In FPM, the limit
in which all modes are super-Hubble has been considered
(that is k; k1; k2 ≪ H with H≡ ∂η ln a) and it has been
shown that it leads to a k4 dependence for QðkÞ.
However, this is only a subpart of the convolution and we

must also consider contributions where only k is super-
Hubble but k ≪ k1 ≈ k2. We find that these contributions
dominate the convolution integral as they lead to a k3.5

dependence for Qðk; ηÞ. To see this, let us expand Eq. (12)
to leading order in k using that k2 ¼ k − k1:

T i
B ∝ εijkk1;jkk½T aðk1ÞT bðk1Þ − T bðk1ÞT aðk1Þ�

þ εijkk1;jkk

�
T aðk1Þ

dT bðk1Þ
dk1

− T bðk1Þ
dT aðk1Þ
dk1

�
k:

ð13Þ

The first line corresponds to a contribution linear in kwhich
vanishes while the second line gives the leading k2

contribution. A similar reasoning with the terms of type
ð∂i∂jAÞð∂jBÞ leads to the same conclusion as it brings only
an extra factor k1 · k2. Hence, from Eq. (8) we deduce that
the leading contribution to Pðk; ηÞ scales as k4, implying
that Qðk; ηÞ scales as k3.5.
The analytical argument presented in FPMconsiders only

the subleading contributions to the convolution integral
when k1 and k2 are superhorizon,which do have a k4 scaling.
In fact, in the numerical analysis in FPM, the q-integration is
cut at insufficient low values (a fixed multiple of the k
considered) restricting the integration to the superhorizon
limit and therefore consistently finding the k4 limit both
analytically and numerically. This problem only affects the
times before recombination when the horizon is small; the
analysis of the magnetic field at present time in FPM is not
affected by this cut since all modes are sub-Hubble at late
times. Note also that the analytical analysis of Ref. [19] is
also restricted to super-Hubble modes and they consistently
find a k4 dependence for Qðk; ηÞ.

VI. CONCLUSION

We confirm that today’s value of the averaged magnetic
field generated from baryon-photon interactions is of order
2 × 10−29 G at a few Mpc, which is consistent with the
values reported in the literature2. We confirm the large scale
limit of k3.5 found in Refs. [13,18], clarifying the tension in
the past literature. At the small scales, we find that earlier
numerical computations did not have enough angular
resolution as they cut the Boltzmann hierarchy at insuffi-
cient values lmax, not capturing the features left by the
baryon-photons interactions correctly. However, perturba-
tion theory inevitable breaks down, limiting the validity of
perturbative approaches on the small scales. For this reason,
we conclude that Einstein-Boltzmann codes cannot be used
to extend the power spectrum estimation at scales much
smaller than 1 Mpc and instead fully nonperturbative
simulations are needed. Contributions at low redshift are
an important source for the magnetic field and at small
scales they require both a large number of multipoles as
well as beyond-second-order corrections. Since the fully
relativistic theory is too challenging beyond the second
order, a correct treatment of higher-order effects for small
scales should be performed by using a perturbative expan-
sion of the Newtonian theory on an expanding universe.

ACKNOWLEDGMENTS

The authors would like to thank R. Maartens for his
detailed comments on earlier versions of this article. C. F. is
supported by the Wallonia- Brussels Federation Grant
No. ARC11/15-040 and the Belgian Federal Office for
Science, Technical & Cultural Affairs through the
Interuniversity Attraction Pole P7/37. This work has been
done within the Labex ILP (reference ANR-10-LABX-63)
part of the Idex SUPER, and received financial state aid
managed by the Agence Nationale de la Recherche, as part
of the programme Investissements d'avenir under the
reference ANR-11-IDEX-0004-02.

[1] D. Ryu, D. R. G. Schleicher, R. A. Treumann, C. G. Tsagas,
and L. M. Widrow, Space Sci. Rev. 166, 1 (2012).

[2] L. M. Widrow, D. Ryu, D. R. G. Schleicher, K. Subramanian,
C. G. Tsagas, and R. A. Treumann, Space Sci. Rev. 166, 37
(2012).

[3] R. Durrer and A. Neronov, Astron. Astrophys. Rev. 21, 62
(2013).

[4] A. Neronov and I. Vovk, Science 328, 73 (2010).
[5] W. Essey, S. Ando, and A. Kusenko, Astropart. Phys. 35,

135 (2011).

2Note that the results in SITS are not evaluated at z ¼ 0 but at
z ¼ 1100 and they should be rescaled by an adiabatic decay to be
expressed in terms of a magnetic field today; this point has been
overlooked in Sec. 4.4.2 of [2], where the magnetic field was
overestimated by a factor ∼106.

PRECISE NUMERICAL ESTIMATION OF THE MAGNETIC … PHYSICAL REVIEW D 93, 103536 (2016)

103536-5

http://dx.doi.org/10.1007/s11214-011-9839-z
http://dx.doi.org/10.1007/s11214-011-9833-5
http://dx.doi.org/10.1007/s11214-011-9833-5
http://dx.doi.org/10.1007/s00159-013-0062-7
http://dx.doi.org/10.1007/s00159-013-0062-7
http://dx.doi.org/10.1126/science.1184192
http://dx.doi.org/10.1016/j.astropartphys.2011.06.010
http://dx.doi.org/10.1016/j.astropartphys.2011.06.010


[6] K. Takahashi, M. Mori, K. Ichiki, S. Inoue, and H. Takami,
Astrophys. J. 771, L42 (2013).

[7] P. A. R. Ade, N. Aghanim, M. Arnaud, F. Arroja, M.
Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J.
Banday (Planck Collaboration) et al., arXiv:1502.01594.

