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ABSTRACT
We extend the velocity channel analysis (VCA), introduced by Lazarian & Pogosyan, of the
intensity fluctuations in the velocity slices of position–position–velocity (PPV) spectroscopic
data from Doppler broadened lines to study statistical anisotropy of the underlying velocity and
density that arises in a turbulent medium from the presence of magnetic field. In particular, we
study analytically how the anisotropy of the intensity correlation in the channel maps changes
with the thickness of velocity channels. In agreement with the earlier VCA studies, we find
that the anisotropy in the thick channels reflects the anisotropy of the density field, while the
relative contribution of density and velocity fluctuations to the thin velocity channels depends
on the density spectral slope. We show that the anisotropies arising from Alfvén, slow and
fast magnetohydrodynamical modes are different; in particular, the anisotropy in PPV created
by fast modes is opposite to that created by Alfvén and slow modes, and this can be used to
separate their contributions. We successfully compare our results with the recent numerical
study of the PPV anisotropies measured with synthetic observations. We also extend our study
to the medium with self-absorption as well as to the case of absorption lines. In addition, we
demonstrate how the studies of anisotropy can be performed using interferometers.

Key words: magnetic fields – turbulence.

1 IN T RO D U C T I O N

The interstellar medium (ISM) is turbulent on scales ranging from
au to kpc. The big power law in the sky obtained with electron
scattering and scintillations (Armstrong, Rickett & Spangler 1995)
and extended with Wisconsin Hα Mapper data in Chepurnov &
Lazarian (2010) presents a notable example of the turbulent in-
terstellar cascade. Numerous examples include the studies of non-
thermal Doppler broadening of spectral lines, fluctuations of den-
sity and synchrotron emission (see reviews by Cho, Lazarian &
Vishniac 2003; Elmegreen & Scalo 2004, Mac Low & Klessen
2004; Ballesteros-Paredes et al. 2007; McKee & Ostriker 2007;
Lazarian 2009).

Magnetohydrodynamical (MHD) turbulence is accepted to be
of key importance for fundamental astrophysical processes, e.g.
star formation (see, e.g., McKee & Ostriker 2007; Federrath &
Klessen 2012; Federrath 2013b; Salim, Federrath & Kewley 2015),
propagation and acceleration of cosmic rays (see Brandenburg &
Lazarian 2013 and references therein). Therefore, understanding
turbulence is important for both galactic and extragalactic research.

How to study astrophysical turbulence? A number of recent pa-
pers demonstrated the crucial importance of observational stud-
ies and obtaining quantitative measure from observations (see

�E-mail: dkandel@ualberta.ca (DK); alazarian@facstaff.wisc.edu (AL);
pogosyan@ualberta.ca (DP)

Chepurnov & Lazarian 2009; Brunt, Federrath & Price 2010;
Chepurnov et al. 2010, 2015; Gaensler et al. 2011; Burkhart,
Lazarian & Gaensler 2012; Brunt & Heyer 2013; Federrath &
Klessen 2013; Kainulainen, Federrath & Henning 2014; Burkhart
& Lazarian 2015). We feel that this balances the field where the
significant progress of numerical modelling of astrophysical turbu-
lence shifted somewhat the attention of the astrophysical commu-
nity from observational studies. Therefore, we believe that stressing
of the synergy of the observational and numerical studies is due.
Indeed, present codes can produce simulations that resemble obser-
vations (see e.g. Federrath 2013a) in terms of structures and scaling
laws, but because of their limited numerical resolution, they cannot
reach the observed Reynolds1 numbers of the ISM.

Statistical studies represent the best hope to bridge the gap be-
tween simulations and observations. Thus, many techniques beyond
the traditional turbulence power spectrum have been developed to
study and parametrize observational magnetic turbulence. These
include higher order spectra, such as the bispectrum (Burkhart
et al. 2009a), higher order statistical moments (Kowal, Lazarian &
Beresnyak 2007; Burkhart et al. 2009a), density/column-density

1 The Reynolds number is Re ≡ Lf V /ν = (V /Lf )/(ν/L2
f ) which is the

ratio of an eddy turnover rate τ−1
eddy = V /Lf to the viscous dissipation

rate τ−1
dis = η/L2

f . Therefore, large Re correspond to negligible viscous
dissipation of large eddies over the cascading time τ casc which is equal to
τ eddy in Kolmogorov turbulence.
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PDF analyses (Federrath, Klessen & Schmidt 2008; Burkhart
& Lazarian 2012), topological techniques (such as genus; see
Chepurnov et al. 2008), clump and hierarchical structure algorithms
(such as dendrograms; see Rosolowsky et al. 2008; Burkhart et al.
2013a), Delta variance analysis (Stutzki et al. 1998; Ossenkopf,
Krips & Stutzki 2008), principal component analysis (PCA; Heyer
& Schloerb 1997; Heyer et al. 2008; Roman-Duval et al. 2011;
Correia et al. 2016), Tsallis function studies for ISM turbulence
(Esquivel & Lazarian 2010; Tofflemire, Burkhart & Lazarian 2011),
velocity channel analysis and velocity coordinate spectrum (Lazar-
ian & Pogosyan 2004, 2006, 2008), and structure/correlation func-
tions as tests of intermittency and anisotropy (Cho & Lazarian
2003; Esquivel & Lazarian 2005; Kowal & Lazarian 2010; see also
Federrath, Klessen & Schmidt 2009; Federrath et al. 2010;
Konstandin et al. 2012), analysis of turbulence phase information
(Burkhart & Lazarian 2015), and also recent work on filament detec-
tion (see Smith, Glover & Klessen 2014; Federrath 2016) that links
the structure and formation of filaments in the ISM to the statistics of
turbulence.

The turbulence spectrum, which is a statistical measure of tur-
bulence, can be used to compare observations with both numer-
ical simulations and theoretical predictions. Note that statistical
descriptions are nearly indispensable strategy when dealing with
turbulence. The big advantage of statistical techniques is that they
extract underlying regularities of the flow and reject incidental de-
tails. The energy spectrum E(k)dk of turbulence characterizes how
much energy resides at the interval of scales k, k + dk. On one hand,
at large scales l which correspond to small wavenumbers k (i.e.
l ∼ 1/k), one expects to observe features reflecting energy injec-
tion, while at small scales one should see the scales corresponding
to dissipation of kinetic energy. On the other hand, the spectrum at
intermediate scales, often called inertial range, is determined by a
complex process of energy transfer, which often leads to power-law
spectra. For example, in the Kolmogorov description of unmagne-
tized incompressible turbulence, difference in velocities at different
points in turbulent fluid increases on average with the separation
between points as a cubic root of the separation, i.e. |δv| ∼ l1/3,
which corresponds to the energy spectrum of E(k) ∼ k−5/3 in the
inertial range. Thus, observational studies of the turbulence spec-
trum can determine sinks, sources and energy transfer mechanisms
of astrophysical turbulence.

There have been lot of attempts to obtain the turbulence spectra
(see Münch & Wheelon 1958; Kleiner & Dickman 1985; O’dell &
Castaneda 1987; Miesch, Scalo & Bally 1999). Velocity statistics
is an extremely important turbulence measure. Although it is clear
that Doppler broadened lines are affected by turbulence, recovery
of velocity statistics turned out to be extremely challenging without
an adequate theoretical insight. Indeed, both line-of-sight (LOS)
component of velocity and density contribute to fluctuations of the
energy density ρs(X, vz) in the position–position–velocity (PPV)
space. This motivated the study in Lazarian & Pogosyan (2000,
2004, hereafter LP00 and LP04, respectively) which resulted in
the analytical description of the statistical properties of the PPV
energy density ρs. In those papers, the observed statistics of ρs was
related to the underlying 3D spectra of velocity and density in the
astrophysical turbulent volume. Initially, the volume was considered
transparent (LP00), but later the treatment was generalized for the
volume with self-absorption (LP04).

The technique developed in LP00 and LP04 was termed velocity
channel analysis (VCA), and this technique was proposed to anal-
yse the spectra of velocity slices of PPV data cubes by gradually
changing their thickness in order to find the underlying spectra of ve-

locity and density of astrophysical turbulent motions. This technique
has been successfully tested and elaborated in a number of subse-
quent papers (Lazarian et al. 2001; Chepurnov & Lazarian 2009;
Burkhart et al. 2013b), and the VCA analysis was successfully ap-
plied to a number of observations (see an incomplete list in Lazarian
2009).

The statistical description of PPV data in LP00 and LP04 pro-
vided a way to develop a completely new technique to study tur-
bulence via analysing the fluctuations of PPV intensity along the
v-axis (Lazarian & Pogosyan 2006). The corresponding technique
was termed velocity coordinate spectrum (VCS) and was success-
fully applied to H I and CO data in e.g. Padoan et al. (2009),
Chepurnov & Lazarian (2010) and Chepurnov et al. (2015) to ob-
tain velocity spectra. However, this does not exhaust the potential
of the analytical description of fluctuations in PPV space. Indeed,
the MHD turbulence is known to be anisotropic with magnetic field
defining the direction of anisotropy (Montgomery & Turner 1981;
Shebalin, Matthaeus & Montgomery 1983; Higdon 1984). This
opens prospects of studying the direction of magnetic field using
the observed velocity fluctuations.

For the first time, the possibility of studying magnetic field with
observational data was discussed in Lazarian, Pogosyan & Esquivel
(2002). In particular, the anisotropy was shown to exist for ve-
locity channel maps obtained with MHD numerical simulations.
The research that followed (see Esquivel & Lazarian 2005; Heyer
et al. 2008; Burkhart et al. 2015a) proved the utility of the sug-
gested new technique to study magnetic fields in turbulence and
to obtain the information about the Alfvén Mach number of turbu-
lence MA ≡ VL/VA, where VL and VA are the injection and Alfvén
velocities, respectively. Importantly, MA determines magnetization
of turbulence, and this determines crucial properties of turbulent
fluid including diffusion of cosmic rays (see Yan & Lazarian 2002,
2004, 2008), heat (Narayan & Medvedev 2001; Lazarian 2006), as
well as reconnection diffusion (Lazarian 2005; Santos-Lima et al.
2010, 2014; Lazarian, Esquivel & Crutcher 2012; Leão et al. 2013;
González-Casanova, Lazarian & Santos-Lima 2016; see Lazarian
2014 for a review), which has been identified as a crucial process
for star formation (see Li, McKee & Klein 2015).

In a recent study by Esquivel, Lazarian & Pogosyan (2015), the
dependence of fluctuations anisotropy in velocity slices of PPV
data cubes has been quantified using synthetic observations ob-
tained with 3D MHD simulations. It confirmed the original finding
in Lazarian et al. (2001) that the anisotropy of the correlations of in-
tensity in the velocity slice reflects the magnetic field direction and
provided the empirical dependence of the observed anisotropy on
the Alfvén Mach number MA. This work motivates our present an-
alytical study aimed at the analytical description of the anisotropies
in the velocity slices of PPV data cubes.

The present study capitalizes on the recent analytical studies
of anisotropy of synchrotron fluctuations and its polarization in
Lazarian & Pogosyan (2012, 2016, hereafter LP12 and LP16, re-
spectively). In those papers, the representation of MHD turbulence
as the combination of three cascades, i.e. the Alfvén, fast and slow
modes (see Goldreich & Sridhar 1995; Lithwick & Goldreich 2001;
Cho & Lazarian 2002, 2003; Kowal & Lazarian 2010), was used.
For the purpose of observational studies, magnetic fluctuations were
described using tensors in the frame of the mean field, which is dif-
ferent from the local magnetic field of reference used in the theory
of turbulence (cf. Cho & Lazarian 2003).

In what follows, we will use the correspondence between mag-
netic and velocity fluctuations in MHD turbulence to provide the
description of fluctuations of intensity in the velocity slices. Similar
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to LP12, we will also provide the decomposition of the observed cor-
relation function anisotropies into multipoles and, similar to LP12,
we will focus on the quadrupole anisotropy. We will also discuss
in what sense the fluctuations of magnetic field and velocity field
are different and what this difference entails for the analysis of as-
trophysical turbulence. We stress the synergetic nature of different
ways of statistical studies of turbulence using various observational
data sets, including magnetic anisotropy studies in this paper and in
LP12 and LP16.

Anisotropy allows one to study magnetic field direction as well
as magnetization of the media (see Lazarian et al. 2001; Esquivel
& Lazarian 2005, 2011; Esquivel et al. 2015). However, in analogy
with LP12, we should expect the anisotropies produced by different
MHD modes to be different which opens a way to separate the
contributions from these different modes. Note that this possibility
is different from what one expects by studying turbulence based on
the dispersion of probability distribution functions (see Federrath
et al. 2009, 2010; Burkhart & Lazarian 2012).

VCA provides a way of studying astrophysical turbulence by
making use of extensive spectroscopic surveys, in particular H I

and CO data. The present study significantly enhances its value and
abilities. Below in Section 2 we present the qualitative discussion
of VCA study, introduce the properties of MHD turbulence that
we require for our study. In Section 3, we review the turbulence
statistics in PPV space. In Section 4, we derive the tensor structure
of different MHD modes, and in Section 5 we describe anisotropy
in the intensity statistics due to anisotropy in tensor structure of
density and velocity field. In Section 6, we show our results by
considering pure velocity effects, as well as density effects and
also carry out absorption line study and the study on effects of
spatial and spectroscopic resolution. In Section 7, we discuss the
effects of self-absorption on the observed anisotropy. In Section
8, we present practical guide to the results of our study, and in
Section 9 we present an example to handle data from an anisotropic
PPV space. In Section 10, we present some of the discussion of past
works that relate to our study. The detailed derivations of velocity
correlation tensors in real space for individual modes, and some
of the important derivation for intensity anisotropy, are provided in
Appendix B–F.

2 NAT U R E O F P P V S PAC E A N D V E L O C I T Y
C H A N N E L A NA LY S I S

The nature of the PPV space has been a source of numerous confu-
sions, with many researchers trying to identify the density enhance-
ments in PPV with the actual density fluctuations in real space. The
study in LP00 clearly showed that this is erroneous and velocity
fluctuations can be responsible for a significant part of the PPV
structures (see also Lazarian 2009; Burkhart et al. 2013b)

The non-trivial nature of the statistics of the eddies in the PPV
space is illustrated in Fig. 1. The figure illustrates the fact that
from three equal-sized and equal-density eddies, the one with the
smallest velocity provides the largest contribution to the PPV in-
tensity. Jumping forward in our presentation, we can mention that
this explains the scalings of power spectra obtained in LP00, which
indicates that a spectrum of eddies that correspond to most of tur-
bulent energy at large scales corresponds to the spectrum of thin
channel map intensity fluctuations having most of the energy at
small scales. It is also clear that if the channel map or velocity slice
of PPV data gets thicker than the velocity extent of the eddy 3, all
the eddies contribute to the intensity fluctuations in the same way,
i.e. in proportion to the total number of atoms within the eddies.
Similarly, in terms of the spectrum of fluctuations along the v-axis,
the weak velocity eddy 1 provides the most singular small-scale
contribution.

The PPV statistics can be sampled by exploring the fluctuations of
intensity within velocity slices or channel maps of a given thickness
	v (see the right-hand panel of Fig. 1) which is the essence of
VCA technique. This was the way observers traditionally attempted
to quantify the properties of PPV fluctuations. The alternative way
of studying PPV fluctuations is by analysing the fluctuations along
the v-axis. This new way of study was introduced in LP00 and
elaborated in LP06 (see also Chepurnov & Lazarian 2009); it was
termed VCS. Our current study is devoted to elaborating the VCA
technique.

The right-hand panel of Fig. 1 illustrates the studies of turbulence
using the VCA technique. The PPV space is presented by XYV cube
where a velocity slice 	v is shown. In turbulence, large eddies have
larger velocities, for e.g. in Kolmogorov turbulence the velocity of
eddies δvl increases with eddy size as l1/3. Therefore, larger eddies

Figure 1. Left: an illustration of the mapping from the real space to the PPV space. In the real ‘PPP’ space, the three eddies have the same size, the same
density of emitting material, but different velocities. They are being mapped to the PPV space and there they have the same PP dimensions, but a different
v-size. The larger the velocity of eddies, the larger the v-extent of the eddies, which in turn implies less density of emitting atoms over the image of the eddy.
Therefore, in terms of the intensity of fluctuations in the velocity channel 	v, the largest contribution comes from the eddy with the least velocity dispersion,
i.e. eddy 1, while the eddy with the largest velocity dispersion, i.e. eddy 3, produces the faintest PPV image. Right: PPV data cube. Illustration of the concepts
of the thick and thin velocity slices. The slices are thin for the PPV images of the large eddies, and thick for the images of small eddies. From Lazarian (2009).
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like eddy 1 have velocities associated with it larger than 	v, while
smaller eddies like eddy 2 have their velocities less than 	v. As a
result, the slice 	v fully samples eddy 2, but samples only a part
of the eddy 1. Therefore, we say that the slice is thin for eddy 1
and thick for eddy 2. The notion of thin and thick velocity slices
was introduced in LP00, with slices being ‘thick’ for eddies with
velocity ranges less than 	v and ‘thin’ otherwise. The right-hand
panel of Fig. 1 illustrates the relativity of this notion for eddies of
different sizes.

The VCA was formulated in LP00 for the purposes of obtain-
ing spectra of velocity and density turbulence, and therefore the
anisotropy of turbulence was disregarded. Our present work is fo-
cused on studying turbulence anisotropies.

3 MH D T U R BU L E N C E S TATI S T I C S
EMPLOYED

In this section, we present the description of the velocity mapping
PPV space based on our earlier studies (LP00; LP04) but explicitly
account for the turbulence anisotropy following the description of
magnetized turbulence we presented in LP12.

3.1 Turbulence statistics in PPV space

As we mentioned earlier, the point-wise measurements in XYZ
space and therefore the direct measurements of the statistics of
magnetized turbulence are not available with spectroscopic mea-
surements. Instead, the measurements of intensity of emission are
defined in PPV space (see the right-hand panel of Fig. 1) or XYV
volume, where the turbulence information along LOS, which we
assume to be aligned along the z-axis, is subject to a non-linear
transformation due to the mapping to the LOS velocity. Doppler
shifts are affected only by the LOS component of turbulence veloc-
ities, which to simplify our notations we denote as v.

The theory of PPV space was pioneered in LP00 and was later
extended for special cases in LP04, LP06 and Lazarian & Pogosyan
(2008). The main expressions of the theory that we are going to use
within our study are summarized in Appendix A. These expressions
describe the non-linear velocity mapping of turbulence irrespective
of the degree of turbulence anisotropy.

In this paper, we are studying how intensity statistics reflects the
anisotropic nature of the velocity and density fields in magnetized
turbulence. The intensity from an emitting medium in PPV space
is dependent on density of emitters as well as their velocity distri-
bution in PPV space. Therefore, intensity correlation function for a
turbulent field is dependent on both the correlation of density and
velocity correlation, and for optically thin lines is given by (LP04)

ξI(R, φ,	v) ∝ ε2ρ̄2

2π

∫ S

−S

dz[1 + ξ̃ρ(R, φ)] [Dz(r) + 2βT]−1/2

×
∫ 	v/2

−	v/2
dv W (v) exp

[
− v2

2(Dz(r) + 2βT)

]
, (1)

where r = x1 − x2 is the spatial separation of two turbulent points,
R = X1 − X2 is their separation in two-dimensional sky, φ is the
angle that R makes with sky-projected magnetic field, Dz is the
z-projection of velocity structure function, 	v is the thickness of
velocity slice, ξ̃ρ is the overdensity correlation, βT ≡ kBT/m is the
thermal broadening and W(v) is a window function which describes
how the integration over velocities is carried out.

From equation (1), one can observe that because of the presence
of the factor 1 + ξ̃ρ(R, φ), the integral can be separated into two

parts such that one part contains only the contribution from velocity
effects whereas other part contains the contribution from density
effects as well. Formally, we can write

ξI(R, φ,	v) = ξv
I (R, φ,	v) + ξ

ρ
I (R, φ,	v), (2)

where the superscripts v and ρ are to remind ourselves which ef-
fects these term comprise of. Naturally, in the absence of any density
fluctuations, only the first term in the above equation survives. The
usefulness of the above expression comes from the fact that at vari-
ous regions of interest, one or the other term becomes unimportant,
as we shall see this in more detail in this paper.

To describe intensity statistics at small scales, it is more conve-
nient to use the intensity structure function,

D(R, φ, 	v) = 2 [ξI(R = 0, 	v = 0) − ξI(R, φ, 	v)] . (3)

The above two equations are the main equations that we will use
for our subsequent analysis.

