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ABSTRACT
We detect the kinematic Sunyaev-Zel’dovich (kSZ) effect with a statistical significance of
4.2σ by combining a cluster catalogue derived from the first year data of the Dark Energy
Survey with cosmic microwave background temperature maps from the South Pole Telescope
Sunyaev-Zel’dovich Survey. This measurement is performed with a differential statistic that
isolates the pairwise kSZ signal, providing the first detection of the large-scale, pairwise
motion of clusters using redshifts derived from photometric data. By fitting the pairwise kSZ
signal to a theoretical template, we measure the average central optical depth of the cluster
sample, τ̄e = (3.75 ± 0.89) × 10−3. We compare the extracted signal to realistic simulations
and find good agreement with respect to the signal to noise, the constraint on τ̄e, and the
corresponding gas fraction. High-precision measurements of the pairwise kSZ signal with
future data will be able to place constraints on the baryonic physics of galaxy clusters, and
could be used to probe gravity on scales �100 Mpc.
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Detection of the kSZ effect with DES and SPT 3173

1 IN T RO D U C T I O N

Galaxy clusters, as the largest gravitationally bound structures in
the Universe, are important probes of cosmology and astrophysics.
These massive systems imprint their signature on the cosmic mi-
crowave background (CMB) through both the thermal Sunyaev-
Zel’dovich (tSZ) effect – in which �1 per cent of CMB photons
passing through the centre of a massive cluster inverse-Compton
scatter off electrons in the hot, ionized intracluster gas (Sunyaev
& Zeldovich 1970, 1972; Birkinshaw 1999; Carlstrom, Holder &
Reese 2002) – as well as the kinematic SZ effect (kSZ) in which the
bulk motion of clusters imparts a Doppler shift to the CMB signal
(Sunyaev & Zeldovich 1972, 1980). The kinematic and thermal SZ
effects can also be thought of as first- and second-order terms of the
same physical process: the scattering of photons with a Planck dis-
tribution on moving electrons. The first-order kSZ effect shifts but
does not distort the CMB blackbody spectrum, whereas the second-
order tSZ imparts spectral distortions. Because the thermal electron
velocities within the cluster are much larger than its bulk velocity,
the second-order effect dominates here: for typical cluster masses
and velocities, the amplitude of the kSZ effect is an order of mag-
nitude smaller than its thermal counterpart (e.g. Birkinshaw 1999).

The tSZ effect has been well characterized, both through its con-
tribution to the CMB temperature power spectrum (see e.g. Das
et al. 2014; George et al. 2015), and via measurements on individ-
ual clusters (e.g. Plagge et al. 2010; Bonamente et al. 2012; Planck
Collaboration V 2013; Sayers et al. 2013a). The kSZ signal, how-
ever, has proved to be more elusive, both because of its smaller
amplitude and its spectrum identical to that of primary CMB tem-
perature fluctuations. While challenging to measure, the kSZ effect
has great potential for constraining both astrophysical and cos-
mological models (see e.g. Rephaeli & Lahav 1991; Haehnelt &
Tegmark 1996; Diaferio et al. 2005; Bhattacharya & Kosowsky
2007, 2008). From an astrophysical point of view, the kSZ signal
can be used to probe so-called missing baryons (e.g. Hernández-
Monteagudo et al. 2015; Schaan et al. 2016) – i.e. those baryons
that reside in diffuse, highly ionized intergalactic media (see e.g.
McGaugh 2008). Conversely, peculiar velocities estimated from
the kSZ effect, together with external constraints on cluster astro-
physics, provide independent measurements of the amplitude and
growth rate of density perturbations. The latter in turn can be used
to test models of dark energy, modified gravity (Keisler & Schmidt
2013; Ma & Zhao 2014; Mueller et al. 2015b; Bianchini & Silvestri
2016) and massive neutrinos (Mueller et al. 2015a).

The first detection of the kSZ signal was reported in (Hand et al.
2012, H12 henceforth), using high-resolution CMB data from the
Atacama Cosmology Telescope (ACT; Swetz et al. 2011) in con-
junction with the Baryon Oscillation Spectroscopic Survey (BOSS)
spectroscopic catalogue (Ahn et al. 2012). To isolate the kSZ signal,
H12 applied a differential (or pairwise) statistical approach, which
we also adopt in this paper. H12 rejected the null hypothesis of zero
kSZ signal with a p value of 0.002. Subsequently, the Planck col-
laboration (Planck Collaboration XXXVII 2016) used the Central
Galaxy Catalog derived from the Sloan Digital Sky Survey (Abaza-
jian et al. 2009) to report 1.8–2.5σ evidence for the pairwise kSZ
signal with a template fit. Other recent detections (∼3σ ) of the
kSZ signal have been obtained via cross-correlation of CMB maps
with velocity fields reconstructed from galaxy density fields (Planck
Collaboration XXXVII 2016; Schaan et al. 2016); see also Li et al.
(2014) for a demonstration of this method using simulations. In-
direct evidence for a kSZ component in the CMB power spectrum
was also seen in power spectrum measurements from the South

Pole Telescope (SPT; George et al. 2015). Lastly, the kSZ signal
has been measured locally for one individual cluster by Sayers et al.
(2013b).

In this work, we measure the pairwise kSZ signal by combining
a catalogue of galaxy clusters derived from the Dark Energy Survey
(DES; The Dark Energy Survey Collaboration 2005, Dark Energy
Survey Collaboration et al. 2016) Year 1 data with a CMB tem-
perature map from the 2500 deg2 South Pole Telescope Sunyaev-
Zel’dovich (SPT-SZ) Survey. Our paper is organized as follows: in
Section 2 we briefly review the kSZ effect and the theory of pair-
wise velocities, and derive an analytic template for the pairwise kSZ
effect. Section 3 introduces the two input data sets from DES and
SPT and in Section 4 we detail the analysis methods. In Section 5,
we briefly describe the new suite of realistic high-resolution kSZ
simulations by Flender et al. (2016) and validate the pairwise kSZ
template and the analysis methods on these simulations. We proceed
by showing our main results and comparing them both to analytic
theory and the expectation from simulations in Section 6. The vari-
ous checks and different null tests that we perform to demonstrate
the robustness of our results against systematic uncertainties are
described in Section 7. Finally, we discuss the implications of our
detection for cluster astrophysics in Section 8.

