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ABSTRACT

Determining magnetic field properties in different environments of the cosmic large-scale structure as well as their evolution over
redshift is a fundamental step toward uncovering the origin of cosmic magnetic fields. Radio observations permit the study of extra-
galactic magnetic fields via measurements of the Faraday depth of extragalactic radio sources. Our aim is to investigate how much
different extragalactic environments contribute to the Faraday depth variance of these sources. We develop a Bayesian algorithm to
distinguish statistically Faraday depth variance contributions intrinsic to the source from those due to the medium between the source
and the observer. In our algorithm the Galactic foreground and measurement noise are taken into account as the uncertainty correla-
tions of the Galactic model. Additionally, our algorithm allows for the investigation of possible redshift evolution of the extragalactic
contribution. This work presents the derivation of the algorithm and tests performed on mock observations. Because cosmic mag-
netism is one of the key science projects of the new generation of radio interferometers, we have predicted the performance of our
algorithm on mock data collected with these instruments. According to our tests, high-quality catalogs of a few thousands of sources
should already enable us to investigate magnetic fields in the cosmic structure.

Key words. methods: data analysis — methods: statistical — magnetic fields — polarization — large-scale structure of Universe

1. Introduction

The origin and evolution of cosmic magnetism are at present
poorly understood. Answering the many open questions sur-
rounding the physics of astrophysical magnetic fields is a dif-
ficult task since magnetic fields can be significantly affected
by structure and galaxy formation and evolutionary processes.
Their strength can be amplified, for example, in galaxy clusters
through mergers and in galaxies through large-scale dynamos,
invoking differential rotation and turbulence. Insights into the
origin and properties of magnetic fields in the Universe could be
provided by probing them on even larger scales. Along filaments
and voids of the cosmic web, turbulent intracluster gas motions

Article published by EDP Sciences

have not yet enhanced the magnetic field; its strength thus still
depends on the seed field intensity, in contrast to galaxy clusters,
where it probably mostly reflects the present level of turbulence
(see, e.g., Donnert et al. 2009; Xu et al. 2010, 2011). Interven-
ing magnetoionic media cause a difference in the phase velocity
between the left-handed and right-handed circular polarization
components of the linearly polarized synchrotron radiation emit-
ted by a background radio source (e.g., Carilli & Taylor 2002;
Govoni & Feretti 2004). This effect translates into a rotation of
the intrinsic polarization angle, ¢,

Y = Yo + p2%. (1)
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Following Burn (1966), the observed polarization angle, i, de-
pends on the observation wavelength, A, through the Faraday
depth, ¢,

“ dl
¢ = ag f By(z) ne(z) - dz, )
0 Z

where ay depends only on fundamental constants, 7, is the elec-
tron density, B; is the component of the magnetic field along the
line of sight, and z, is the redshift of the source. When the rota-
tion is completely due to a foreground screen, the Faraday depth
has the same value as the rotation measure (RM), defined by

4
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The Faraday depth is assumed to be positive when the line-of-
sight average component of the magnetic field points toward the
observer, otherwise it is negative for a field with an average com-
ponent pointing away from the observer. The amount of Faraday
depth measured by radio observations along a given line of sight
is the sum of the contributions from the Milky Way, the emit-
ting radio source, and any other source and large-scale struc-
ture in between hosting a magnetized plasma. The investigation
of these contributions and of their possible dependence on red-
shift is essential to discriminate among the different scenarios
of magnetic field formation and evolution and, therefore, cru-
cial for the understanding of cosmic magnetism. Sensitive obser-
vations, a good knowledge of the Galactic Faraday foreground
screen, and a statistical approach that is able to properly com-
bine all of the observational information are necessary. An all-
sky map of the Galactic Faraday rotation foreground and an es-
timate of the overall extragalactic contribution has been derived
by Oppermann et al. (2012, 2015) in the framework of “Informa-
tion Field Theory” (Enflin et al. 2009) by assuming a correlated
Galactic foreground and a completely uncorrelated extragalactic
term. In this paper, we propose a new, fully Bayesian approach
aiming at further disentangling the contribution intrinsic to emit-
ting sources from the contribution due to the intergalactic envi-
ronment between the source and the observer and at investigating
the dependence of these contributions on redshift.

The first direct proof of the existence of magnetic fields
in large-scale extragalactic environments, i.e., galaxy clusters,
dates back to the 1970s with the discovery of extended, dif-
fuse, central synchrotron sources called radio halos (see, e.g.,
Feretti et al. 2012 for a review). Later, indirect evidence of the
existence of intracluster magnetic fields has been given by sev-
eral statistical studies on the effect of the Faraday rotation on
the radio signal from background galaxies or galaxies embed-
ded in galaxy clusters (Lawler & Dennison 1982; Vallée et al.
1986; Clarke et al. 2001; Johnston-Hollitt 2003; Clarke 2004;
Johnston-Hollitt & Ekers 2004). On scales up to a few Mpc
from the nearest galaxy cluster, possibly along filaments, only a
few diffuse synchrotron sources have been reported (Harris et al.
1993; Bagchi et al. 2002; Kronberg et al. 2007; Giovannini et al.
2013, 2015). Magnetic fields with strengths on the order of
10715 G in voids might be indicated by y-ray observations (see
Neronov & Vovk 2010; Tavecchio et al. 2010; Takahashi et al.
2012, 2013; but see Broderick et al. 2014a,b for alternative pos-
sibilities). Nevertheless, up to now, a robust confirmed detec-
tion of magnetic fields on scales that are much larger than clus-
ters is not available. Stasyszyn et al. (2010) and Akahori et al.
(2014a) investigated the possibility of statistically measuring
Faraday rotation from intergalactic magnetic fields with present
observations, showing that only the Square Kilometre Array

RM = 3
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(SKA) and its pathfinders are likely to succeed in this re-
spect. By comparing the observations with single-scale magnetic
field simulations, Pshirkov et al. (2015) infer an upper limit of
1.2nG for extragalactic large-scale magnetic fields, while the
Planck Collaboration XIX (2016) derived a more stringent upper
limit for primordial large-scale magnetic fields of B < 0.67 nG
from the analysis of the Cosmic Microwave Background (CMB)
power spectra and the effect on the ionization history (but see
also Takahashi et al. 2005; Ichiki et al. 2006).

A number of authors examined a possible dependence of
extragalactic Faraday depths on the redshift of the observed
radio source, but no firm conclusion has yet been drawn.
Kronberg & Perry (1982) found an increased variance of the
Faraday depth in conjunction with higher redshifts, as also found
in some later studies (e.g., Welter et al. 1984; Kronberg et al.
2008). However, Oren & Wolfe (1995) did not find any evidence
of an increase of the variance of the Faraday depth as a func-
tion of the redshift, as also suggested by the recent work by
Hammond et al. (2012) and Pshirkov et al. (2015).

The rest of this paper is organized as follows. In Sect. 2,
we describe the theory behind our method. In Sect. 3, the tests
performed are presented with predictions for the new genera-
tion of radio interferometers. Moreover, we outline a general-
ization of the algorithm in order to discriminate the contribution
from different large-scale structures along the line of sight. Fi-
nally, in Sect.4, we draw our conclusions. The application of
the algorithm to real data is left for future work, as explained
in the text. In the following, we adopt a ACDM cosmology
with Hy = 67.3kms 'Mpc~!, Q, = 0.315, Q5 = 0.685, and
Q. = 0.0 (Planck Collaboration XVI 2014).