3.2 Velocity correlation tensor for MHD turbulence

To describe turbulence in ISM, one should account for the magne-
tization of the media. In MHD turbulence, there exists a preferred
direction pointing towards the direction of mean magnetic field;
therefore, the concept of isotropy applicable to hydrodynamic Kol-
mogorov turbulence breaks down, and the turbulent statistics are
anisotropic. The problem of describing anisotropic turbulence was
addressed in LP12 in the framework of studies of anisotropies of
synchrotron intensities. Here we adopt the same representation of
the anisotropic MHD turbulence using axisymmetric tensors (see
more justification in LP12).

In what follows, we are describing the statistics of anisotropic
velocity field, which has many similarities with the statistics of
anisotropic turbulent magnetic field described in LP12. We would
like to stress that the deeply entrenched in the literature the descrip-
tion of MHD turbulence based on a model having mean magnetic
field plus isotropic fluctuations contradicts theoretical, numerical
and observational studies of magnetized turbulence and therefore
should be discarded.2 Indeed, MHD turbulence is neither isotropic
nor can it be represented by mean field with isotropic fluctuations.
The correct description of MHD turbulence involves the combina-
tion of three different cascades with different degree of fluctuation
anisotropies, and this is the description we use in the present work.

Following the notation of Chandrasekhar (1950), the velocity
correlation tensor of axisymmetric turbulence is

〈vi(x1)vj (x2)〉 = Ar̂i r̂j + Bδij + Cλ̂i λ̂j + D
(
λ̂i r̂j + λ̂i r̂j

)
, (4)

where λ̂ unit vector specifies the preferred direction.3 For isotropic
turbulence, the coefficients C and D of the velocity correlation tensor
are zero. At zero separation, r → 0, the correlation function gives
the variance tensor

〈vi(x1)vj (x1)〉 = B(0)δij + C(0)λ̂i λ̂j . (5)

Similarly, we can define the structure function tensor for the
velocity field

Dij (r) ≡ 〈(vi(x1) − vi(x2))(vj (x1) − vj (x2))〉. (6)

2 We note that the present-day models of the cosmic microwave background
foreground still use this erroneous model for representing magnetic fields.
3 All results are invariant under replacement of λ̂ by −λ̂ that specify the
same axis.
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Table 1. List of notations used in this paper.

Parameter Meaning First appearance

r 3D separation Equation (1)
R 2D sky separation Equation (1)
λ̂ Mean direction of magnetic field Equation (4)
φ 2D angle between sky-projected r and sky-projected λ̂ Equation (8)
θ Angle between LOS ẑ and r̂ Equation (1)
γ Angle between LOS ẑ and symmetry axis λ̂ Equation (7)
μ Cosine of the angle between r and λ̂ Equation (4)
μk = k̂ · λ̂ Angle between k̂ and λ̂ Equation (4)
Dij (r) Velocity structure function Equation (6)
Dz(r) z-projection of velocity structure function Equation (7)
ak Random amplitude of a mode Equation (9)
ξ̂k Direction of allowed displacement in the mode Equation (9)
A(k, k̂ · λ̂) Power spectrum of a mode Equation (9)
d̃m(R) Multipole moment of intensity structure function Equation (36)
rc Cut-off scale for density correlation Equation (30)
cρ Density anisotropy parameter Equation (30)
MA Alfvén Mach number Equation (20)
βT Thermal velocity Equation (1)
W(v) Window function Equation (1)
Pm(K) Intensity moments in 2D Fourier space Equation (58)
B(X) Beam of an instrument Equation (60)
θ0 Diagram of an instrument Equation (61)
β Plasma constant –

The main quantity that will appear in our analysis is the z-projection
of the velocity structure function

Dz(r) = Dij ẑi ẑj

= 2[(B(0) − B(r, μ)) + (C(0) − C(r, μ)) cos2 γ

− A(r, μ) cos2 θ − 2D(r, μ) cos θ cos γ ]. (7)

The variables and parameters that appear in the definition of Dz(r)
are summarized in Table 1. Among them there are four angles
that we keep track of. First, we have θ and φ which are spherical
coordinates of the separation vector in the frame where the z-axis is
aligned with the LOS and the x-axis is aligned with projection of the
symmetry axis on the plane of the sky. Dependence of the observed
intensity correlation on φ is the main focus of the paper, while θ

get integrated along the LOS. Angle γ is a fixed parameter of the
problem that describes the direction of the mean magnetic field
with respect to the z-axis. Lastly, μ is angle between the separation
vector and the symmetry axis. The local axisymmetric properties of
the turbulence models depend explicitly on μ only. Between these
four angles, there is a relation

μ(γ, θ, φ) = sin γ sin θ cos φ + cos γ cos θ. (8)

4 R E P R E S E N T I N G MH D
T U R BU L E N C E M O D E S

Before we proceed with the formal mathematical description, a few
statements about the properties of MHD turbulence are due (see
a more detailed discussion in Brandenburg & Lazarian 2013). It
is natural to accept that the properties of MHD turbulence depend
on the degree of magnetization. Those can be characterized by
the Alfvén Mach number MA = VL/VA, where VL is the injection
velocity at the scale L and VA is the Alfvén velocity. It is intuitively
clear that for MA 	 1 magnetic forces should not be important in

the vicinity of injection scale. This is the limiting case of super-
Alfvénic turbulence. The case of MA = 1 is termed trans-Alfvénic
and the case of MA < 1 sub-Alfvénic turbulence. Naturally, MA 
 1
should correspond to magnetic field with only marginally perturbed
field direction.

The modern theory of MHD turbulence started with the semi-
nal paper by Goldreich & Sridhar (1995, hereafter GS95). They
suggested the theory of turbulence of Alfvénic waves or Alfvénic
modes, as in turbulence non-linear interactions modify wave prop-
erties significantly. For instance, in GS95 theory Alfvénic pertur-
bations cascade to a smaller scale in just about one period (≡ l/vl,
l being the eddy size), which is definitely not a type of wave be-
haviour. The GS95 was formulated for trans-Alfvénic turbulence,
e.g. for MA = 1. The generalization of GS95 for MA < 1 and
MA > 1 can be found in Lazarian & Vishniac (1999, hereafter
LV99).

The original GS95 theory was also augmented by the concept
of local system of reference (LV99; Cho & Vishniac 2000; Maron
& Goldreich 2001; Cho, Lazarian & Vishniac 2002) that specifies
that the turbulent motions should be viewed not in the system of
reference of the mean magnetic field, but in the system of reference
of magnetic field comparable with the size of the eddies. From the
point of view of the observational study that we deal with in this
paper, the local system of reference is not available. Therefore, we
should view Alfvénic turbulence in the global system of reference
which for sub-Alfvénic turbulence is related to the mean magnetic
field (see the discussions in Cho & Lazarian 2002; Esquivel &
Lazarian 2005; LP12). In this system of reference, the observed
statistics of turbulence is somewhat different. While in GS95 there
are two different energy spectra, namely the parallel and perpendic-
ular, in the global system of reference the perpendicular fluctuations
dominate which allows us to use a single spectral index for the two
directions in our treatment. Similarly, if in the local system of ref-
erence the anisotropy is increasing with the decrease of size of the
eddies, it stays constant in the global system of reference. It is this
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1232 D. Kandel, A. Lazarian and D. Pogosyan

property that allowed us to use in LP12 the theoretical description
for axisymmetric turbulence by Chandrasekhar (1950) in order to
describe observed turbulent fluctuations.4

For super-Alfvénic turbulence, the turbulent motions are essen-
tially hydrodynamic up to the scale of lA = LM−3

A and after that
scale they follow along the GS95 cascade. If we observe Alfvénic
turbulence at scales larger than lA, we will not see anisotropy. How-
ever, if our tracers are clustered on scales less than lA, we will see
the anisotropy corresponding to the field of the large eddy. For in-
stance, turbulence in a molecular cloud with the scales less than lA

will show anisotropy.
For sub-Alfvénic turbulence, the original cascade is weak with

parallel scale of perturbations of magnetic field not changing, while
the perpendicular scale getting smaller and smaller as the turbu-
lence cascades (see LV99; Galtier et al. 2000). However, at scale
ltrans ∼ LM2

A, the turbulence gets strong in terms of its non-linear
interactions, with the modified GS95 scalings (see LV99) being
applicable.

To obtain the full description of MHD turbulence, one has to
include the turbulence of compressible, i.e. slow and fast, modes
(Lithwick & Goldreich 2001; Cho & Lazarian 2002, 2003). While
the entrenched notion in the literature is that for compressible turbu-
lence Alfvén, slow and fast modes are strongly coupled and there-
fore cannot be considered separately, the numerical study in Cho &
Lazarian (2003) provided a decomposition of the modes and proved
that they form cascades of their own (see a bit more sophisticated
method of decomposition employed in Kowal & Lazarian 2010).5

This was used in LP12 to provide the representation of these modes
for the observational studies of magnetic field. In what follows, we
discuss the turbulent velocity field, which entails some modifica-
tions compared to LP12.

As we have already mentioned, the motions in an isothermal tur-
bulent plasma can be decomposed into three types of MHD modes
– Alfvén, fast and slow modes. Fast and slow modes are com-
pressible while Alfvén mode is incompressible. Each of these three
modes of turbulence forms its own cascade (see GS95; Beresnyak &
Lazarian 2015). The power laws of the modes are defined by the
theory but the properties of modes can change. Therefore, follow-
ing the tradition of VCA development (LP00) and our synchrotron
studies (LP00; LP16), for the purpose of our observational study,
we keep the indices of velocity and density as parameters that can be
established by observations. This is intended to provide a test using
the VCA of the modern MHD theory and induce its further develop-
ment. Nevertheless, to compare the observations of anisotropy with
predictions, we keep the structure of the tensors corresponding to
the modes. In doing so, we follow the approach in LP12, but mod-
ify the treatment to account for the difference of the fast and slow
modes in terms of magnetic field and in terms of velocity. Indeed,
the magnetic field that we dealt with in LP12 must satisfy an addi-
tional solenoidality constraint, while there is no such a constraint
for the turbulent velocity.

In this paper, our focus is to understand how turbulence
anisotropies transfer into the anisotropy of the statistics of intensity

4 The ‘detection’ of the scale-dependent GS95 anisotropy in the numerical
study by Vestuto, Ostriker & Stone (2003) and the subsequent observational
studies influenced by the aforementioned work (e.g. Heyer et al. 2008) is
a result of misinterpretation of numerical data as it is discussed e.g. in Xu,
Yan & Lazarian (2015).
5 A similar decomposition has been recently performed for relativistic MHD
in Takamoto & Lazarian (in preparation).

fluctuations within PPV slices and how the latter statistics changes
with the thickness of the slices. As was shown in LP00, the statis-
tics of intensity fluctuations within a PPV slice can be affected
by both the velocity statistics and density statistics, and there are
regimes when only velocity fluctuations determine the fluctuations
of intensity within a thin slice.

In this section, we shall discuss correlation tensors of velocity
fields generated by each of the MHD modes above. The details of
the velocity correlation tensor of each mode depend on the allowed
displacement of plasma in the mode and the distribution of power
among different wavelengths.

In general, the Fourier component of velocity in a mode is given
by v(k) = ak ξ̂ (k̂, λ̂), where k is the wavevector, ak is the random
complex amplitude of a mode and ξ̂ is the direction of allowed
displacement. Therefore, the velocity correlation is given in Fourier
space by

〈vi(k)v∗
j (k′)〉 = 〈aka

∗
k′ 〉 (ξ̂k ⊗ ξ̂ ∗

k′
)

ij

≡ A(k, k̂ · λ̂)
(
ξ̂k ⊗ ξ̂ ∗

k

)
ij

δ(k − k′), (9)

whereA(k, k̂ · λ̂) = 〈âkâ
∗
k〉 is the power spectrum which in our case

depends on the angle μk ≡ k̂ · λ̂. Fourier transform of equation (9)
gives velocity correlation tensor in the real space

〈
vi(x1)vj (x1 + r)

〉 =
∫

dk k2 d�k eik·r

×A(k, k̂ · λ̂)
(
ξ̂k ⊗ ξ̂ ∗

k

)
ij

. (10)

The power spectrum can be decomposed into spherical harmonics
as

A(k, k̂ · λ̂) =
∑
�1m1

4π

2�1 + 1
A�1 (k)Y�1m1 (k̂)Y ∗

�1m1
(λ̂), (11)

and similarly(
ξ̂k ⊗ ξ̂ ∗

k

)
ij

=
∑
�2m2

c
ij
�2m2

(λ̂)Y�2m2 (k̂), (12)

where c
ij
�2m2

coefficients depend on the mode structure, and are tab-
ulated further in this section for each mode. With these definitions,
equation (10) can be expressed as

〈vivj 〉 =
∑
�m

4πi�Y ∗
�m(r̂)

∑
�1m1

4π

2�1 + 1
Y ∗

�1m1
(λ̂)

×
∑
�2m2

c
ij
�2m2

(λ̂)T��1 (r)��m,�1m1,�2m2 , (13)

where we have defined

T��1 (r) ≡
∫

dk k2j�(kr)A�1 (k), (14)

and � is a shorthand notation for the combination of Wigner 3-
j symbols given in detail in Appendix B. On the other hand, the
velocity correlation tensor is given by equation (4), and therefore,
the above equations can be used to find the coefficients A, B, C and
D. The procedure that we use to obtain them is also described in
Appendix B.

The intensity statistics of a turbulent field is also affected by
the density fluctuations. In a turbulent field, if density fluctuations
are weak, it is easy to understand density correlation for different
modes. Assuming that the density is given by ρ → ρo + δρ, where
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Extending VCA for turbulence anisotropies 1233

Table 2. Summary of mode structure.

Mode Velocity tensor structure Power spectrum Type Equation

Alfvén E − F Anisotropic Solenoidal (19), (20)
Fast (high β) P Isotropic Potential (22), (21)
Fast (low β) Mixed Isotropic Compressible (25), (21)
Slow (high β) F Anisotropic Solenoidal (27), (20)
Slow (low β) Mixed Anisotropic Compressible (27), (20)
Strong E Anisotropic Solenoidal (C33)

ρ0 is the mean density of the turbulent medium and δρ is the
overdensity such that |δρ| 
 ρ0, the continuity equation

∂ρ

∂t
+ ∇ · (ρv) = 0 (15)

gives (in Fourier space) δρk/ρ0 ∼ â(k̂ · ξ̂ ), using which we obtain
the overdensity power spectrum

〈δρkδρ
∗
k〉 = ρ2

0A(k, k̂ · λ̂)|k̂ · ξ̂ |2. (16)

In real space, the overdensity correlation is given by

〈δρ(x1)δρ(x1 + r)〉 = ρ2
0

∫
dk k2 d�k eik·rA(k, k̂ · λ̂)|k̂ · ξ̂ |2. (17)

These equations for density correlation are only valid when density
perturbations are weak. In the case when perturbations are not weak,
we use the ansatz discussed in Section 4.4.

Below we describe the properties of individual MHD modes.
For compressible modes, these properties vary depending on the
magnetization of the media, which are determined by the parameter
β, which is the ratio of thermal plasma energy density to the energy
density of magnetic field. Thus, this ratio, in addition to MA, should
be considered. It is important to note that the MHD modes are
subject to strong non-linear damping. As a result, for instance,
perturbations corresponding to Alfvén modes get damped over just
one period.

To describe correlation tensors of these modes, we use their dis-
persion relations. Our treatment of MHD modes below is analogous
to the one in LP12. Below we treat velocity fluctuations associated
with MHD modes, while LP12 dealt with magnetic fluctuations. A
brief summary of mode structures is also presented in Table 2. The
properties of density perturbations in turbulent media are discussed
in Cho & Lazarian (2003), Kowal & Lazarian (2010) and Kowal
et al. (2007).

4.1 Alfvén mode

Alfvén modes are essentially incompressible modes where displace-
ment of plasma in an Alfvén wave is orthogonal to the plane spanned
by the magnetic field and wavenumber, so that

vA ∝ ξ̂k = k̂ × λ̂√
1 − (k̂ · λ̂)2

. (18)

The corresponding tensor structure for Alfvén mode is then(
ξ̂k ⊗ ξ̂ ∗

k

)
ij

= (δij − k̂i k̂j

)

− (k̂.λ̂)2k̂i k̂j − k̂.λ̂(λ̂i k̂j + λ̂j k̂i) + λ̂i λ̂j

1 − (k̂.λ̂)2
. (19)

In the above equation, the part in the first parentheses is referred to
as E-type correlation, and the second part is referred to as F-type

correlation. The E-type correlation has been studied in detail in
LP12.

In the case of Alfvén mode, the power spectrum in the global
system of reference is given by

A(k, μk) = E(k, μk) ∝ k−11/3 exp

[
−M

−4/3
A

|μk|
(1 − μ2

k)2/3

]
, (20)

where μk = k̂ · λ̂.
The correlation tensor of Alfvén mode in real space is calcu-

lated in Appendix C1. The coefficients A, B, C and D are given by
equations (C5), (C9), (C11) and (C10), respectively.

As Alfvén modes are incompressible, to the first-order approx-
imation, they do not create any density fluctuations. Indeed, for
Alfvén waves, ξ̂ is orthogonal to wavevector, and therefore the
overdensity correlation must be zero (cf. equation 17).

4.2 Fast modes

Fast modes are compressible type of modes. In high-β (≡ Pgas/Pmag)
plasma, they behave like acoustic waves, while in low-β plasma
they propagate with Alfvén speed irrespective of the magnetic field
strength (Cho & Lazarian 2005). The power spectrum of this mode
is isotropic and is given by

A(k, μk) ∝ k−7/2. (21)

In this subsection, we will present the velocity correlation tensor as
well as overdensity correlation for fast modes in two regimes: high
and low β.

4.2.1 High-β regime

In the high-β regime, displacement in fast modes is parallel to
wavevector k̂, and the velocity is v ∝ k̂. These are essentially sound
waves compressing magnetic field. This mode is purely compres-
sional type, and its tensor structure in Fourier space is given by(
ξ̂k ⊗ ξ̂ ∗

k

)
ij

= k̂i k̂j . (22)

The correlation tensor structure of fast modes in real space is pre-
sented in Appendix C2. It has been shown that C and D parameters
of this mode vanish, while A and B are given by equations (C14)
and (C16), respectively.

In the case when density perturbations are weak, the overdensity
correlation in fast modes in high-β regime is (cf. equation 17)

〈δρ(x1)δρ(r + x1)〉 =
∫

d3keik.rk−7/2

= 4π

∫
dk k−3/2j0(kr). (23)

Note that the above correlation represents steep density spectra for
which structure function should be used for appropriate analysis to
avoid divergence issues.
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1234 D. Kandel, A. Lazarian and D. Pogosyan

4.2.2 Low-β regime

In the low-β regime, velocity is orthogonal to the direction of sym-
metry λ̂, and therefore, the velocity is

v ∝ ξ̂k = (λ̂ × k̂) × λ̂√
1 − (k̂ · λ̂)2

. (24)

This mode can be associated with compression of magnetic field.
Using the above equation, we have

(
ξ̂k ⊗ ξ̂ ∗

k

)
ij

∝ k̂i k̂j − (k̂.λ̂)(k̂i λ̂j + k̂j λ̂i) + (k̂.λ̂)2λ̂i λ̂j

1 − (k̂.λ̂)2
. (25)

The velocity correlation function in real space for the above ten-
sor is presented in Appendix C3. Because the power spectrum
for this mode is isotropic, the correlation tensor is heavily sim-
plified. The parameters A, B, C and D for this mode are presented in
equations (C18), (C19), (C20) and (C21).

In the case when density perturbations are weak, the overdensity
correlation in fast modes in low-β regime is (cf. equation 17)

〈δρ(x1)δρ(r + x1)〉 =
∫

d3keik.rk−7/2(1 − (k̂.λ̂)2)

= 4π

3

∫
dk k−3/2j0(kr) + 8π

3

∫
dk k−3/2j2(kr)P2(μ). (26)

4.3 Slow modes

Slow modes in high-β plasma are similar to pseudo-Alfvén modes in
incompressible regime, while at low β they are density perturbations
propagating with sonic speed parallel to magnetic field (see Cho &
Lazarian 2003). The power spectrum of this mode is the same as
that of Alfvén mode (cf. equation 20).

In this section, we will present the velocity correlation and over-
density correlation of this mode in low- and high-β regime.

4.3.1 High β

In the high-β regime, displacement is perpendicular to the wavevec-
tor k̂, and therefore,

v ∝ (k̂ × λ̂) × k̂.

Therefore, this gives us a full tensor structure is

(
ξ̂k ⊗ ξ̂ ∗

k

)
ij

= (k̂.λ̂)2k̂i k̂j − (k̂.λ̂)2(λ̂i k̂j + λ̂j k̂i) + λ̂i λ̂j

1 − (k̂.λ̂)2
. (27)

Slow modes are essentially incompressible types of mode in
this regime. The above tensor structure is pure F-type, and the
F-type correlation tensor in real space is derived in Appendix
C4. The correlation parameters A, B, C and D are presented in
equations (C24), (C26), (C30) and (C28).

