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ABSTRACT
We present a first principle approach to obtain analytical predictions for spherically averaged
cosmic densities in the mildly non-linear regime that go well beyond what is usually achieved
by standard perturbation theory. A large deviation principle allows us to compute the leading
order cumulants of average densities in concentric cells. In this symmetry, the spherical collapse
model leads to cumulant generating functions that are robust for finite variances and free of
critical points when logarithmic density transformations are implemented. They yield in turn
accurate density probability distribution functions (PDFs) from a straightforward saddle-point
approximation valid for all density values. Based on this easy-to-implement modification,
explicit analytic formulas for the evaluation of the one- and two-cell PDF are provided. The
theoretical predictions obtained for the PDFs are accurate to a few per cent compared to the
numerical integration, regardless of the density under consideration and in excellent agreement
with N-body simulations for a wide range of densities. This formalism should prove valuable
for accurately probing the quasi-linear scales of low-redshift surveys for arbitrary primordial
power spectra.

Key words: methods: analytical – methods: numerical – cosmology: theory – large-scale
structure of Universe.

1 IN T RO D U C T I O N

Given the increasing amount of data released by large galaxy sur-
veys, such as the BOSS survey (Dawson et al. 2013), DES (The
Dark Energy Survey Collaboration 2005) and in the coming years
Euclid (Laureijs et al. 2011) and LSST (LSST Science Collabora-
tion et al. 2009), it is becoming crucial for astronomers to exploit
observations of the large-scale structure of the Universe in the best
possible way. This task is difficult as the large-scale structure of
the Universe is the result of the interplay between the cosmological
parameters, such as the amount of dark matter and dark energy, the
initial metric perturbations, the non-linearities in the cosmic fluid
evolution, not to mention the impact of baryonic physics on small
scales – down to the stellar mass scale – through the back reaction
of baryons on to the large-scale structures. Making use of the statis-
tical properties of the large-scale structure to extract information on
fundamental cosmological parameters is therefore a daunting task.

Hence, it is crucial to taylor complementary sets of observables
that can help disentangle all of those effects. The most commonly
used tools to extract statistical information from the observed galaxy

� E-mail: c.uhlemann@uu.nl (CU); codis@cita.utoronto.ca (SC)

distribution are the N-point correlation functions (e.g. Scoccimarro
et al. 1998), which quantify how galaxies are clustered, and pri-
marily the two-point correlation function or its Fourier counterpart,
the power spectrum. Observations of the cosmic microwave back-
ground strongly support the idea that the initial metric perturbations
followed Gaussian statistics to an extremely good accuracy (Planck
Collaboration XVII 2015). As a result, the statistical properties
of the large-scale structure of the universe at its early stages, or
equivalently in this context at large enough scales, are entirely char-
acterized by this two-point correlation function.

At later times, when the typical density contrasts (or velocity
gradients) become large, the cosmic fluid rapidly develops non-
linear structures. In particular, the power spectrum of the density
field evolves non-trivially via the induced mode coupling. This
can be captured for instance with the help of perturbation theory
(PT) approaches (see Bernardeau et al. 2002; Crocce & Scocci-
marro 2006; Pietroni 2008; Taruya & Hiramatsu 2008; Carrasco,
Hertzberg & Senatore 2012; Taruya et al. 2012). Yet, the strength
of these couplings, and in particular the coupling between small
and large scales (see Blas, Garny & Konstandin 2014; Bernardeau,
Taruya & Nishimichi 2014a; Nishimichi, Bernardeau & Taruya
2014), limits in part the relevance of such techniques. One should
indeed keep in mind that for PT, the density perturbations are
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assumed to be small everywhere, which is obviously not the case
in the present universe. Overcoming such a limitation is very chal-
lenging and usually relies on phenomenological methods qualified
on N-body simulations, such as the halo models (Cooray & Sheth
2002).

There exists however a first principle approach based on the ap-
plication of Large Deviation Theory, which deals with the rate at
which probabilities of certain events decay as a natural parameter of
the problem decreases rapidly enough to zero. The applicability of
Large Deviation Theory in this context has been discovered and par-
tially explored in various cosmological papers over the last decades
(e.g. Bernardeau 1992, 1994; Bernardeau & Valageas 2000) and
more precisely in Bernardeau, Pichon & Codis (2014b), although
not from the Large Deviation Principle (LDP) perspective that was
recently presented in Bernardeau & Reimberg (2015) in this con-
text. The identification of a regime where LDP can be applied gives
a sound framework to explore statistical properties of the fields
without assuming that field fluctuations are small everywhere, the
only assumption being that the typical values – the variance – of
the quantities under consideration, for instance of the density fil-
tered at a given scale, are small. The reach of such an approach is
then potentially far wider than standard PT. The drawback is that
demonstrating the applicability of the LDP is in general very com-
plicated, and the proof is only possible in specific geometries that
are special enough to allow an explicit mapping between the final
configuration and the initial field values. Once established, the LDP
implies that the probability distribution has an exponential decay
that is driven by the so-called rate function. In the LSS context,
the rate function can be found for highly symmetric configuration
(spherical or cylindrical symmetry) for which the full non-linear
evolution of the dynamical equations (the so-called spherical or
cylindrical collapse model) are known exactly. Indeed, matter con-
tained in a spherical cell (in a static, asymptotically flat spacetime)
evolves independently of the external ambient; hence, analytic so-
lutions of the gravitational collapse can be obtained explicitly. For
corresponding observables, such as densities in concentric spheres
or discs, they yield very accurate analytical predictions in the mildly
non-linear regime, well beyond what is usually achieved using other
estimators.

The aim of the paper is to extend further the use of such an ap-
proach. In particular, it will be stressed that in the LDP context,
any non-linear functions of the density in concentric cells can be
considered, via the so-called contraction principle as explained in
Bernardeau & Reimberg (2015), hence, broadening the range of
possible applications. We will see how such choices affect the pre-
dicted probability density functions (PDFs), and more importantly,
how it opens the way to having fully analytical predictions that can
straightforwardly be implemented in real surveys while considering
arbitrary underlying cosmic models.

A particular emphasis will be put on logarithmic transformations
of the density field, which have attracted some interest in the context
of cosmic structure formation since the PDF of the density field
was found to be nearly log-normal (Hubble 1934; Hamilton 1985;
Coles & Jones 1991; Colombi 1994; Kayo, Taruya & Suto 2001). In
particular, the power spectrum of the log-density is known to be less
prone to non-linearities (Neyrinck, Szapudi & Szalay 2009; Greiner
& Enßlin 2015), which stimulated analytical studies within PT. In
Szapudi & Kaiser (2003), tree-level PT in the log-density field was
considered and connected to the dominant part of first-order PT in
the density and higher partial loop corrections. Based on a general
mapping for non-linear bias formulated by Fry & Gaztanaga (1993),
especially the variance of the log-density was found to be smaller

than the variance of the density. Note, however, that Wang et al.
(2011) showed that the log-density does not significantly enhance
the validity regime of standard PT calculations based on the density.
Carron (2011) also highlighted the limited information of lognormal
statistics in the strongly non-linear regime. In this paper, we are
revisiting the use of log densities in a different and complementary
context: large deviation statistics.