Unless otherwise specified, we use the Planck 2015
TT+TE+EE+lowP cosmological parameters, i.e. the Hubble pa-
rameter H0 = 67.3 km s−1 Mpc−1, cold dark matter density
�ch2 = 0.1198, baryon density �bh2 = 0.022 25, current root mean
square (rms) of the linear matter fluctuations on scales of 8 h−1 Mpc,
σ 8 = 0.831, and spectral index of the primordial scalar fluctuations
ns = 0.9645 (Planck Collaboration XIII 2015), to compute theoret-
ical predictions and to translate redshifts into distances.

2 TH E O RY

2.1 The pairwise kSZ effect

In the non-relativistic limit and assuming only single scatterings for
individual photons, the kSZ effect produced by a galaxy cluster i
observed in the angular direction n̂i corresponds to a change in the
CMB temperature TCMB given by

�T

TCMB
(n̂i) = −τe,i

r̂ i · vi

c
, (1)

(Sunyaev & Zeldovich 1980). Here r̂ i · vi is the projection of the
cluster velocity vi along the line of sight r̂ i , and c is the speed of
light. The Thomson optical depth τ e,i for CMB photons passing
through a cluster i is given by the line-of-sight integral of the free
electron number density ne,i,

τe,i =
∫

dl ne,i(r)σT, (2)

where σ T is the Thomson cross-section. Therefore the kSZ effect
probes the bulk momentum of the ionized cluster gas projected on
to the line of sight.

Measuring the velocities of individual clusters is currently only
possible in rare exceptions (e.g. in the detection by Sayers et al.
2013b) since the kSZ signal has the same spectral shape as the
primary CMB, and its amplitude is small compared to the tSZ am-
plitude. This has motivated alternative methods of isolating the kSZ
signal. On scales smaller than the homogeneity scale, clusters will –
on average – fall towards each other under their mutual gravitational
attraction (e.g. Bhattacharya & Kosowsky 2007, 2008). Because of
the kSZ effect, this pairwise motion creates a particular pattern in
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3174 B. Soergel et al.

the CMB, consisting of temperature increments and decrements at
the locations of clusters moving towards and away from the ob-
server, respectively (e.g. Diaferio, Sunyaev & Nusser 2000). The
CMB pattern caused by such motion of cluster pairs is called the
pairwise kSZ signal.

Whereas the kSZ signal from one individual cluster is sensitive
to the line-of-sight velocity of that cluster, the amplitude of the
pairwise kSZ signal from a sample of clusters at comoving pair
separation r can be related to the mean relative velocity v12(r) of
the clusters (independent of the line of sight; see equation 6). We
write the pairwise kSZ amplitude as

TpkSZ(r) ≡ τ̄e

v12(r)

c
TCMB, (3)

where τ̄e is the average optical depth of the cluster sample.1 In our
sign convention TpkSZ < 0 indicates that clusters are on average
approaching each other (v12 < 0). We first build a model for v12(r)
in Section 2.2, then relate the line-of-sight velocities inferred from
the data to the total signal TpkSZ(r) in Section 4.2.

2.2 Modelling the pairwise velocity of clusters

Clusters of galaxies – or, more generally, the dark matter haloes
that host them – are located at the peaks of the cosmic density field.
The latter is described by the overdensity δ(x) ≡ ρ(x)/ρ̄ − 1 with
the matter density ρ(x) and its mean ρ̄. Similarly, the overdensity
of haloes is δh(x) ≡ n(x)/n̄ − 1, where n(x) is the number density
of haloes and n̄ their mean density. At linear level, and under the
assumption of deterministic, local bias (Fry & Gaztanaga 1993),
δh(x) can be related to δ(x) as δh(x) = bh δ(x), where bh is the
linear halo bias.

The total apparent velocity v(x) of a dark matter particle can be
decomposed into the Hubble flow and a peculiar velocity u(x) as
v(x) = aH x + u(x), where a is the scale factor in the Friedmann–
Lemaı̂tre–Robertson–Walker metric, and H is the Hubble rate at
scale factor a. In linear perturbation theory, the velocity field is
completely described by its divergence ϑ(x) ≡ ∇ · u(x). The lin-
earized continuity equation relates the density and velocity fields
(Bernardeau et al. 2002):

ϑ(x) = −δ̇(x) = −aHf δ(x), (4)

where the dot denotes a derivative with respect to conformal time.
Furthermore, f is the growth rate of density perturbations defined as
f ≡ d ln D/d ln a, where D is the linear growth factor.

If the density and velocity fields are assumed to be Gaussian,
their statistical properties are specified completely by their two-
point statistics. The two-point correlation function of the mat-
ter density perturbations at comoving separation r is given by
ξ (r) ≡ 〈δ(x) δ(x + r)〉, while the power spectrum P(k) in Fourier
space is defined as 〈δ(k) δ(k′)〉 = (2π)3δD(k + k′)P (k), where δD

is the Dirac delta distribution. Using equation (4) and the relation
between the power spectrum and the two-point correlation function,
the density–velocity correlation function can be written as

ξ δv(r, a) ≡ 〈δ(x) r̂ · v(x + r)〉 = −aHf

2π2

∫ ∞

0
dk kP (k, a)j1(kr),

(5)

where j1 is a spherical Bessel function.

1 Note that with equation (3) we implicitly make the ansatz 〈τ ev〉 
 〈τ e〉〈v〉.
We further discuss this assumption in Section 7.5.