Slow modes in high-β regime have zero density fluctuations in
a turbulent field where density perturbations are sufficiently weak
(cf. equation 17).

4.3.2 Low β

In this case, the displacement is parallel to the symmetry axis λ̂, and
therefore, the correlation tensor is 〈vivj 〉 ∝ λ̂i λ̂j . The real space
correlation function of these modes is derived in Appendix C5, and
the result (equation C32)〈
vi(x1)vj (x1 + r)

〉 =
∑

�

4πi�T��(r)P�(μ)λ̂i λ̂j , (28)

where T��(r) is defined in equation (B7), and is related to the power
spectrum of the mode. Although the tensor structure of this mode
is isotropic, the structure function is nevertheless anisotropic due to
anisotropic power spectrum.

In the case when density perturbations are weak, the overdensity
correlation in slow modes in low-β regime is (cf. equation 17)

〈δρ(x1)δρ(r + x1)〉 =
∫

d3keik.rk−11/3(k̂.λ̂)2

= 4π

3

∫
dk k−5/3j0(kr) − 8π

3

∫
dk k−5/3j2(kr)P2(μ). (29)

4.4 Density fluctuations in MHD turbulence

In the previous subsections, we discussed a way of presenting den-
sity as a result of the compressions induced by compressible slow
and fast modes. However, for high sonic Mach number turbulence,
this linear approximation is not good. For example, linear model
predicts steep density spectrum. However, in the case of super-
sonic turbulence, density perturbations are caused by shocks, and
these perturbations are comparable to the density itself (Beresnyak,
Lazarian & Cho 2005; Kowal et al. 2007). Therefore, the density
statistics in this regime can be shallow.6 Therefore, a different rep-
resentation of density modes is required.

To understand the effects of density fluctuations in the intensity
statistics, we propose the following ansatz for the density correlation
function ξ (r, μ). This ansatz is based on the results of Jain & Kumar
(1961) where density statistics is presented as a infinite series over
spherical harmonics. We take only up to the second harmonics and
in the case of shallow spectrum:

ξ (r, μ) = 〈ρ〉2
[
1 +
( rc

r

)νρ (
1 + cρP2(μ)

)]
, νρ > 0, (30)

whereas in the case of steep spectrum for r 
 rc:

ξρ(r, μ) = 〈ρ〉2
[
1 −
( rc

r

)νρ (
1 + cρP2(μ)

)]
, νρ < 0, (31)

where rc denotes a cut-off scale and cρ is a parameter, which depends
on the details of the turbulent mode. An important criterion that the
two ansatz presented above should satisfy in order to be called
a ‘correlation function’ is that their Fourier transform should be
positive definite. It can be shown that this condition is true only
when the following condition is satisfied:

cρ >
2νρ

3 − νρ

, (32)

for steep spectra whereas for shallow spectra the condition is

cρ <
2νρ

3 − νρ

. (33)

Our representation above captures several essential features.
First, the above correlation can be immediately broken into two
parts: a constant and a part with spatial and angular dependence.
With this it is natural to talk about pure velocity and pure density
effects, and equations (1) and (A9) become applicable. Second im-
portant feature of the above correlation is that it carries information

6 By shallow, we mean the power spectrum P ∝ kn, with n > −3. For
instance, gravitational collapse can result to shallow power spectrum (see
Federrath & Klessen 2013; Burkhart, Collins & Lazarian 2015b).
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Extending VCA for turbulence anisotropies 1235

about anisotropy. In an axisymmetric turbulence, only even harmon-
ics survive due to symmetry and therefore, P2(μ) is the dominant
term which carries information on the anisotropy.7

5 ANISOTROPIC STATISTICS
OF PPV VELOCITY SLICES

In the previous sections, we have defined the tools that are required
for our achieving our goal, i.e. describing the anisotropy of the PPV.
In this section, we develop the analytical framework for the study
of anisotropic turbulence through the intensity statistics of the PPV
velocity slices. The scale 	v in equation (1) is the slice thickness,
and by comparing this slice thickness with the variance of velocity,
we develop notion of thin and thick slice. If 	v is smaller than the
velocity dispersion at the scale of study, it is a thin channel, whereas
if 	v is much larger than the velocity dispersion, it is called a thick
channel.

Anisotropy in intensity statistics is seen in the φ dependence of
intensity structure function (see LP12). To study this angular de-
pendence, similar to our study in LP12 and LP16, we will carry
out a multipole expansion of the structure function in spherical har-
monics. Such an expansion is useful as these multipoles can be
studied observationally. In particular, for an isotropic turbulence,
only monopole moment survives. In LP12 for synchrotron intensi-
ties, it was found that for studies of magnetic turbulence, the most
important are monopole and quadrupole moments.

5.1 Intensity statistics in a thin slice regime

We first study intensity fluctuations in the thin slice limit, i.e. the case
when the velocity-induced fluctuations are dominant. For that, we
will only consider the velocity effects. Before we proceed to details,
we would like to make a remark on the usefulness of the results
that we will obtain by just considering velocity effects. First, in the
absence of any density fluctuations, our results describe the intensity
statistics with anisotropic effects. On the other hand, in the presence
of steep density spectra, our results describe intensity statistics at
small scales R. As will be shown later, though steep density spectra
do not affect monopole term at larger R, they can significantly
affect quadrupole term at large R; therefore, by ignoring density
effects one cannot account for observed anisotropy at these scales.
In the case of shallow density spectra, however, density effects are
important, and our results cannot describe full intensity statistics in
this case. However, shallow spectra are not as common as steep,
and we shall not worry about that in this section.

In the case of thin velocity channel, the window function is de-
fined by a narrow channel, W(v) = δ(v) and therefore, utilizing
equations (1) and (3), the intensity structure function can be ex-
pressed as

D(R, φ) ∝ 2ε2

2π

∫ S

−S

dz

[
1 + ξ̃ρ(0, z)√

Dz(0, z)
− 1 + ξ̃ρ(R, z, φ)√

Dz(R, z, φ)

]
, (34)

where we have ignored the thermal effects. This can be justified
by taking thermal effect as a part of slice thickness (LP00). From
equation (2), the above equation can be broken into pure velocity

7 For a highly anisotropic density fluctuation, higher order harmonics
also contribute. We are, however, only concerned with the mild density
anisotropy.

and density terms. Here, we are only concerned about the pure
velocity contribution which is

Dv(R, φ) ∝ 2ε2

2π

∫ S

−S

dz

[
1√

Dz(0, z)
− 1√

Dz(R, z, φ)

]
. (35)

To extract the non-trivial φ dependence from the above expression,
we use multipole decomposition of the structure function in circular
harmonics, and write the structure function as a series of sum of
multipoles

Dv(R, φ, 0) =
∑

m

d̃m(R)eimφ, (36)

where the multipole moments d̃m, in the case of constant density,
are given by

d̃m(R) = ρ̄2

2π

[
2πδm0

∫ S

−S

dz
1√

Dz(0, z)

−
∫ 2π

0
dφe−imφ

∫ S

−S

dz
1√

Dz(R, z, φ)

]
. (37)

In writing the above equation, we have considered the fact that the
integral of 1/

√
Dz(0, z) over φ for non-zero m vanishes.

We also introduce the a parameter called degree of isotropy which
is defined as

Isotropy degree = D(R, φ = 0, 	v)

D(R, φ = π/2, 	v)
, (38)

where D is the intensity structure function. This parameter is partic-
ularly useful later to make comparisons with the numerical studies
that have been carried out on anisotropic turbulence. It will be later
shown that the isotropy degree has an interesting dependence on the
thickness of velocity slice, which will be shown to be very useful
in the study of intensity anisotropy.

We now proceed to find the multipole moments of intensity struc-
ture function in the thin slice limit at constant density. The most
general form of velocity structure function projected along an LOS
is given by equation (7). The coefficients A, B, C and D in this
projected structure function are in general a function of μ, and can
be expressed through a multipole expansion over Legendre poly-
nomials Pn(μ) as discussed in Appendix D. Although projected
structure function in general contains sum up to infinite order in
multipole expansion, to obtain analytical results, we take the terms
up to second order from the infinite sum for An, Bn, . . . and ignore
the higher order terms. This approximation is justified due to two
reasons. First, these coefficients all become exceedingly small for
higher orders in the region of our interest, which is small r . Sec-
ondly, upon carrying out integral over the line sight, the effects of
the higher order coefficients get diminished.8 With this approxima-
tion, the z-projection of velocity structure function can be shown to
be (cf. equation 7)

Dz(r) = f1

(
1 − f2 cos φ − f3 cos2 φ

)
, (39)

where f1, f2 and f3 are some other functions of r, γ , θ and are
independent of φ. The details about f1, f2 and f3 are provided in
Appendix D.

To evaluate equation (37), it is usually convenient to carry
out φ-integral first and z-integral later. This has been done in
Appendices E and F. Utilizing equations (E4), (F6) and (F8) and

8 This was tested numerically, and this statement is good as long as the
power spectrum is not highly anisotropic.
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Table D1, we arrive at the following form of the intensity structure
function

Dv(R, φ, 0) ∝
∞∑
m,2

Wm(sin γ )meimφ, (40)

where Wm is defined to be weightage function. However, we are
only interested in the monopole and quadrupole coefficients. Al-
though equation (E4) has sum that extends to infinity, for most of
our purposes, it is enough to just take first few terms. Therefore, for
monopole we take first two terms and for quadrupole term we only
take the leading-order term in the sum. Note that the factors f1, f2

and f3 in equation (39) are further written in terms of other factors
q1, q2, . . . which are dependent on Alfvén Mach number MA. The
details of these factors are presented in Appendix D and Table D1.
Keeping this in mind, we have the monopole weightage function
as

W0 ≈ −
⎧⎨
⎩
√

π

q1 + q2

(
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(

ν
4 − 1

2

)
�
(

ν
4

) − q2
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(

ν
4 + 1

2

)
�
(

ν
4 + 1

)
)

−
√

π

4q
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1
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) − 3
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�
(

ν
4 + 3

2

)
�
(

ν
4 + 2

)
)

× u1 sin2 γ

⎫⎬
⎭R1−ν/2. (41)

Similarly, the quadrupole weightage function is given by

W2 ≈ −R1−ν/2

√
π

4q
3/2
1

(
�
(

ν
4 + 1

2

)
�
(

ν
4 + 1

) − 3

4

q2

q1

�
(

ν
4 + 3

2

)
�
(

ν
4 + 2

)
)

u1. (42)

Equations (41) and (42) are only approximate and should be used
with caution. In particular, equation (41) is good only when (q1 +
q2) > q2, while equation (42) is good when q1 > q2. However, even
in the regime where these conditions do not hold, these equations are
robust enough to predict approximate numerics that are not too far
from the exact result. The ratio of weightage function Wm, obtained
from equations (41) and (42), to that obtained numerically has been
plotted in (Fig. 2). As shown in the figure, the analytical results are
close to the numerical results.

It is interesting to note that the isocontours of intensity struc-
ture function can be elongated towards the direction parallel to
the projection of magnetic field or perpendicular to it depending
on the sign of u1. For u1 > 0, the isocontours should be aligned

Figure 2. The ratio of Wm obtained from analytical expressions
(equations 41 and 42) to the one obtained from numerical calculations for
Alfvén mode at MA = 0.7. Note that the structure function is truncated to
the same power for both numerical and analytical calculations.

towards the parallel direction, while for u1 < 0, they should be
aligned towards the perpendicular direction.

It is usually useful to obtain expressions for quadrupole-to-
monopole ratio, as this is the one which gives the measure of
anisotropy. In our case, we have

d̃2

d̃0
= W2 sin2 γ

W0
. (43)

It is clear from the above equation that at γ = 0, the anisotropy
vanishes.

5.2 Intensity statistics in a thick slice regime

LP00 showed that density effects are dominant if the velocity slice
is ‘very thick’. In this limit, velocity effects get washed away in
an optically thin medium. In this section, we derive expressions for
intensity statistics in the case of very thick velocity slice. Using the
results of LP04, we have the intensity correlation

ξI(R, φ) ∝
∫ S

−S

dz
ξρ(r, φ)√

Dz(r, φ + 2β)

×
∫ ∞

−∞
dv exp

[
− v2

2(Dz(r, φ + 2β)

]
, (44)

which upon carrying out the integration over v gives

ξI(R, φ) ∝
∫ S

−S

dz ξρ(r, φ). (45)

This expression clearly shows that at thick slice, all the velocity
information is erased, and density effects play a primary role in
intensity statistics. Equation (45) allows us to obtain the intensity
structure function as

D(R, φ) ∝
∫ S

−S

dz
[
ξρ(z) − ξρ(r, φ)

]
. (46)

With some manipulations, it can be shown that

D(R, φ) ∝ ±(1 + cρP2(cos γ ))
∫ S

−S

dz

(
(z2 + R2)−νρ/2

− |z|−νρ/2

)
± 3

2
cρ(sin2 γ cos2 φ − cos2 γ )R2

×
∫ S

−S

dz(z2 + (R)2)−νρ/2−1, (47)

where + sign is for steep density spectra whereas − sign is for
shallow density spectra. The above expression can be evaluated
analytically and yields

D(R, φ) ∝ ±(1 + cρP2(cos γ ))

(
R−νρ

2F1

(
1

2
,
νρ

2
;

3

2
; − S2

R2

)

+ S−νρ

νρ − 1

)
± 3

2
cρ(sin2 γ cos2 φ − cos2 γ )R−νρ

×2F1

(
1

2
,
νρ + 2

2
;

3

2
; − S2

R2

)
, (48)

for −1 < νρ < 1. Note that for νρ < −1, intensity correlation func-
tion should be used. We are interested in small separation asymptote,
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Extending VCA for turbulence anisotropies 1237

Figure 3. Alfvén mode. From left to right: monopole, quadrupole and isotropy degree. Monopole and quadrupole are as a function of angle between LOS and
magnetic field, γ . Isotropy degree as a function of 	v is at γ = π/2. From top to bottom: top is at MA = 0.4, bottom at MA = 0.7.

i.e. R/S 
 1, given by

D(R, φ) ∝ ±
√

π�
(

νρ−1
2

)
�
( νρ

2

)
[

(1 + cρP2(cos γ ))

+3

2
cρ

νρ − 1

νρ

(sin2 γ cos2 φ − cos2 γ )

]
R1−νρ . (49)

The above equation gives some important qualitative features. First,
the anisotropy vanishes at γ = 0, which is again consistent with
the fact that if the magnetic field is aligned along the LOS, then the
statistics reduces to the isotropic statistics. Secondly, cρ primarily
determines the degree of anisotropy. Next, the isocorrelation con-
tour is aligned towards the direction parallel to the sky-projected
magnetic field if cρ < 0 and towards direction orthogonal to the
sky-projected magnetic field if cρ > 0. It is expected that the fluctu-
ations are elongated along the direction of magnetic field, and this
would mean that for a steep spectrum, cρ < 0, while for a shallow
spectrum, it can be similarly shown that cρ > 0. It has been shown
that the density effects are isotropic at large sonic Mach number
Ms (Kowal et al. 2007). Therefore, we expect cρ to approach 0 as
Ms goes large. Density anisotropy depends on Alfvén Mach num-
ber MA as well, although the dependence of anisotropy on sonic
Mach number is more pronounced (Kowal et al. 2007). Therefore,
cρ should be a function of Ms and MA, and observational results
might allow us in future to obtain good functional form of cρ .

6 R ESULTS

6.1 Effect of velocity fluctuations

6.1.1 Alfvén mode

For Alfvén modes, the component of velocity along the direction of
the symmetry axis is zero and therefore D = −Aμ, and C = Aμ2

− B, or equivalently C̃ = −Aμ2 − B̃, where C̃ ≡ C(0) − C(r).
Therefore, the projection of structure function along the LOS is
given by

Dz(r) = 2[B̃ + C̃ cos2 γ − A cos2 θ − 2D cos θ cos γ ]

= 2
[
B̃(r) sin2 γ − A(r)(μ cos γ − cos θ )2

]
. (50)

It is clear that the above structure function vanishes at γ = 0. In
the limit when γ → 0, (μcos γ − cos θ )2 → sin 2γ sin 2θcos 2φ and
μ → cos θ and therefore

Dz(r) = 2 sin2 γ
[
B̃ − A0 cos2 θ cos2 φ

]
, γ → 0. (51)

However, at γ = 0, all the emitters have the same LOS velocity
vz = 0. This implies that at this angle we are always in the thick

slice regime.9 With this observation, it is expected that the thin slice
approximation will not work whenever γ is less than some critical
angle γ c. The criterion for a slice to be thick is 	v >

√
Dz(R),

where R is the separation between the two LOS. Therefore, we
are in the thick slice regime whenever sin γc � 	v/(2B̃). However,
this only applies if the turbulent motions consist of only Alfvén
modes. This situation is nevertheless quite rare because slow modes
are also of solenoidal type and usually come along with Alfvén
modes. Since slow modes have non-vanishing structure function at
γ = 0, thin slice approximation would still be valid if we con-
sider the contribution of both slow and Alfvén modes because
at small γ velocity structure function will be dominated by slow
modes. In a thin slice regime, calculating monopole and quadrupole
terms primarily requires the knowledge of q1, q2, q3 and u1 (cf.
equations 41 and 42), which for the Alfvén modes are

q1 = (2B̃0 + B2

)
sin2 γ, u1 = −2A0 cos2 γ − 3B2 sin2 γ

q2 = − (3B2 cos2 γ + 2A0 sin2 γ
)

sin2 γ, q3 = 0. (52)

Fig. 3 shows the monopole and quadrupole contributions as well
as isotropy degree of intensity correlation from Alfvén modes. We
highlight several important properties. First, both monopole and
quadrupole components are decreasing with the increase in Alfvén
Mach number, MA. Secondly, the anisotropic feature decreases with
the increase in Alfvén Mach number, which is expected as higher
Alfvén Mach number corresponds to higher isotropy. Moreover,
both monopole and quadrupole are insensitive to γ for γ � π/4,
which can be a useful feature to determine Alfvén Mach number MA.
In addition to that, it is clear from the figure that isotropy degree
for Alfvén mode is less than 1. This implies that isocorrelation
contours are elongated along the direction of sky projection of
mean magnetic field. For Alfvén modes, this corresponds to the
spectral suppression towards the direction parallel to the projected
field. This effect is due to the structure of power spectrum of Alfvén
mode. If this power spectrum was isotropic, the isocontours of this
mode would be elongated along the direction orthogonal to the
sky projection of mean magnetic field (see the left-hand panel of
Fig. 4). Note that both the monopole and quadrupole are increasing
with the decrease in γ , which might look counter-intuitive. This
increase is because of the fact that the structure function Dz ∝
sin 2γ , and therefore, the intensity structure function D ∝ sin−1 γ

which reflects that more and more emitters are occupying the same
velocity channel vz = 0.

9 In a thick slice regime, the intensity structure has a divergence of S2,
where S is the size of an emitting region. However, in a thin slice regime, the
divergence is S. The fact that 1/sin γ introduces an additional divergence is
clear to explain that at γ ∼ 0, thin slice approximation does not work.
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1238 D. Kandel, A. Lazarian and D. Pogosyan

Figure 4. Alfvén mode. Left: the degree of anisotropy assuming an isotropic power spectrum A(k, μk) (cf. equation 20). The observed anisotropy in this case
comes purely from the anisotropic tensor structure (cf. equation 19). Right: quadrupole and monopole at MA = 0.7. Both are normalized by their highest value.

Figure 5. Fast mode low β. From left to right, monopole and quadrupole and degree of isotropy. The curves in left-hand and central panels represent from top
to bottom: 	v = 0.1, 0.3 and 0.5. The isotropy degree is at γ = π/2. All angles are in degrees.

By looking at the left-hand panel of Fig. 4, one can observe
the decrease of isotropy degree for increasing slice thickness,10

	v. This decrease can be understood in the following sense: at
small slice thickness, all emitters have similar LOS velocities and
anisotropies are suppressed. But with the increase in slice thickness,
the correlations of velocity are better sampled, thus increasing the
anisotropy. The change of anisotropy with slice thickness is an
important result of this paper. This can be a useful tool in the study
of MHD turbulence. It is however important to note that although
the anisotropy increases with increasing 	v, the quadrupole and
monopole individually approach zero with increasing 	v. This is
illustrated in the right-hand panel of Fig. 4, which clearly shows that
both the monopole and quadrupole are clearly approaching zero as
	v approaches unity.

6.1.2 Fast mode

Fast modes in high-β plasma correspond to sound waves, which are
isotropic (see GS95; Cho & Lazarian 2003).