2. Theoretical framework

The probability for the extragalactic contribution, ¢., along the
line of sight, i, to take on a value within the infinitesimal interval
between ¢ ; and ¢, ; +d¢. ; given the data, d, and a model param-
eterization, G, is given by the probability density distribution. As
shown by Oppermann et al. (2015), the prior probability density
distribution of the extragalactic Faraday depth can be approxi-
mated with a Gaussian. The mean and variance,

(Be.i) = (Peidse0) )
e = (Dei = (Pe) ) Peii = (Pei)d@) Nsesi0)s

of this distribution are

(eiy = 0 (%)
Wy = @ [ [ G BB,

where these averages are calculated with respect to the prior of
the extragalactic Faraday depth P(¢.;|®). The zero mean results
from the fact that we do not have any reason to suppose either
a positive or a negative mean Faraday depth value. Frozen-in
magnetic fields are expected to have strengths depending on red-
shift z. Because of the expansion of the Universe, lengths are
stretched

170 =(1+2). ©6)
In an isotropically expanding Universe with no significant fluc-
tuations, the mean electron density evolves as

(ne)
{no)

=(1+2),

N
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and, if the magnetic flux density is conserved, the magnetic field
strength as

B [\ )
—_— = =(1
(Bo) ((no>) (1+2),

®)

where [y, (ng), and (By) are the present-day values, and /, {n.),
and (B) are the values at the time when the signal was emitted
by the source. If we consider these assumptions and we define a
length scale A; := f dI'{(B()B(I"))/{B(])*), we obtain

(ten) = ay f ’<”<2>><3120>A10(1 +2'——de. 9)
0

H(z)

For the derivation of this expression, see Appendix A. Here, we
assumed an unstructured Universe! and used the definition of
proper displacement along a light ray, g—i = (lﬂ‘m Moreover,
we assumed that, within a correlation length Ay, the redshift
can be approximated to be constant. Magnetic field strength and
structure and the electron density have different values in differ-
ent environments, j. In the following, we assume them to depend
only on the environment and not on the location within an envi-
ronment. This simplification renders the problem feasible. The
letters i and j should not be mixed up since they have a differ-
ent meaning. Indeed, they refer to the line of sight and to the
environment (e.g., galaxy clusters, voids, filaments, and sheets.),
respectively.

In this paper, as a first step, we restrict our analysis to
two components (scenario 2C): the emitting radio source itself,
whose contribution is O'izm,i(z,‘, ®), and the medium between the
source and our Galaxy, whose contribution is ofnv’i(z,-, ®), such
that
($2.) = 022, ©) = 07 (20 ©) + 2 (22 ©). (10)
We denote with ® = {Tint.0, Tenv.05 X1um»> Xred} an N-dimensional
vector, where N is the number of parameters used in the repre-
sentation of the Faraday depth variance. These are the parame-
ters we want to infer: oy is the pure Faraday depth variance
intrinsic to the emitting radio source, oy, is the pure large-
scale Faraday depth variance, y,m describes the luminosity de-
pendence of the intrinsic contribution, and y .4 describes the red-
shift dependence of the large-scale contribution. We choose the
following parameterization for the intrinsic contribution to the
variance in Faraday depth,

L) -

Ao (o) 7

where L, is the total luminosity? of the source i, Ly = 10>’ W/Hz,
and yum absorbs possible dependencies on the luminosity of the
source since faint sources may not be detected. In a flux-limited
catalog, only the brightest sources are detected in the distant Uni-
verse. This selection effect can bias the evaluation of the contri-
bution intrinsic to the source, e.g., if the Faraday depth associ-
ated with bright sources differs from that in faint sources. We
take this possible effect into account with yj,,. Alternatively,
a parameterization based on polarized luminosity would also

! The expression “unstructured Universe” refers to a uniform distribu-

tion of matter without any significant fluctuation.
2 This luminosity refers to the mean frequency of the band used for the
computation of the Faraday depth values.

be a reasonable choice. For the environmental contribution, we
choose as a parameterization

Di(Zi,Xred) 2

Ofnv,i(zi’ 0)= Do T env,00 (12)
where Dy = 1 Gpc, and D;(z, xreq) 1s defined as

Zi c
Dizixred) = | (1 +2)""dz (13)

H(z)

to capture the redshift scaling of Eq. (9). We derived this redshift
dependence assuming an isotropically expanding Universe with
no significant fluctuations. Possible deviations from this simplis-
tic scenario are taken into account by the parameter y;eq. Since
the length of the path covered by the signal in the source is not
known for each source, we factored it in Uizm,o in Eq. (11). We
note that oy o and oeny,0 Were assumed to be independent of the
redshift. In Eq. (11) the only redshift dependence is absorbed by
the factor (1 + z;)~* that takes into account the effect of redshift
on Faraday rotation (squared), while in Eq. (12) it is absorbed by
Di(zi, xred), Which is given in Eq. (13).

This parameterization describes the simplest scenario. For
more complex scenarios that include three components, we re-
fer to Appendix C, where we introduce an additional constant
and latitude-dependent term. Moreover, galaxies along the line
of sight between a source and the observer can be responsi-
ble for high Faraday depth values (e.g., Kronberg & Perry 1982;
Welter et al. 1984; Kronberg et al. 2008; Bernet et al. 2012), in-
dicating magnetic field strengths in these intervening galaxies of
(1.8+£0.4) uG (Farnes et al. 2014a). The rotation of the polariza-
tion angle due to these sources adds to that associated with the
large-scale structure and, therefore, should be taken into account
in a proper modeling. Since the aim of this paper is to give a
proof of concept, we leave this for future work.

2.1. Bayesian inference

To constrain the vector ® = {Tint.0, Tenv.0> X1ums> Xred} ON the basis
of these data, d, we propose a Bayesian approach. The posterior
probability distribution, P(s|d), on a signal, s, after a dataset, d,
is acquired, can be expressed with Bayes’ theorem,

P(d|s)P(s)

P(sld) = 20

(14)

The prior probability distribution, P(s), is modified by the data,
d, through the likelihood, P(d|s). The evidence, P(d), is a nor-
malization factor, obtained by marginalizing the joint probabil-
ity, P(d, s) = P(d|s)P(s), over all possible configurations of the
signal, s.

In this context, the data, d, can be represented as a vector
with elements d;, with i = 1, ..., Njos, Where N is the total num-
ber of lines of sight. Each measurement, d;, is the Faraday depth
evaluated in the direction of the source, i, and is the result of the
sum of a Galactic and an extragalactic contribution, ¢,; and ¢,
and the noise, n;, of the measurement process, such that
di = ¢gi + G + 1. (15)
From the observed data, the Galactic foreground should be re-
moved as well as possible to reveal the extragalactic contri-
bution. However, any estimation of the Galactic foreground is
based on the same data and is facing the separation problem
for Galactic and extragalactic contributions. The only available
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discriminant (so far) is the large angular correlation the Galac-
tic contribution shows. This allows for a statistical separation
and Galactic model construction. Such a model inevitably has
uncertainties and correlations among such uncertainties, which
have to be properly taken into account in a statistical search
for extragalactic Faraday signals. To this end, Oppermann et al.
(2012, 2015) developed a fully Bayesian approach to recon-
struct the Galactic Faraday depth foreground and estimate the
extragalactic contribution and the involved uncertainties using
the Faraday depth catalogs available to date. Their posterior for
the extragalactic contribution can be used to further disentan-
gle the intrinsic and environmental contributions. Analyses by
Oppermann et al. (2012, 2015) rely on the assumption that for
each source the prior knowledge can be described by a Gaussian
probability density distribution,

Nios

l_[ g(¢e,i, 0-3;)’

i=1

P(ge) = (16)

with a standard deviation, o, ~ 7 rad m~2, irrespective of the line
of sight3. Here, on the other hand, we want to test whether the
variance is different for each line of sight, depending on the red-
shift of the source, according to Egs. (11) and (12). We note that
in our approach the angular separation of sources is assumed to
be large enough that the magnetic fields probed by different lines
of sight can be modeled as uncorrelated. All angular correlations
of Faraday depth on scales down to the effective resolution of the
catalog (~0.5°) are absorbed by the Galactic component in this
model. A more complete modeling would require us to take pos-
sible correlations in the extragalactic component into account.
Thus, our assumptions imply that the values derived with the
proposed algorithm for the contributions of different environ-
ments to the Faraday depth dispersion are a lower limit.