The mean pairwise velocity of haloes, v12(r), is a measure of
the relative velocities of density peaks (e.g. Davis & Peebles 1977;
Peebles 1980). Following Schmidt (2010), we now write v12(r) as

v12(r) = 〈n(x1) n(x2) r̂ · (v2 − v1)〉
〈n(x1) n(x2)〉 . (6)

Assuming that the velocities of haloes are unbiased,2 equation (6)
becomes

v12(r) = 〈[1 + bhδ(x1)] [1 + bhδ(x2)] r̂ · (v2 − v1)〉
1 + ξh(r)

, (7)

where ξ h(r) is the two-point correlation function of haloes. For
comparison with observations and simulations, we are interested in
the mean pairwise velocity of a cluster sample within a given mass
range (e.g. Bhattacharya & Kosowsky 2008; Mueller et al. 2015b).
Here we model this by replacing bh with the mass-averaged bias

b ≡
∫ Mmax

Mmin
dM M n(M) bh(M)∫ Mmax

Mmin
dM M n(M)

, (8)

which on the scales of interest here is a good approximation for
the halo bias moments of Bhattacharya & Kosowsky (2008) and
Mueller et al. (2015b). To evaluate equation (8), for n(M) we use
the halo mass function of Tinker et al. (2008) computed with the
HMF code (Murray, Power & Robotham 2013), and for bh(M) the
halo bias model by Tinker et al. (2010).

Neglecting terms including three-point correlations and approx-
imating ξ h ≈ b2 ξ , equation (7) reduces to

v12(r, a) 
 2 b ξδv(r, a)

1 + b2 ξ (r, a)
. (9)

As a consistency check, we note that this expression is equivalent
to previous derivations of the mean pairwise velocity from the pair
conservation equation (e.g. Peebles 1980): Here the mean pairwise
streaming velocity can be written as (Sheth et al. 2001; see also
Bhattacharya & Kosowsky 2008 and Mueller et al. 2015b)

v12(r, a) 
 −2

3
a r H f

bξ̄ (r, a)

1 + b2ξ (r, a)
, (10)

where ξ̄ (r, a) is the correlation function averaged within a sphere
of comoving radius r and b is again an averaged bias. In linear the-
ory, ξ δv(r, a) = −arHf ξ̄ (r, a)/3, demonstrating the equivalence
of equations (9) and (10).

We now use equation (9) to predict the mean pairwise velocity
in our theoretical template. For the computation of ξ and ξ δv we
evaluate P(k) using the PYCAMB3 interface to the CAMB4 code (Lewis,
Challinor & Lasenby 2000). As we are interested only in the large-
scale behaviour of the pairwise velocities, we remove small-scale
fluctuations by smoothing the power spectrum with a spherical top-
hat filter of radius R = 3 h−1 Mpc. This procedure ensures that there
are no unphysical oscillations in the theory prediction for v12(r),
which would otherwise be caused by a sharp cut-off of the highest k
modes. We have checked that our results are insensitive to the exact
choice of the smoothing scale. We demonstrate with the use of

2 This assumption will eventually become inaccurate for small pair sep-
arations (r �50 Mpc), where haloes are found to have biased velocities
(Baldauf, Desjacques & Seljak 2015). However, these scales do not con-
tribute significantly to our analysis as a result of the photometric redshift
uncertainties.

3 https://github.com/steven-murray/pycamb
4 http://camb.info
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mocks in Section 5.2 below that the model of equations (3) and (9)
describes the simulations well on scales r �40 Mpc in the absence
of redshift uncertainties.

2.3 Modelling the photo-z uncertainties

To account for the uncertainty in the photometric cluster redshift
(photo-z), we modify the pairwise kSZ template (equations 3 and
9) to model the dilution of the signal on small scales. The comoving
distance to a cluster at redshift z is given by dc(z) = ∫ z

0 dz′ c/H (z′),
so uncertainties in cluster redshifts are converted to errors in their
distances by �dc 
 c�z/H(z). Using the redshift errors from the
cluster catalogue described in Section 3.1 below and assuming they
follow a roughly Gaussian distribution (see Rykoff et al. 2016), we
compute an rms uncertainty in the comoving distance, σdc . For the
sample used in this work we find σdc 
 50 Mpc. The corresponding
uncertainty in the separation of the cluster pairs affects the recovered
pairwise kSZ signal: redshift errors completely dilute the signal at
r � σdc , the signal is significantly reduced on scales r ∼ σdc , and
only the signal from cluster pairs with r  σdc remains unaffected.
Given that the pairwise kSZ signal is strongest at small separations
(r �50 Mpc), this poses one of the main challenges for our analysis.

We account for this effect heuristically by multiplying the tem-
plate with a smoothing factor that models the dilution of the pairwise
kSZ signal on small scales. The final template is thus:

TpkSZ(r, a) = τ̄e

TCMB

c

2 b ξδv(r, a)

1 + b2 ξ (r, a)
×

[
1 − exp

(
− r2

2 σ 2
r

)]
.

(11)

The pair separation smoothing scale σ r – i.e. the rms uncertainty in
cluster pair separation – can be inferred from the redshift errors of
the cluster sample; here we approximate it by setting σr = √

2σdc .5

We demonstrate in Section 5.2 below that the full model of equa-
tion (11) provides a good fit to realistic simulations that include
photometric redshift errors.