Fast modes in low-β plasma have anisotropy in-built in the tensor
structure, although their power spectrum is isotropic. For fast modes
in low-β regime, the component of velocity along the direction of
symmetry axis is zero, and therefore, the projection of structure
function along the LOS takes the same form as that for the Alfvén
mode,

Dz(r) = 2
[
B̃(r) sin2 γ − A(r)(μ cos γ − cos θ )2

]
. (53)

The above structure function also vanishes at γ = 0; therefore, the
discussion about thin and thick slice applies to this mode as well.
To find monopole and quadrupole terms, the coefficients q1, q2, q3

and u1 for this mode are given by equation (52).

10 Whenever we talk about slice thickness 	v, unless explicitly mentioned
otherwise, we talk about slice thickness normalized by velocity dispersion.

Fig. 5 shows monopole, quadrupole and degree of anisotropy of
low-β fast modes. Of particularly interesting pattern is the degree
of isotropy which is greater than 1, unlike Alfvén modes which had
this isotropy degree less than 1. This clearly implies that intensity
structure iso-contours of fast modes are elongated along the di-
rection perpendicular to magnetic field projection in the 2D plane.
This in fact validates our previous assertion that for an isotropic
power spectrum, the iso-contours should be elongated towards the
direction perpendicular to sky-projected magnetic field. It is also in-
teresting to note that even at γ = π/2 (which is the most anisotropic
case), these modes are not so anisotropic. Therefore, observation of
strong anisotropy signal could allow us to infer that fast modes are
not possibly unimportant (this cannot totally eliminate fast modes,
because a mixture of fast and Alfvén modes can, for example, pro-
duce strong anisotropy as long as fast modes are subdominant).
Fig. 5 shows while monopole decreases rapidly with increasing
slice thickness, the quadrupole is relatively less affected with the
changing slice thickness; therefore, this increases the quadrupole-
to-monopole ratio with increasing slice thickness.

6.1.3 Slow mode

Slow modes are anisotropic in both high and low β. The detailed
mode structure of this mode is studied in Appendix C4. The structure
function of low-β slow mode is given is

Dz(r) = 2(C(0) − C(r)) cos2 γ. (54)

Analytical calculation of the monopole and quadrupole contribution
to the intensity structure function requires knowledge of various pa-
rameters as shown in equations (41) and (42), and these parameters
are summarized in Table D1.

Fig. 6 shows that slow modes in low β are highly anisotropic
at low Alfvén Mach number MA. However, they become more
isotropic at large MA, which shows that the observed anisotropy
of intensity fluctuations from these modes is primarily due to
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Extending VCA for turbulence anisotropies 1239

Figure 6. Slow mode low β. From left to right: monopole and quadrupole and degree of isotropy at MA = 0.2 and 0.7, at 	v = 0.1. The isotropy degree is
calculated at γ = π/3.

Figure 7. Slow mode high β. Monopole and quadrupole and degree of isotropy for slow mode at high β. Left-hand and central panels are at 	v = 0.1. The
isotropy degree is calculated at γ = π/3.

Figure 8. Alfvén + fast modes at low β at MA = 0.7. Left and centre: monopole and quadrupole for various percentage of mixture. Right: isotropy degree at
γ = π/2. The solid curve is for 95 per cent Alfvén and 5 per cent fast, dotted curve is for 90 per cent Alfvén and 10 per cent fast and the dashed curve is for
80 per cent Alfvén and 20 per cent fast.

the anisotropy in power spectrum. The anisotropy is pronounced
for γ � π/4. Moreover, the isocorrelation contours in this limit
are always elongated towards the direction of sky-projected mag-
netic field, which is similar to the Alfvén mode. Comparing
Figs 3 and 6, it is easy to see that in the regime γ � π/3, slow
modes in low β are more anisotropic than Alfvén modes for
same MA.

Slow modes in high-β regime show more interesting properties
as shown in Fig. 7. The isocorrelation contours of this mode are
aligned towards the direction parallel to the sky-projected mag-
netic field. The anisotropy comes from the anisotropy in-built in the
tensor structure of this mode as well as from the power spectrum
(cf. equation 20) of this mode. Similar to Alfvén mode, the iso-
correlation contours of this mode are aligned towards the direction
perpendicular to the sky-projected magnetic field.

However, our method of analysing the anisotropy by truncating
the series of structure function (cf. Section 5.1) does not work well
for very small MA. One reason is that the power spectrum in the
regime of small MA becomes more or less like δ(k̂.λ̂), and therefore
all An are important. Note that at small MA, the intensity structure
function, and hence the anisotropy, of high-β and low-β slow modes
should behave in a similar way. This is because the power spectrum
(cf. equation 20) of high-β slow mode behaves like δ(k̂ · λ̂) at low

MA, and therefore, the tensor structure of slow modes at high β (cf.
equation 27) should reduce to the same form as that of low-β slow
modes, i.e. Dz(r) ∝ λ̂i λ̂j for both modes.

6.1.4 Mixture of different modes

In this section, we show effects of mixing of modes in the isotropy
degree. Mixing effects are interesting as real world MHD turbu-
lences have different modes and our observations are the result of
the combined effects of these modes.

We consider the mixture of Alfvén modes and fast modes, as well
as mixture of Alfvén and slow modes. Fig. 8 shows that the mixture
of Alfvén and mixture of fast mode with Alfvén mode in low β

increases the isotropy (cf. Fig. 3) when compared with pure Alfvén
isotropy. This effect is caused by two factors: first, fast modes are
less anisotropic than Alfvén and therefore, we expect their combi-
nation to be more isotropic than Alfvén alone. More important is
the second factor: the quadrupole anisotropies of fast (in low β)
and Alfvén modes are opposite in sign. This means the anisotropy
effects of the two modes act against each other. Therefore, even a
small percentage of fast modes in the mixture can cause a significant
difference in the anisotropy level. This has been confirmed in the
left-hand and central panels of Fig. 8, which shows that while the
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1240 D. Kandel, A. Lazarian and D. Pogosyan

Figure 9. Alvén + low-β slow modes at MA = 0.7. Left and centre: monopole and quadrupole for various percentages of mixture. Right: isotropy degree at
γ = π/4. The solid curve is for 85 per cent Alfvén and 15 per cent slow, dotted curve is for 70 per cent Alfvén and 30 per cent slow and the dashed curve is for
50 per cent Alfvén and 50 per cent slow (also referred to as strong turbulence).

Figure 10. Steep density: normalized monopole (left) and normalized quadrupole (centre) for Alfvén mode at γ = π/2 and cρ = −0.6. The solid curve is for
pure velocity contribution while the dotted curve is for steep density of Kolmogorov index. Right: isotropy degree as a function of velocity slice thickness 	v

for various R/rc; all the parameters are the same as in the left-hand and central panels.

monopole is relatively unaffected by the composition of mixture,
the quadrupole is significantly affected with larger composition of
fast modes. Note that we usually expect fast mode to be marginal
in the mixture. Fast modes in high β, however, are isotropic. There-
fore, we again expect the mixture of high-β fast and Alfvén mode
to be more isotropic than Alfvén alone. However, unlike low-β fast
mode, this mode at high β does not have any quadrupole anisotropy
to act against the Alfvén anisotropy. Therefore, this mixture should
be more anisotropic than the mixture of high-β fast mode.

Another interesting mix is Alvén and slow modes in low-β
plasma. We have shown that both of these modes have negative
quadrupole moment. Moreover, these modes are different domains
of dominance. At γ ∼ 0, slow modes dominate while at γ ∼ π/2,
Alfvén modes dominate. Therefore, we expect the anisotropy level
of their mixture to be not too different from the anisotropy level
of each individual mode in the region of their dominance. This is
shown in Fig. 9. Note that in that figure, changing percentage of
composition has relatively unaffected the level of anisotropy. This
result shows that the anisotropy effects come primarily from the
power spectra rather than the exact local structure of the spectral
tensor (LP12).

It is important to note that for the case of mix between Alfvén
and slow mode in low β, the anisotropy level is unaffected at γ ∼
π/2 when compared with Alfvén mode. This is because of the
fact that for low-β slow mode, the motions are along the direction
of magnetic field, and therefore these motions should not affect
the statistics in the direction perpendicular to them. Similarly, at
smaller γ , the mix of Alfvén and low-β slow mode should produce
anisotropy level similar to that of the slow mode alone. This effect
is again primarily because of the anisotropy from power spectra.

6.2 Comparison with Esquivel et al. (2015)

One of the most interesting and important findings of our study
is the decrease of isotropy degree with increasing slice thick-

ness. This matches exactly with the findings of Esquivel et al.
(2015). We compare our result with their results. In their study,
for MA = 0.7 and Ms = 2.2, most of the contribution comes from
Alfvén mode and density effects. Comparing our results for pure
Alfvén effects and their result at constant density should be rea-
sonable. In our case, at MA = 0.7, isotropy degree at thin slice
regime is ∼0.65, while their result shows an isotropy degree of
∼0.6, which is close to our result. At MA = 0.4, however, our
result shows an isotropy of 0.59, while they predicted much less
isotropy degree of ∼0.3. However, the overall trend of decreas-
ing isotropy with increasing slice thickness matches well with our
results.

6.3 Study on density effects

Besides velocity, density statistics also provide important contribu-
tion to intensity statistics. In LP00, the issue of separating density
contribution from velocity contribution to the intensity statistics was
addressed. For steep spectra (see Section 4.4), it was mentioned in
LP04 that density effects are important at large lag R and veloc-
ity effects are important at small lags, but this was invalidated in
LP06, where it was clarified that velocity statistics are dominant
in thin slice regime no matter what the scale R is. In the case of
shallow spectra, however, density effects are important even in the
thin velocity slice regime. With this, it is natural to expect that for
steep spectra, anisotropy in intensity statistics should be primarily
dominated by velocity effects in the thin slice regime, while for
shallow spectra, anisotropy is affected by density effects as well
in this regime. In the thick slice regime, only density effects are
important.

We tested the effects of density anisotropy at different scales for
both steep and shallow spectra. Fig. 10 shows some of the key fea-
tures shown by density effects. Both quadrupole and monopole for
the combination of velocity and density effects are similar to veloc-
ity effects alone at R < rc for a steep spectrum. This is consistent
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Extending VCA for turbulence anisotropies 1241

Figure 11. Shallow density: normalized monopole (left) and normalized quadrupole (right) for Alfvén mode at γ = π/2 and cρ = 0.3. The solid curve is for
pure velocity contribution while the dotted curve is for shallow density of index νρ = 1/3. Right: isotropy degree as a function of velocity slice thickness 	v

for various R/rc; all the parameters are the same as in the left-hand and central panels.

with the fact that for steep density spectra, the intensity correlation
function is dominated by velocity effects at R < rc. Interestingly, the
quadrupole moment is affected by density effects, while monopole
remains relatively unaffected. The relative importance of density
effects in quadrupole moment depends on the degree of density
anisotropy, cρ . For, sufficiently small cρ , we cannot see any sig-
nificant deviation from the pure velocity contributions. Therefore,
studying monopole moment at small R should give us information
on velocity statistics, while quadrupole moment will give infor-
mation about the presence of density effects. Note that at thick
velocity slice, the intensity statistics is dominated by density effects
alone.

If the density spectrum is shallow, the density effects become
important at small scales. Therefore, we expect significant deviation
from pure velocity effects in the case of shallow density spectrum.
This is confirmed from Fig. 11, as the degree of isotropy changes
significantly from the pure velocity effects.

6.4 Absorption line studies

The present study is focused on emission lines. Absorption lines
present another way to study the turbulence. The theory of PPV de-
scription of absorption lines was presented in Lazarian & Pogosyan
(2008, hereafter LP08). There it was suggested to correlate the log-
arithms of absorbed intensities. This trivially extends our earlier
study to the unsaturated absorption lines.

The absorption lines are frequently saturated, however. For satu-
rated absorption lines, LP08 showed that only wings of the line are
available for the analysis. In terms of the analysis, this is equivalent
to introducing an additional window, whose size decreases with the
increase of the optical depth. As a result, only narrow velocity chan-
nels carry information on turbulence and only the correlations over
small-scale separations within the channel carry meaningful infor-
mation. In other words, only the information about the small-scale
turbulence is available in the case of heavily saturated absorption
lines. This conclusion coincides with the one in LP08 obtained for
the VCS technique.

The absorption lines may be created by extended sources or a
set of discrete sources, e.g. stars in a star cluster. A big advantage
of studying turbulence using absorption lines is that multiple lines
with different optical depths can be used simultaneously. Naturally,
noise of a constant level, e.g. instrumental noise, will affect weaker
absorption lines. The strong absorption lines will sample turbulence
only for sufficiently small scales. However, the contrast that is ob-
tained with the strong absorption lines is higher, which provides
an opportunity for increasing the signal-to-noise ratio for the small
turbulent scales. By combining different absorption lines, one can
accurately sample turbulence for both large and small scales. Us-

Figure 12. Power spectrum as a function of kv for pure velocity effect with
Kolmogorov index ν = 2/3. Curves from top to bottom represent 	 = 1,
0.5, 0.1, respectively.

ing absorption sources at different distances from the observer, it is
possible to study turbulence in a tomographic manner.

In LP08, it was discussed that the atomic effects introduce an ad-
ditional mask, which is responsible for the corruption of turbulence
spectra at small wavenumber. If the mask is taken to be Gaussian
centred at the middle of wing, with the width 	, it was shown that for
wavenumbers kv < 	−1, the lines are saturated and the information
on turbulence spectra is lost. On the other hand, for kv 	 3	−1, we
can recover the turbulence spectra, as shown in Fig. 12. This result
would mean that due to atomic effects, we can study anisotropy of
eddies only for a velocity slice 	v < 1/(3	−1), meaning that for
sufficiently thin slices, one need not worry about atomic effects.

6.5 VCA and interferometric studies

Results obtained in LP00 in terms of the 2D spectra of fluctuations
of intensities in velocity slice are important as these 2D spectra
can be measured by interferometers. Therefore, using interferom-
eters one does not need to first create intensity maps, but can use
the raw interferometric data. This gives a significant advantage for
studying turbulence in extragalactic objects as well as for poorly re-
solved clouds in Milky Way. For obtaining the spectrum, just a few
measurements corresponding to different baselines, i.e. for different
|K |, of an interferometer are sufficient.11

For the anisotropy studies, one can also use raw interferometric
data with missing frequencies, but it is important to sample the
fluctuations for different direction of the two-dimensional vector
K . This provides more stringent requirements to the interferometric
data compared to just studying of velocity and density spectra with

11 The procedures are also discussed in LP16 for synchrotron polarization
data.
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1242 D. Kandel, A. Lazarian and D. Pogosyan

the VCA, but still it is much easier than restoring the full spatial
distribution of intensity fluctuations.

A simple estimate of the degree of anisotropy of the interfero-
metric signal can be obtained by taking the Fourier transform of the
monopole and quadrupole part of the expansion in equation (36).
With this, we have the quadrupole power spectrum

P (K ) =
∑

m

Pm(K) cos(mφK )

=
∑

m

∫
d2 R eiK .Rd̃m(R) cos(mφ), (55)

where cos φk = K̂ · �̂ and Pm(K) is the quadrupole moment in
Fourier space. After expanding the two-dimensional plane wave
as

eiKR cos θ =
∞∑

n=−∞
inJn(KR)einθ , (56)

where Jn(z) is the Bessel function of first kind, the angular part of
the integral in equation (55) gives

Pm(K) =
∫

dR Rd̃m(R)Jm(KR). (57)

The above equation provides important information that the
anisotropy in real space manifests as anisotropy in Fourier space,
and each multipole in real space has one-to-one correspondence
with the multipoles in Fourier space.

The asymptotic form of Pm(K) for large K can be obtained an-
alytically and the result in the case of pure velocity contribution
is

Pm(K) = 22− ν
2 �
(

1
4 (2m − ν + 6)

)
�
(

1
4 (2m + ν − 2)

) d̃m(KS)3−ν/2, (58)

where d̃m is the real space intensity moment after R dependence
being explicitly factored out. With this, the ratio of quadrupole to
monopole moment is

d̃2K

d̃0K

= −6 − ν

2 − ν

d̃2

d̃0
. (59)

Note that the sign of quadrupole moment changes in Fourier space
when compared to real space. Moreover, the ratio of quadrupole to
monopole is enhanced by a factor of (6 − ν)/(2 − ν) which for
ν = 2/3 is 4. Therefore, the anisotropy is much more apparent in
Fourier space. This provides a unique way to study turbulence with
interferometric signal as we can utilize both the isotropic part and
the anisotropic parts (like quadrupole moment) to study turbulence
spectra.

6.6 Effects of spatial and spectroscopic resolution

The effects of telescope resolution for the VCA ability to get the
spectra were considered in LP04. Naturally, the finite resolution
of telescopes introduced the uncertainty of the order of δK which
is inversely proportional to δθ that characterize the resolution of
telescopes. For the analysis of anisotropies in the present paper, the
requirement is that we study anisotropies at the separation 	δθ .
Anisotropies can be studied at large separations, even in the absence
of good spectroscopic resolution, as the slices are effectively thin
in this scale.

While the studies of velocity spectra critically depend on the
thickness of velocity slices, the velocity resolution is not so criti-
cal for studies of the media magnetization. Indeed, even with the

limited velocity resolution, it is possible to observe the anisotropy
of fluctuations within the velocity slice. This opens ways of us-
ing instruments with limited velocity resolution to study magnetic
fields.

On the other hand, in the presence of various velocity slice thick-
nesses, we have more statistical information that can be studied.
Thin velocity slices can be used to study turbulence spectra at small
separation, intermediate slices can be used for intermediate scale
and thick velocity slices can be used to study spectra at large sepa-
ration.

To study effects of finite resolution on intensity anisotropy, we
start with some of the equations presented in LP06. The intensity
measured by a telescope is

∫
dX B(X − X0)I (X, v), where B(X) is

the beam of the instrument centred at X = X0. With some analysis,
the intensity structure function is given by (LP06)

D(R0, v) ≈
∫

d2 R B2(R − R0)Wabs(R)[ds(R, v) − ds(0, v)], (60)

where Wabs(R) is the absorption window. We take Gaussian beam

B2(R − R0) = 1

πθ0
e
− |R−R0 |2

θ2
0 , (61)

where θ0 is the diagram of the instrument, relating to the resolution.
θ0 should be compared with the separation R0 between LOS at
which the correlation is measured. If θ0 	 R0, the resolution is
poor, and the correlation scale is not resolved. If θ0 
 R0, B2(R) →
δ(R − R0), and the resolution is increasingly good, and we return
to the VCA regime.

With decreasing resolution, it is expected that the anisotropy
decreases. To understand this effect, we consider the multipole ex-
pansion of the intensity structure function. Contribution to its mth
multipole moment with account for a finite resolution is

Dm(R0, v) = 1

πθ0

∫
d2 R e

− |R−R0 |2
θ2
0 d̃m(R) cos(mφ)

= 2e−R2
0/θ2

0

θ0
cos(mφ0)

∫
dR Re−R2/θ2

0 Im

(
2RR0

θ2
0

)
d̃m(R), (62)

where Im(x) is the hyperbolic Bessel function of the first kind. This
factor Im(2RR0/θ

2
0 ) acts as a suppressing factor for increasing m.

This has been shown in the left-hand panel of Fig. 13, where I2(x)
< I0(x) for all x. Therefore, we should expect quadrupole to vanish
for θ0 	 R0. The change of isotropy with changing diagram has
been illustrated in the central panel of Fig. 13. At θ0/R0 ∼ 0, we
have a finite anisotropy which corresponds to the previous VCA
results. With the increasing diagram θ0, the statistics become more
isotropic and for θ0 > R0, information on anisotropy is completely
lost. As a function of R0 (right-hand panel), we see that practically
as soon as we start measuring correlations at resolved scales R0 >

θ0, the anisotropy can be recovered.

7 STUDY ON EFFECTS O F SELF-ABSORPTIO N

In the previous sections, we studied anisotropy of channel maps in
optically thin medium. However, knowledge of absorption effects
can be important to understand the intensity statistics in various
interstellar environments, for instance in molecular clouds. The
effects of absorption in the intensity statistics were studied in LP04.
Their study suggests that power-law behaviour of intensity statistics
is distorted in the presence of absorption, and the velocity effects
are more prominent in this case.
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Extending VCA for turbulence anisotropies 1243

Figure 13. Left: hyperbolic Bessel function of the first kind. Centre: isotropy degree for varying diagram θ0 and fixed R0. Right: same for varying lag R0 and
fixed θ0.

Figure 14. From left to right: isotropy degree for Alfvén (at MA = 0.7, γ = π/2), slow (low β at MA = 0.7, γ = π/3) and fast (low β at γ = π/2) in the
presence of different degrees of absorptions.