The idea here is not to rely on the Gaussianity of the log-density
field but on the weak dependence of its cumulants with respect to
the variance of the density field. Let us make clear that, here, we do
not expect the log-density to arise naturally a priori, but rather as a
prime example of a non-linear mapping that will prove particularly
advantageous. The adequacy of this approach will be established by
means of N-body simulations verifying the weak dependence of the
cumulants of the log-density on the variance. This key property will
indeed allow us to extend the domain of applicability of the LDP
well beyond its zero variance limit. We will, in particular, build very
accurate analytical models based on the saddle approximation for
the one and two cells PDF of the density within concentric cells
which match simulations up to variances of order one.

The outline of the paper is the following. We present in
Section 2 the LDP that allows us to obtain the one-point statistics
for the density in concentric spheres. We describe how to obtain the
density PDF from the rate function using spherical collapse dynam-
ics and the saddle-point approximation, and demonstrate how the
log-density mapping remedies technical difficulties that impeded
this construction for the density. In Section 3, we present N-body
measurements of the cumulants and their generating functions for
both the density and the log-density in order to establish that the
log-density is more resilient to changes in the variance. We formu-
late a mapping to relate the cumulants of the log-density to those
of the density and discuss their relation based on measurements as
well as analytical predictions relying on the LDP and PT, respec-
tively. In Section 4, we finally present the analytic predictions from
the LDP applied to the log-density for the one- and two-cell PDF
of the density, which give an excellent match to the simulations and
substantially extend the reach of the saddle-point approximation.
Section 5 wraps up discusses promising perspectives.

2 T H E L O G - D E N S I T Y MA P P I N G

For the sake of clarity, let us first present the formalism and explain
how a change of variable can allow us for fully analytical predic-
tions. Consider one sphere S of radius R centred on a given location
in space. Our goal is to derive a working model for the PDF, PR(ρ̂),
of the density in S denoted by ρ̂ and rescaled so that 〈ρ̂〉 = 1. In
order to achieve this, we will rely here on the LDP to connect the
cumulant generating function to the PDF, while assuming that the
variance, σ 2(R), of the field fluctuation within that sphere is small
enough. For a complementary intuitive rather than a mathemati-
cally precise description of the connection, see Appendix A and
Bernardeau, Codis & Pichon (2015).

2.1 The LDP

Let us consider the scaled cumulant generating function (SCGF),
ϕρ̂(λ), defined from the cumulant generating function, φρ̂(λ), as

ϕρ̂(λ) = lim
σ 2→0

σ 2φρ̂

(
λ

σ 2

)
= lim

σ 2→0
σ 2 log

[
〈eλρ̂/σ 2〉

]
, (1)

where 〈.〉 stands for ensemble average, and σ 2 is, or scales like, the
variance of ρ̂. The existence of an LDP for the variable ρ̂ implies

MNRAS 460, 1529–1541 (2016)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/460/2/1529/2609049 by C
N

R
S - ISTO

 user on 11 M
ay 2022



Large-deviation statistics of the log-density 1531

that the SCGF is given by the Legendre-Fenchel transform of the
rate function, ψ(ρ̂), as

ϕρ̂(λ) = sup
ρ̂

[λρ̂ − ψ(ρ̂)] , (2)

where the rate function is by definition the leading behaviour of the
log of the density PDF,

ψ(ρ̂) = − lim
σ 2→0

σ 2 logP(ρ̂). (3)

A key consequence of the LDP of relevance here is that differ-
ent rate functions of functions (or functionals) of random variables
related by continuous maps are closely connected through the con-
traction principle. More precisely, we have

ψ(ρ̂) = inf
{τ } such ρ̂=F({τ })

ψτ ({τ }) , (4)

whatever the continuous transformF one considers (it does not have
to be monotonic nor single valued). The infimum in equation (4)
encodes the general idea that any large deviation follows the least
unlikely of all the unlikely transformations. This transformation can
be an active mapping (e.g. temporal evolution) or a passive one (e.g.
taking the log of the density); we will make use of both here.

Consequences of this principle are numerous: in particular, the
rate function of ρ̂ can be computed from the initial density field
if the mapping between the initial configuration, and the final field
value is known, or more specifically, if one is able to identify the
leading field configuration that will contribute to this infimum.

In spherically symmetric configurations, this is precisely what
can be conjectured: ρ̂ is in one-to-one correspondence with the
linear density contrast in a cell centred on the same point and that
contains the same mass. Then, one can give the explicit expression
of the rate function

ψ(ρ̂) = σ 2(R)
R(ρ̂) , 
R(ρ̂) = 1

2σ 2(r)
τ (ρ̂)2 , (5)

where the smoothing scale r is such that r3 = R3ρ̂ and ρ̂ = ζSC(τ ),
with ζSC the non-linear mapping between the linear overdensity
within radius r and the non-linear density within radius R as given by
the spherical collapse dynamics (see Bernardeau & Reimberg 2015
for details). The decay-rate function 
R(ρ̂) drives the exponential
decay of the PDF, as one can see from equation (3).

Moreover, and this is the property which is central to this paper,
the same principle states that equation (5) is also the rate function of
any variable μ, corresponding to a (monotonic) transformation of
ρ̂, μ = μ(ρ̂), so that 
R(μ) = 
R(ρ̂(μ)). Consequently, the SCGF,
ϕR,μ(λ), of such a variable is nothing but the Legendre–Fenchel
transform of the corresponding rate function, defined as

ϕR,μ(λ) = sup
τ

[
λμ(τ ) − σ 2(R)

2σ 2(r)
τ 2

]
. (6)

At this stage, it is important to note that the Legendre–Fenchel
transform reduces to a Legendre transform provided that the rate
function is convex. In that case, the Legendre transform can be
computed from simple variational calculations, such that μ(λ) is
given implicitly by the stationary condition λ = ∂ψ/∂μ. Note also
that, whereas the rate function values are the same for correspond-
ing variables, its convexity properties depends on the choice of
variables.

What are the subsequent steps to build the density PDF? It can
be obtained from an Ansatz for the cumulant generating function,
which is assumed to naturally match its asymptotic σ 2 → 0 limit,

φR,ρ̂(λ) = 1

σ 2
ϕR,ρ̂(λσ 2) , (7)

so that we are now extrapolating the LDP result to finite variances.
The last step is to compute the inverse Laplace transform of the
moment generating function, so as to write the PDF of ρ̂ for a given
variance σ 2(R) as

PR(ρ̂) =
∫ +i∞

−i∞

dλ

2πi
exp[−λρ̂ + φR,ρ̂(λ)] , (8)

where φρ̂(λ) is a function of σ 2(R) given by equation (7). Here, σ 2

can actually be adjusted to match the measured variance if necessary.
The integration in equation (8) requires an analytic extension of the
cumulant generating function in the complex plane, which has also
been noted in Fry (1985), Gaztañaga, Fosalba & Elizalde (2000)
and Valageas (2002) to name just a few examples of previous work.

The analytical properties of this extension depend on the choice
of variables. In previous works, including Bernardeau et al. (2014b),
the freedom in choosing a mapping μ = μ(ρ̂) was ignored and only
ρ̂ was considered to obtain the PDF.1 This leads to a critical point
along the real axis that a better choice of variable can avoid, as we
precisely show now.