2.4 Dependence on astrophysics and cosmology

Equation (11) shows that the pairwise kSZ signal constrains a com-
bination of cluster astrophysics (bτ̄e) and cosmology (ξ δv , ξ ). While
the signal shape is mostly specified by the cosmology, the amplitude
is scaled by b and τ̄e; by fixing the cosmological parameters and
the bias prescription, a pairwise kSZ measurement can constrain the
mean optical depth of the cluster sample. This argument can also
be turned around: given measurements of b (e.g. from the cluster
autocorrelation) and τ̄e (e.g. from X-ray or tSZ observations), con-
straints on cosmology can be derived. To illustrate the parameter
dependence, we consider large scales (r �60 Mpc, see Section 5.2
below). Here b2ξ (r) � 1 so that

TpkSZ(r) ∝ b τ̄e ξ δv(r) ∝ b τ̄e f σ 2
8 (12)

and hence the shape of the signal is completely specified by the
cosmology via ξ δv(r). From a cosmological perspective, the depen-
dence on f σ 2

8 is particularly interesting. Other dynamical probes
like redshift-space distortions constrain primarily the combination
fσ 8 (see e.g. Percival & White 2009), so a measurement of the pair-
wise kSZ could be used to break the degeneracy between growth

5 This is a reasonable approximation because the pairwise estimator assigns
the highest weights to cluster pairs with separation along the line of sight
and σz is a relatively slowly growing function of z.

Figure 1. Relative cluster density (smoothed on a 30 arcmin scale for
visualization purposes) in the overlapping regions of the DES Y1 cluster
catalogue and the SPT-SZ temperature map. The dashed black line marks
the boundaries of the SPT-SZ survey footprint. The effective sky are for this
analysis is ∼1200 deg2.

and initial amplitude. The resulting constraints on f could in turn be
used as a probe of dark energy or modifications of gravity (Keisler
& Schmidt 2013).

3 DATA

3.1 DES redMaPPer cluster catalogue

The DES is an ongoing 5-band grizY photometric survey of
5000 deg2 of the Southern sky that uses the Dark Energy Cam-
era (Flaugher et al. 2015) on the 4-metre Blanco Telescope at Cerro
Tololo Inter-American Observatory (CTIO). At full depth, DES
will allow the extraction of cluster catalogues that are complete for
clusters with M500c �1014 M� – where M500c is the mass within a
spherical region with an average density of 500 times the critical
density – out to redshifts z < 0.9 (Rykoff et al. 2016).

The sky footprint of DES was chosen to have almost complete
overlap with the SPT-SZ survey region. This has already enabled
several studies cross-correlating DES Science Verification data with
SPT-SZ (Saro et al. 2015; Baxter et al. 2016; Giannantonio et al.
2016; Kirk et al. 2016). Here we use data from the full first year of
DES observations (Y1) that overlap with ∼1400 deg2 of the SPT-SZ
footprint. The area in which clusters can be identified is reduced by
10–15 per cent because of boundary effects and masking of bright
stars (Rykoff et al. 2016). Thus the effective sky area for this analysis
is ∼1200 deg2, which we show in Fig. 1.

This work uses a cluster catalogue constructed from DES data
using the red-sequence Matched-filter Probabilistic Percolation
(redMaPPer) algorithm first described by Rykoff et al. (2014) and
subsequently developed and tested against X-ray and SZ-based clus-
ter catalogues (Rozo & Rykoff 2014; Rozo et al. 2015). RedMaPPer
is a photometric red-sequence based cluster finder that is trained on
a subsample of clusters with spectroscopic redshifts to calibrate
the red sequence model. The cluster finder provides 3D cluster
positions, where the angular coordinates are taken to be at the algo-
rithm’s best estimate for the central galaxy position and the redshifts
are estimated photometrically.

RedMaPPer also provides an optical richness estimate, λ, which
is a low-scatter optical proxy for the cluster mass (Rykoff et al.
2012; Saro et al. 2015). To account for partially masked clusters or
member galaxies fainter than the limiting magnitude, redMaPPer
applies a correction factor s to the optical richness, such that λ = sλ̃

MNRAS 461, 3172–3193 (2016)
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3176 B. Soergel et al.

Figure 2. Properties of the DES Y1 redMaPPer clusters with λ̃ > 10 (blue) and λ̃ > 20 (red) member galaxies. For visualization purposes we only show
every fifth cluster in the bottom panels. Left: we show in the upper panel the photometric redshift distribution, and in the lower panel the fractional uncertainty
on the photo-zs as a function of redshift. The increased level of photo-z errors around z = 0.4 (z = 0.7) are caused by the transition of the 4000 Å-break
between the g and r (r and i) bands. Right: we show in the upper panel the richness distribution, and in the lower panel the fractional uncertainty on the richness
λ as a function of λ. Since we apply cuts using the raw galaxy counts λ̃, the λ̃ > 20 sample does not include all clusters with richness λ > 20. This (more
conservative) cut removes primarily objects with higher richness uncertainties.

where λ̃ are the raw galaxy counts. Because a sample with more
uniform noise properties is obtained if cuts are applied in λ̃ (see
Rozo & Rykoff 2014; Rykoff et al. 2014, 2016; Rozo et al. 2015,
for details), we apply richness cuts using this quantity.

The full DES Y1 redMaPPer ‘gold’ catalogue spans the photo-z
range 0.1 < z < 0.95. As both completeness and photo-z accuracy
degrade at high redshift, for the main result of this work we use
only clusters at z < 0.8. This z < 0.8 sample is still not entirely
pure (due to scatter in the richness estimate), nor is it complete
to the same richness at high redshift due to depth limitations: the
effective richness threshold grows with redshift, reaching λmin 
 40
at z = 0.8. To test for a potential bias caused by this evolution, we
repeat the analysis with a more conservative redshift cut of z < 0.65,
obtaining consistent results.

We use all clusters in the richness range 20 < λ̃ < 60 – where
λ
 20 broadly corresponds to M500c 
 1014 M� – for the main anal-
ysis, while also considering a larger catalogue extended to lower
richness 10 < λ̃ < 60 in Section 6.4. The low-λ̃ cutoff is driven
by several competing factors. As the mass function grows exponen-
tially at the low-mass end, so does the number of clusters (and hence
the number of pairs). On the other hand, low-richness clusters are
more susceptible to errors in redshift and centring, which washes
out the signal. The high-λ cutoff is set because the tSZ strongly
dominates the signal in high-mass clusters. Including these rare,
heavy objects in the sample could result in an insufficient cancel-
lation of the tSZ signal and could therefore bias the pairwise kSZ
measurement. We have found with the simulations that the upper cut
chosen here maximizes the signal to noise (S/N), while not introduc-
ing a significant bias into the pairwise kSZ amplitude. A potential
contamination by tSZ is further investigated in Section 7.2 below.