In this section, we make use of the results of LP04 to study the
effect of absorption in the degree of isotropy (cf. equation 38). In
the presence of absorption, the intensity structure function is given
by (LP04)

D(R, φ,	v) ∝
∫ 	v

−	v

dv W̃ (v)e− α2
2 d̃s (0,v) [ds(R, v) − ds(0, v)] , (63)

where W̃ (v) is the window which defines how integration over ve-
locity is carried out, α is the absorption coefficient, and is zero in
the case when absorption effect is absent. The most important fea-
ture shown by the above equation is the presence of an exponential
factor. Due to the presence of this factor, velocity effects do not get
washed out even if we enter thick slice regime, unlike the optically
thin case when this factor was absent. Analysis presented in LP04
shows that in the case of Alfvén mode (which has a power-law
index 2/3),

ds(0, v) ∝ −v2 log v, (64)

which is valid for small argument v. With this, for Alfvén modes
equation (63) can be written as

D(R, φ) ∝
∫

dv W̃ (v)e
α2

eff
2 v2 log v [ds(R, v) − ds(0, v)] , (65)

where αeff is the effective absorption constant, which takes into
account the proportionality constant of equation (64).

To study the effects of absorption on the anisotropy of chan-
nel maps, we performed numerical evaluation for the degree of
anisotropy as a function of velocity width which results are shown
in Fig. 14. These plots show that with absorption effect included,
the intensity statistics become more isotropic. Fig. 14 shows that the
deviation of isotropy degree of optically thick case from optically
thin case occurs at a critical velocity thickness 	vc roughly given
by the relation −α2

eff (	vc)2 log(	vc) = α2ds(0, v) ∼ 1, which in
the case of αeff = 5 gives 	vc ∼ 0.1, consistent with Fig. 14. This is
the cut-off beyond which non-linear effects become important while
studying the effects of absorption (LP04). Therefore, this implies
that although absorption affects the intensity statistics, the degree of

isotropy however remains unaffected as long as we are in a regime
where absorption is moderate.

In the regime where absorption is strong, the degree of isotropy
decreases less rapidly in comparison to the case where absorption is
absent. This can be understood in the following way: with stronger
absorption effects, the thin slice statistics hold for larger range of
velocity width and therefore, the degree of isotropy tends to flatten.
This is shown by Fig. 14, where the flattening of this curve is shown
in a gradual manner as we increase the absorption coefficient for
αeff = 0 to 5.

The fact that degree of isotropy for optically thick medium is
similar to the degree of isotropy for the optically thin medium in
the case when absorption is strong has important consequences that
need to be addressed. LP04 showed that for optically thick case,
at some intermediate scale R, a new asymptotic regime is seen. In
this regime, the intensity statistics get independent of the spectrum
of the underlying velocity and density field by exhibiting a scaling
∼R. This can also be seen in Fig. 15, where at large R, the scalings
for both monopole and quadrupole terms of the intensity structure
function vary like ∼R. However, what is important is that even
though the new intermediate asymptote is established, the imprint
of anisotropy is left, which implies that some valuable information
about the underlying turbulent field is still left in this regime. In
fact, as we discussed earlier, the isotropy degree at this intermediate
regime is still around the same as the isotropy degree in the case
of thin slice. Therefore, isotropy degree can be an important tool to
analyse turbulence in optically thick medium.

We analyse the relative importance of velocity and density
anisotropy when both velocity and density effects are important.
In the absence of absorption, LP00 showed that at small scales, ve-
locity effects are important for thin channel thickness, while density
effects become important for thick channels. Naturally, we expect
anisotropy to be dominated by velocity effects for thin channels and
by density effects by thick channel. Interestingly, in the presence of
absorption, this is not true anymore. Looking at Fig. 16, we see that
in the presence of absorption, the degree of anisotropy is almost the
same for both thin and thick channels even when the density effects
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1244 D. Kandel, A. Lazarian and D. Pogosyan

Figure 15. From left to right: monopole and quadrupole as a function of R for slow modes at low β at αeff = 5 at MA = 0.4 and γ = π/3 and 	v = 1. Only
pure velocity contribution is considered.

Figure 16. Left: isotropy degree for the combination of Alfvén modes with steep density of Kolmogorov index νρ = −2/3 and cρ = −0.6 at R = 0.1, rc =
10, MA = 0.7 and γ = π/2. Right: isotropy degree for the anisotropic density field but isotropic velocity field for the same spectral index as the left figure.
LOS angle γ = π/2, but all other parameters are also the same as in the left-hand panel. In both panels, the solid curve is in the absence of absorption while
the dotted one is in the presence of absorption at αeff = 0.5.

are present. Note that we have considered a strong anisotropy cρ =
−0.6 for density, and even this anisotropy does not affect much of
the isotropy degree in the case of thick slice 	v = 1. Therefore,
what we can say is that in the presence of absorption, the anisotropy
due to velocity effects is important at small scales even for the thick
slice thickness where spectral resolution is absent.

In the case of isotropic velocity field and anisotropic density
field, our previous discussion applies again for both shallow and
steep density spectra. Due to the presence of strong absorption, the
window e−α2 d̃s (0,v)/2 in equation (63) suppresses any non-zero v and
therefore in the case of strong absorption, it effectively acts like a
delta function δ(v). This explains why even in the optically thick
regime 	v = 1, we still have the anisotropy similar to optically thin
regime.

8 PR AC T I C A L G U I D E TO TH E R E S U LTS
IN THE PAPER

The main purpose of this paper is to develop a new quantitative
way of the spectroscopic data analysis with the goal to study mean
magnetic field direction and media magnetization, as well as to pave
a way to evaluate the contributions of fundamental MHD modes
to the observed turbulence. Here we summarize usefulness of our
results in a broader picture.

One of the important issues that need to be addressed is the is-
sue of mode separation, i.e. how to separate Alfvén, fast and slow
modes. Our results partially address this issue. It has been shown
that fast modes are more isotropic than Alfvén and slow modes.
In fact, fast modes in high β are acoustic waves, and do not show
any anisotropy. On the other hand, fast modes in low β do show
some anisotropy. However, we have shown that the isocorrelation
contours of fast modes in low β are elongated towards the di-
rection orthogonal to the sky-projected magnetic field, which is

distinctly different from Alfvén and slow modes whose isocorre-
lation contours are elongated towards the direction parallel to the
sky-projected magnetic field. This provides an important way to
separate fast modes from Alfvén and slow. However, the issue of
separating slow and Alfvén modes still persists. This is challenging
for two obvious reasons: both of them share same spectral index ν

and same energy spectrum. Therefore, the mixture of slow modes
and Alfvén modes shows about the same level of anisotropy as each
of them alone. In the case of strong turbulence, the slow modes and
Alfvén modes are two ‘linear polarizations’ of transverse displace-
ment waves (LP12), which is again a testament of the similarity of
these two modes.

Another issue is deducing LOS angle γ and Alfvén Mach num-
ber MA based on observations. One would think that these observ-
ables are degenerate. This is because of the following reason: the
anisotropy is maximum at γ = π/2 and decreases consistently with
decreasing γ . On the other hand, the anisotropy decreases with in-
creasing MA. This has several consequences. As an example, if we
see small anisotropy, there are two possibilities: first due to γ ∼
0 and secondly due to large MA. However, as shown Fig. 3, for
γ � π/4, the monopole and quadrupole are not very sensitive to
γ , meaning that one can deduce MA by studying anisotropy in this
regime of γ . This implies that if one has rough information about
the range of γ , one may or may not be able to deduce MA based on
whether or not γ � π/4.

Slice thickness is an important parameter for the study of tur-
bulence. In this paper, we have explained what can be obtained
from thin and thick slice, which will be briefly summarized here. In
the case of thick velocity slices, one can obtain information about
density spectra and the level of anisotropy of the density field.
Since density fields are expected to be isotropic at high sonic Mach
numbers, this estimation might help us to deduce the sonic Mach
number of a turbulent cloud. On the other hand, velocity effects

MNRAS 461, 1227–1259 (2016)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/461/2/1227/2608401 by C
N

R
S - ISTO

 user on 10 M
ay 2022



Extending VCA for turbulence anisotropies 1245

are important in thin slice regime, whereas density effects become
important if the density spectra are shallow. In the case of steep den-
sity spectra, it was shown in Fig. 10 that although monopole term
is unaffected by density in the thin slice regime, the quadrupole
is affected at larger lags. Therefore, for a steep density spectrum,
one can obtain velocity spectra by considering small-scale asymp-
totes of the monopole term of the intensity structure function. To
properly estimate the velocity contribution in quadrupole moment,
one needs to account for the density anisotropies. If density is rel-
atively isotropic, one need not worry about density contamination
in the quadrupole moment. On the other hand, if density is highly
anisotropic, then the quadrupole moment can be substantially con-
taminated by the density effects even at thin velocity slices. To
separate this density contamination, one needs to first estimate the
level of density anisotropy (using thick slices) before carrying out
thin slice analysis.

Another important study that was carried out in this paper was
on effects of absorption on intensity statistics. In the presence of
absorption, the observed anisotropy is less than that without ab-
sorption. In fact, if the absorption is strong, the anisotropy remains
unchanged with the changing velocity slice. For an optically thick
medium, it was shown in LP04 that at some intermediate scale R,
the intensity statistics get independent of the spectrum of the un-
derlying velocity and density field. However, we have shown that
at this intermediate scale, the imprint of anisotropy still exists, and
this anisotropy is the same as the anisotropy in thin slice regime
provided that the absorption is strong. This can be valuable to study
turbulence even in the presence of strong absorption.

The interferometric studies are also a valuable way to study tur-
bulence, because it provides a good resolution even in the presence
of sparse data. Another advantage of interferometric studies is that
the anisotropies are more enhanced, and therefore easy to observe.
We have shown how this anisotropy obtained from interferometric
study can be mapped to real space.

We also carried out absorption line studies, and explained that
for sufficiently thin velocity slices, we can study anisotropies even
in the presence of atomic effects. However, in the main text, we as-
sumed extended source of absorption. In many cases, we only have
discrete sources at different lags R. In this case, to study anisotropy,
one needs to first obtain turbulent spectra using techniques like
VCS. With the information on spectra, one should then construct
correlation function between n points (which would imply n! cor-
relation pairs), after which one needs to rescale the lag to R = 1.
However, this rescaling changes the angle μ between separation
between two turbulent points and the direction of magnetic field.
With this consideration, one can then apply our analysis to study
turbulence.

8.1 Overview of the results of the paper

The original formulation of the VCA technique was done in LP00
and LP04 in order to study the spectra of velocity and density.
For this purpose, the turbulence anisotropies arising from the pres-
ence of magnetic field in the astrophysical media were disregarded.
However, more recently, the anisotropies of turbulence have at-
tracted more attention. Therefore, the anisotropies of the channel
maps first reported and discussed as a means of studying diffuse
media magnetization in Lazarian et al. (2001) became important to
quantify.

In this paper, we used the description of MHD turbulence that
is based on the decomposition of turbulent velocity motions into
Alfvén, slow and fast modes following the prescriptions in Cho &

Table 3. Some useful equations of the paper.

Parameter Equation

LOS projected velocity structure function Dz(r, φ) (7)
Density correlation function (shallow) ξρ (r, φ) (30)
Density correlation function (steep) ξρ (r, φ) (31)

General case (no absorption)
Intensity correlation function ξI(R, φ) (1)
Intensity structure function D(R, φ, 	v) (3)
Degree of isotropy (38)

Thin slice (no absorption, constant density)
Intensity structure function D(R, φ) (34)
Intensity multipole moments d̃m(R) (36)
Quadrupole-to-monopole ratio d̃2/d̃0 (43)

Very thick slice (no absorption)
Intensity structure function D(R, φ) (47)

With absorption
Intensity structure function D(R, φ, 	v) (63)

Lazarian (2003). This step is very similar to our decomposition of
turbulent magnetic field in the same component that we used in
LP12 in order to provide the quantitative description of synchrotron
intensity fluctuations. The differences between the two representa-
tions arose from the fact that while magnetic fields are subject to
the solenoidality constraint, the fast and slow velocity modes have
also a potential component.

The following are some of the important points of our paper with
references to the corresponding parts of the main text. Equations
useful for the major results are summarised in Table 3.

(i) The anisotropy in intensity statistics comes from the
anisotropy built in the tensor structure and the spectrum of different
MHD modes (see Sections 4 and 5, and equations 36–42).

(ii) Alfvén modes are highly anisotropic at small Alfvén Mach
number MA and the anisotropy decreases with increasing MA (see
equations 19 and 20 for the expression of the tensor).

(iii) Alfvén modes (and slow and fast modes as well) become
more anisotropic with increasing velocity slice 	v (see the right-
hand panels of Figs 3, 5 and 7).

(iv) The isocorrelation contours of Alfvén and slow modes are
elongated towards direction parallel to sky-projected mean magnetic
field, while for fast modes the contour is perpendicular to sky-
projected mean magnetic field (see Figs 3 and 5 and equation 38).
This effect arises from the anisotropy of the power spectrum of
underlying mode (see Section 6.1.1).

(v) In the case of mixture of fast and Alfvén modes, the overall
intensity structure function becomes more isotropic in comparison
to pure Alfvén effects (see Fig. 8). The degree of isotropy is more
or less the same for the case when there is a mixture of Alfvén and
slow modes (see Fig. 9). This result is consistent with LP12, where
magnetic field fluctuations were probed.

(vi) For steep density spectra at thin velocity slice, the contribu-
tion of density effects to the monopole is always subdominant (see
the left-hand panel of Fig. 10). However, density contribution to
the quadrupole is important if density is anisotropic, and level of
density contribution depends on the level of density anisotropy (see
the central panel of Fig. 10).

(vii) Absorption effects tend to increase isotropy degree (see
Fig. 14). At strong absorption, the thin slice approximation holds
even for thick velocity slice, and the isotropy degree does not change
much with slice thickness (see Figs 14 and 16).
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(viii) Interferometers allow studies of anisotropy in turbulent me-
dia for which the resolution of ordinary telescopes is not sufficient
(see equations 55–58).

9 EXAMPLE O F POSSIBLE DATA HANDLING

The integral expressions obtained in this paper allow us to develop
the procedures of decoupling the contributions from Alfvén, slow
and fast modes. We believe that by varying the slice thickness, the
fitting of the modes to the observational data will be done in future
(see the procedures of fitting in Chepurnov et al. 2010, 2015). Below
we just sketch the steps of the corresponding procedure.

Consider a mixture of Alfvén (60 per cent), fast (20 per cent) and
slow (20 per cent) modes with steep density spectra. What kind of
observations can be done to obtain information about the underlying
turbulence. First, if one makes observations in thick slice regime,
one can obtain information about the spectra and anisotropy level of
density field as explained in Sections 5.2 and 6.3 and equation (45).
By decreasing the slice thickness, one starts observing distortions
in the intensity statistics due to velocity effects. At thin velocity
slice, velocity effects become dominant. As was shown in Fig. 8,
the mixture of low-β fast modes does not distort the monopole
moment, as long as fast mode is marginal in the mixture. Since
slow modes have same spectral index as that of Alfvén modes, we
can still obtain spectral index of Alfvén modes even in the presence
of fast mode. However, the mixture of low-β fast modes can distort
the quadrupole anisotropy as shown in the central panel of Fig. 8.
Note that the degree of anisotropy for the combination of Alfvén
and slow is not so much affected by the composition of the mixture
as shown in Fig. 9. Therefore, observing significant distortion of
anisotropy from purely Alfvén contribution might be a strong signal
of the presence of fast modes.

1 0 D I S C U S S I O N

10.1 Foundations of the technique

This paper continues the work of quantitative study of the PPV space
that was initiated in LP00 for the case of optically thin turbulent
medium and later extended in LP04 for the absorbing media. These
advances produced the machinery for describing the PPV space that
our present study is based upon.

The next significant advancement is related to the present-
day understanding of MHD turbulence theory (see Beresnyak &
Lazarian 2015 for a review). Theoretical and numerical research
(GS95; Lithwick & Goldreich 2001; Cho & Lazarian 2002, 2003;
Kowal & Lazarian 2010) have shown that the MHD turbulence can
be viewed as a superposition of the cascades of Alfvén, slow and fast
modes. The representation of the statistical properties of these cas-
cades in the global frame of reference was obtained in LP12, where
the anisotropy analysis of synchrotron fluctuations was quantified.
We particularly stress the importance of the observational frame, as
this frame is related to the mean magnetic field, and the statistics of
fluctuations in this frame is different from the statistics in the local
magnetic field frame in which the Alfvénic turbulence is formulated
(Cho & Vishniac 2000; LV00; Maron & Goldreich 2001; Cho et al.
2002).

Additionally, in order to enhance the potency of the proposed
anisotropy analysis of spectroscopic data, we also employed the
description of the absorption spectral lines that was developed in
LV08. This allows using a wide variety of the absorption lines.

10.2 Range of applicability of VCA

To apply the VCA, one preferably should have velocity broadening
due to turbulence to exceed the thermal line broadening. This is not
the strict requirement, as the information on turbulence fluctuations
is still present in spite of the thermal broadening, but the extraction
of these fluctuations is difficult for realistic noisy observational data.
This does not mean that one has to study only supersonic turbulence
using the VCA. Indeed, while hydrogen is the most abundant atom in
the present Universe, one can use both heavier atoms and molecules
to trace turbulent motions.

Originally, the VCA technique was developed for emission lines.
However, our study in Section 6.4 makes use of the LP08 description
of absorption lines and extends the technique for the absorption line
studies. This can be the absorption from a collection of point sources
or the absorption from a spatially extended source.

Molecular clouds and diffuse ISM of the Milky Way are the natu-
ral objects for the application of the elaborated version of the VCA
that we considered in this paper. However, with the use of inter-
ferometers that we also considered in this paper, it seems possible
to study turbulence anisotropies and, thus, media magnetization for
external galaxies. It is important to note that for the interferomet-
ric studies that we have in mind, a few measurements are enough,
rather than restoring the entire PPV cube.

10.3 New power of VCA

The present study significantly extends the ability of the VCA tech-
nique by augmenting the ability of the technique to measure spec-
trum of turbulence by providing it with a way to study turbulence
magnetization and determining the magnetic field direction. It also
outlines the ways for possible separating contribution of Alfvén,
slow and fast modes. The latter is important due to the fact that
different modes have different impact for astrophysical processes.
For instance, Alfvénic modes are essential for magnetic field recon-
nection (LV99; see also Lazarian et al. 2015 and references therein),
superdiffusion of cosmic rays perpendicular to the mean magnetic
field direction (Lazarian & Yan 2014), while fast modes dominate
resonance scattering of cosmic rays (Yan & Lazarian 2002). The
potential ability of VCA to determine the relative contribution of
these different modes for spectroscopic data complements this abil-
ity for the technique in LP12 and LP16 for synchrotron data. This
has the potential of bringing observational quantitative studies of
turbulence to a new level.

10.4 Model assumptions

Our analytical studies require adopting different assumptions to
perform the analysis. The usual for this sort of studies assumption
is that the fluctuations are Gaussian. This assumption is satisfied for
an appreciable degree for the turbulent velocity field (see Monin,
Yaglom & Lumley 1975), but it is not good for density fluctuations
in high Mach number turbulence. Fortunately, the VCA is mostly
focused on studying velocity statistics and for some regimes, e.g.
steep density, the density fluctuations do not affect statistics of thin
slices. It was also shown in LP00 that the VCA formulae stay valid
for the lognormal distribution of density. Thus, we do not believe
that our Gaussianity assumptions are a serious shortcoming.

The independence of velocity and density fluctuations is an-
other assumption employed in the derivation of the basic equa-
tions of the VCA. The effect of this assumption was analysed in
LP00 where it was shown that even in the case of the maximal
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possible velocity–density cross-correlation that follows from gen-
eral Cauchy–Schwarz inequality (see Mathews & Walker 1970),
the expressions for the thin slices stay the same for the steep veloc-
ity (see more discussion in appendix D of LP00). The measures of
anisotropy are expected to be more robust compared to the spectrum.
Thus, we expect the VCA not to be affected by this assumption.

The decomposition of MHD turbulence into Alfvén, slow and fast
modes is also an approximation based on the assumption of small
coupling between these different modes. The degree of coupling
of the modes was quantified in Cho & Lazarian (2002), and it was
shown to be very moderate unless the sonic Mach number of the
media is very high. The exact spectral slope of fast modes may
change for high sonic Mach number, but this should not change
significantly the anisotropy analysis in this paper.

In terms of the turbulent media to be studied by the technique,
it is assumed that the media are isothermal. This is an excellent
assumption for molecular clouds. The effects of the variations of
temperature within atomic hydrogen were discussed in LP00, where
it was shown that the effects of the temperature variations there make
the contributions of hotter gas subdominant compared to the colder
gas. The effects of temperature variations on the turbulence studies
using absorption lines are discussed in LP08, where it is shown
that those can result in the ‘renormalization’ of density fluctuations,
while the velocity remains undistorted.