We cannot follow the prescription described in Ap-
pendix D.2.3 of Oppermann et al. (2015) because our prior as-
sumptions are too different from theirs. Instead, we resort to
Gibbs sampling (Geman & Geman 1984; Wandelt et al. 2004).
This approach relies on the fact that sampling from the condi-
tional probability densities,

$e < P(¢|0, d), (17)
and,
0O <« P(O|¢e,d), (18)

in a two-step iterative process is equivalent to draw samples from
the joint probability density

pe, @ < P(O, ¢cld),

if the process is ergodic.
For the parameters oo and oepyo We choose a uniform
prior,

19)

(20)

Results with other priors are discussed in Appendix D. Con-
versely, we do not expect the parameters yium and yreq to differ
greatly from 0, since we have already accounted for all obvious
redshift effects. This requirement is satisfied if we use the fol-
lowing Gaussian priors

P(‘Tint,O’ O-env,O) o const.

P(Xlums)(red) = g(/\/luma l)g(/\/red, 1), 2D
and in combination
P(®) = P(o-im,O, o—env,O)P(Xluvared)- (22)

3 The notation G(x, X) indicates a one-dimensional Gaussian distribu-
tion for a variable x with zero mean and variance X.
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2.2. Description of the algorithm

Here, we describe the Gibbs sampling procedure mentioned in
the previous section. We run the algorithm starting from values
of the parameters ® randomly drawn from their prior. This ®
vector is used to compute a variance for the prior of the extra-
galactic contribution,

Nios

P(@l®) = | | G(bes 02 (i, O)), (23)
i=1

where a'g :(zi, ®) is evaluated according to Eq. (10). A sample for
the extragalactic contribution is drawn from the posterior

P(d|pe, O)P(¢e|O)
P(d|®)

P(¢c|©,d) = ; (24)

following the approach described in Oppermann et al. (2015)
with the Galactic power spectrum, Galactic profile, and correc-
tion factors to the observed noise variance (indicated by 7; in
Oppermann et al. 2015) fixed to the published values. After fix-
ing the extragalactic sample, a new ® sample is drawn from the
conditional probability

Nios

P(¢.|®)P(®
= PO o [ 6t0er a2 0D PO,
i=1

P(Olge) = P(y) (25)

Here, we drop the dependence on the data, d, because ©
and d are conditionally independent given ¢.. To sample
from this distribution, we use a Metropolis-Hastings algorithm
(Metropolis et al. 1953; Hasting 1970). When direct sampling
is difficult, Metropolis-Hastings algorithms can approximate a
probability distribution with random samples generated from the
distribution itself. At each iteration a step in the parameter space
is proposed according to a transition kernel and then accepted
according to an acceptance function. If the proposed step is not
accepted, the old ® values are kept and used to draw a new sam-
ple of the extragalactic Faraday depths.

The convergence criteria adopted in this work are described
in Appendix B.

3. Results

In the following we present tests performed with different Fara-
day depth catalogs. These catalogs differ in the number of com-
ponents used to generate the overall extragalactic Faraday depth,
the numbers of lines of sight in the sky, and the observational un-
certainties that are different for the different radio surveys con-
sidered here. In Sect. 3.1 we demonstrate that the algorithm is
working properly for the two-component scenario described in
Sect.2. In Sect.3.2, we present the prospects with the surveys
planned with the new generation of radio interferometers: Low-
Frequency Array (LOFAR), Australian Square Kilometre Array
Pathfinder (ASKAP), and the SKA.

We perform tests assuming an overall extragalactic Faraday
depth in agreement with the values presently inferred, namely
~7.0radm™2 (Schnitzeler 2010; Oppermann et al. 2015), and
comparable intrinsic and environmental contributions. To sat-
isfy these two requirements, we need to use slightly different
values of the ® parameters for surveys with different frequency
specifications. Indeed, the contributions depend on the frequency
through the luminosity of the source; see Eq. (11). Our choice of
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Table 1. Mock catalogs.

Scenario ID Description los # o-éoise Figure
(rad/m?)
Two Component 2C1 Datasets used by Oppermann et al. (2012, 2015)? 41632 13.0 2(a)
2C2 Datasets used by Oppermann et al. (2012, 2015)? 4003 13.0 2(b)
NP LOFAR 120-160 MHz, North Polar Cap 2148 0.05 3(a,b)
GW LOFAR 120-160 MHz, Great Wall 1036 0.05
POS  ASKAP-POSSUM 1130-1430 MHz, South Polar Cap 3476 6.0 5
B2SP1 SKA Band 2, 0.95-1.76 GHz, South Polar Cap 3476 2.0 4(a,b)
B2SP2 SKA Band 2, 0.95-1.76 GHz, South Polar Cap 1129 2.0
B1SP1 SKA Band 1, 0.35-1.05 GHz, South Polar Cap 3476 0.3
B1SP2 SKA Band 1, 0.35-1.05 GHz, South Polar Cap 1129 0.3
Three Component 3C1 Datasets used by Oppermann et al. (2012, 2015)? 41632 13.0 C.1(a)
3C2 Datasets used by Oppermann et al. (2012, 2015)? 4003 13.0 C.1(b)
Latitude Dependence LD1 Datasets used by Oppermann et al. (2012, 2015)2 41632 13.0 C.2(a)
LD2 Datasets used by Oppermann et al. (2012, 2015)? 4003 13.0 C.2(b)
Prior O PO Datasets used by Oppermann et al. (2012, 2015)? 41632 13.0 D.1(a)
Prior 1 P1 Datasets used by Oppermann et al. (2012, 2015)? 41632 13.0 D.1(b)

Notes. Column 1: scenario considered for the generation of the mock catalog. Column 2: identification code (ID) of the test. Column 3: short
description of the catalog. Column4: number of lines of sight contained in the catalog. Column 5: Observational uncertainty in Faraday depth.
Column 6: figure where the results of the corresponding test are shown. () For present observations this value represents the mean value of the

observed uncertainties.

References. @ The references for the surveys and catalogs used by Oppermann et al. (2012) are: Dennison (1979), Tabara & Inoue (1980),
Simard-Normandin et al. (1981), Lawler & Dennison (1982), Rudnick & Jones (1983), Kato et al. (1987), Broten et al. (1988), Hennessy et al.
(1989), Kimetal. (1991), Cleggetal. (1992), Wrobel (1993), Oren & Wolfe (1995), Minter & Spangler (1996), Condon etal. (1998),
Gregorini et al. (1998), Vigotti et al. (1999), Clarke et al. (2001), Gaensler et al. (2001), Brown et al. (2003), Johnston-Hollitt (2003), Klein et al.
(2003), Taylor et al. (2003), Clarke (2004), Johnston-Hollitt & Ekers (2004), Gaensler et al. (2005), McClure-Griffiths et al. (2005), Roy et al.
(2005), Haverkorn et al. (2006), Brown et al. (2007), Braun et al. (2007), Mao et al. (2008), Feain et al. (2009), Heald et al. (2009), Taylor et al.
(2009), Bonafede et al. (2010), Mao et al. (2010), Feain et al. (2011), Van Eck et al. (2011).

the ® parameters translates to a strength of magnetic fields in-
trinsic to the source of

(Bio)s oy ' Aw S
G 103 cm™3 5kpc 100 kpe

-1
~0.5+1( ) . (©26)

where S is the size of the emitting radio source, and to large-
scale magnetic field strengths of

(Bio)LLs ) (no) )_1 A )_1 )
nG 103 cm™3 5Mpc

In the tests for LOFAR and SKA, we additionally consider an

overall extragalactic Faraday rotation of ~0.7 radm~2 to mimic

weaker fields. This corresponds to magnetic field values weaker

by a factor ten than those given in Eqs. (26) and (27).