We finally remove clusters that fall within masked regions sur-
rounding point sources detected in the SPT-SZ maps (see next sec-
tion). After these cuts, the catalogue contains 6693 (28 760) clusters
in the SPT-SZ footprint for the λ̃ > 20 (λ̃ > 10) sample; the corre-
sponding surface density is 5.6 deg−2 (24 deg−2). We have tested
the robustness of the results with respect to the applied cuts.

We show in Fig. 2 the distribution of clusters in redshift and
optical richness, as well as the associated errors, for both the high-
and low-richness samples. The left-hand panel of Fig. 2 shows that

the photo-z errors vary for both cluster samples as a function of
redshift; there are two redshift ranges where the photo-z quality
is significantly degraded: around z 
 0.4 and z 
 0.7. This is
due to the typical red-sequence galaxy spectral feature, the 4000
Å-break, transitioning between the DES photometric bands. Over
the whole redshift range, we observe that the photo-z errors of the
high-richness sample are σ z/(1 + z) ∈ [0.005, 0.015], significantly
smaller than in the low-richness case, for which σ z/(1 + z) ∈ [0.005,
0.025]; see also the bottom-left panel of Fig. 2. As the pairwise kSZ
signal is smoothed at cluster separations comparable with the photo-
z errors (see Section 2.3), this motivates our choice of the λ̃ > 20
sample for the main analysis.

3.2 SPT-SZ temperature maps

The CMB data consist of temperature maps made from the SPT-SZ
observations. This analysis uses the same CMB maps as were used
by (Bleem et al. 2015, hereafter B15); we summarize the salient
points here, and refer the reader to B15 for a complete description.

The SPT is a 10 m-diameter millimetre-wave telescope located
at the National Science Foundation Amundsen-Scott South Pole
Station in Antarctica. Between 2008 and 2011, the SPT was used
to observe a contiguous ∼2500 deg2 region of sky at 90, 150,
and 220 GHz at arcminute resolution to approximate map depths
of 40, 18, and 70 μK-arcmin, respectively. The survey covers a
region from 20h to 7h in right ascension (RA) and −65◦ to −40◦

in declination (see e.g. Story et al. 2013). This analysis uses the
150 GHz data in the region that overlaps with the DES Y1 cluster
catalogue (∼1200 deg2, see Fig. 1). In principle, it would be possible
to combine the three SPT frequencies to reduce sensitivity to noise
and tSZ signal in the CMB maps; however, the 90 and 220 GHz data
are significantly noisier than the 150 GHz band so that combining
them would introduce additional complexity without a substantial
gain.6

6 See, for example, the recent analysis of Baxter et al. (2015) which com-
bined data at all three frequencies to construct maps free of tSZ-signal. The
resulting maps had a noise level of 55 µK-arcmin, much too high for a
significant detection in this analysis.
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Detection of the kSZ effect with DES and SPT 3177

The survey was observed in 19 subpatches, or fields. Each field
was observed in at least 200 individual observations, and maps from
individual observations are co-added into a single map for each field.
The detector time-ordered-data are filtered, then projected using
the telescope pointing model into maps with the Sanson–Flamsteed
projection (Calabretta & Greisen 2002). In an update from B15,
absolute calibration of the maps was derived using the 2015 release
of the Planck 143 GHz data (Planck Collaboration XI 2015). Emis-
sive point sources are masked as follows: a 4 arcmin (10 arcmin)
radius mask is applied to all sources detected at ≥5σ (≥20σ ) in the
150 GHz maps (see e.g. Mocanu et al. 2013), removing ∼7 per cent
(�1 per cent) of the initial 2500 deg2 survey area. Any clusters
within these masks are removed from the kSZ analysis.

4 A NA LY S I S M E T H O D S

4.1 Matched filtering and temperature estimates

Since we have prior knowledge about the shape of the expected
SZ signal from clusters, we can improve the S/N by filtering the
CMB maps to suppress noisy modes and enhance modes with high
expected signal. We use a matched filter technique (see e.g. Haehnelt
& Tegmark 1996; Melin, Bartlett & Delabrouille 2006) identical to
that used in B15. The observed temperature in a direction n̂ can be
written as

T (n̂) = B(n̂) ∗ [Tclust(n̂) + nastro(n̂)] + nnoise(n̂). (13)

Here, B(n̂) characterizes the effect of the instrumental beam and
data filtering and the asterisk denotes a convolution. The SZ signal
from clusters Tclust(n̂) is comprised of tSZ and kSZ components
and nastro(n̂) characterizes the noise contribution from astrophysical
sources that include the lensed primary CMB, emission from dusty
extragalactic sources, as well as the kinematic and thermal SZ back-
ground; all components are treated as Gaussian noise and modelled
from previous SPT power spectrum measurements (Keisler et al.
2011; Shirokoff et al. 2011). Emission from cluster members and
the effect of lensing of dusty background galaxies by the cluster
is removed on average by the pairwise estimator (see Section 4.2
below); radio sources below the SPT detection threshold contribute
negligibly to the maps, and are ignored. Finally, noise from the
instrument and the atmosphere is given by nnoise(n̂).

For the purposes of filtering, we model the SZ signal from a single
cluster as an amplitude T0 times an azimuthally symmetric real-
space profile ρ(θ ), where θ is the angular distance from the cluster
centre. For the cluster profile template ρ(θ ), we use a projected
isothermal β-model (Cavaliere & Fusco-Femiano 1976) with β = 1
given by

T (θ ) = T0

(
1 + θ2/θ2

c

)−1
, (14)

where T0 is the normalization, and the core radius θ c controls the
size of the expected signal. This choice of profile does not affect
the detection significance of the analysis, see Section 6.2. Although
the tSZ and kSZ components are expected to follow slightly different
profile shapes, here we assume for simplicity this single model for
both components. Averaging over multiple pairs with the pairwise
estimator (see Section 4.2 below), the tSZ signal will average to
zero (ignoring redshift dependence), allowing the kSZ signal to be
singled out. The kSZ contribution to the profile normalization, T kSZ

0 ,
is related to the optical depth through the centre of the cluster via
equation (1) as T kSZ

0 = −τ0
r̂·v
c

TCMB.