10.5 Relation to earlier studies

Studies of fluctuations of intensity within velocity slices of PPV
cubes can be traced back to works of Crovisier & Dickey (1983),
Green (1993) and Stanimirović et al. (1999). The fluctuations in the
slices were attributed to turbulence, but their relation to the under-
lying spectra of density and velocity was not clear at all; the relation
of the thickness of slice to the spectrum of the measured fluctuations
was not realized. For instance, Green (1993) erroneously attributed
the fluctuations of intensity of radiation within the velocity slices
to the density fluctuations in ISM. In fact, these fluctuations arise
mostly from velocity fluctuations (LP00). Similarly, the thickness
of slices in the above analyses was chosen arbitrarily, and therefore
the differences in the spectral indices obtained in different studies
were attributed to the differences in the underlying interstellar tur-
bulence. In fact, the differences in the measured spectra in Green
(1993) and Stanimirović et al. (1999) were arising mostly due to
the difference of the slice thickness adopted in the two studies. This
was shown on the basis of LP00 theory in a subsequent study by
Stanimirović & Lazarian (2001).

The situation changed with the development of theory of VCA
technique in LP00. This theory allowed them to solve many puzzles
existing in the field and opened ways for studying velocity and
density turbulence by observing the changes of spectral slope of
intensity fluctuations within velocity slices of PPV cubes. A number
of studies on turbulence in interstellar galactic and extragalactic H I

and CO have been successfully performed using the VCA technique
(see examples in Lazarian 2009).

The original LP00 study did not account for the effects of self-
absorption of radiation. For self-absorbing CO media, the mea-
surements were usually performed not for velocity slices, but for
total intensity arising from the turbulent volume (see Falgarone &
Puget 1995). For this way of studying, it was shown in LP04 that
a universal spectrum P(K) ∼ K−3 is expected, which corresponds
to the spectrum measured in a number of studies (see examples
in Lazarian 2009). The earlier papers were erroneously attribut-
ing the measured spectra of fluctuations to the density fluctuations

of the ISM. The washing out of the information of underlying turbu-
lence fluctuations with the increase of absorption and the emergence
of the universal predicted spectrum ∼K−3 was demonstrated numer-
ically in Burkhart et al. (2013b). LP04 suggested a way of studying
the actual turbulent spectrum by using sufficiently thin velocity
slices of PPV.12

The studies of anisotropies in velocity channels earlier on were
done only empirically. The first study in Lazarian et al. (2001)
demonstrated the potential value of velocity anisotropies of the
intensity fluctuations within velocity PPV slices as a way to study
magnetic field direction and probing media magnetization. The sub-
sequent study in Esquivel et al. (2015, hereafter ELP15) allowed
us to get an empirical relation between the degree of anisotropy
and the Alfvén Mach numbers, but some particular issues, e.g. the
decrease of the degree of anisotropy with the decrease of the slice
thickness, were puzzling. These puzzles are resolved via this study.

10.6 Significance of the analytical description

The development of the techniques to study turbulence using the
observed Doppler shifted lines which started more than 60 years ago
(von Hoerner 1951; Münch & Wheelon 1958; Wilson et al. 1959)
has been significantly impeded by the inability of the researchers
to analytically describe turbulent fluctuations in an adequate man-
ner. For instance, a traditional technique to get the information on
turbulence spectra is the use of measure of Doppler shift, termed
velocity centroids ∼∫ vzρsdvz, where the integration is carried over
the range of the velocities relevant to the object under study.13 In
the case of the optically thin media, it can be shown that the veloc-
ity centroids are also proportional to

∫
vzρds, where ρ is an actual

three-dimensional density and the integration is performed along
the LOS (see Lazarian & Esquivel 2003). However, this trick does
not work as soon as the media have absorption, the fact that was
noticed in Münch (1958). To get the proper description of a realistic
case of turbulent media with velocity centroids, one has to use the
description of ρs provided in LP00 and the radiation transfer in PPV
provided in LP04.

Velocity centroids have been used for studying turbulence
anisotropy in Esquivel & Lazarian (2005), Esquivel et al. (2007)
and in Burkhart et al. (2014). At the moment, they present the best
way of obtaining the Alfvén Mach number MA and statistically
determining the direction of the magnetic field. The value of the
technique is likely to be significantly enhanced using the descrip-
tion ρs arising from anisotropic turbulence. In particular, it should
be possible to study the effects of absorption on the anisotropy anal-
ysis. Indeed, as we show in Section 7, the anisotropy is expected
to be decreased for high optical depths, which is the effect not
considered for velocity centroids.

Similarly, as we mentioned earlier, an empirical study by ELP15
did not find an explanation for the observed change of the degree
of anisotropy with this thickness of the channel maps, while this
change naturally follows from the analytical description above.

The velocity centroids and analysis of fluctuations in channels
are the presently used techniques. However, we expect that with
the available analytical description of ρs for a realistic model of

12 The slice thickness is limited by thermal velocities of the emitting species,
however.
13 While usually the velocity centroids are normalized over the integrated
intensity over the LOS, Stenholm (1990) and Esquivel & Lazarian (2005)
showed that this normalization does not change the statistical properties of
the measure.
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anisotropic MHD turbulence, we should expect the emergence of
new tools that will benefit from the developed formalism. This
all shows that the significance of the developed description goes
beyond improving the ability of VCA to study magnetization.

10.7 Towards quantitative VCA study

The VCA in its original form suggested in LP00 and LP04 is con-
cerned with the asymptotic regimes for the thin and thick velocity
slices. This however does not use the whole information. Chepurnov
et al. (2015) have developed a numerical approach that fits the actual
gradual change of the spectral index as the thickness of the chan-
nel increases. The approach is similar to the one already used with
the VCS technique. Indeed, the original LP06 study on the VCS
provided the asymptotic behaviour of the spectra. To increase the
accuracy of getting the underlying spectra of velocity and density in
the analysis of data in Chepurnov et al. (2010, 2015), the fitting of
full expressions for the correlations of velocity along the LOS (see
Chepurnov & Lazarian 2009) was used. As a result, not only the
corresponding velocity and density spectra were determined, but
also the injection scale and thermal velocity of the turbulent gas.
This way of using the VCS made it much more powerful in terms
of the practical analysis of observational data.

The extension of the VCA quantitative treatment for describing
Alfvén, slow and fast modes that we performed in this paper opens
avenues for developing the fitting procedures that allow separation
of the contributions of the corresponding modes by changing the
thickness of the PPV velocity slice. This should also significantly
help with separating the anisotropy of velocity and density. We know
that the latter quantity is changing its anisotropy with the sonic Mach
number Ms (see Kowal et al. 2007), and for high Ms the statistics of
density gets isotropic. The density, as we know, dominates at thick
PPV velocity slices. This shows that comparing the anisotropy of
thin and thick velocity slices, one can single out the anisotropy of
velocity, which has a clear dependence on magnetization.

10.8 VCA and other technique

If one glances at the literature on the techniques to study turbu-
lence from spectroscopic data, one may come to a conclusion that
there are a lot of different techniques available. However, this is
mostly due to the fact that the use of different wavelets for the anal-
ysis of data is frequently treated as different statistical techniques
of turbulence studies (Gill & Henriksen 1990; Stutzki et al. 1998;
Bernard et al. 1999; Khalil et al. 2006). In reality, while Fourier
transforms use harmonics of eik·r , wavelets use more sophisticated
basis functions, which may be more appropriate for problems at
hand. In previous studies, wavelets have been used to analyse the
results of computations (see Kowal & Lazarian 2006) along with
or instead of Fourier transforms or correlation functions. Wavelets
may reduce the noise arising from inhomogeneity of data, but it
was found that in the situations when correlation functions of cen-
troids were failing, a popular wavelet (	 variance) was also failing
(cf. Esquivel & Lazarian 2005; Ossenkopf et al. 2006; Esquivel
et al. 2007). While in wavelets the basis functions are fixed, a more
sophisticated technique, PCA, chooses basis functions that are, in
some sense, the most descriptive. Nevertheless, the empirical rela-
tions obtained with PCA for extracting velocity statistics provide,
according to Padoan et al. (2006), an uncertainty of the velocity
spectral index of the order of 0.5 (see also Brunt et al. 2003), which
is too large for testing most of the turbulence theories.

We have discussed two techniques of studying magnetization and
the direction of magnetic field from the analysis of spectral line in-

formation, namely the one employing VCA and the other employing
velocity centroids. The latter can be improved and modified on the
basis of the present study. There is, however, another technique for
similar studies that does not look easy to reformulate in view of
the available description of the PPV. It is an empirical technique of
anisotropy analysis based on the PCA (see Brunt & Heyer 2002).

Unlike the VCA and the velocity centroids that provide a sim-
ple description of turbulence through PPV space, the actions of
PCA over PPV data are not easy to quantify. Some current work
(Correia et al. 2016) show advantages of the analysis of the
anisotropy based on the velocity centroids over the PCA technique,
and these advantages will only increase as the description of the
PPV space gets available. However, an interesting property of PCA
technique is that it seems to be sensitive to the phase information
(Correia et al. 2016). The utility of this phase information should
be revealed by the further research.

The spectral correlation function (SCF; Rosolowsky et al. 1999)
is another way to study turbulence using velocity slices of PPV
space. Padoan, Rosolowsky & Goodman (2001) removed the ad-
justable parameters from the original expression for the SCF which
made the technique similar to VCA in terms of the observational
data analysis. Indeed, both SCF and VCA measure correlations of
intensity in velocity slices of PPV, but if SCF treats the outcome em-
pirically, the analytical relations in LP00 relate the VCA measures
to the underlying velocity and density statistics.14

VCA relates the spectral index of intensity fluctuations within
channel maps to the thickness of the velocity slice and to the un-
derlying velocity and density in the emitting turbulent volume. We
believe that the thick and thin slice regimes should also be present
in the SCF analysis of data, although they have not been reported.
We believe that the VCA can be used for all the purposes the SCF
is used for (e.g. for an empirical comparison of simulations and ob-
servations), although the opposite is not true. In fact, Padoan et al.
(2004) stressed that VCA eliminates errors inevitable for empirical
attempts to calibrate PPV fluctuations in terms of the underlying
3D velocity spectrum. The present study extends the advantages
of the VCA technique providing the analytical description of the
anisotropy fluctuations and their variations with the thickness of the
velocity slice.

There also exist numerous techniques identifying and analysing
clumps and shells in PPV (see Stutzki & Guesten 1990;
Houlahan & Scalo 1992; Williams, De Geus & Blitz 1994; Pineda
et al. 2006; Ikeda, Sunada & Kitamura 2007). They, however, iden-
tify an extended hierarchy of cores/shells arising from velocity
crowding even in the synthetic observations obtained using incom-
pressible simulations with no density clumps whatsoever. A more
advanced technique to study a hierarchical structure of the PPV,
namely dendrogram technique (Goodman et al. 2009), can provide
a complementary insight to the values of sonic and Alfvén Mach
numbers Ms and MA (Burkhart et al. 2013a).

10.9 Spectroscopic and synchrotron studies
of magnetic turbulence

For synchrotron polarization studies, the analogue of PPV cube is
the position–position–frequency (PPF) cube. In LP16, a number

14 Mathematically, SCF contains additional square roots and normalizations
compared to the VCA expressions. Those make the analytical treatment,
which is possible for simpler VCA expressions, prohibitive. One might spec-
ulate that, similar to the case of conventional centroids and unnormalized
centroids introduced in Lazarian & Esquivel (2003), the actual difference
between the statistics measured by the VCA and SCF is not significant.
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of techniques were suggested aimed at obtaining the information
about magnetic field and the density of cosmic electrons using these
cubes. In terms of anisotropy studies, it was suggested there to make
use of the analysis of synchrotron intensity fluctuations in order to
determine the same parameters that we are focused in this study,
namely the mean magnetic field direction, the degree of magneti-
zation of the media and the contribution of Alfvén, slow and fast
modes. This suggests that studies of turbulence using synchrotron
and spectroscopic data can be very much complementary. Indeed,
for the understanding of dynamics of the ISM as well as for pro-
cesses of the transport of heat and cosmic rays, it is essential to
understand the properties of turbulent cascade in different inter-
stellar phases. Synchrotron emission samples turbulence mostly in
the diffuse hot and warm media (see Draine 2010 for the table of
the interstellar phases), while the turbulence in H I and molecular
gas is well sampled via spectroscopic measurements.15 The cor-
respondence of the properties of magnetic turbulence in different
interstellar phases would testify about the single turbulent cascade
on the galactic scale, which can be a discovery with important con-
sequences for different branches of astrophysical research, e.g. for
cosmic ray physics (see Schlickeiser 2002).

While the properties of turbulent fluctuations of magnetic field
and velocity are closely related, there are differences. In particular,
magnetic field is solenoidal, while velocity in MHD turbulence can
have a potential component. Therefore, the treatments of anisotropy
of magnetic turbulence and velocity turbulence in this work and in
LP12 are similar, but not completely identical. Potentially, the VCA
technique provides way to study compressible motions in a more
adequate way.

The generalization of the anisotropy study from pure synchrotron
intensity in LP12 to synchrotron polarization in LP15 opened up
ways to study anisotropies of MHD statistics in the PPF space.
It is also interesting to compare the statistics of the PPV and the
PPF. The PPV statistics is homogeneous along the v-axis, while
the one of PPF is inhomogeneous. As a result, due to the effect of
Faraday depolarization, for different frequencies one can sample
turbulence at different distances from the observer, which allows
study of the spatial distribution of turbulence. Such an effect is not
present for the PPV studies. However, the homogeneity of the PPV
in the v-direction allows one to better separate the contribution of
the Alfvén, fast and slow modes by varying the slice thickness.
Therefore, the statistical information in PPV is complimentary to
the statistics that can be obtained from PPF.

10.10 Synergy with other techniques

Alfvén Mach number MA can be estimated on the basis of other
techniques. For instance, the measures of Tsallis statistics (see
Esquivel & Lazarian 2010; Tofflemire et al. 2011), kurtosis and
skewness (Burkhart et al. 2009a,b) also show sensitivity on MA as
well as on the sonic Mach number Ms. Therefore, combining the
VCA technique with other techniques can provide a more reliable
determination of both MA and Ms. Note that different techniques
have their own limitations and uncertainties. Therefore, a combina-
tion of different techniques can significantly help.

One of the parameters that influence the VCA is the density
statistics which includes both its spectrum and anisotropy. This
statistics can be obtained through the analysis of different data sets,
e.g. dust emission or absorption. This should increase the accuracy
of the VCA in determining the statistics of velocity.

15 Future X-ray spectroscopy should provide a way to study hot plasma
turbulence using spectroscopic techniques as well.

Combining the present technique with the synchrotron studies
for independently obtaining the magnetization and decomposition
of turbulence into the fundamental MHD modes is very advanta-
geous. The intriguing opportunity of obtaining the angle between
the mean magnetic field and the LOS on the basis of synchrotron
polarization data that were discussed in LP16 allows one to remove
the degeneracy between this angle and the Mach number that exists
otherwise.

1 1 S U M M A RY

In this paper, we have extended the VCA technique based on the
analysis of fluctuation statistics in the velocity slices of the PPV
space (i.e. velocity channel maps). Unlike our earlier study in
LP00 and LP04, we accounted for the anisotropy of turbulence
and provided expressions for the anisotropies in the velocity chan-
nel maps that arise from Alfvén, slow and fast modes of MHD
turbulence. We calculated how these anisotropies change with the
thickness of the velocity channel maps and compared our results
with the numerical study in ELP15. In addition, we have studied
the effects of absorption on the measured anisotropies and dis-
cussed the use of absorption spectral lines for studying turbulence
anisotropy.

Our study main results are as follows.

(i) Analytical expressions for the degree of anisotropy of in-
tensity fluctuations in slices of PPV space were obtained, and the
variations of the degree of anisotropy as a function of the slice thick-
ness were explored and successfully compared with the available
numerical data.

(ii) The procedures of separating contributions to anisotropy aris-
ing from density fluctuations and velocity fluctuations were studied,
and the technique of establishing the anisotropies of density and ve-
locity underlying turbulent field was formulated.

(iii) The separation of the contributions from Alfvén, slow and
fast modes was investigated for the thin slice regime, and the ra-
tio of the anisotropic to isotropic part of the slice intensity fluc-
tuations was identified as a measure for fluid magnetization and
compressibility.
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APPENDIX A : TURBULENCE STATISTICS
IN PPV SPAC E

Below we present the main expressions of the theory that we are
going to use within our study.

The transformation between real space and PPV space is of the
form (X, z) → (X, v), where v is the LOS velocity of the gas
element. The PPV density ρs(X, v) is dependent on both density of
the gas in the real space and its velocity, and is written as (LP04)

ρs(X, v) =
∫ S

0
dzρ(x)�v(v, x), (A1)

where S is spatial extent of the turbulent cloud and �v is the Maxwell
distribution of the thermal component of the turbulent particles

Table A1. List of special mathematical functions used in this paper.

Function Symbol

Spherical Bessel function jn(x)
Bessel function of the first kind Jn(x)
Hyperbolic Bessel function of the first kind In(x)
Spherical harmonics Ym

� (x)
Associated Legendre polynomial P m

� (x)
Legendre polynomial P�(x)

Wigner 3-j symbols

(
� �1 �2

m m1 m2

)
Gamma function �[n]
Gauss hypergeometric function 2F1[a, b; c; z]
Step function �[x]

defined by

�v(v, x) = 1√
2πβT

exp

[
− (v − u(x))2

2βT

]
, (A2)

where u(x) is the non-thermal velocity of a particle at position
x which consists of the contribution of turbulent velocity as co-
herent velocity with the gas cloud. If the gas is isolated, and co-
herent motions are negligible, as we adopt in this paper, u is the
LOS component of the turbulent motion and βT is the temperature
parameter.

Intensity of radiation in an optically thin line is proportional
to the ‘density of emitters’ of PPV space. This density is the re-
sult of the velocity mapping of emitters from XYZ to XYV space
and is, in general, significantly different from the real space den-
sity. To describe statistical properties of PPV density, we use the
correlation

ξs(R, φ, v1, v2) ≡ 〈ρs(X1, v1)ρs(X2, v2)〉, (A3)

or structure

ds(R, φ, v1, v2) = 〈(ρs(X1, v1) − ρs(X2, v2))2
〉
, (A4)

functions, where, in contrast to LP00 we take into account the
dependence of the correlations on the angle φ of the separation
vector R = X1 − X2 between the two LOS.

The averaging is performed over realizations of two random fields
– turbulent velocity u and real space density ρ of the emitters.
Statistical properties of these quantities reflect the properties of the
magnetized turbulent processes.

The turbulent velocity field is assumed to be described by the
Gaussian two-point probability distribution function (LP00)

P (u1, u2) = 1

π
√

2Dz(∞) − Dz(r)
√

Dz(r)
exp

[
− u2

2Dz(r)

]

× exp

[
− u2

+
Dz(∞) − Dz(r)/2

]
, (A5)

where u1 = uz(r1), . . . and u = u1 − u2, u+ = (u1 + u2)/2.
No assumptions about Gaussianity of the density inhomo-

geneities of the sources are made. We introduce density cor-
relation function ξ (r) ≡ 〈ρ(x1)ρ(x2)〉 whose properties are to
be determined or modelled. Splitting the density into the mean
value and fluctuations, ρ = 〈ρ〉 + δρ, we have ξ (r) = 〈ρ〉2 +
〈δρ(x1)δρ(x2)〉 = 〈ρ〉2 + ξ̃ (r). For specific calculations, we con-
sider two distinct cases. If density perturbations have a shallow
power spectrum, 〈δρ2

k 〉 ∝ k−3+νρ , νρ > 0, the correlation function
is modelled as

ξ (r) = 〈ρ〉2 + 〈δρ2〉 r
νρ
c

r
νρ
c + rνρ

≈〈ρ〉2 + 〈δρ2〉 (rc/r)νρ , r > rc (A6)

while if the power spectrum is steep, νρ < 0, the density correlation
function is

ξ (r) = 〈ρ〉2 + 〈δρ2〉 r
−νρ
c

r
−νρ
c + r−νρ

≈ 〈ρ〉2

+ 〈δρ2〉 − 〈δρ2〉 (r/rc)−νρ , (A7)

for r < rc. The difference between the two cases is that for shallow
density, the scaling range lies at separations exceeding the corre-
lation length, r > rc, with rc associated with short-scale damping,
while for steep density it lies at separations shorter than the correla-
tion length, r < rc, which is now associated with the largest energy
injection scale. Equation (A7) shows that for the steep spectrum,

MNRAS 461, 1227–1259 (2016)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/461/2/1227/2608401 by C
N

R
S - ISTO

 user on 10 M
ay 2022

http://arxiv.org/abs/1506.05585


1252 D. Kandel, A. Lazarian and D. Pogosyan

scale-dependent part of the correlation function is always subdom-
inant to the constant 〈ρ〉2 + 〈δρ2〉 = 〈ρ2〉.