2.2 Avoiding criticality by using the log-density

It should be clear from equation (8) that our ability to make pre-
dictions on the shape of the PDF depends crucially on the analytic
properties of the cumulant generating functions. In particular, the
existence of critical points for ϕρ̂(λ) that arise from the Legendre
transformation of the decay-rate function 
R(ρ̂) can make it diffi-
cult to perform the explicit integration in the complex plane. In the
low-density regime, the inverse Laplace transform in equation (8)
can in principle be computed via a saddle-point approximation, tak-
ing advantage of the fact that the variance is small, leading to the
form

PR(ρ̂) =
√


 ′′
R[ρ̂]

2π
exp (−
R[ρ̂]) . (9)

Note that the saddle-point approximation has been used in Fry
(1985) in combination with a cumulant generating function from a
hierarchical model rather than spherical collapse dynamics. Based
on this, an Edgeworth expansion2 was performed by expanding the
normalized saddle point PDF around a Gaussian in Gaztañaga et al.
(2000). More recently, the leading order of the cumulant generat-
ing function has been obtained from a diagrammatic approach to
the hydrodynamic equations in Bernardeau (1992) that was shown
to lead to spherical collapse dynamics. Subsequently, in Valageas
(2002), spherical collapse has been shown to give the leading con-
tribution to the cumulant generating function by means of a steepest
descent method (sometimes also referred to as saddle-point approx-
imation), providing a non-perturbative argument that goes beyond
the diagrammatic approach initially employed. In the following, we
will adopt the approach to rely on spherical collapse dynamics to
obtain the decay-rate function.

When the saddle-point approximation is applicable, that is when
the decay-rate function is convex (
 ′′

R[ρ̂] > 0), it provides a very

1 However, the LDP was used implicitly via the active mapping between
initial and final density, see Appendix A.
2 The introduction of the Edgeworth expansion in cosmology context actu-
ally dates back to the mid-nineties with Juszkiewicz et al. (1995), where it
is introduced as a function basis decomposition as in the original references
and Bernardeau & Kofman (1995) and where it is based on an expansion
around the Gaussian solution of the Laplace inverse transformation so start-
ing with our equation (8).
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1532 C. Uhlemann et al.

good approximation to the exact numerical integration (Bernardeau
et al. 2014b). However, as mentioned before, it has been shown
in Bernardeau (1994) that typically there is a critical value for ρ̂c

at finite distance, where 
 ′′
R[ρ̂c] = 0 above which the Legendre

transform of 
R is not defined, which prevents the practical use
of equation (9). Although there exist alternative forms to the PDF
based on the behaviour of the cumulant generating function near its
critical point, they are only accurate in the very high density regime
and do not encompass the intermediate region around ρ̂ ≈ ρ̂c. The
central point, we make, in this paper is that this difficulty can
be alleviated with an adequate change of variable ρ̂ → μ such
as the log of the density, μ = log ρ̂. The construction of the density
PDF is then obtained with the following steps:

PR,μ(μ)dμ =
∫ +i∞

−i∞

dλ

2πi
exp[−λμ + φR,μ(λ)] , (10a)

PR(ρ̂)dρ̂ = PR,μ(log(ρ̂))
dρ̂

ρ̂
, (10b)

with the further simplification brought by the saddle-point expres-
sion of the density PDF in equation (10), which eventually leads
to

PR(ρ̂) =
√


 ′′
R[ρ̂] + 
 ′

R[ρ̂]/ρ̂

2π
exp (−
R[ρ̂]) . (11)

It has to be noted that the two formulae, equations (9) and
(11), are based on two distinct assumptions when extrapolated
to finite values of σ . Namely, either φR,ρ̂(λ) = ϕR,ρ̂(λσ 2)/σ 2 or
φR,μ(λ) = ϕR,μ(λσ 2)/σ 2. We will see, more precisely, in the follow-
ing that although the contraction principle ensures that the SCGFs
are both independent of such assumptions – their limit is left un-
changed for σ → 0 – this is not the case when the variance is finite.
This is why one variable turns out to be a better choice than the
other in practice.

Let us first examine the critical behaviour of 
R[ρ̂] and 
R[μ],
respectively. The starting point is the quadratic form (5) for 
R(τ )
converted to a function of the final density ρ̂ by inverting the spher-
ical collapse relation to obtain τ (ρ̂). For an EdS universe, the spher-
ical collapse dynamics can be approximated as

ρ̂(τ ) 	 1

(1 − τ/ν)ν
, ν = 21

13
, (12)

which is known to reproduce well the spherical collapse in an EdS
Universe (described for example in Fosalba & Gaztanaga 1998) for
the range of densities of interest as has been shown in (Bernardeau
1992). For simplicity, we now assume that for the variance a power-
law initial power spectrum with index ns ≈ −1.5

σ 2(R) = σ 2(Rp)
(
R/Rp

)−(ns+3)
, (13)

where Rp is a pivot scale. In Section 4, this simplifying assumption
is amended to account for a running of the spectral index. In that
case, the variance is approximated by

σ 2(R) = 2σ 2(Rp)

(R/Rp)n1+3 + (R/Rp)n2+3
, (14)

where n1 and n2 are chosen to reproduce the linear theory in-
dex n(R) = −3 − d log (σ (R))/d log R and running, α(R) =
d log (n(R))/d log R at the pivot scale Rp. For a generalization to
arbitrary initial power spectra, see Section 5.2.

The functions 
 ′′
R[ρ̂] and 
 ′′

R[μ]/ρ̂2 = 
 ′′
R[ρ̂] + 
 ′

R[ρ̂]/ρ̂ enter-
ing the square root in respectively equation (9) and equation (11)
are shown in Fig. 1 for various values of the power-law index ns. It
can easily be checked that for most spectral indices of interest we

Figure 1. Effect of a logarithmic density transformation ρ̂(μ) on the

domain of definition of
√


 ′′
ρ̂ dρ̂ set by the positivity condition 
 ′′

ρ̂ +

 ′

ρ̂ ρ̂′′(μ)/ρ̂′(μ)2 > 0. Results for the density μ = ρ̂ (thin lines) and the
log-density μ = log ρ̂ (thick lines) are displayed for different initial spec-
tral indices ns = −1.25, −1.5, . . . , −3.25 (coloured as indicated in the
legend). This comparison shows that the log-transform is able to avoid the
criticality of the decay-rate function 
R for all densities over a wide range
of indices typically ns ≥ −2.4. On the contrary, a critical point is met for all
indices when the variable is the density field itself.

always have 
 ′′
R[μ] > 0. Conversely, we recover the existence of

a critical value ρ̂c 	 2.36 pointed out in Bernardeau et al. (2014b)
for 
R[ρ̂]. One can see that the mapping ρ̂ = exp μ avoids the
criticality for all relevant densities and power spectrum indices
ns ≥ −2.4.3

3 C U M U L A N T G E N E R AT I N G F U N C T I O N S

As stressed in the introduction, the application of the LDP gives
access to the SCGF for the cumulants defined in equation (1) for the
variable of interest. This quantity is at the heart of our constructions.
It serves, in particular, as a model for the actual cumulant generating
function – which is an observable on itself – as in equation (7). Such
a function can be measured, or can be used to build the density PDFs,
as shown in the previous Section.