The two-component parameterization represents the simplest
scenario. Nevertheless, the algorithm is also able to successfully
deal with more complex scenarios that include a third constant
or latitude-dependent component. These scenarios are discussed
in Appendix C. Moreover, to asses whether different priors can
have an impact on our results, we consider in Appendix D a flat
prior in 0% and a flat prior in In(c%). In Table 1, we give a sum-
mary of all of the setups we used, including those presented
in the Appendices. To each of these, we assigned an identifi-
cation code (ID) that we use to discriminate among the differ-
ent scenarios. When the same collection of sources is used for
tests with different values of the overall extragalactic Faraday
depth, we distinguish among them by adding a roman letter. For
example, Xa and Xb indicate tests performed using the collec-
tion of sources X and two different overall extragalactic Fara-
day depth standard deviations, a denotes ~7.0rad m~2, while b

27

~0.7 rad m~2. In Table 2 we report all of the values of the ® pa-
rameters adopted in the different tests. In the main text we give
both a quantitative and a visual summary of the results of all of
the tests we performed, while the full posteriors are only shown
for the most important tests we carried out. The posteriors for
other representative tests are shown in the appendices.

3.1. Present instrument observations

We generate a mock catalog for the sample of sources used by
Oppermann et al. (2012, 2015) to assess the quality of the algo-
rithm. This mock catalog includes coordinates, redshifts, lumi-
nosities, and Faraday depth values.

The positions of the sources on the sky were kept the same
as for the real sources. The majority (~40 000 sources) belong
to the catalog of Taylor et al. (2009) and, for 4003 of these
sources, spectroscopic redshift measurements were published by
Hammond et al. (2012). For most of the sources, these catalogs
give a flux density measurement that allows us to compute the
luminosity of the source. Where available, we use the measured
redshift and flux density. For the vast majority of the sources we
generate a mock redshift and, for a few of them, we generate a
mock flux density value. Mock redshifts and flux densities are
extracted independently from the two observed distributions. In
Fig. 1, the distribution of both the real and mock sample of red-
shifts and flux densities is shown in the top and middle panel, re-
spectively. In the bottom panel, the observed flux density versus
redshift distribution is presented. These two quantities appear to
be weakly correlated. For sake of simplicity, we neglected such
correlation in our mock simulation, since it should not have any
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Fig. 1. Distribution of the real and mock samples of redshifts z (fop) and
flux densities Fyy at 1.4 GHz (middle). In the bottom panel, flux density
vs. redshift for sources with both measurements available (Taylor et al.
2009; Hammond et al. 2012).

impact on our analysis. We assume all redshifts and luminosities
to be known with negligible uncertainty.

We generate a mock Faraday depth value for all of the
sources in the catalog. The observed Faraday depth values con-
sist of a Galactic, extragalactic, and noise contribution. We

considered the Galactic contribution to be given by a sam-
ple extracted from the posterior of Oppermann et al. (2015).
To mimic observational uncertainties, the noise variance has
been computed for each source according to Eq. (37) in
Oppermann et al. (2015), where as observed uncertainty, o;, we
use the uncertainties reported in the observational catalogs and
as 1; we use the values recovered by Oppermann et al. (2015).
The observational error of each measurement has been extracted
from a Gaussian with this standard deviation and zero mean.
Concerning the extragalactic contribution, in this test we con-
sider the 2C scenario described in Sect. 2, namely an intrinsic
and an environmental contribution,

Xlum 0—2 D(
> int,0 i Zza/\/red) 2
(2, 0) = | — + : 28
Teil@ ©) (Lo) (1 +z)* Dy ™0 (28)

The variances in Eq. (28) depend on the redshifts and lumi-
nosities of the sources. Therefore, each source has a different
variance. For each source, the extragalactic contribution is ex-
tracted from a Gaussian with this variance and zero mean. As
summarized in Table 2, the contributions intrinsic to the source
and due to the medium between the source and the observer are
Tomo = 18.2radm™2 and 7, , = 1.4rad m2, respectively. Since
the mean of the factor L;/Ly/(1 + z;)* is ~0.06 and the mean of
the factor D;/Dy is ~15.5, the standard deviation in the overall
intrinsic and environmental components are o'¢ ~ 4.4 rad m~2

and o™ ~ 5.3 rad m~2. For this scenario, we run two tests cor-

responding to a different number of lines of sight:

— 41632 (2C1). This is the total number of lines of sight for
which an estimate of the extragalactic contribution is avail-
able from Oppermann et al. (2015);

— 4003 (2C2). This number accounts for all of the sources in
the catalog 2C1 for which a redshift measurement is avail-
able as well (Hammond et al. 2012).

In Fig. 2, we show the results for tests 2C1 and 2C2, meaning
with a two-component scenario for 41 632 lines of sight (a) and
4003 lines of sight (b), respectively. The histograms in the top
plots of each column represent the one-dimensional projection of
the posterior for the corresponding parameter. The dotted lines
indicate the true value of the parameter. The dashed and dash-
dotted lines describe the posterior statistics, namely the mean
and the 1o confidence level, respectively. The continuous lines
indicate the prior used in our analysis. The panels in colors show
the two-dimensional projection of the posterior for a given cou-
ple of parameters. These plots show that our algorithm is able to
recover the mock ® values for this scenario. The inferred poste-
rior mean values agree with the correct values within the uncer-
tainties and the posterior distributions are much narrower than
the prior distributions. The dispersion in the parameters ® in-
creases by decreasing the number of lines of sight, as expected.
The plots indicate that some of the parameters are correlated,
e.g., most noticeably o epy 0-Yred, Which show a strong anticorre-
lation. This feature can be understood in light of Eq. (12). In-
deed, for a given Faraday rotation o,y associated with the struc-
tures between the source and the observer, larger oepy o imply
smaller y;.q and vice versa. We expect the correlation in the pos-
terior to be significant for any reasonable parameterization that
allows for the same number of degrees of freedom.

In order to have a compact and complete visualization, in the
rest of the paper we present all of the tests we performed and
their results as in Fig. 2.
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Fig. 2. Results obtained with a two-component scenario for 41 632 (2C1) lines of sight in panel a) and for 4003 (2C2) in panel b). In each panel
the top plots of each column show the one-dimensional projection of the posterior and the true value (dotted line), the outcome of the analysis
(dashed and dash-dotted lines), and the prior (continuous line). The panels in color show the two-dimensional marginalized views of the posterior
as sampled.
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3.2. Future prospects

We investigate the possibility to separate the Faraday rotation
intrinsic to the emitting radio source from that due to the ex-
tragalactic environments between the source and the observer
with the specifications of the SKA, its precursor, ASKAP, and
its pathfinder, LOFAR. We generated the mock Faraday depth
values for each source as described in Sect. 3.1. For each cat-
alog, we extracted the noise contribution for each line of sight
from a Gaussian with zero mean and standard deviation equal
to maximum uncertainty in Faraday depth expected in the corre-
sponding frequency range, according to Stepanov et al. (2008).
Luminosities at frequencies different from 1.4 GHz were spec-
trally adjusted®.

Since our approach assumes that all of the lines of sight are
independent, i.e., sufficiently separated (>1°) so that the cross-
correlation function of their magnetic field is zero, in the follow-
ing tests we compute the number of lines of sight considering a
density of sources lower than or equal to one polarized source
per square degree. The expected number density of sources for
ASKAP and SKA per square degree is at least 100 times larger.
Here, we investigate whether already with a small sample of
lines of sight we would be able to put any constraints on the
contribution from extragalactic large-scale environments, rather
than exploit the information delivered by the full number of lines
of sight and to show the full potential of ASKAP and SKA.

3.2.1. Low-Frequency Array

We only consider the LOFAR’s high band antennas (HBA) be-
cause the calibration of the low band antennas (LBA) is very
challenging owing to the ionosphere. We select the HBA re-
gion of the spectrum with less contamination from radio fre-
quency interference (120-160 MHz; Offringa et al. 2013). In
this frequency range, the uncertainty on Faraday depth val-
ues is expected to be <0.05radm~2 for a signal-to-noise ratio
larger than 5 (Stepanov et al. 2008). Ionospheric Faraday rota-
tion can degrade the results at LOFAR frequencies; the same
holds for SKA1 — band 1 observations; see the next section.
Sotomayor-Beltran et al. (2013) developed an approach to model
ionospheric Faraday rotations using LOFAR pulsar observations
with precision up to 0.05-0.1 rad m~2, comparable with the max-
imum uncertainty expected in this frequency band and consid-
ered here (see Table 1). According to Mulcahy et al. (2014), the
expected number of polarized extragalactic radio sources is 1 per
1.7 square degrees for 8 h-long observations, assuming an aver-
age degree of polarization of 1%, a spatial resolution of 20", and
a detection threshold of 500 uJy/beam/rmsf° that corresponds to
S/N =5.