Using equations (A1) and (A5), it can be shown that (see LP04)

ξs(r, v1, v2) ≈ S√
Dz(∞) + βT

exp

[
− v2

+
Dz(∞) + βT

]

×
∫ S

−S

dz

(
1 − |z|

S

) 〈ρ〉2 + ξ̃ (r)√
Dz(r) + 2βT

× exp

[
− v2

2(Dz(r) + 2βT)

]
, (A8)

under the assumption that density fluctuations are uncorrelated with
the turbulent velocities. The arguments can be found in LP00, but
importantly this assumption has been checked in numerical MHD
simulations (Esquivel et al. 2003) and has been found to hold with
sufficient accuracy.

The first exponential term reflects the amplitude of correlation
depending on the value of the central velocity v+ relative to the
variance of the turbulent velocities D(∞)/2. The LOS integral term
reflects the statistics of the turbulence at different separation scales
R and velocity differences v.

Since density correlation function has a constant term, there are
non-trivial correlations in PPV cube even for uniform density of
emitters. They arise from different velocities of the emitters. Thus,
in our discussion we split the PPV correlations into velocity and
density contributions

ξ̃s(R, φ, v) = ξ̃v(R, φ, v) + ξ̃ρ(R, φ, v), (A9)

where

ξ̃v(R, φ, v) ∝
∫ S

−S

dz
ρ̄2(r)√
Dz(r)

exp

[
− v2

2Dz(r)

]
, (A10)

and

ξ̃ρ(R, φ, v) ∝
∫ S

−S

dz
ξ̃ (r)√
Dz(r)

exp

[
− v2

2Dz(r)

]
. (A11)

In these expressions, we have omitted for brevity the thermal effects
and the finite cloud size effects. We should stress that although
density correlation contribution is zero when the gas density is
uniform, it depends on both density and velocity fluctuations when
gas distribution is inhomogeneous.

This theory for PPV correlations allows for angular dependence
of the correlation functions ξ and Dz. Consequently, after the in-
tegration over z, the anisotropic dependence on polar angle φ is
still allowed. This allows us, in what follows, to use whole ma-
chinery developed in our earlier works to deal with the anisotropic
turbulence.

Let us turn to the quantity that can be measured in the observa-
tions. The measured intensity of radiation in a velocity channel of
width 	v, centred at velocity vi, is given by the integral

I (R, vi) = ε

∫ vi+	v/2

vi−	v/2
dv1ρs(R, v1). (A12)

With this, it can be shown that the intensity correlation function is
(LP04)

ξI(R, 	v) ∝ ε2ρ̄2

2π

∫ S

−S

dz
1 + ξ̃s(r)

D
1/2
z (r)

×
∫ ∞

−∞
dv Wi(v, 	v, βT) exp

[
− v2

2Dz(r)

]
, (A13)

where Wi(v, 	v, β) is a composite window of channel i. Its proper-
ties are such that for zero temperature βT = 0 its width is bounded
by 	v, but for high temperature βT > 	v2 it is given by the thermal
width βT. Thus, thermal broadening sets the minimal effective chan-
nel width. In LP00, we have shown the importance of distinction
between thin and thick channels. The criterion is set by compari-
son of characteristic velocity difference at the scale of separation
between the LOS,

√
D(R) and the channel width 	v. In thin chan-

nels, such difference is resolved 	v <
√

Dz(R), while in thick it
is not, 	v >

√
Dz(R). Thus, in a thin channel, velocity differences

along the LOS within the channel can be neglected, v = 0 leaving
intensity correlations to be sensitive both to density and velocity
differences between the LOS,

ξI(R,	v) ∝ ε2ρ̄2

2π

∫ S

−S

dz
1 + ξ̃s(r)

D
1/2
z (r)

. (A14)

In contrast, in thick channels, velocities are integrated over, leaving
only density inhomogeneities as the source of intensity fluctuations

ξI(R,	v) ∝ ε2ρ̄2

2π

∫ S

−S

dz
[
1 + ξ̃s(r)

]
. (A15)

We note that thick slicing can be obtained synthetically, by adding
intensities (before computing the correlations) for adjacent thinner
channels. Our ability to have thin velocity channels is limited by
the instrument spectral resolution and the thermal broadening.

APPENDI X B: G ENERAL APPROACH TO FIND
V E L O C I T Y C O R R E L AT I O N I N R E A L S PAC E

The velocity correlation tensor in the axisymmetric case in Fourier
space is

〈vi(k)v∗
j (k′)〉 = A(k, k̂ · λ̂)

(
ξ̂k ⊗ ξ̂ ∗

k

)
ij

, (B1)

where A(k, k̂ · λ̂) is the power spectrum and
(
ξ̂k ⊗ ξ̂ ∗

k

)
ij

is a λ̂-
dependent tensor build from the displacement direction character-
istic for the given mode. Correspondingly, in real space the velocity
correlation function can be written as

〈vi(x1)vj (x1 + r)〉
=
∫

dk k2 d�k eik·rA(k, k̂ · λ̂)
(
ξ̂k ⊗ ξ̂ ∗

k

)
ij

. (B2)

The power spectrum can be represented in terms of spherical
harmonics as

A(k, k̂ · λ̂) =
∑
�1m1

4π

2�1 + 1
A�1 (k)Y�1m1 (k̂)Y ∗

�1m1
(λ̂), (B3)

and similarly(
ξ̂k ⊗ ξ̂ ∗

k

)
ij

=
∑
�2m2

c
ij
�2m2

(λ̂)Y�2m2 (k̂), (B4)

Using well-known representation for the plane wave

eik.r = 4π
∑
�m

i�j�(kr)Y�m(k̂)Y ∗
�m(r̂), (B5)

we obtain

〈vivj 〉 =
∑
�m

4πi�Y ∗
�m(r̂)

∑
�1m1

4π

2�1 + 1
Y ∗

�1m1
(λ̂)
∑
�2m2

c
ij
�2m2

(λ̂)

×
∫

dk k2 d�k j�(kr)A�1 (k)Y�m(k̂)Y�1m1 (k̂)Y�2m2 (k̂). (B6)
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Defining

T��1 (r) =
∫

dk k2j�(kr)A�1 (k) (B7)

and the symbol � that can be represented in terms of Wigner 3-j
symbols

��m,�1m1,�2m2 =
∫

d�kY�m(θk, φk)Y�1m1 (θk, φk)Y�2m2 (θk, φk) (B8)

��m,�1m1,�2m2 =
√

(2� + 1)(2�1 + 1)(2�2 + 1)

4π

(
� �1 �2

0 0 0

)

(
� �1 �2

m m1 m2

)
(B9)

we arrive at a suitable-for-further-analysis form for the correlation
tensor

〈vivj 〉 =
∑
�m

4πi�Y ∗
�m(r̂)

∑
�1m1

4π

2�1 + 1
Y ∗

�1m1
(λ̂)

×
∑
�2m2

c
ij
�2m2

(λ̂)T��1 (r)��m,�1m1,�2m2 . (B10)

For this expression, we will derive Aξ , Bξ , Cξ and Dξ (cf.
equation 4). We develop the following procedure to find these co-
efficients. Using the fact that Aξ , Bξ , Cξ and Dξ are invariant under
rotation of coordinate frame, as these coefficients depend only on
μ ≡ r̂ · λ̂, we shall work in λ̂ = ẑ frame. In this frame, equation
(B10) is simplified to

〈vivj 〉 =
∑
�m

4πi�(−1)mY�m(r̂)
∑
�1

√
4π

2�1 + 1

∑
�2

c
ij
�2m( ẑ)

×T��1 (r)��(−m),�10,�2m, (B11)

where we have used the fact that Wigner 3-j symbols vanish for m
+ m1 + m2 �= 0 and the relation Y ∗

�(−m)(r̂) = (−1)mY�m(r̂). We also

note that c
ij
�2m( ẑ) are non-zero only for |m| ≤ 2 (since they are the

multipole expansion of a direct square of a vector, we shall see this
in explicit calculations further on). For an isotropic power spectrum,
only �1 = 0 survives and therefore equation (B11) becomes〈
vivj

〉 =
∑
�m

4πi�Y�m(r̂)cij
�m( ẑ)T�0(r). (B12)

As the first step of calculations, we take 〈v1v2〉 which
in λ̂ = ẑ frame has simple form 〈v1v2〉 = A(r, cos θ )r̂1 r̂2 =
A(r, cos θ ) sin2 θ cos φ sin φ, and use this to find A(r, cos θ ). Since
the expression obtained for A should be valid in all frames, we re-
place cos θ → μ to arrive at the frame-independent A(r, μ). Next,
we take 〈v1v1〉 = Ar̂1 r̂1 + B, and repeat the procedure selecting
factor A as what is proportional to sin 2 θ cos 2 φ, with the remain-
der being B. After that, we take 〈v1v2〉 = Ar̂1 r̂3 + D r̂1 and re-
peat the procedure by factoring out sin θ cos θ cos φ component and
looking for the remainder, which is D sin θ cos φ. Finally, we take
〈v3v3〉 = Ar̂3 r̂3 + B + C + 2D r̂3 and use the previously found co-
efficients A, B and D to obtain C. This technique is applied in the
subsequent sections. Applicable mathematical notations are sum-
marise in Table A1.

A P P E N D I X C : V E L O C I T Y C O R R E L AT I O N
T E N S O R FO R D I F F E R E N T
T U R BU L E N T MO D E S

With the technique developed in Appendix B, it is straightforward
exercise to obtain the coefficients A, B, C and D of the velocity

Table C1. Mode structure of Alfvén modes for λ̂ = ẑ.

c
ij
�m Equation (for even �)

c11
�m

√
πδ�0δm0 − �(� − 2)

√
π(2�+1)(�−2)!

(�+2)! (δm2 + δm,−2)

c22
�m

√
πδ�0δm0 + �(� − 2)

√
π(2�+1)(�−2)!

(�+2)! (δm2 + δm,−2)

c12
�m �(� − 2)i

√
π(2�+1)(�−2)!

(�+2)! (δm2 − δm,−2)

ci3
�m 0, i ∈ (1, 2, 3)

correlation function provided that we have information about the
tensor structure of a turbulent mode. In this section, we will apply the
technique developed in the previous section to find these coefficients
for Alfvén mode, fast mode, slow mode and strong turbulence.
During our calculation, we use the knowledge about anisotropy of
power spectrum of each particular mode. The power spectrum of
Alfvén mode, slow mode and strong turbulence is anisotropic, while
that of fast mode is isotropic (Cho & Lazarian 2003), and this fact
will be used in our subsequent calculations.

C1 Alfvén mode

The tensor structure for Alfvén mode is(
ξ̂k ⊗ ξ̂ ∗

k

)
ij

= (δij − k̂i k̂j )

− (k̂ · λ̂)2k̂i k̂j − (k̂ · λ̂)
(
λ̂i k̂j + λ̂j k̂i

) + λ̂i λ̂j

1 − (k̂ · λ̂)2
.

(C1)

LP12 labelled the first term of the above tensor structure as E-type,
and the second term as F-type. Therefore, the correlation tensor is
E − F type.16

The coefficients c
ij
�m which we shall use for the derivation of

coefficients A, B, C and D are presented in Table C1 for λ̂ = ẑ. It is
important to note that c

ij
�m is zero when � is odd.

As a first step of our calculations, we compute

〈v1v2〉 = 4π
∑
��1�2

il
√

π(2� + 1)(2�2 + 1)

√
(�2 − 2)!

(�2 + 2)!
T��1 (i)

×
(

� �1 �2

0 0 0

)(
� �1 �2

−2 0 2

) (
Y 2

� (r̂) − Y−2
� (r̂)

)
.

(C2)

To separate r1r2 = sin 2θcos φ sin φ factor, we use the following
identities of the spherical harmonics

Y 2
� (r̂) − Y−2

� (r̂) = 4i

√
(2� + 1)(� − 2)!

4π(� + 2)!

P 2
� (cos θ )

sin2 θ

× sin2 θ cos φ sin φ, (C3)

and

P 2
� (cos θ )

sin2 θ
= ∂2P�(cos θ )

∂(cos θ )2
, (C4)

16 LP12 obtained correlation of magnetic field, while here we are talking
about correlation of velocity field. In the case of Alfvén mode, these cor-
relations are the same, but this is in general not the case. This is because
magnetic fields are solenoidal, while velocity fields can be potential as well.
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thus finding

A = −8π
∑
��1�2

il(2� + 1)(2�2 + 1)

√
(� − 2)!(�2 − 2)!

(� + 2)!(�2 + 2)!
T��1

×
⎛
⎝ � �1 �2

0 0 0

⎞
⎠( � �1 �2

−2 0 2

)
∂2P�(μ)

∂μ2
, (C5)

after generalization to an arbitrary frame by replacing cos θ → μ.
Next step of calculation involves finding B, and for that we take

〈v1v1〉 = 4π
∑
��1

il
√

(2� + 1)
√

π

⎛
⎝ � �1 0

0 0 0

⎞
⎠( � �1 0

0 0 0

)

×T��1Y
0
� (r̂) − 4π

∑
��1�2

il
√

π(2� + 1)(2�2 + 1)

√
(�2 − 2)!

(�2 + 2)!

×
(

� �1 �2

0 0 0

)(
� �1 �2

−2 0 2

)
T��1

(
Y 2

� (r̂) + Y−2
� (r̂)

)
. (C6)

The above expression can be simplified by considering the following
identities of spherical harmonics

Y 2
� (r̂) + Y−2

� (r̂) = 2

√
(2� + 1)(� − 2)!

4π(� + 2)!

×P 2
� (cos θ )(2 cos2 φ − 1), (C7)

and

Y 0
� (r̂) =

√
2l + 1

4π
P�(cos θ ). (C8)

The second term in equation (C6) contains contribution from A term
that is proportional to cos 2φ. Taking that into account, we have

B = 2π
∑
�=0,2

i�T��P�(μ) + 4π
∑
��1�2

il(2� + 1)(2�2 + 1)

×
√

(� − 2)!(�2 − 2)!

(� + 2)!(�2 + 2)!

(
� �1 �2

0 0 0

)(
� �1 �2

−2 0 2

)
T��1P

2
� (μ).

(C9)

To find D, we note that 〈v1v3〉 = 0, and therefore, in our choice of
frame D = −Acos θ . Therefore, in general

D = 8π
∑
��1�2

il(2� + 1)(2�2 + 1)

√
(� − 2)!(�2 − 2)!

(� + 2)!(�2 + 2)!

×
(

� �1 �2

0 0 0

)(
� �1 �2

−2 0 2

)
T��1μ

∂2P�(μ)

∂μ2
. (C10)

Similarly, we note that 〈v3v3〉 = 0, and therefore, C = −Acos 2θ −
B − 2Dcos θ = Acos 2θ − B which gives

C = −2π
∑
�=0,2

i�T��P�(μ) − 4π
∑
��1�2

il(2� + 1)(2�2 + 1)

×
√

(� − 2)!(�2 − 2)!

(� + 2)!(�2 + 2)!

(
� �1 �2

0 0 0

)(
� �1 �2

−2 0 2

)

×T��1

(
2μ2 ∂2P�(μ)

∂μ2
+ P 2

� (μ)

)
. (C11)

Table C2. Mode structure of fast modes in low β for λ̂ = ẑ.

c
ij
�m Equation (for even �)

c11
�m

√
πδ�0δm0 + �(� − 2)

√
π(2�+1)(�−2)!

(�+2)! (δm2 + δm,−2)

c22
�m

√
πδ�0δm0 − �(� − 2)

√
π(2�+1)(�−2)!

(�+2)! (δm2 + δm,−2)

c12
�m −i�(� − 2)

√
π(2�+1)(�−2)!

(�+2)! (δm2 − δm,−2)

ci3
�m 0, i ∈ (1, 2, 3)

C2 Fast modes high β

Fast modes in high-β regime are purely compressional type of
modes, and their tensor structure is(
ξ̂k ⊗ ξ̂ ∗

k

)
ij

= k̂i k̂j . (C12)

The power spectrum of this mode is isotropic, and therefore we
utilize equation (B12) for our calculations. Our first step involves
computation of

〈v1v2〉 = 4πi2(−i)

√
2π

15
T20(r)

(
Y 2

2 (r̂) − Y−2
2 (r̂)

)
, (C13)

which yields an isotropic form for A,

A = −4πT20. (C14)

The next step is to compute

〈v1v1〉 = 4π
2
√

π

3
T00Y

0
0 (r̂) + 4πT20

2

3

√
π

5
Y 0

2 (r̂)

+ 4πi2

√
2π

15
T20(r)

(
Y 2

2 (r̂) + Y−2
2 (r̂)

)
, (C15)

which after subtracting Asin 2θcos 2φ contribution gives

B = 4π

3
T00(r) + 4π

3
T20(r). (C16)

It is easy to check that C = D = 0 for this mode. This is expected
because both tensor structure and power spectrum are isotropic.

C3 Fast modes low β

For fast modes in low-β regime, the tensor structure of velocity field
in Fourier space is

(
ξ̂k ⊗ ξ̂ ∗

k

)
ij

= k̂i k̂j − (k̂ · λ̂)(k̂i λ̂j + k̂j λ̂i) + (k̂ · λ̂)2λ̂i λ̂j

1 − (k̂ · λ̂)2
. (C17)

The power spectrum of this mode is isotropic. To find the co-
efficients A, B, C and D, our starting point is to utilize the table
presented above. Noting the similarity of Table C2 with Table C1,
it is easy to derive these coefficients just by considering the pre-
vious results. Similar to the previous section, the velocity has no
component along the symmetry axis, so that D = −Aμ, and C =
Aμ2 − B. Due to the fact that the power spectrum is isotropic in
this case, the results heavily simplify, and we have the final result
for the correlation coefficients as

A = 8π
∑

�

il(2� + 1)
(� − 2)!

(� + 2)!
T�0

∂2P�(μ)

∂μ2
(C18)
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Extending VCA for turbulence anisotropies 1255

Table C3. Mode structure of slow modes in high β for λ̂ = ẑ.

c
ij
�m Equation (for even �)

c11
�m

√
π

3 δ�0δm0 + 2
3

√
π
5 δ�2δm0 +

(
1
2

√
π
30 δ�2 + �(� − 4)

√
π(2�2+1)(�2−2)!

(�2+2)!

)
(δm2 + δm,−2)

c22
�m

√
π

3 δ�0δm0 + 2
3

√
π
5 δ�2δm0 −

(
1
2

√
π
30 δ�2 + �(� − 4)

√
π(2�2+1)(�2−2)!

(�2+2)!

)
(δm2 + δm,−2)

c33
�m

4
√

π
3

(
δ�0 − 1√

5
δ�2

)
δm0

c12
�m −i

(
1
2

√
π
30 δ�2 + �(� − 4)

√
π(2�+1)(�−2)!

(�+2)!

)
(δm2 − δm,−2)

c13
�m

√
2π
15 δ�2(δm1 − δm,−1)

c23
�m −i

√
2π
15 δ�2(δm1 + δm,−1)

B = 2πT00 + 4π

∞∑
n=2,2

in(2n + 1)
n!

(n + 2)!
Tn0Pn(μ)

− 8π
∑
n=0,2

(2n + 1)Pn(μ)
∞∑

l=n+2,2

il(2� + 1)
(� − 2)!

(� + 2)!
T�0 (C19)

C = −2πT00 + 4π
∑

�

il(2� + 1)
(� − 2)!

(� + 2)!
T�0

⎛
⎝P 2

� (μ)

+2μ2 ∂2P�(μ)

∂μ2

⎞
⎠ (C20)

D = −8π
∑

�

il(2� + 1)
(� − 2)!

(� + 2)!
T�0μ

∂2P�(μ)

∂μ2
. (C21)

C4 Slow modes high β

The velocity correlation tensor in Fourier space for slow modes in
high β is

(
ξ̂k ⊗ ξ̂ ∗

k

)
ij

=
(

(k̂ · λ̂)2k̂i k̂j + λ̂i λ̂j − (k̂ · λ̂)(k̂i λ̂j + k̂j λ̂i)

1 − (k̂ · λ̂)2

)
.

(C22)

This was identified to be F-type in LP12. Besides the tensor struc-
ture, the power spectrum of slow modes is also anisotropic, and is
the same as for Alfvén mode.

All the coefficients c
ij
�m relevant for our calculations for this mode

are summarised in Table C3. The first step as usual is to compute
the following element

〈v1v2〉 = 4π
∑
��1

il
√

π(2� + 1)

⎛
⎝√ 1

24

×
(

� �1 2

0 0 0

)(
� �1 2

−2 0 2

)
+

∞∑
�2=4,2

(2�2 + 1)

√
(�2 − 2)!

(�2 + 2)!