3.1 Scaled cumulant generating functions

Let us re-express the SCGF in terms of the field cumulants,

ϕx̂(λ) = lim
〈x̂2〉→0

∞∑
p=1

〈x̂p〉c
〈x̂2〉p−1

c

λp

p!
, (15)

for a given variable x̂. It involves naturally the reduced cumulants
Sp[x̂] defined as

Sp[x̂] = 〈x̂p〉c
〈x̂2〉p−1

c

∀p ≥ 2 , (16)

but evaluated in their low-variance limit. Equation (7) contains how-
ever non-trivial physical assumptions. From a PT point of view,
and for Gaussian initial conditions as assumed here, the leading

3 For smaller indices ns < −2.4, it is possible to iterate the logarithmic
mapping to prevent 
R from becoming critical.
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Large-deviation statistics of the log-density 1533

low-variance limit of Sp[x̂] are their so-called tree order
expression,4

lim
〈x̂2〉→0

Sp[x̂] = S tree
p [x̂]. (17)

The strength of the LDP applied in this context is to provide means
to compute all the tree order expression of the reduced cumulant
at once, for any variable such as ρ̂ or μ. Then, the form (7) relies
on the hypothesis that either Sp[ρ̂] or Sp[μ] are independent of
variance, depending on the chosen variable. Finally, notice that, in
the specific case of the variable5 μ = log ρ̂, there exists a simple
way to compute the moments of ρ̂ from the cumulant generating
function of μ as

〈ρ̂p〉 = 〈ρp〉
〈ρ〉p = 〈epμ〉

〈eμ〉p = exp[φμ(p) − p φμ(1)]. (18)

It is then easy to predict the moments of the density from the SCGF.
In particular, this allows us to adjust the variance for ρ̂, once the
variance for μ has been chosen because

σ 2
ρ̂ = 〈ρ2〉

〈ρ〉2
− 1 = exp

[
ϕμ(2σ 2

μ) − 2ϕμ(σ 2
μ)

σ 2
μ

]
− 1 . (19)

3.2 Cumulants as observables

From a theoretical point of view, the LDP does not give any indi-
cations about which physical assumption – whether Sp[ρ̂] or Sp[μ]
should be kept constant – is better. PT calculations pushed to one-
loop order could provide some indications, but no such results are
known today. Hence, for now, we must rely on results from nu-
merical simulations. Those are described in Appendix B (see also
Bernardeau et al. 2014b). In Fig. 2, we show the numerical varia-
tions of the reduced cumulants S3 and S4 for both ρ̂ and μ = log ρ̂,
as a function of the variance for radii from R = 4–16 Mpc/h. We ob-
serve that the reduced cumulant for the log-density Sp[μ] is smaller
than that of the density Sp[ρ̂], but also has a milder σ -dependence.
This suggests that extrapolating the zero variance result for the log-
density to finite variances is more adequate than doing so for the
density and also that the cumulants of the log-density Sp[μ] can be
better captured by PT than those of the density Sp[ρ̂], as will be
demonstrated in the following.

Irrespectively of the choice we make, it is always possible to
express the reduced cumulants of one variable in terms of the other.
The procedure is detailed in Appendix C. It relies solely on the
mapping between the log-density μ and the normalized density
ρ̂ = exp μ/〈exp μ〉. We report here on some results showing the
expression of the variance and the first two non-trivial-reduced
cumulants

σ 2
ρ̂ = σ 2

μ +
(

S3[μ] + 1

2

)
σ 4

μ + O(σ 6
μ) , (20)

S3[ρ̂] = S3[μ] + 3

+ σ 2
μ

(
3

2
S4[μ]+2S3[μ]−2(S3[μ])2+1

)
+O(σ 4

μ), (21)

4 This comes from their diagrammatic representations that all reduces to
trees, see Bernardeau et al. (2002) for details.
5 Note that μ = log ρ̂ is used as shorthand notation for ρ̂ = exp μ/ 〈exp μ〉
with 〈μ〉 = 0.

Figure 2. Measured reduced cumulants with error bars (determined from
8 subsamples) versus the variance σ 2

ρ̂ for R in Mpc/h as labelled. The mea-
surements of S3[ρ̂] top, S3[μ] middle and S4[μ] bottom panel, respectively,
illustrate that the reduced cumulants of the log-density Sp[μ] are almost
constant, while those of the density Sp[ρ̂] clearly change with the variance.
In the top panel, the direct measurement of S3[ρ̂] ( lighter colour shading)
is shown to be compatible with S3[ρ̂] obtained from S3/4[μ] according to
formula (21).

S4[ρ̂] = 16 + 12S3[μ] + S4[μ] + O(σ 2
μ) . (22)

In particular, equation (21) can be used to determine the third cu-
mulant of the density S3[ρ̂] from the measured cumulants of the
log-density S3/4[μ]. This is illustrated in Fig. 2 (top panel); it shows
how well S3[ρ̂] measured from the simulation can be recovered
from the measured S3/4[μ], and that the seemingly larger error bars
on S3/4[μ] for large radii indeed lead to comparable or even smaller
error bars on Sp[ρ̂].

Furthermore, assuming that the cumulants of the log-density
Sp[μ] are equal to their tree order expression, allows us to
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1534 C. Uhlemann et al.

Figure 3. Third-reduced cumulant S3[ρ̂] as a function of the variance σ 2
ρ̂ ,

obtained from the cumulant generating function using equation (18) ( thick
solid lines) and from the saddle-point approximation of the PDF equation
(11) (thin lines) for three different radii R in Mpc/h in comparison to the tree-
level PT prediction for ρ̂ (dashed) and μ = log ρ̂ translated to ρ̂ according to
equation (23) (dotted). Tree-level PT applied to μ = log ρ̂ leads to a linear
σ 2-dependence of S3[ρ̂] for small but finite variances.

combine equations (21) and (22) into

S3[ρ̂] = S tree
3 [ρ̂]

+ σ 2
ρ̂

(
3

2
S tree

4 [ρ̂] − 4S tree
3 [ρ̂] − 2(S tree

3 [ρ̂])2 + 7

)
, (23)

to first order in the variance. Assuming the Sp[μ] coefficients are
constant then implies that those for the density are not. The expected
dependence based on tree-level PT is illustrated in Fig. 3. Here, the
expressions of the S tree

p [ρ̂] coefficients are computed for different
radii R, and hence, power-law indices ns according to equations (11)
and (12) in Bernardeau et al. (2014b). The result shows that tree-
level PT in the log-density recovers the linear σ 2-dependence of the
density result for the third-reduced cumulant for small variances.
This can be seen as hint that the log-density can prove useful for PT,
at least as far as the highly symmetric setting of spherical collapse
dynamics is concerned. Furthermore, we show the results obtained
from the Legendre transformation of the rate function equation (6)
together with the cumulant relation equation (18) and the PDF us-
ing the saddle-point approximation equation (11), respectively. The
good agreement of the two methods point towards a wide appli-
cability of the saddle-point PDF up to variances of σ 2 	 0.5 and
provides an initial assessment independent of a numerical integra-
tion of equation (10) that will be presented in Section 4.1.