On the basis of these assumptions we generate coordinates
in the sky for a collection of sources corresponding to a sur-
vey (8h per pointing) in the direction of the north polar cap
(NP). Among these sources we select those with Galactic lati-
tude larger than 55°. This results in approximately 2200 sources.
We derive a catalog assuming an overall extragalactic Faraday
rotation o, ~ 7radm™? (NPa), and one assuming an overall

* For convenience, we use a single power-law F(v) o« v where F(v)
is the flux density. We did not take into account any evolution of the ra-
dio source population (e.g., Condon et al. 2002; Mauch & Sadler 2007).
This assumption does not affect our results. Indeed, the purpose of the
work is to assess the capability of the algorithm to recover the ® param-
eters that describe the different extragalactic contributions, regardless of
the assumption made to generate them.

> Rmsf is the half-power width of the Faraday depth spread function.

extragalactic Faraday rotation o, ~ 0.7 rad m~2 (NPb). The re-
sults are shown in Fig. 3, panels a and b. These plots show that
LOFAR can provide good constraints for both values of the over-
all extragalactic Faraday depth if a few thousand of lines of sight
are used with better performance for larger 0. The posterior
distributions are much narrower than the prior distributions and
the posterior means agree with the correct values within 1-20.
We also performed tests with a smaller number of lines of sight
(Nios = 1000, see Tables 1, 2, and Fig. 6) still obtaining good per-
formances even if, as expected, the posterior distributions were
wider.

A survey of the sky at similar frequencies (170-200 MHz)
but with lower spatial resolution (15.6") was conducted with
the Murchison Widefield Array over an area of 2400 deg’
(Bernardi et al. 2013). With a sensitivity in total intensity of
200 mJy/beam, the authors detected polarized emission only for
one source among all of the sources brighter than 4Jy, im-
plying at these frequencies a fractional polarization below 2%
for the remaining sources. The low number density derived by
Bernardi et al. (2013) may be due to beam depolarization. The
number of polarized sources in this frequency band is not yet
clear and different assumptions on the density of sources trans-
late to different predictions on the capabilities to infer properties
of extragalactic magnetic fields.

We note that at frequencies ~GHz the Galactic contribution
can be described with a single Faraday screen along the line
of sight (i.e., Uyaniker & Landecker 2002; Wolleben & Reich
2004). In the frequency band of LOFAR, the Galactic contri-
bution can become more complex (e.g., Bernardi et al. 2009;
Jeli¢ et al. 2014; Zaroubi et al. 2015) with multiple, statistically
significant Faraday depth peaks for several lines of sight. The
tests performed here assume the simple scenario of a single-
component Faraday depth spectrum. A more realistic treatment
would require a more complex model for the Galactic fore-
ground and is left for future work.

3.2.2. Square Kilometre Array

The SKA is expected to observe the entire Southern sky with
a spatial resolution of 2” and a sensitivity in polarization of
~4 ulJy/beam (see, e.g., Johnston-Hollitt et al. 2015). The result-
ing sky grid of Faraday rotation values will be 200-300 times
denser than the largest catalog currently available (see, e.g.,
Hales 2013). The better resolution of 2”7, compared to the 45”
of Taylor et al. (2009), will make it possible to identify optical
counterparts uniquely and, hence, to assign a redshift estimate
to a larger number of sources through spectroscopic follow-up
observations. The SKAI Re-Baseline Design 2015 indicates the
frequency bands 1, 2, and 5 as available on SKA_MID during
SKA-Phase 1:

— band 1, 0.35-1.05 GHz;
— band 2, 0.95-1.76 GHz;
— band 5, 4.6-13.8 GHz.

In the following we consider the frequency range 0.95—
1.76 GHz, since receivers in band 2 (B2SP1) should be con-
structed first.

We produce mock Faraday depth values assuming a max-
imum standard deviation in the noise distribution of the Fara-
day depth of 2.0rad m™2, according to Stepanov et al. (2008),
for this frequency range and for S/N > 5. We generate a cat-
alog of coordinates in the south polar cap (SP) based on the
assumption of one polarized source per square degree and we
select those with Galactic latitude b < —55°. This translates in
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Nios = 3500. We refer to this catalog as B2SP1. We produce
catalogs of Faraday depth values assuming o, ~ 7.0radm™
(B2SPla) and o, ~ 0.7 radm~2 (B2SP1b).

In Fig. 4, we show the results for B2SP1a and B2SP1b, in
panels a and b, respectively. The plots for 0. ~ 7.0rad m™>
indicate that with Nj,s & 3500 we obtain a good disentangling of
the environmental and intrinsic contributions and their redshift
and luminosity dependence with narrow posterior distributions
and mean values within =10 from the true values. For the same
amount of lines of sight but a smaller overall Faraday rotation
e ~ 0.7radm™2, the dispersion in oipt 0, Y¥1um, and Yreq becomes
broader but with mean values still within a few standard devi-
ations from the assumed value. On the other hand, we do not
get good constraints for the parameter o,y that appears to be
characterized by a large dispersion. The posterior distributions
are much broader than those derived with LOFAR for the same
overall extragalactic Faraday rotation (see Fig. 3). This is be-
cause of the different frequency range considered here. Indeed,
despite the larger number of lines of sight included in this cata-
log, the maximum uncertainty in Faraday depth is larger by one
order of magnitude, preventing the algorithm from constraining
the ® parameters with high precision. In order to derive narrower
posterior distributions, we would need to resort to a larger num-
ber of lines of sight or to a smaller observational uncertainty in
Faraday depth. Since the sensitivity of the SKA will allow us to
detect hundreds of sources per square degree, narrower posterior
distribution of the parameters can be obtained by increasing the
number of lines of sight.

For an overall extragalactic contribution o, ~ 7 rad m~2, fur-
ther tests with a smaller number of lines of sight (N5 ~ 1000)
show good performances, even if the posterior distributions are
broader. In addition, for a direct comparison with LOFAR, we
run tests for SKA observations in band 1 and obtain consistent
results. All these tests are summarized in Table 2 and Fig. 6. In
this paper, we do not consider the SKA frequency band 5. Even
if by moving to a higher frequency sources have a higher de-
gree of polarization, the maximum uncertainty in Faraday depth
is larger and the total source counts is reduced. Consequently,
we expect that the parameters are poorly constrained if the same
number of lines of sight is taken.

The high spatial resolution of the polarization survey planned
with SKA1, 2, will permit us to resolve the large majority of the
sources and, consequently, to image Faraday depth spatial varia-
tions on scales smaller than the source size. Therefore, we will be
able to access the spatial correlation of the Faraday depth intrin-
sic to the source and of that due to the screen in front of it. The
current version of the algorithm does not take into account any
correlation of the magnetic field along different lines of sight.
Therefore, its application to such a dense Faraday depth cata-
log would deliver a lower limit on the magnetic field strength,
including only the uncorrelated component.