×
(

� �1 �2

0 0 0

)(
� �1 �2

−2 0 2

)⎞⎠
×T��1 (−i)

(
Y 2

� (r̂) − Y−2
� (r̂)

)
. (C23)

Using the relations for spherical harmonics [equations (C3) and
(C4)], we arrive at the general form

A = 8π
∑
��1

il(2� + 1)

√
(� − 2)!

(� + 2)!

⎛
⎝√ 1

24

×
(

� �1 2

0 0 0

)(
� �1 2

−2 0 2

)
+

∞∑
�2=4,2

(2�2 + 1)

√
(�2 − 2)!

(�2 + 2)!

×
(

� �1 �2

0 0 0

)(
� �1 �2

−2 0 2

)⎞⎠

×T��1

∂2P�(μ)

∂μ2
. (C24)

As a next step, we compute

〈v1v1〉 = 4π
∑
��1

i�
√

(2� + 1)

⎛
⎝√

π

3

(
� �1 0

0 0 0

)2

+2

3

√
π

(
� �1 2

0 0 0

)2
⎞
⎠T��1Y

0
� (r̂) + 4π

∑
��1

il
√

π(2� + 1)

×
⎛
⎝√ 1

24

(
� �1 2

0 0 0

)(
� �1 2

−2 0 2

)
+

∞∑
�2=4,2

(2�2 + 1)

×
√

(�2 − 2)!

(�2 + 2)!

(
� �1 �2

0 0 0

)(
� �1 �2

−2 0 2

)⎞⎠
×T��1

(
Y 2

� (r̂) + Y−2
� (r̂)

)
. (C25)

Upon using the identities for spherical harmonics (equation C7), it
is easy to see that the second term in the above equation partially
contains A contribution. Therefore, after some manipulations, we
obtain an expression for B valid in a general frame:

B = 2π

3

∑
�=0,2

i�T��P�(μ) + 4π

3

∑
��1

i�(2� + 1)

(
� �1 2

0 0 0

)2

×T��1P�(μ) − 4π
∑
��1

il(2� + 1)

√
(� − 2)!

(� + 2)!

⎛
⎝√ 1

24

(
� �1 2

0 0 0

)

MNRAS 461, 1227–1259 (2016)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/461/2/1227/2608401 by C
N

R
S - ISTO

 user on 10 M
ay 2022
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×
(

� �1 2

−2 0 2

)
+

∞∑
�2=4,2

(2�2 + 1)

√
(�2 − 2)!

(�2 + 2)!

(
� �1 �2

0 0 0

)

×
(

� �1 �2

−2 0 2

)⎞⎠T��1P
2
� (μ). (C26)

Next, to find out D, we compute

〈v1v3〉 = 4π
∑
��1

i�
√

2π

15

√
5(2� + 1)

(
� �1 �2

0 0 0

)

×
(

� �1 �2

−1 0 1

)
T��1 (−1)

(
Y 1

� (r̂) + Y−1
� (r̂)

)
. (C27)

With some simplifications, and following the general procedure
of subtracting the contribution from A, we finally obtain

D = 4π
∑
��1

i�(2� + 1)

√
2(� − 1)!

3(� + 1)!

(
� �1 2

0 0 0

)(
� �1 2

−1 0 1

)

×T��1

∂P�(μ)

∂μ
− 8π

∑
��1

il(2� + 1)

√
(� − 2)!

(� + 2)!

⎛
⎝√ 1

24

×
(

� �1 2

0 0 0

)(
� �1 2

−2 0 2

)
+

∞∑
�2=4,2

(2�2 + 1)

√
(�2 − 2)!

(�2 + 2)!

×
(

� �1 �2

0 0 0

)(
� �1 �2

−2 0 2

)⎞⎠T��1μ
∂2P�(μ)

∂μ2
. (C28)

Final set of calculation involves computing

〈v3v3〉 = 4π
∑
��1

i�
4
√

(2� + 1)

3

√
π

(
� �1 0

0 0 0

)2

T��1Y
0
� (r̂)

−4π
∑
��1

i�
4
√

(2� + 1)

3

√
π

(
� �1 2

0 0 0

)2

T��1Y
0
� (r̂),

(C29)

which after considering possible contribution from all other coeffi-
cients, we finally arrive at an expression for C valid at all frames:

C = 2π
∑

�

i�T��P�(μ) − 4π
∑
��1

i�(2� + 1)

(
� �1 2

0 0 0

)2

T��1

×P�(μ) − 8π
∑
��1

i�(2� + 1)

√
2(� − 1)!

3(� + 1)!

(
� �1 2

0 0 0

)

×
(

� �1 2

−1 0 1

)
T��1μ

∂P�(μ)

∂μ
+ 4π

∑
��1

il(2� + 1)

×
√

(� − 2)!

(� + 2)!

⎛
⎝√ 1

24

(
� �1 2

0 0 0

)(
� �1 2

−2 0 2

)

Table C4. Mode structure of strong turbulence.

c
ij
�m Equation

c11
�m

(
4
√

π
3 δl0 + 2

√
π

3
√

5
δl2

)
δm0 −

√
2π
15 δl2(δm2 + δm,−2)

c22
�m

(
4
√

π
3 δl0 + 2

√
π

3
√

5
δl2

)
δm0 +

√
2π
15 δl2(δm2 + δm,−2)

c33
�m

(
4
√

π
3 δl0 − 4

√
π

3
√

5
δl2

)
δm0

c12
�m i

√
2π
15 δl2(δm2 − δm,−2)

c13
�m

√
2π
15 δl2(δm1 − δm,−1)

c23
�m −i

√
2π
15 δl2(δm1 + δm,−1)

+
∞∑

�2=4,2

(2�2 + 1)

√
(�2 − 2)!

(�2 + 2)!

(
� �1 �2

0 0 0

)(
� �1 �2

−2 0 2

)⎞⎠

×T��1

(
P 2

� (μ) + 2μ2 ∂2P�(μ)

∂μ2

)
. (C30)

C5 Slow modes low β

Slow modes in low β have the tensor structure(
ξ̂k ⊗ ξ̂ ∗

k

)
ij

∝ λ̂i λ̂j . (C31)

It is clear from the above tensor structure that c
ij
�2m2

is only non-
zero for �2 = m2 = 0. This heavily simplifies equation (B11),
and subsequent calculation allows us to compute C and arrive at a
general form

C =
∑

�

4πi�T��P�(μ). (C32)

All other coefficients vanish in this mode.

C6 Strong turbulence

In a strong turbulence with the uncorrelated mix of equal-power
Alfvén and slow modes, we expect pure E-type correlation, which
has a Fourier component(
ξ̂k ⊗ ξ̂ ∗

k

)
ij

= (δij − k̂i k̂j ). (C33)

The real space correlation function has been already derived in
LP12 using Chandrasekhar’s notations, but here we derive it using
the formalism we developed in the previous section. We will use
Table C4 in the subsequent calculations in this section. To find the
coefficients A, B, C and D, we follow the procedure described in
Appendix B. Consider

〈v1v2〉 = 4π
∑

�

i�
∑
�1

√
2π

3

√
(2� + 1)T��1

(
� �1 2

0 0 0

)

×
(

� �1 2

−2 0 2

)
i(Y 2

� (r̂) − Y−2
� (r̂)). (C34)

In the frame we are dealing with, only r̂1 r̂2 contributes, and there-
fore upon simplification, we obtain (after considering that A should
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Extending VCA for turbulence anisotropies 1257

only depend on μ = r̂ .λ̂)

A = −8π
∑

�

i�
∑
�1

(2� + 1)

√
2(� − 2)!

3(� + 2)!
T��1

(
� �1 2

0 0 0

)

×
(

� �1 2

−2 0 2

)
∂2P�(μ)

∂μ2
. (C35)

Similarly, we compute

〈v1v1〉 = 8π

3

∑
�

i�T��P�(cos θ ) + 4π

3

∑
��1

i�(2� + 1)T��1

×
(

� �1 2

0 0 0

)2

P�(cos θ ) − 4π
∑
��1

i�
√

2π

3

√
(2� + 1)T��1

×
(

� �1 2

0 0 0

)(
� �1 2

−2 0 2

)
(Y 2

� (r̂) + Y−2
� (r̂)). (C36)

In our choice of coordinates, 〈v1v
∗
1〉 is contributed by A and B.

Therefore, to find B, we need to subtract the contribution of A. This
subtraction affects the last factor in the above equation, and we are
left with

B = 8π

3

∑
�

i�T��P�(μ) + 4π

3

∑
��1

i�(2� + 1)T��1

(
� �1 2

0 0 0

)2

×P�(μ) + 4π
∑
��1

i�(2� + 1)

√
2(� − 2)!

3(� + 2)!
T��1

(
� �1 2

0 0 0

)

×
(

� �1 2

−2 0 2

)
P 2

� (μ). (C37)

Next, we compute

〈v1v3〉 = 4π
∑
��1

i�
√

2π

3

√
(2� + 1)T��1

(
� �1 2

0 0 0

)

×
(

� �1 2

−1 0 1

)
(−1)(Y 1

� (r̂) + Y ∗1
� (r̂)). (C38)

Using the fact that the above correlation is contributed by A and D,
and subtracting the contribution of A, we finally obtain

D = 4π
∑
��1

i�(2� + 1)

√
2(� − 1)!

3(� + 1)!
T��1

(
� �1 2

0 0 0

)

×
(

� �1 2

−1 0 1

)
∂P�(μ)

∂μ
+ 8π

∑
��1

i�(2� + 1)

√
2(� − 2)!

3(� + 2)!
T��1

×
(

� �1 2

0 0 0

)(
� �1 2

−2 0 2

)
μ

∂2P�(μ)

∂μ2
. (C39)

Finally, to obtain C, we compute

〈v3v3〉 = 8π

3

∑
�

i�T��P�(cos θ ) − 8π

3

∑
��1

i�(2� + 1)T��1

×
(

� �1 2

0 0 0

)2

P�(cos θ ). (C40)

The above correlation comes from the contribution of A, B, C and D.
Therefore, to find C, we subtract all other contributions to obtain

C = −4π
∑
��1

i�(2� + 1)T��1

(
� �1 2

0 0 0

)2

P�(μ) − 8π

×
∑
��1

i�(2� + 1)

√
2(� − 1)!

3(� + 1)!
T��1

(
� �1 2

0 0 0

)(
� �1 2

−1 0 1

)

×μ
∂P�(μ)

∂μ
− 4π

∑
��1

i�(2� + 1)

√
2(� − 2)!

3(� + 2)!
T��1

(
� �1 2

0 0 0

)

×
(

� �1 2

−2 0 2

)(
P 2

� (μ) + 2μ2 ∂2P�(μ)

∂μ2

)
. (C41)

APPENDI X D : A PPROX I MATE EXPRESSIO N
F O R TH E z- P RO J E C T I O N O F T H E V E L O C I T Y
S T RU C T U R E F U N C T I O N

To study intensity maps analytically, we require knowledge of the
z-projection of velocity structure function. An anisotropic velocity
structure function manifests in the anisotropy of intensity chan-
nel maps. Therefore, for our analytical calculation, we first study
how anisotropy is built in the z-projection of the velocity structure
function. The projection structure function is given as

Dz(r) = 2[(B(0) − B) + (C(0) − C) cos2 γ − A cos2 θ

− 2D cos θ cos γ ], (D1)

where A, B, C and D depend on the particular mode of turbulence
and has been derived in Appendix C for different modes of tur-
bulence. For the analysis we carry out, it is particularly useful to
do the multipole decomposition of these coefficients in Legendre
polynomials, so that

A =
∑

n

An(r)Pn(μ), (D2)

and so on, where An(r) can be easily obtained with the knowledge
of A. The expression above is particularly useful to obtain approx-
imate expression for Dz(r, μ), as the coefficients An(r) are usually
a decreasing function of n. This motivates us to write Dz(r, μ) by
considering the coefficients only up to second order in n, i.e. A
= A0 + A2P2(μ) and so on. We define that the power spectrum
A�1 ∝ k−m (cf. equation 11). Keeping this in mind, it can be shown
that regularized coefficients A, B(0) − B, C(0) − C, D are propor-
tional to rm − 3 ≡ rν . Since A, B, . . . are functions of r in the same
fashion, we explicitly factor out rν from them, so that in the follow-
ing analysis, it is to be understood that any rν factor comes from
these coefficients, and An, . . . are simply some numerical constants.
With these approximations and definitions, equation (D1) can be
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1258 D. Kandel, A. Lazarian and D. Pogosyan

Table D1. Different parameters in the approximate Dz.

Parameters Equation

c1 (q1 + q2cos 2θ + q3cos 4θ )rν

c2 (s1 + s2cos 2θ )rνsin θcos θsin γ cos γ

c3 (u1 + u2cos 2θ )rνsin 2θsin 2γ

q1 2(B0(0) − B0) + 2(C0(0) − C0)cos 2γ + B2 + C2cos 2γ .

q2 −2A0 + A2 − 4D1cos γ − 3(B2 + C2cos 2γ )cos 2γ

q3 −3A2cos 2γ

s1 6(B2 + C2cos 2γ ) + 4D1

s2 6A2

u1 3(B2 + C2cos 2γ )

u2 3A2

written as

Dz(r) ≈ 2[(B0(0) − B0(r) − B2(r)P2(μ)) + (C0(0) − C0(r)

− C2(r)P2(μ)) cos2 γ − (A0(r) + A2(r)P2(μ)) cos2 θ

− 2D1(r)μ cos θ cos γ ]. (D3)

To obtain the explicit dependence of Dz on φ, we use the relation
for μ in terms of different angles involved in our setup

μ = sin γ sin θ cos φ + cos γ cos θ, (D4)

which when used in equation (D3) shows that Dz is related to φ

only up to cos 2φ:

Dz(r) ≈ c1 − c2 cos φ − c3 cos2 φ. (D5)

The detailed relations involving parameters c1, c2 and c3 are pre-
sented in Table D1. For the sake of clarity, these parameters are
themselves broken into different pieces. As we will show later, this
representation will be useful when carrying out the z-integral to find
the intensity structure function.

For the sake of convenience for further analysis, we write
equation (D5) as

Dz(r) ≈ f1(1 − f2 cos φ − f3 cos2 φ), (D6)

where

f1 = c1, f2 = c2

c1
, f3 = c3

c1
. (D7)

APPENDIX E: EVA LUATING φ- I N T E G R A L
F O R PU R E V E L O C I T Y T E R M

In order to fully obtain multipole moments of intensity structure
function (cf. equation 37), we need to evaluate the integral of the
form∫ 2π

0
dφ

e−imφ√
f1(1 − f2 cos φ − f3 cos2 φ)

.

To evaluate this integral, we will use generalized Gegenbauer poly-
nomial expansion (Plunkett & Jain 1975) defined as

1

(1 − ρx − ζx2)α
=

∞∑
n=0

C(α)
n (ρ, ζ )xn, (E1)

where ρ + ζ < 1, and

C(α)
n (ρ, ζ ) = ρn�[α + n − 1]

�[α]n!

× 2F1

(
−n

2
,
−n + 1

2
; −α − n + 2;

−4ζ

ρ2

)
(E2)

or equivalently

C(α)
n (ρ) =

�n/2�∑
j=0

�(n − j + α)

�(α)j !�[n − 2j + 1]
ζ jρn−2j . (E3)

Using the above equations, we can write∫ 2π

0
d φ

e−imφ√
f1(1 − f2 cos φ − f3 cos2 φ)

=
∞∑

n=0

C(1/2)
n (f2, f3)√

f1

∫ 2π

0
dφe−imφ cosn φ

=
∞∑

n=m,2

2−nC(1/2)
n (f2, f3)√

f1

2π�[n + 1]

�
[

n−m
2 + 1

]
�
[

n+m
2 + 1

] , (E4)

where the sum in n starts at m and proceeds at a step of 2, which
implies that m and n should have the same parity. This parity in-
formation is particularly useful later to arrive at the conclusion that
only even multipoles survive. For any n < m, the integral is zero;
therefore, these terms have no contribution. Upon using definition
of C(1/2)

n , and considering the fact that n is positive to write �[n +
1] = n!, we have∫ 2π

0
dφ

e−imφ√
f1(1 − f2 cos φ − f3 cos2 φ)

=
∞∑

n=m,2

2
√

π√
f1

2−n sinn γ� [n + 1]

�
[

n−m
2 + 1

]
�
[

n+m
2 + 1

] �n/2�∑
j=0

�
[
n − j + 1

2

]
j !�[n − 2j + 1]

× (cos γ )n−2j f
j
3 f

n−2j
2 . (E5)

APPENDI X F: EVA LUATI NG z- I N T E G R A L
F O R PU R E V E L O C I T Y T E R M

To obtain multipole moments of the intensity structure function, we
now carry out the z-integral (cf. equation 37)∫ ∞

−∞
dz

1√
f1

f
j
3 f

n−2j
2 =

∫ ∞

−∞
dz c

−n+j−1/2
1 c

n−2j
2 c

j
3

=
∫ ∞

−∞
dz cosn−2j θ (q1 + q2 cos2 θ + q3 cos4 θ )−n+j−1/2

× (s1 + s2 cos2 θ )n−2j (u1 + u2 cos2 θ )j sinn θr−ν/2. (F1)

Using sin θ = R/r, and cos θ = z/r, we have∫ ∞

−∞
dz

1√
f1

f
j
3 f

n−2j
2 =

∫ ∞

−∞
dz r−ν/2−2(n−j )Rnzn−2j

× (q1 + q2r
−2z2 + q3r

−4z4)−n+j−1/2

× (s1 + s2r
−2z2)n−2j (u1 + u2r

−2z2)j . (F2)
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One of the most important points to note at this stage is that for
odd n, the above integral vanishes, since for odd n, zn − 2j is an odd
function in z, while all other functions involved in this problem
are even. This implies that the multipole contribution, which is the
weight of e−imφ , comes only from even m, which is consistent with
the symmetry of our problem.

Note that the above is valid only when n ≥ 2, for ν > 0. When
n = 0, we have to consider regularization of the integral (cf.
equation 37). The integral we are interested in, when n = 0, is

I0 =
∫ ∞

−∞
dz

[
1√

q1 + q2 + q3zν/2

− 1√
q1 + q2 cos2 θ + q3 cos4 θrν/2

]
(F3)

which after change of variable z = R cot θ can also be written as

I0 = R1−ν/2
∫ π

0
dθ

1

sin2 θ

[
(tan θ )ν/2

√
q1 + q2 + q3

− (sin θ )ν/2√
q1 + q2 cos2 θ + q3 cos4 θ

]
. (F4)

An approximate form of equation (F3) can be obtained by method
of series expansion. For that, we write the integrand as

1√
q1 + q2 + q3zν/2

− 1√
q1 + q2 cos2 θ + q3 cos4 θrν/2

≈ 1√
q1 + q2zν/2

− 1√
q1 + q2

z2

R2+z2 rν/2

≈
[

1√
q1 + q2zν/2

− 1√
q1 + q2rν/2

]
+ q2R

2

2(q1 + q2)3/2r2+ν/2
, (F5)

where in the first step, we used the fact that q3 contribution is
negligible.17 The above approximation is fairly good as long as q1

17 We verified this numerically. Analytically, this can be understood by
noting that q1 and q2 consist of monopole contribution while q3 consists of
only quadrupole contribution (cf. Table D1).

+ q2 > q2. With this approximation, we finally arrive at

I0 ≈ −R1−ν/2

√
π

q1 + q2

[
�
(

ν
4 − 1

2

)
�
(

ν
4

) − q2

2(q1 + q2)

�
(

ν
4 + 1

2

)
�
(

ν
4 + 1

)
]

.

(F6)

To evaluate equation (F2), we first note the following: due to the
presence of a factor zn − 2j, which is a suppressing factor for small
z, and for n �= 2j, the integral in equation (F2) gives significantly
small value when n �= 2j in comparison to the case when n = 2j.
Therefore, we will only consider the case when n = 2j. To make
further simplifications, we approximate the integrand as

r−ν/2−nRn(q1 + q2r
−2z2 + q3r

−4z4)−n/2−1/2(u1 + u2r
−2z2)n/2

≈ r−ν/2−nRn(q1 + q2r
−2z2)−n/2−1/2u

n/2
1

≈ r−ν/2−nRnq
−n/2−1/2
1 u

n/2
1

(
1 − n + 1

2

q2

q1

z2

r2

)
, (F7)

where we have carried out expansion valid for q1 > q2. Therefore,
we finally have

I ≈ R1−ν/2

√
π

q
(n+1)/2
1

(
�
(

ν
4 + n−1

2

)
�
(

ν
4 + n

2

)

− (n + 1)

4

q2

q1

�
(

ν
4 + n+1

2

)
�
(

ν
4 + n

2 + 1
)
)

u
n/2
1 . (F8)

Equations (F6) and (F8) allow us to obtain multipole moment of
any even order.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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