3.3 Cumulant generating functions as observables

Cumulant generating functions themselves are measurable in
N-body simulations. In Fig. 4, we show that the SCGF
ϕR(λ) = σ 2φR(λ/σ 2) for the log-density μ and the density ρ̂ as
measured from the N-body simulation for different radii and red-
shifts. For the SCGF of the density displayed in the upper panels,
the emergence of a critical point can be observed, which makes the
error bars large. Note that the dependence of the variance σ 2 on ra-
dius R and redshift z is such that decreasing R and decreasing z both
increase the variance. Therefore, a SCGF with a narrow band for
different radii R and redshifts z signals robustness against increasing
the variance from its zero limit upwards. As is evident from the four
plots, the SCGF of the log-density reflects this property in contrast
to the SCGF of the density which renders the latter unsuitable.

Fig. 5 compares the measurements to the theoretical result for
the SCGF obtained from a Legendre transformation of the rate
function according to equation (6). The predictions are expected
to be in good correspondence with the measurements if the SCGF
is stable against changes in the variance. Again, the log-density
clearly improves the range of applicability of the above-described
theoretical construction.

Fig. 6 shows the density which can be associated with the argu-
ment of the measured SCGF ϕ(λ) from Fig. 4 by using the saddle-
point approximation to obtain μ = ϕ′

μ(λ) and from there ρ̂ = exp μ

or directly ρ̂ = ϕ′
ρ̂(λ). The saturation in the density as a function of

λ signals up to which maximum density the saddle-point approxi-
mation can be applied in principle.

4 C O N S T RU C T I O N S O F T H E D E N S I T Y P D F S

We are now in the position to build explicit density PDFs following
the method sketched in Section 2.1.

4.1 One-cell pdf

Fig. 7 shows the density PDF obtained from the numerical integra-
tions equations (8) and (10) and the saddle-point approximations
equations (9) and (11) in comparison to the measurement from the
simulation including the corresponding residuals. It shows that if
the log-density is used, the saddle-point approximation (11) (shown
as blue dotted lines) becomes accurate over a wide range of densi-
ties ρ ∈ [0.5, 5], when compared to simulations, and coincides with
the numerical integration for the log-density equation (10) (shown
as blue solid lines) for all densities.

This success is the main result of this present work, as criticality
is avoided for the relevant densities, when the log-density is con-
sidered. It is to be contrasted with the case of the density where
the saddle-point approximation equation (9) (shown as dashed red
lines) is only applicable in the range ρ ∈ [0.5, 1.5], and a more
demanding numerical integration in the complex plane must be im-
plemented (shown as red solid lines) to evaluate the PDF using
equation (8) as shown in fig. 2 in Bernardeau et al. (2014b).

4.1.1 Ensuring normalization

Since the saddle-point method yields only an approximation to the
exact PDF, the PDF obtained from equation (9) has to be normalized

P̂R(ρ̂) = PR(ρ̂)/
∫

PR(ρ̂) dρ̂. Furthermore, when mapping a PDF

for the log-density μ with zero mean 〈μ〉 = 0 to the one for a
density using equation (11), we have to consider the normalized
density ρ̂ = ρ/〈ρ〉 = exp μ/〈exp μ〉 in order to enforce 〈ρ̂〉 = 1.
Hence, the final PDF is obtained from equation (11) as

P̂R(ρ̂) = PR

⎛
⎜⎜⎝ρ̂ ·

∫
ρ̂ PR(ρ̂) dρ̂∫
PR(ρ̂) dρ̂

⎞
⎟⎟⎠
∫

ρ̂ PR(ρ̂) dρ̂(∫
PR(ρ̂) dρ̂

)2 . (24)

4.1.2 Adjusting the variance

The key parameter in the prediction of the PDF is the value of the
variance at the pivot scale. In practice, a possible strategy is to treat
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Large-deviation statistics of the log-density 1535

Figure 4. Comparison of the measured SCGF ϕρ (λ) (top) and ϕμ(λ) (bottom) at redshift z = 0 for radii R (in Mpc/h) (left) and for redshifts from z = 0 to
2.33 with the radius R = 10 Mpc/h (right) as labelled. The considerably weaker dependence of ϕμ(λ) on the radius R and the redshift z (and hence the variance
σ 2) shows visually that it is better justified to use the low variance limit result for ϕμ(λ) also for finite variances instead of doing so for ϕρ (λ). Note, however,
that the same value λ corresponds to different densities depending on whether one considers ϕρ (λ) or ϕμ(λ). This is illustrated in Fig. 6 using the saddle-point
approximation.

Figure 5. The ratio of the measured SCGF and the prediction from the
Legendre transform of the rate function (6) plotted as a function of ρ with
the help of the saddle-point approximation λ = ψ ′ for the density (dashed
lines) and the log-density (solid lines). Clearly, the residuals for the log-
density are within 5 per cent for ρ ∈ [0.5, 2.5], while those for the density
show besides criticality above ρc 	 2.5 also significant deviations for ρ <ρc.

it as a free parameter to be adjusted to the observations. But in
principle, the variance σ 2 can also be predicted by linear theory

σ 2(R) =
∫

d3k

(2π)3
P lin(k)W3D(kR)2 , (25)

where W3D(k) is the shape of the top-hat window function in Fourier
space,

Figure 6. Comparison of the saddle-point approximation for the SCGF
showing ρ = ϕ′

ρ (λ) (dashed lines) and ρ(μ) = exp ϕ′
μ(λ) (solid lines) at

redshift z = 0 for R in Mpc/h as labelled. The horizontal asymptotes of the
derivative of the cumulant generating function ϕ′ at large λ demonstrate that
the Legendre transform will not be possible through that range of values.

W3D(k) = 3

√
π

2

J3/2(k)

k3/2
, (26)

and J3/2(k) the Bessel function of the first kind of order 3/2.
In Table 1, we show a comparison between the values for the

variance depending on whether it is predicted by linear theory
for a smoothing scale of R = 10 Mpc/h and a spectral index
ns = −1.576 or measured in the simulation for either μ or ρ. Note
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1536 C. Uhlemann et al.

Table 1. Comparison of variances between linear theory σ 2
lin, measure-

ments in the simulation for the log-density σ 2
μ,sim and density σ 2

ρ,sim and the

mapping σ 2
ρ,sim→μ from equation (20).

R = 10 Mpc/h σ 2
lin σ 2

μ,sim σ 2
ρ,sim σ 2

ρ,sim→μ

z = 0.97 0.214 0.192 0.226 0.188
z = 0.65 0.286 0.247 0.305 0.242
z = 0.0 0.470 0.418 0.607 0.396

that we also state the result from converting σ 2
ρ,sim to σ 2

ρ,sim→μ using
equation (20) together with the tree-level PT result for the third-
reduced cumulant of the log-density S tree

3 [μ] = S tree
3 [ρ] − 3.

Finally, in Fig. 8, we compare the results obtained for the PDF for
the log-density using the saddle-point approximation depending on
whether the linear variance is used for μ or the variance is measured
from the simulation. Note that, while the linear prediction for the
variance makes the model fully predictive without any free param-
eter, it is systematically higher (around 10–15 per cent) than the
measured value; hence, the prediction for the PDF is correspond-
ingly not as accurate.