[8] P. A. R. Ade et al. (POLARBEAR), Phys. Rev. D 92,
123509 (2015).

[9] J. Martin and J. Yokoyama, J. Cosmol. Astropart. Phys. 01
(2008) 025.

[10] T. Fujita, R. Namba, Y. Tada, N. Takeda, and H. Tashiro, J.
Cosmol. Astropart. Phys. 05 (2015) 054.

[11] K. Subramanian, Astron. Nachr. 331, 110 (2010).
[12] K. Ichiki, K. Takahashi, H. Ohno, H. Hanayama, and N.

Sugiyama, Science 311, 827 (2006).
[13] K. Ichiki, K. Takahashi, N. Sugiyama, H. Hanayama, and

H. Ohno, arXiv:astro-ph/0701329.
[14] S. Maeda, S. Kitagawa, T. Kobayashi, and T. Shiromizu,

Classical Quantum Gravity 26, 135014 (2009).
[15] E. Fenu, C. Pitrou, and R. Maartens, Mon. Not. R. Astron.

Soc. 414, 2354 (2011).
[16] C. Pitrou, Phys. Lett. B 698, 1 (2011).
[17] F.-Y. Cyr-Racine and K. Sigurdson, Phys. Rev. D 83,

103521 (2011).

[18] S. Saga, K. Ichiki, K. Takahashi, and N. Sugiyama, Phys.
Rev. D 91, 123510 (2015).

[19] E. Nalson, A. J. Christopherson, and K. A. Malik, J.
Cosmol. Astropart. Phys. 09 (2014) 023.

[20] K. Nakamura, Phys. Rev. D 74, 101301 (2006).
[21] C. Pitrou, Classical Quantum Gravity 26, 065006 (2009).
[22] M. Beneke and C. Fidler, Phys. Rev. D 82, 063509

(2010).
[23] A. Naruko, C. Pitrou, K. Koyama, and M. Sasaki, Classical

Quantum Gravity 30, 165008 (2013).
[24] G.W. Pettinari, C. Fidler, R. Crittenden, K. Koyama, and D.

Wands, J. Cosmol. Astropart. Phys. 04 (2013) 003.
[25] C. Fidler, G. W. Pettinari, M. Beneke, R. Crittenden, K.

Koyama, and David Wands, J. Cosmol. Astropart. Phys. 07
(2014) 011.

[26] C. Fidler, K. Koyama, and G.W. Pettinari, J. Cosmol.
Astropart. Phys. 04 (2015) 037.

[27] P. J. E. Peebles, Principles of Physical Cosmology
(Princeton University Press, Princeton, NJ, 1993).

[28] G.W. Pettinari, Ph.D. thesis, Portsmouth U., ICG, 2013,
http://arxiv.org/abs/1405.2280.

[29] Z. Huang and F. Vernizzi, Phys. Rev. D 89, 021302 (2014).
[30] S. C. Su, E. A. Lim, and E. P. S. Shellard, arXiv:1212.6968.

FIDLER, PETTINARI, and PITROU PHYSICAL REVIEW D 93, 103536 (2016)

103536-6

http://dx.doi.org/10.1088/2041-8205/771/2/L42
http://arXiv.org/abs/1502.01594
http://dx.doi.org/10.1103/PhysRevD.92.123509
http://dx.doi.org/10.1103/PhysRevD.92.123509
http://dx.doi.org/10.1088/1475-7516/2008/01/025
http://dx.doi.org/10.1088/1475-7516/2008/01/025
http://dx.doi.org/10.1088/1475-7516/2015/05/054
http://dx.doi.org/10.1088/1475-7516/2015/05/054
http://dx.doi.org/10.1002/asna.200911312
http://dx.doi.org/10.1126/science.1120690
http://arXiv.org/abs/astro-ph/0701329
http://dx.doi.org/10.1088/0264-9381/26/13/135014
http://dx.doi.org/10.1111/j.1365-2966.2011.18554.x
http://dx.doi.org/10.1111/j.1365-2966.2011.18554.x
http://dx.doi.org/10.1016/j.physletb.2011.02.058
http://dx.doi.org/10.1103/PhysRevD.83.103521
http://dx.doi.org/10.1103/PhysRevD.83.103521
http://dx.doi.org/10.1103/PhysRevD.91.123510
http://dx.doi.org/10.1103/PhysRevD.91.123510
http://dx.doi.org/10.1088/1475-7516/2014/09/023
http://dx.doi.org/10.1088/1475-7516/2014/09/023
http://dx.doi.org/10.1103/PhysRevD.74.101301
http://dx.doi.org/10.1088/0264-9381/26/6/065006
http://dx.doi.org/10.1103/PhysRevD.82.063509
http://dx.doi.org/10.1103/PhysRevD.82.063509
http://dx.doi.org/10.1088/0264-9381/30/16/165008
http://dx.doi.org/10.1088/0264-9381/30/16/165008
http://dx.doi.org/10.1088/1475-7516/2013/04/003
http://dx.doi.org/10.1088/1475-7516/2014/07/011
http://dx.doi.org/10.1088/1475-7516/2014/07/011
http://dx.doi.org/10.1088/1475-7516/2015/04/037
http://dx.doi.org/10.1088/1475-7516/2015/04/037
http://dx.doi.org/http://arxiv.org/abs/1405.2280
http://dx.doi.org/http://arxiv.org/abs/1405.2280
http://dx.doi.org/http://arxiv.org/abs/1405.2280
http://dx.doi.org/10.1103/PhysRevD.89.021302
http://arXiv.org/abs/1212.6968