3.2.3. Australian Square Kilometre Array Pathfinder

The Polarisation Sky Survey of the Universe's Magnetism
(POSSUM; Gaensler et al. 2010) is planned between 1130 and
1430 MHz with ASKAP. The survey will reach a sensitivity in
U and Q of <10uJy/beam and a resolution of 10”. This will
result in a density of 70 polarized sources per square degree
(Hales et al. 2014) and a Faraday depth catalog that is 100 times
denser than those that currently exist (e.g., Taylor et al. 2009).
To test the capabilities of this survey in constraining extra-
galactic magnetic fields, we use the same setup described in
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Sect. 3.2.2, but with an uncertainty drawn from a Gaussian with
O noise = 6.0rad m~2. This should be a reliable approximation of
the maximum uncertainty in Faraday depth for a polarized signal
with a §/N > 5 (Stepanov et al. 2008). The results are shown in
Fig. 5. ASKAP observations already appear very promising for
disentangling the contribution intrinsic to the source from that
due to large-scale environments for o, ~ 7.0rad m~2; this is al-
ready the case if Faraday depth values are only available for one
source per square degree. The dispersion in the parameters is
larger than that derived in Sect. 3.2.2 for the same collection of
sources and overall extragalactic Faraday variance (Fig. 4a), as
expected as the maximum uncertainty in Faraday depth is larger.
However, the mean values of the posterior agree with the true
values within at most about 1o

3.3. Discussion

We developed a Bayesian algorithm to disentangle extragalactic
contributions in the Faraday depth signal. This algorithm builds
upon an algorithm to reconstruct the Galactic Faraday screen
and its uncertainty-correlation structure previously presented by
Oppermann et al. (2015). We tested the algorithm by modeling
the overall extragalactic contribution as the sum of an intrinsic
and an environmental component; as described in Sect. 3.1, but
see Appendix C for the inclusion of a constant or a latitude-
dependent term. These tests show that the algorithm is able to
discriminate among the different components and their depen-
dence on the luminosity and redshift of the source.

For test purposes, we built mock catalogs according to the
specifications of the catalogs available in the literature after cor-
recting for poorly known uncertainty information (see Sect. 3.1).
The results in Fig. 2b indicate that by applying the algorithm to
the currently available dataset, we could already infer prelim-
inary information about extragalactic magnetic fields if a few
thousand sources with reliable observational uncertainty were
available. For the 4003 sources in Fig. 2b, indeed, redshift and
flux density values are available. Nevertheless, since actually we
do not consider all their Faraday depth noise variances to be reli-
able (see Appendix A of Oppermann et al. 2015) and the applied
correction factors, 7;, are only statistical estimates, we would
need to sample in the i;-parameter space as well to use the algo-
rithm with real data, as described by Oppermann et al. (2015).

The modern techniques of analysis, such as model fit-
ting of the fractional polarization components ¢ and u (e.g.,
Farnsworth et al. 2011; Ideguchi etal. 2014), rotation mea-
sure synthesis (e.g., Brentjens & de Bruyn 2005; Akahori et al.
2014b) and Faraday synthesis (Bell & Enflin 2012), and the fu-
ture radio surveys will partially overcome this problem. The
large bandwidth of the new radio interferometers will allow us
to reduce the risk of nr-ambiguity, which is particularly strong
when the A2-fit approach is used, as well as to reach a suffi-
ciently high resolution in Faraday depth to distinguish nearby
Faraday components. We note that when the distance between
two peaks in a Faraday spectrum is smaller than the resolu-
tion, the uncertainty in the Faraday depth may be driven by
the Faraday point spread function (e.g., Farnsworth et al. 2011;
Farnes et al. 2014b; Kumazaki et al. 2014). For these reasons,
the catalogs coming from Faraday depth grids planned with LO-
FAR, ASKAP, and the SKA will be more reliable both in terms
of Faraday depth values and uncertainties.

Therefore, we investigate the prospects of these simpler fu-
ture datasets here and address the more complex application of
our technique to present data in a separate work. We assumed
the computation to be dominated by the uncertainties in the
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Fig. 5. As Fig. 2 but for results obtained with a two-component scenario for ASKAP observations in the frequency range 1130-1430 MHz for

Nios = 3500 and an overall Faraday depth of ~7.0rad m~2 (POS).

Faraday depth estimates for each source, while the coordinates,
luminosities, and redshifts to be exactly known. With the ad-
vent of highly-accurate Faraday depth catalogs, this may change
and in future work we will need to investigate to what depths
and accuracy redshifts, and luminosities are needed to apply the
method we propose. This is particularly important for redshifts.
Indeed, the catalog used in this work reports a spectroscopic
redshift for each source (Hammond et al. 2012). Recently, op-
tical surveys, such as 2MASS, WISE, and SuperCOSMOS have
measured the photometric redshifts for millions of galaxies up
to z = 0.5 (e.g., Bilicki et al. 2014), and the surveys planned
with the next generation of telescopes will further increment
this number. Nevertheless, photometric redshifts are less accu-
rate than spectroscopic redshifts. This will require us to evaluate
the impact of their uncertainties on our results.

Our tests indicate that LOFAR, ASKAP, and the SKA will al-
low us to infer information about cosmological magnetic fields
already with a few thousands of lines of sight with better perfor-
mance when lower frequencies are used. We want to stress that
the uncertainties used in our tests only represent statistical uncer-
tainties and any systematic issues have been neglected. In princi-
ple, LOFAR observations could already be used for this aim but
the development of a pipeline for the reduction of polarization
data is still in progress. The enhanced capabilities of the Jansky
Very Large Array (JVLA) make the new centimeter-wavelength
sky survey (VLASS®) planned with this instrument a good op-
portunity for the application of this algorithm and for delivering
significant results in the study of cosmic magnetism in the near

% https://science.nrao.edu/science/surveys/vlass

future. Similarly, the frequency range (1-1.75 GHz), the angu-
lar resolution (13”), the expected sensitivity (10 pJy/beam over
300 MHz of bandwidth and 12 hours of observation), and the
large field of view (8 square degrees) make the APERture Tile
In Focus (APERTIF’) a competitive instrument for the present
investigation of cosmological magnetic fields.

In Table 2 we give a quantitative summary of the results.
For each test we report the true values 7 of the ® parameters
that describe the intrinsic and environmental contribution to the
Faraday depth, their mean values y, their uncertainties o, and
the displacement of the mean from the true value in terms of the
uncertainty,

u—-r
o

: (29)

e

These values were computed after discarding the burn-in sam-
ples by visual inspection. The comparison of the results ob-
tained with the mock catalogs created for present instruments
2C1 and 2C2 indicates that by increasing the number of sources
with known redshift by a factor ten, the uncertainty in the ® pa-
rameters can be reduced by about a factor two. This would not
longer be valid if the sources without redshift information repre-
sent a different population than the observed population, since in
our test we adopted mock values for these sources randomly ex-
tracted from the observed redshift distribution. A similar result is
obtained if the observational uncertainty oise is reduced by ap-
proximately a factor ten, as shown by the comparison of results
corresponding to catalog 2C2 and the SKA catalog B2SPla.

7 https://www.astron.nl/general/apertif/apertif
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Fig. 6. Uncertainty on oins Oenv.0> X1um»> and Xea (from the top to the bottom) as a function of the observational uncertainty ois. and the number
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These two tests refer to a similar number of lines of sight and
to a similar mean frequency®. In Fig. 6 we present a visual sum-
mary of the results for all of the two- and three-component sce-
narios corresponding to an overall extragalactic Faraday rotation
of approximately both 7radm~2 (left panels) and 0.7 rad m~2
(right panels) for the four parameters Tyt 0, Tenv.05 X1um» and Xred-
The uncertainty on the parameters ® decreases by increasing the
number of lines of sight, N5, and by decreasing the observa-
tional error, oyoise. The best results are obtained when a good
compromise between these two numbers is used, as for exam-
ple shown by the scenarios B1SP1a and B1SP1b. Nevertheless,
the comparison of the results of tests corresponding to differ-
ent instruments can be not straightforward because they refer to
different frequency bands and to slightly different values of the
® parameters.