4.1.3 Large density tail of the PDF

Using the saddle-point approximation for the log-density,
equation (11), we can straightforwardly obtain the large density
tails of the PDF as

PR(ρ̂)
ρ̂1−→ (ns + 3)ν

6
√

πσ 2
μ(R)

exp

[
−ν2(ρ̂

1
ν − 1)2ρ̂

ns+3
3 − 2

ν

2σ 2
μ(R)

]
ρ̂

ns−3
6 . (27)

Equation (27) is surprisingly simple and general w.r.t. the pa-
rameters of the theory, in contrast to the analytical asymptotic
around the critical point ρ̂c presented in Bernardeau et al. (2014b),
equation (45). In particular, it shows explicitly how fitting the rare

Figure 8. Residuals for the measured PDF compared to two predictions
for the log-density using the measured σ 2

μ,sim (red) or the linear result σ 2
lin

(green) for two different redshifts as indicated. The value of σ 2 used, here,
are extracted from Table 1. Note that green error bars have been shifted
along the x-axis by 0.03.

event tail of the PDF allows us to estimate ν and accordingly quan-
tify possible modifications of gravity.

4.2 The two-cell log-density PDF saddle

Let us now explore the two-cell PDF, PR1,R2 (ρ̂1, ρ̂2), in the sad-
dle approximation limit; this is a straightforward generalization of
equation (9) (see Bernardeau et al. 2015, for the general expression
of the two-cells PDF)

PR1,R2 (ρ̂1, ρ̂2) = exp
[−
R1,R2 (ρ̂1, ρ̂2)

]
2π

√√√√det

[
∂2
R1,R2

∂ρ̂k∂ρ̂l

]
. (28)

Figure 7. Left-hand panel: PDF of ρ measured (points with error bars) and predicted from a numerical integration in the complex plane for the density
PDF following equation (8) (red solid lines), a numerical integration of the log-density PDF according to equations (10) (blue solid lines), a saddle-point
approximation in the PDF of ρ as written in equation (9) (dashed red lines) or a saddle-point approximation in the PDF of log ρ as mentioned in equation (11)
(dashed blue lines). Four different redshifts are shown : z = 1.36, 0.97, 0.65 and 0 from light to dark blue), for a filtering scale R = 10 Mpc/h. The error bars
represent the error on the mean as measured from eight subsamples in our simulation. The density PDF obtained from the PDF of log ρ has been rescaled in
order to impose the normalization; the mean and an effective variance have been used that allow us to recover the density variance measured in the simulation.
Note that the solid and dashed blue lines are almost indistinguishable on this plot, meaning that the saddle-point approximation gives a very accurate (and
analytical!) fit to the PDF when log ρ is taken as a variable. Right-hand panel: residuals at two different redshifts z = 0 and 0.97 corresponding to σ (R) = 0.78
and 0.48. The dashed blue and red error bars have been shifted along the x-axis by respectively 0.02 and 0.04 for readability. Note that for densities below 0.5,
the disagreement between prediction and measurement is larger and therefore not displayed here.
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Large-deviation statistics of the log-density 1537

Figure 9. PDF of the inner density ρ = ρ̂1 and slope s = (ρ̂2 − ρ̂1)R1/(R2 − R1) within cells of radii R1 = 10 and R2 = 11Mpc/h at redshift z = 0.97. The right-
hand panel displays the log-mass saddle approximation given by equation (30) compared to the measured PDF, while the left-hand panel shows the numerical
integration (solid lines) and density saddle approximation dashed lines) of the joint PDF. Contours are displayed for LogP(ρ, s) = 0, −1/2,−1, . . . , −3. The
grey solid line is the no-shell crossing limit s > −10ρ(1 − r3), and the red solid line is the critical line for the log-mass saddle approximation, while the purple
solid line is the critical line for the density saddle approximation.

If the densities {(ρ̂1, ρ̂2)} are used as variables, the issue of criti-
cality for the Hessian

det

[
∂2
R1,R2

∂ρ̂k∂ρ̂l

]
(ρ̂1, ρ̂2)c = 0

becomes more severe compared the one-cell case, where the saddle-
point approximation broke down above a critical density. As demon-
strated in the left-hand panel of Fig. 9, there is a roughly elliptical
critical boundary {(ρ̂1, ρ̂2)c} beyond which the saddle-point method
breaks down. Since the slope, given by the difference between the
central and the overall density, is much more restricted, this suggests
to apply the logarithmic transform not to the densities individually
but to their difference and sum.

A suitable and physically motivated choice for the difference is a
mass-weighted one which ensures a well-behaved logarithm as long
as the no-shell crossing condition R3

2 ρ̂2 − R3
1 ρ̂1 > 0 is satisfied.

This suggest to perform the following logarithmic transform of the
sum and difference of mass

μ1 = log
(
r3ρ̂2 + ρ̂1

)
, (29a)

μ2 = log
(
r3ρ̂2 − ρ̂1

)
, (29b)

where the relative shell thickness is r = R2/R1 and the no-shell
crossing condition enforces μ2 to be real. The PDF P(ρ̂1, ρ̂2), or
equivalently P(ρ, s) the PDF of the inner density ρ = ρ̂1 and slope
s = (ρ̂2 − ρ̂1)/(r − 1), can then be approximated via a saddle-point
approximation by

PR1,R2 (ρ̂1, ρ̂2) = exp
[−
R1,R2 (ρ̂1, ρ̂2)

]
2π

×
√√√√det

[
∂2
R1,R2

∂μi∂μj

] ∣∣∣∣det

[
∂μi

∂ρ̂j

]∣∣∣∣ , (30)

which can explicitly be rewritten as

PR1,R2 (ρ̂1, ρ̂2) = exp
[−
R1,R2 (ρ̂1, ρ̂2)

]
2π

√
pR1,R2 (ρ̂1, ρ̂2) ,

with

pR1,R2 (ρ̂1, ρ̂2) = det

[
∂2
R1,R2

∂μi∂μj

](
det

[
∂μi

∂ρ̂j

])2

=
(

1

2r3

,22 + 
,12 + r3

2

,11 + 
,2 + r3
,1

r3ρ̂2 + ρ̂1

)

×
(

1

2r3

,22 − 
,12 + r3

2

,11 + 
,2 − r3
,1

r3ρ̂2 − ρ̂1

)

−
(


,22

2r3
− r3
,11

2

)2

, (31)

with 
 , 1 and 
 , 2 denoting partial derivatives with regard to ρ̂1 and
ρ̂2, respectively.

This change of variables allows us to get analytical approxima-
tions valid for a wide range of densities and variances. In particular,
for a variance σ = 0.48, the right-hand panel of Fig. 9 shows that the
critical line (in red) only excludes a marginal fraction of the ρ − s
plane (between the red and the grey lines) which has very little
weight (P ≈ 0 in those regions). The full joint PDF of concentric
densities and slopes computed from equation (30) is also shown in
Fig. 9, while Fig. 10 uses the two-dimensional knowledge of the
PDF to predict the PDF of the slope in subregions (underdensed,
overdensed or unconstrained inner cells). The agreement between
measurements and the analytical predictions given by equation (30)
is remarkably good, even better than the numerical integration of
Bernardeau et al. (2015), which probably suffers from numerical
inaccuracies in the rare event tails of the distribution. The success
of this analytical approach is to be contrasted with the severely
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1538 C. Uhlemann et al.