Figure 3. Filtered temperatures at cluster positions and correction for red-
shift dependence: Top: we show the CMB temperature deviations at cluster
positions in the SPT-SZ map after match-filtering with a β-profile with
θ c = 0.5 arcmin. The individual clusters are shown as a function of their
redshift and colour coded by their richness (for visualization purposes we
only show every fifth cluster). The solid overplotted lines are the smoothed
mean temperature, i.e. the second term on the rhs of equation (20), for
�z = 0.02 (used in the main analysis) and a smaller smoothing width of
�z = 0.002. Bottom: we show here the same mean temperature as in the top
panel, but with a narrower temperature range, thus revealing an evolution of
∼15 µK over the full redshift range.

We now build a filter �(n̂) that returns an estimate T̂0 of T0 when
centred on the cluster at n̂0:

T̂0 =
∫

d2n̂ �(n̂ − n̂0) T (n̂). (15)

The filter is constructed in Fourier space and has the form (Haehnelt
& Tegmark 1996; Melin et al. 2006)

�(l) = σ 2
� N−1(l) Sfilt(l). (16)

Here σ 2
� is the predicted variance in the filtered map, defined as

σ 2
� ≡

[∫
d2l Sfilt(l)† N−1(l) Sfilt(l)

]−1

. (17)

The Fourier-domain noise covariance N(l) includes the contribu-
tions from nastro(n̂) and nnoise(n̂). The instrument and residual atmo-
sphere noise nnoise(n̂) is calculated by differencing pairs of observa-
tions, then co-adding the resulting difference-maps in each field of
sky. The expected signal Sfilt(l) is calculated as the product of the
Fourier-domain cluster profile template ρ(l) with B(l).

We explore filter sizes in the range θ c ∈ [0.25 arcmin, 10 arcmin].
For the main analysis we adopt θ c = 0.5 arcmin; the temperature
estimates obtained with this filter are shown in Fig. 3. This choice is
well matched to the average cluster extent (see Sections 5.3 and 6.2
below). Furthermore, we have found it to yield the maximum S/N
ratio when extracting the pairwise kSZ signal from the simulated
CMB maps described in Section 5. The significance of our main
result is relatively insensitive to the exact details of the theoretical
cluster profile: the filter shape is dominated by CMB confusion at
large scales and the ∼1 arcmin instrumental beam at small scales,
thus the cluster profile impacts �(n̂) over a relatively small range
of scales. We demonstrate the robustness of our detection to the
profile size and shape in Section 6.2 below.
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3178 B. Soergel et al.

4.2 Pairwise kSZ estimator

Ferreira et al. (1999) showed that the mean pairwise velocity
of a sample of objects such as clusters, v12(r), can be esti-
mated from their individual line-of-sight velocities r̂ i · vi with the
estimator

v̂12(r) =
∑

i<j,r (r̂ i · vi − r̂j · vj ) cij∑
i<j,r c2

ij

, cij = r̂ ij · r̂ i + r̂j

2
.

(18)

Here the geometrical factor cij accounts for the projection of the
pair separation r ij ≡ r i − rj on to the line of sight, and the sum
is taken over all cluster pairs with i < j and distances |r ij | = r .
As a reminder, v12(r) < 0 for clusters moving towards each
other.

As the kSZ effect correlates the line-of-sight velocity of a cluster
with the CMB temperature T (n̂) at its angular position n̂, we can
combine equations (1) and (18) to form the pairwise kSZ estimator
(H12):

T̂pkSZ(r) = −
∑

i<j,r

[
T (n̂i) − T (n̂j )

]
cij∑

i<j,r c2
ij

. (19)

Residuals of the primary CMB, foreground and noise fluctuations
are uncorrelated with cluster positions and hence add noise, but
average out in the pairwise measurement. The tSZ signal, as well
as cosmic infrared background (CIB) emission correlated with the
clusters, are also removed on average, thus adding noise but not bias
for clusters in a narrow redshift range.

Over a larger redshift range, however, any evolution of these
contributions with redshift would result in a bias. Indeed, we have
several known redshift-dependent components in our sample and
analysis: as discussed in Sections 3.1 and 6.3, the mass-selection
threshold of our sample evolves with redshift. Furthermore, the
adopted constant filter scale cannot match the average angular scale
of a cluster at all redshifts and so, even in the absence of a change
in the average cluster mass with z, the recovered temperature signal
at the cluster positions will depend on redshift. These redshift-
dependent effects need to be subtracted to obtain an unbiased esti-
mate of the separation-dependent pairwise kSZ signal (H12; Planck
Collaboration XXXVII 2016). We estimate and remove this bias
by calculating the mean measured temperature as a function of red-
shift and subtracting it from the matched-filtered temperature values
T̂0(n̂i), as

T (n̂i) = T̂0(n̂i) −
∑

j T̂0(n̂j ) G(zi, zj , �z)∑
j G(zi, zj , �z)

. (20)

The smoothed temperature at zi is calculated from the weighted
sum of contributions of clusters at redshift zj using a Gaussian
kernel G(zi, zj , �z) = exp

[−(zi − zj )2/
(
2�2

z

)]
. Here, we choose

�z = 0.02, which results in smooth temperature evolution; we have
checked that our results are insensitive to this choice. We show in
Fig. 3 the smoothed temperature as a function of redshift, i.e. the
second term on the right-hand side of equation (20).