The problem we are tackling is characterized by different
complexities. We are looking for a very weak signal by using
the residual information left in the data after the Galactic con-
tribution is derived. At the same time, we expect this signal
to be characterized by a possible redshift dependence, even if
this dependence is very weak since it is not yet detected, and
by cross-correlations of the extragalactic magnetic field along
different lines of sight. In this work, we try to address the first
two issues with a Bayesian approach that is able to combine all
of the available observational information properly and allow
for a redshift dependence in our model. On the one hand, we
might overestimate the extragalactic contributions, since we are
not including an uncorrelated Galactic component in the model.
This term can be easily included in our algorithm, as shown by
the tests in Appendix C and quantified with real data. On the
other hand, we do not take into account a possible correlated
component of the extragalactic magnetic field, which if present
would be beneficial for our analysis. This means that the mag-
netic field values that can be inferred have to be considered rather
as a lower limit, even if we expect this error to be small (e.g.,
Akahori & Ryu 2011). This is not a problem for surveys per-
formed with LOFAR, since the expected density of extragalactic
polarized sources is lower than one source per square degree. On
the contrary, with ASKAP and the SKA, we will be able to de-
tect at least 100 sources per square degree. An approach to deal
with possible cross-correlations between lines of sight is being
developed with the intention to apply this new technique to forth-
coming ultradeep JVLA observations from the CHILES Con Pol
survey (Hales et al., in prep.). The combination of the two meth-
ods would allow us to exploit in an optimal way the information
coming from the denser grids of Faraday depth measurements
provided by SKA and ASKAP surveys.

Finally, we stress that the aim of this paper is to give a proof
of concept. Indeed, the present version of the algorithm requires
a high computational burden that limits its efficiency. For exam-
ple, the time required to run a test on our computer cluster is on
the order of a couple of months per chain even when only a few
thousands lines of sight are considered. We are currently work-
ing on performance optimization to make the algorithm suitable
to be applied to the upcoming large Faraday depth catalogs.

3.4. Future developments

The work presented in this paper prepares a Bayesian tech-
nique to investigate magnetic fields in the large-scale structure,

8 Indeed, the 2C2-sources all belong to the Taylor et al. (2009) cat-
alog, therefore, their noise uncertainties refer to the frequency range
1365—-1435 MHz.

in particular, in filaments and voids. As a next step, we want
to discriminate among the amount of Faraday rotation due to
each large-scale structure environment (see also Vacca et al.
2015). When different large-scale environments are consid-
ered, the variance in the extragalactic Faraday rotation can be
parameterized as

By~ a fo RN An(1 +2)' s

Li " a'izm,o = 2
h (Lo) T+a) ;ll'la—j ’
where 0, 02, ..., oy, are the contributions from Ny, different
environments and /;; is the length of the line of sight, i, through
each environment, j.

With a Bayesian approach, Jasche et al. (2010) (see also
Leclercq et al. 2015) reconstructed the cosmic density field.
They used optical data from the Sloan Digital Sky Survey
(SDSS) Data Release 7 (Abazajian et al. 2009) and classified
the structures as voids, sheets, filaments, and galaxy clusters, ac-
cording to the classification scheme of Hahn et al. (2007). This
reconstruction enables us to compute the path covered by the
radio signal through each environment, i.e., the elements /;; in
Eq. (30), once the position of the radio source is identified us-
ing the redshift. This posterior of the large-scale structure den-
sity field is available in the form of samples. Radio sources can
belong to different environments (e.g., galaxy clusters and fila-
ments) and the path covered by the signal in each environment
differs for each radio source. These facts can be statistically
taken into account with the use of a collection of sources dis-
tributed over all of the sky and of different realizations of the
large-scale structure. We plan to use the full posterior of the
large-scale structure to statistically estimate the amount of vari-
ance due to the different types of environments in the observed
Faraday depths.

(30)

4. Conclusions

The properties of cosmic magnetic fields constitute outstand-
ing questions in modern cosmology. To get a better understand-
ing, it is essential to shed light on the properties of magnetic
fields in large-scale environments, meaning filaments and voids,
where turbulent intracluster gas motions have not yet enhanced
the magnetic field and, consequently, the magnetic field strength
and structure still depend on the seed field power spectrum.

Upcoming generations of radio telescopes, first LOFAR, and
in the next decades the SKA, will perform polarization sky sur-
veys with high sensitivity. Modern techniques based on rotation
measure synthesis and Faraday synthesis, will enable us to per-
form a proper analysis of the polarization properties of extra-
galactic radio sources, thus providing unprecedented, highly ac-
curate Faraday depth catalogs in frequency ranges from a few
hundreds MHz to a few GHz. A statistical approach is required
to exploit the information encoded in these data. For this reason,
we developed a Bayesian algorithm that is able to combine radio
observations with luminosities and redshifts of sources, aiming
at disentangling contributions to the extragalactic Faraday rota-
tion intrinsic to radio sources and due to large-scale structures,
and in this way infer information about large-scale magnetic
fields. Knowledge of the redshift is essential in this approach.
The present all-sky photometric optical surveys and the surveys
planned with the next generation of telescopes will greatly en-
large the number of sources for which this information will be
available.

A13, page 15 of 22



A&A 591, A13 (2016)

The work described in this paper is a proof of concept and
shows that our algorithm can be used to discriminate between the
Faraday depth generated by the radio source itself and the contri-
bution due to large-scale structures. Additionally, our algorithm
is able to investigate the dependence of these terms on the red-
shift and radio luminosity of the sources. The tests performed
with mock LOFAR, ASKAP, and SKA data suggest that this
technique is promising for the investigation of magnetic fields
with strengths of a few uG down to a few nG, when uncertain-
ties in the data are up to a few radm~2 and known with high
accuracy. Our modeling does not take into account any corre-
lated component of extragalactic magnetic fields. Consequently,
inferred magnetic field strengths have to be considered as a lower
limit.

The main characteristics of upcoming polarization surveys
can be summarized by the number of lines of sight and by the
maximum observational uncertainty in Faraday depth. Our tests
indicate that, for a given number of lines of sight, better con-
straints can be obtained with observations at lower frequencies
because of the smaller observational uncertainty. Therefore, in
principle, LOFAR observations and, even more so, SKA_LOW
(50-350 MHz) observations, thanks to their higher sensitivity,
would be ideal. Nevertheless, the scant number of polarized
sources at these frequencies and the difficulties in the calibra-
tion of the data could make the use of these data complex. Ob-
servations by ASKAP and SKA_MID in the frequency range
1130-1430 MHz and 650-1670 MHz, respectively, appear to be
promising as well. We should be able to put useful constraints
on large-scale magnetic fields already with Faraday depth mea-
surements for a few thousands of sources, and improve their de-
termination by increasing the number of lines of sight. An incre-
ment in the number of lines of sight by a given factor reduces the
uncertainty in the estimation of the intrinsic and environmental
contribution as a reduction by approximately the same factor in
the observational uncertainty does, indicating that deeper obser-
vations of small fields could be a valuable or even better alterna-
tive to all sky surveys.

We are aware that many aspects of our approach require im-
provements, for example, computational efficiency, inclusion of
a correlated extragalactic magnetic field component, and of un-
certainty in redshift. Nevertheless, we present a first step toward
a Bayesian study of magnetic fields associated with the cosmic
large-scale structures.
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Appendix A: Extragalactic Faraday depth variance

In this Appendix, we derive Eq. (9) from Eq. (5). In Eq. (5) we
define the extragalactic Faraday depth variance as
2 2 “ dl “dr ’ ’ ’
@Wy~d | — | Sn@n@)B@B()dd. (A1)
0 dz 0 dz
This definition can also be expressed as a function of distance
along the line of sight /

1(z;) 1(z;)
(¢§J> ~ aS f d/ f dl'{ne(Dn(I")B;(1)B)(I")). (A2)
0 0
If we assume that the thermal gas density is not characterized by
significant fluctuations and define a new variable r = I’ — [, we
have

(ne(Dne()B(DBI(I)) ~
(g OXBUDBIL + D) ipny = (na(DYCp(rine), (A3)

where Cp(r|n.) is the conditional magnetic field correlation func-
tion for an environment with thermal gas density n.. Indeed, we
expect the magnetic field strength to be a function of the thermal
gas density. With these new definitions, the extragalactic Faraday
depth variance reads

) ) U(z;) U(zi)-1 )
(Pe) =~ aof dlf dr {n;(D)Cp(rine),
0 -1

which can be further simplified if we consider the limit of an
infinitely far away source,