Figure 10. Top panel: PDF of the slope, of the slope when the inner density
is below one and of the slope, when the inner density is above one. Error
bars represent the error on the mean as measured from subsamples in our
simulation, and red lines represent the numerical integration, while blue
lines are the log-mass saddle approximation given by equation (30). The
agreement is very good for the whole range of density and slope probed by
the simulation. Bottom panel: residuals of measured slope PDFs compared
to the log-mass saddle approximation corresponding to the blue lines in the
top panel.

limited range of validity of the saddle-point approximation of the
density PDF illustrated in the left-hand panel of Fig. 9.

5 C O N C L U S I O N

5.1 Summary

The LDP allows us to make simple and accurate predictions for
the cumulants of the distribution of the density within concentric
shells based on spherical collapse dynamics. Using the log-density
considerably extends the regime where the PDF derived from the
saddle-point approximation matches the exact PDF because it reme-
dies the problem of criticality reported before.

In particular, the simple analytic model is shown to be able to
match the PDF of the density for all densities when compared with
a numerical integration in the complex plane. The result for the log-
density can be easily linked to the PDF of the density as a one-line
approximation, equation (11) and also yields excellent results over
a large range of density values when compared to measurements
from N-body simulations as illustrated in Fig. 7. In particular, this
expression gives immediate access to the rare event tail of the density
PDF for large positive densities. The two cells joint PDF of the
log-density was also presented in the saddle approximation limit.
The mass-weighted logarithmic mapping performed according to
equation (29) yields also an analytic PDF and works very well,
making almost the entire space of density and slope{ρ, s} accessible
as shown in Fig. 9.

The origin of the success of the log-density lies in the applicability
of its saddle-point approximation and is supported by the quality of
the Ansatz corresponding to equation (7), as the cumulants of the

log transformed field depend more weakly on their (finite) variance,
as illustrated in Fig. 2. This can also render tree-level PT in the log-
density more successful in predicting reduced cumulants of the
density.

5.2 Perspectives for dark energy

Statistics for densities in concentric shells will prove very useful in
upcoming surveys as they allow us to study the clustering of peaks
(or voids) in the mildly non-linear regime (σ ∼ 1) and serve as a
statistical indicator to test gravity and dark energy models and/or
probe key cosmological parameters in carefully chosen subsets of
surveys.

A clear asset of the analytical saddle approximation is that it
provides means of simply probing the variation of counts in cells
for arbitrary initial power spectra and spherical collapse models,
which is clearly of interest in the context of dark energy/modified
gravity investigations. In particular, it has to be noted that unlike the
numerical integration in the complex plane given by equation (8),
the saddle-point method equations (11) in the one-cell case and
(30) in the two-cell configuration do not require an analytical linear
power spectrum. In particular, �cold dark matter (CDM)-like power
spectra can be used in this context. Recall that the knowledge of the
linear power spectrum determines the values of the cross-correlation
matrix elements, �ij, that are explicitly given by

�ij (Ri, Rj ) =
∫

d3k

(2π )3
P lin(k)W3D(kRi)W3D(kRj ) . (32)

In particular, we have

∂�ij

∂ρ̂k

= 1

3ρ
2/3
k

(
δk
i + δk

j

) ∂�ij

∂Rk

, (33)

and

∂2�ij

∂ρ̂kρ̂l

=
(
δk
i + δk

j

) (
δl
i + δl

j

)
9ρ

2/3
k ρ

2/3
l

∂2�ij

∂Rk∂Rl

− 2δk
l

9ρ
5/3
k

(
δk
i + δk

j

) ∂�ij

∂Rk

. (34)

Now given equation (32), we get

∂�ij

∂Rl

=
∫

d3k

(2π )3
P lin(k)kW ′

3D(kRl)W3D(kR(i)δ
l
j ) ,

∂2�ij

∂Rl∂Rk

=
∫

d3k

(2π )3
P lin(k)k2

[
W ′′

3D(kRk)W3D(kR(i)δ
k
j )δ

k
l

+ W ′
3D(kRk)W ′

3D(kRl)δ
k
(i δ

l
j )

]
, (35)

where A(kBj) = AkBj + AjBk. Hence, equations (30) and (35) yield
for instance an explicit expression for the PDF of the density in
two cells in terms of an underlying arbitrary linear power spectrum
Plin(k). In practice, it will allow us to quantify very accurately the
cosmological information contained in concentric cell observables.
However, this is beyond the scope of this paper and therefore left
for future works. For a foretaste of concrete applications, we refer
to Codis et al. (2016b) where a proof of principle for constraining
dark energy is provided and the accompanying code LSSFAST6 to
compute density PDFs for arbitrary initial power spectra.

6 LSSFAST: http://cita.utoronto.ca/codis/LSSFast.html
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Large-deviation statistics of the log-density 1539

This formalism together with the log transformations could also
be directly extended to the joint log-density–velocity field diver-
gence statistics, or more generally to any observable which can
be expressed, not necessarily linearly, in terms of the densities in
concentric cells. In order to make the present formalism ready-to-
use for counts-in-cell determined from real data sets, galaxy bias
and redshift space distortions have to be taken into account. The
complications arising from redshift space distortions could possi-
bly be circumvented by applying the formalism to projected cells
with cylindrical symmetry corresponding to photometric redshift
surveys. For the first results regarding the effects of spatial corre-
lations between cells at finite distance, see Codis, Bernardeau &
Pichon (2016a).

AC K N OW L E D G E M E N T S

This work is partially supported by the grants ANR-12-BS05-0002
and ANR-13-BS05-0005 of the French Agence Nationale de la
Recherche. CU is supported by the Delta-ITP consortium, a pro-
gram of the Netherlands organization for scientific research (NWO)
that is funded by the Dutch Ministry of Education, Culture and Sci-
ence (OCW). CU thanks IAP for hospitality when this project was
initiated and the Balzan Centre for Cosmological Studies for fi-
nancial support during the visit. The simulations were run on the
Horizon cluster. We acknowledge support from S. Rouberol for
running the cluster for us.