For the main sample analysed in this work, we find only a weak
trend with redshift in the range 0.2 �z �0.7; this is mainly an
effect of two competing processes: at low redshift, our sample is
nearly volume limited, and as such it contains a higher number of
more massive clusters due to the progress of structure formation;
at higher redshift, our sample becomes flux-limited, and by effect
of sample selection, more massive clusters are more likely to be
included in the sample. However, the amplitude of the kSZ signal
we are measuring is of the order of a few μK – much smaller than

the range of temperatures shown in Fig. 3. We show for clarity in the
bottom panel of Fig. 3 that the change in the mean temperature with z

appears more considerable (∼15 μK) when drawn on a temperature
range that is closer to that of the kSZ measurements; even such a
weak trend with redshift could bias the results, if not appropriately
subtracted. The smoothed temperature is negative at all redshifts
due to thermal SZ, but removing an overall negative offset does not
affect the pairwise estimator.

We finally note that even if the filtered temperatures only con-
sisted of CMB and/or noise residuals, the smoothed temperature
would still change with redshift as the number of objects effectively
contributing to the average evolves with z. In that case, one would
expect the smoothed temperature to fluctuate around zero, with the
amplitude depending on the number density of objects as a function
of z (see Fig. 1 and corresponding discussion in Planck Collabora-
tion XXXVII 2016). The fact that – unlike the Planck analysis – we
observe a negative smoothed temperature at all redshifts, indicates
that thermal SZ contributes significantly to the filtered temperatures.
However, it is important to note that the correction of equation (20)
removes any mean redshift evolution, regardless of its origin.

After correcting for these redshift-dependent effects as described
above, we measure the pairwise kSZ signal in 15 bins of comoving
pair separation linearly spaced between 0 and 300 Mpc.

4.3 Covariance estimates

In principle, the covariance of the pairwise kSZ measurement can
be estimated in a number of different ways. Analytic approaches
for the covariance of pairwise cluster velocities were presented
by Bhattacharya & Kosowsky (2008) and Mueller et al. (2015b),
but further work is necessary to realistically include contamination
by primary CMB anisotropies and the tSZ signal; the same holds
true for the pairwise velocity covariance that Ma, Li & He (2015)
compute from simulations. As an alternative, the covariance could
be estimated from random simulated realisations of the mm-sky
with the correct power spectrum. This procedure is insufficient,
however, because it ignores the spatial correlation between the kSZ
and tSZ signals, which causes the latter to be the largest source of
uncertainty in our measurement (see Appendix A1). Therefore a
Monte Carlo covariance is not a good choice in our case.

On the other hand, one could generate the tSZ mock realiza-
tions from simulations in the same way as the one realization we
use for comparison with the real data (see Section 5 below). This
method becomes computationally expensive, however, for surveys
that sample large volumes: when preserving the survey geometry,
only four independent projections of the DES-Y1×SPT-SZ foot-
print can be generated from one full-sky kSZ simulation. Hence an
unfeasibly large number of simulated kSZ skies (and therefore N-
body simulations) would be required to obtain a reliable covariance
estimation.

For these reasons, we adopt resampling techniques as our baseline
choice for computing the covariance matrix; this approach also has
the advantage of being model independent. We create jackknife
(JK) resamples of the pairwise kSZ measurement by splitting the
cluster catalogue into NJK subsamples, removing one of them, and
recomputing the pairwise kSZ amplitude from the union of the
remaining NJK − 1 subsamples. This process is repeated until every
subsample has been removed from the measurement exactly once.
From the NJK resamples we then estimate the covariance matrix as

ĈJK
ij = NJK − 1

NJK

NJK∑
α=1

(T̂ α
i − T̄i) (T̂ α

j − T̄j ), (21)
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Detection of the kSZ effect with DES and SPT 3179

where T̂ α
i is the pairwise kSZ signal in separation bin i and JK

realization α, of mean T̄i . For our main analysis, we use NJK = 120
samples. In Appendix A2 we show that the error estimate is stable
against changes in NJK. Additionally, we also test and discuss alter-
native resampling schemes there, in particular a JK approach using
sky patches and bootstrap resampling from the cluster catalogue
and sky patches. We find that all four techniques give comparable
results.

For the inverse of the covariance, we use the estimator

Ĉ−1 = N − Nbins − 2

N − 1
(ĈJK)−1, (22)

where N is the number of JK or bootstrap samples used to compute
the covariance, and Nbins is the number of bins used in the measure-
ment. The correction factor is necessary because (ĈJK)−1 is a biased
estimator of C−1 (Hartlap, Simon & Schneider 2007).

4.4 Amplitude fits and statistical significance

We fit the pairwise kSZ signal measured with the estimator of
equation (19) with a one-parameter template given by equation
(11); the average optical depth of the cluster sample is fit as a
free parameter. We then compute the statistical significance of our
measurement in two different ways.

For the main results, we determine the best-fitting average optical
depth of the cluster sample, τ̄e, and its uncertainty by minimizing

χ2(τ̄e) = [
T̂pkSZ − TpkSZ(τ̄e)

]†
Ĉ−1

[
T̂pkSZ − TpkSZ(τ̄e)

]
. (23)

The statistical significance of the template fit is then computed as
S/N = τ̄e/στ̄e , where στ̄e is given by χ2(τ̄e ± στ̄e ) − χ2

min = 1. In
most of this paper, we treat the optical depth τ̄e as the effective am-
plitude of the extracted pairwise kSZ signal. We show in Section 5.3
below that at our fiducial filtering scale it can however be interpreted
as the physical optical depth along a line of sight through the cluster
centre.

Secondly, we also assess the signal significance by calculating
the χ2 with respect to the no-signal hypothesis:

χ2
0 = T̂

†
pkSZ Ĉ−1 T̂pkSZ. (24)

From the cumulative distribution function of the χ2 distribution
with the same number of degrees of freedom (dof) as our signal,
we infer the probability to exceed (PTE) the measured χ2

0 with a
purely random signal. Assuming Gaussian uncertainties, we then
translate the PTE into the significance of the rejection of the no-
signal hypothesis.