(A4)

(#2,) ~ ag f ij—idzmﬁ(z(z)» f drCp(rine). (A.5)
0 —0o
Recalling the definition of correlation length,
Cp(rine) f ,(BU)B('))
A= d = dl ————, A.6
! f T (B(P) (A.0)
we obtain
“dl
0o = 4 fo 34 U A B - (A7)

As described in Sect. 2, in a homogeneous Universe ne = neo(1 +
23, A= Ap(l +2)7", and (B?) = (B(z))(l + 2)*. Therefore,

W =a [ R T+ (A8)
where the increment in wavelength due to the expansion of the
Universe has been taken into account as well and we have as-
sumed z(l) ~ z(I + r). If we use the definition of proper displace-
ment along a light ray d//dz = ¢(1 + 2)"'/H(2), this finally leads
to Eq. (9),

B = fo OB 71

In an inhomogeneous Universe with different environments, the
differential variance in each environment is

(1+2)*dz. (A.9)

oy (ne)
— i = L @XB . (A.10)
Therefore, it follows
“dx  dz dogy,(ne)
2 2 RM
)= — dne P(nelz) —2¥—, Al
<¢e,z> ao\f(; dz (1 +Z)4f neP(ne|z) dx ( )

where the integral can be replaced by a discrete sum over typical
environments (see also Eq. (30)).
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Fig. B.1. Potential scale reduction factor R evaluated every ten samples
for the parameters Tinc0, Oenv,0» Xium»> and Xred, as a function of the num-
ber of steps in the MCMC, for the scenario 2C1. The continuous and
dashed lines represent a potential scale reduction factor equal to 1.0 and
1.1, respectively. It can be seen that the Gelman and Rubin test indicates
convergence after a few thousand steps.

Appendix B: Convergence

We start the algorithm from two random positions in the ® space
and then explore the space’ until convergence. Each of these two
sequences of steps in the ® space is called Gibbs chain. To as-
sess convergence of each Gibbs chain, we require the following
conditions to be satisfied:

— the number of steps taken from each chain to be at least about
10/, for each parameter, where /. is the number of steps at
which the correlation coeflicient p; drops to 10%;

— the Gelman and Rubin test (Gelman & Rubin 1992;
Brooks & Gelman 1997). We evaluate the intrachain
variance

1
I= Ezj?:ls? (B.1)
and the interchain variance
n m 2

for our ® parameters and use them to compute the potential
scale reduction factor R defined as

1 B
R=/1-—-—+—,
n nl

where m is the number of chains,  is the half-length of each
chain, 6; and s; are the mean and the standard deviation of
the jth chain, respectively, while 6 is the mean of the chain
means. We require R = 1 within a few percents for each
parameter.

(B.3)

We consider the chains to be converged when both these condi-
tions are satisfied.

As an example, in Fig. B.1 we show the plot of the potential
scale reduction factor R versus the number of steps for the ® pa-
rameters in the scenario 2C1. The potential scale reduction factor

® We tuned the variance of the Gaussian step proposal to ensure an
acceptance rate of the Metropolis-Hastings algorithm of approximately
15-30%.
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has been evaluated every ten samples. After about 5000 steps we
obtain R = 1 within a few percents. For each parameter of each
test, we obtain R within a few percentslo, which is sufficient to
meet our convergence criteria. The aforementioned correlation
coefficient p; is calculated for each parameter j = Tin.0, Tenv,0,
Xium» and yeq as follows,

zz;k(xs - 6)j)(xs+k - 9])

52 (xs = 6))

where k is the number of steps and x; is the value of one of
these parameters for a given step. For all of the parameters in the
scenario 2C1, [ turns out to be ~3000, while for the scenarios
NPa and B2SP1a, the correlation length is about 500-1000. In
these plots the steps in the burn-in phase have been discarded by
visual inspection.

pjk) = , B.4)

Appendix C: Alternative scenarios

In this Appendix, we present the application to scenarios includ-
ing three components, representing:

— an intrinsic, an environmental, and a constant contribution
(scenario 3C),

+ Di(zi, Xred) 2
D env,
0

Xlum 2
L ) Oint0

2 . - —
O-e,i(zz» 0) (LO a+ Zi)4

otoe. (C.1)
The constant contribution o2 takes into account terms that
are not described by the parameterization of the other two
but that could nevertheless be present in our data (e.g., the
ionosphere, under the assumption that this does not show any
direction dependence);

— an intrinsic, an environmental, and a latitude-dependent con-
tribution (scenario LD),

D‘(Z?)( d) ) )
1 +z)* l ll)o - Tenvo + POy,
1

Xlur 2
L™ T
Ly

02z, 0) = (—
(C.2)

where p(b) is the Galactic profile from Oppermann et al.
(2015). The latitude-dependent contribution p(b)crlzm may ex-
plain a residual latitude dependence not taken into account
in the modeling of Oppermann et al. (2015), e.g., an uncor-
related Galactic signal not captured by their analysis.

As for the simplest 2C-scenario, for each of these scenarios we
run two tests corresponding to 41 632 and 4003 lines of sight.
Figures C.1 and C.2 show the results when a third constant com-
ponent (tests 3C1 and 3C2) and latitude-dependent component
(tests LD1 and LD?2) are included. In both figures, we show the
plots for 41 632 lines of sight in panel a and for 4003 lines of
sight in panel b.

10 We mention a few exceptions: in two cases we get R larger than 1
by 10%, in six cases by 20%, and in one case by 40%. We believe that
these values would converge to 1 within a few percents by running the
corresponding chains longer.

These plots indicate that the algorithm also performs well
when three components are considered. As expected, the values
of the ® parameters recovered are less accurate when a lower
number of lines of sight is used. The additional parameters tend
to lead to a slight increase in the posterior uncertainty for the
other parameters when comparing with the results of 2C1 and
2C2.

Appendix D: Priors

In order to get a data-driven solution and to keep our assumptions
as general as possible, an uninformative prior should be adopted
for the ® parameters. Since we included all of the main redshift
and luminosity dependencies in our model, the Gaussian prior
in Eq. (21) is suitable for yjum and yreq.- Concerning oy o and
Oenv0, We may ask if different priors can have an impact on our
results. In Sect. 3.1, we adopted a flat prior,

P(0) = const. D.1)

In this Appendix, we present two tests corresponding to extreme
choices of these priors. Indeed, we considered a flat prior in o
(scenario P1)

P(0%) = const., (D.2)
and a flat prior in In(0?) (scenario PO)
P(In(c?)) = const. (D.3)

In Fig. D.1 we show the results for the two priors: flat in o in
panel (a) and flat in In(c?) in panel b.

The first choice is an optimistic prior, since it implies a sup-
pression of o~ values <1, pushing for the recovery of larger, pos-
sibly ~1 values of o. The second choice is a pessimistic prior
since it would weight all small and large o values in the same
way, favoring negligible extragalactic contributions, easily com-
patible with the data because of the shape of the likelihood. We
stress that the final results are not affected by the choice of the
prior. However, this choice has an impact on the convergence
time, since the starting point of each chain is randomly extracted
from the prior. For example, for a flat prior in In(c?), the chances
to extract a very small o value («1) are larger than for the prior
used in Sect. 3.1, possibly making the convergence time very
long. For these tests, the number of lines of sight and the as-
sumed noise properties are the same as in the 2C1 test.
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Fig. C.1. As Fig. 2 but for results obtained with a three-component scenario, including a constant contribution, for 41 632 (3C1) lines of sight a)

and 4003 (3C2) lines of sight b).
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Fig. C.2. As Fig. 2 but for results obtained with a three-component scenario, including a latitude-dependent contribution for 41 632 (LD1) lines of
sight a) and 4003 (LD2) lines of sight b).
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Fig. D.1. As Fig. 2 but for results obtained with a two-component scenario and an overall extragalactic Faraday depth of ~7.0 rad m~2 for a) a flat
prior in o (P1) and for b) a flat prior in In(c%) (PO) for 41 632 lines of sight.
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