R E F E R E N C E S

Bernardeau F., 1992, ApJ, 392, 1
Bernardeau F., 1994, A&A, 291, 697
Bernardeau F., Kofman L., 1995, ApJ, 443, 479
Bernardeau F., Reimberg P., 2015, preprint (arXiv:e-prints)
Bernardeau F., Valageas P., 2000, A&A, 364, 1
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A P P E N D I X A : PATH IN T E G R A L D E R I VAT I O N

Let us present an alternative derivation of the theoretical construction that yields the PDF PR(ρ̂). In fact, the steepest decent method can be
used to compute the cumulant generating function in terms of a Legendre transform of a function defined in terms of the initial density field.
Recall first that the statistical properties of ρ̂ are fully encoded in its moment generating function

MR(λ) = 〈exp(λρ̂)〉 = ∫ dρ̂ PR(ρ̂) exp(λρ̂) , (A1)

where PR(ρ̂) is the PDF of having density ρ̂ in S. The moment generating function is related to the cumulant generating function, φR(λ),
through

MR(λ) = exp [φR(λ)] . (A2)

Now, it is always possible to re-express formally any ensemble average such as equation (A1) in terms of the statistical properties of the
initial density field τ , so that we can formally write

exp [φR(λ)] =
∫
Dτ PR(τ ) exp

(
λρ̂(τ )

)
. (A3)

As the present-time density ρ̂ can arise from different initial contrasts τ , the above-written integral should therefore be understood a path
integral overall the possible paths from initial conditions to present-time configuration, with measure Dτ and known initial statistics P(τ ).
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Let us assume here that the initial PDF is Gaussian so that,

PR(τ )dτ = exp [−
R(τ )]√
2πσ 2(τ )

dτ , (A4)

with 
R then a quadratic form


R(τ (ρ̂)) = 1

2σ 2(τ )
τ (ρ̂)2 . (A5)

In the regime, where the variance of the density field is small, equation (A3) should be dominated by the path corresponding to the most
likely configurations (or in the language of LPD the least unlikely of all unlikely configurations). As the constraint is spherically symmetric,
this most likely path should also satisfy spherical symmetry. It is therefore bound to obey the spherical collapse dynamics. Within this regime
equation (A3) becomes approximatively

exp [φR(λ)] 	
∫

dτ PR(τ ) exp
(
λζSC(τ )

)
, (A6)

where the most likely path, ρ̂ = ζSC(η, τ ) is the one-to-one spherical collapse mapping between one final density at time η and one initial
density contrast as already described. Putting equation (A4) into equation (A6), the integration on the r.h.s. of equation (A6) can now be
carried by using a steepest descent method, approximating the integral as its most likely value, where φR(λ) = λρ̂(τ ) − 
R(τ ) is stationary. If

(ρ̂) is convex, then the Legendre transform is involutive, what implies that 
R(ρ̂) is the Legendre transform of φR(λ), where ρ is determined
implicitly by the stationary condition


R(ρ̂) = λρ̂ − φR(λ), λ = ∂

∂ρ̂

R(ρ̂) . (A7)

Equation (A7) is of course fully consistent with the more general result derived from LDP.

APPENDIX B: SIMULATION

This paper, makes use of a dark matter simulation produced with Gadget2 (Springel 2005). This simulation is characterized by the following
�CDM cosmology: �m = 0.265, �� = 0.735, n = 0.958, H0 = 70 kms−1Mpc−1 and σ 8 = 0.8, �b = 0.045 within one standard deviation of
WMAP7 results (Komatsu et al. 2011), see Fig. B1. The box size is 500 Mpc/h sampled with 10243 particles, the softening length 24 kpc/h.
Initial conditions are generated using mpgrafic (Prunet et al. 2008). The variances and running indexes are measured from the theoretical
power spectra produced by mpgrafic. Snapshots are saved for z = 0, 0.65, 0.97, 1.46, 2.33 and 3.9. An octree is built for each snapshot,
which allows us to count very efficiently all particles within a given sequence of concentric spheres of radii between R = 4, 5··· up to 21Mpc/h.
The centre of these spheres is sampled regularly on a grid of 10 Mpc/h aside, leading to 117 649 estimates of the density per snapshot. All
histograms drawn, in this paper, are derived from these samples. Note that the cells overlap for radii larger than 10 Mpc/h.

Figure B1. A Slice through the �CDM 500 Mpc/h sampled with 10243 particles dark matter simulation used throughout here.
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A P P E N D I X C : MA P P I N G C U M U L A N T S

In presence of a non-linear mapping between ρ and μ, such as a logarithmic transformation, cumulants between these two variables follow
specific relations that can be computed explicitly in an expansion with respect to the variance. Note that the whole procedure is made
complicated because the notion of connected part is itself dependent on the variable under consideration, so that actually

〈ρn〉c �= 〈(exp μ)n〉c
when the left-hand side is computed with respect to the variable ρ and the right-hand side to the variable μ.

The procedure to determine 〈ρ̂n〉c using the mapping ρ = exp μ is the following.

(i) Translate the cumulants 〈ρn〉c into moments 〈ρn〉 by using the partial Bell polynomials Bn,k

〈ρn〉c =∑n
k=1(−1)k−1(k − 1)!Bn,k

({〈ρm〉}m=1,···,n
)

.

(ii) Rewrite the moments in terms of μ using 〈ρm〉 = 〈exp (mμ)〉 = exp ϕμ(m) and normalize the result ρ̂ = ρ/〈ρ〉 to enforce 〈ρ̂〉 = 1

〈ρ̂n〉c =
∑n

k=1(−1)k−1(k − 1)!Bn,k

({exp ϕμ(m)}m=1,···,n
)

[exp ϕμ(1)]n
.

(iii) Finally, use the cumulant expansion theorem to state the result entirely in terms of cumulants 〈μn〉c or reduced cumulants Sμ
n =

〈μn〉c/〈μ2〉n−1
c , respectively,

ϕμ(m) =
∞∑
l=2

〈μl〉c ml

l!
=

∞∑
l=2

S
μ
l 〈μ2〉l−1

c

ml

l!
. (C1)

This leads to the following expression for the reduced cumulants, where σ 2
μ = 〈μ2〉c

Sρ̂
n =

exp

[
(n − 2)

∞∑
l=2

S
μ
l σ 2(l−1)

μ
1
l!

]
n∑

k=1
(−1)k−1(k − 1)!Bn,k

({
exp

( ∞∑
l=2

S
μ
l σ 2(l−1)

μ
ml

l!

)}
m=1,···,n

)
[

exp

( ∞∑
l=2

S
μ
l σ

2(l−1)
μ

2l

l!

)
− exp

(
2

∞∑
l=2

S
μ
l σ

2(l−1)
μ

1
l!

)]n−1 . (C2)

One can then consistently expand the expression (C2) up to leading order in σ 2
μ. The corresponding results up to the fifth (reduced) cumulant

are below, where for simplicity we define σ 2
μ = 〈μ2〉c. While the cumulants for the density ρ are given in Fry & Gaztanaga (1993), the reduced

cumulants for the normalized density ρ̂ = ρ/〈ρ〉 used here read

S
ρ̂
3 = (Sμ

3 + 3
) + σ 2

μ

(
3

2
S

μ
4 + 2S

μ
3 − 2(Sμ

3 )2 + 1

)
,

S
ρ̂
4 = S

μ
4 + 12S

μ
3 + 16 + σ 2

μ

(
2S

μ
5 + 45

2
S

μ
4 − 3S

μ
4 S

μ
3 − 18

(
S

μ
3

)2 + 36S
μ
3 + 15

)
,

S
ρ̂
5 = S

μ
5 + 20S

μ
4 + 15(Sμ

3 )2 + 150S
μ
3 + 125 + σ 2

μ

⎛
⎝ 5

2
S

μ
6 + 48S

μ
5 − 4S

μ
3 S

μ
5 + 345S

μ
4 + 15S

μ
3 S

μ
4 − 60

(
S

μ
3

)3 − 60
(
S

μ
3

)2 + 630S
μ
3 + 222

⎞
⎠ .

(C3)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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