We expect the template fit to yield a higher statistical significance
than the χ2

0 procedure: the template fit includes the additional infor-
mation of our analytic template, whereas the χ2

0 procedure makes
no assumptions about the expected signal shape. As there is a clear
theoretical expectation for the pairwise kSZ signal, we adopt the
template fit as our baseline choice, but also report the PTE and
significance from the χ2

0 test.7

7 We note that our approach to compute the S/N ratio of the measurement is
different from the one adopted by Keisler & Schmidt (2013), who define the
significance as S/N =

√
χ2. The latter is only a good approximation in the

limit of very large χ2 per degree of freedom and significantly overestimates
the S/N ratio if this assumption is not fulfilled.

5 SI M U L AT I O N S

5.1 kSZ simulations

We use realistic mock data in order to demonstrate the accuracy of
our pairwise kSZ model and to estimate the impact of systematic
effects such as redshift errors and miscentring. For these purposes,
we use the simulated tSZ and kSZ maps by (Flender et al. 2016,
hereafter F16). In the following we will briefly summarize how these
maps were generated, and we refer the reader to F16 for details. We
will further describe the post-processing steps that lead from the
full-sky maps and cluster catalogue to the realistic mock data used
in this analysis.

The CMB maps and cluster catalogue in F16 were generated
using the output from an N-body simulation that was run using
the N-body code framework HACC (Hardware/Hybrid Accelerated
Cosmology Code; Habib et al. 2016). This N-body simulation is
part of a suite of ∼100 simulations that are being carried out under
the Mira–Titan Universe project (Heitmann et al. 2016). The initial
conditions in this particular run adopt the cosmological parameters
�c = 0.22, �bh2 = 0.022 58, σ 8 = 0.8, and h = 0.71, which are
consistent with the best-fitting �CDM cosmology from WMAP7
(Komatsu et al. 2011). When analysing the pairwise kSZ signal
from the simulations, we use these parameters to avoid systematic
errors due to an incorrect cosmological model.

F16 presented several models for the kSZ signal, all of which
were generated via post-processing of the N-body simulation out-
put, based on different assumptions about the intracluster gas. Here,
we use their ‘Model III’, which they consider to be the most realistic
model. It is created as follows: the cluster component of the kSZ
signal is generated by adding a gas component to each halo, follow-
ing the semi-analytic model of Shaw et al. (2010), which takes into
account star formation, feedback effects, as well as non-thermal
pressure. A diffuse gas component is added using the positions and
velocities of all particles outside haloes, assuming that baryons trace
the dark matter. The tSZ signal is modelled in a similar way as the
cluster component of the kSZ signal, using the same semi-analytic
model. We note that whereas in principle the SZ maps could also
be generated from a full hydrodynamical simulation (e.g. Dolag &
Sunyaev 2013; Dolag, Komatsu & Sunyaev 2015), currently avail-
able hydro-simulations do not provide the box size and resolution
required for our purposes.

In addition to the SZ maps, we generate a random realization of
the primary CMB anisotropies based on their angular power spec-
trum computed with CAMB (using the same cosmological parameters
as those used in the N-body simulation). We further model Poisson
noise from radio galaxies and dusty star-forming galaxies, as well
as the clustered component of the CIB as Gaussian random realiza-
tions, using the best-fitting model for their power spectra presented
by George et al. (2015).

In order to generate realistic mock data, we apply the following
post-processing steps to the full-sky maps from F16.

(i) We project the full-sky CMB map (consisting of the SZ signal,
primary CMB, and foregrounds) on to the SPT fields.

(ii) We convolve each field with the corresponding SPT beam
and filter transfer function (note that the SPT beam and filtering
depends on the field and the observation year).

(iii) Finally, we add to each field a random realization of the
instrumental noise in that field. The noise realizations for each
field are calculated directly from the data by randomly pairing all
observations, subtracting one observation from the other in each
pair, then co-adding the resulting difference maps.
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3180 B. Soergel et al.

We generate a mock cluster catalogue by applying the DES mask
to the full-sky cluster catalogue from F16. We further apply the
same point-source mask as applied to the SPT-SZ data. For choos-
ing the appropriate mass range to match the redMaPPer catalogue,
we use the mass–richness relation that Saro et al. (2015) infer from
clusters found in both DES-SV and SPT: We compute P(Mi|λi,
zi) for every cluster i in the redMaPPer catalogue. Based on the
average mass distribution 〈P(Mi|λi, zi)〉i, we then choose a mass
range of 0.9 < M500c/1014 M� < 4; this results in a mock cluster
catalogue with 6015 clusters in the redshift range 0.1 < z < 0.8.
The latter is comparable to the number found in the DES data with
the corresponding richness range (6693). The number of clusters in
the simulation and data catalogues are not expected to match ex-
actly both because of potential differences between the true and
simulated cosmology and Poisson noise, as well as some idealities
we assume in our simulated cluster catalogue: in our main analy-
sis we apply a cut in mass in the simulation catalogue rather than
explicitly modelling the purity and completeness of the optically
selected cluster catalogue, and we ignore the scatter in the mass–
richness relation. We note that a substantial scattering of low-mass
haloes into the sample could potentially bias our results towards
low optical depth. Therefore we test the impact of mass scatter on
our results by selecting an alternative sample where we model this
effect explicitly; see further discussion in Section 7.4 below.

5.2 kSZ model validation with simulations

Before proceeding to measure the pairwise kSZ on the data, we
apply the estimators of equations (18) and (19) to the kSZ simula-
tions introduced in Section 5.1, in order to validate the theoretical
modelling introduced in Section 2.

We first show in Fig. 4 the mean pairwise velocity computed
from the cluster line-of-sight velocities with the estimator of equa-
tion (18), compared with the mean pairwise velocity model v12(r)

Figure 4. Mean pairwise velocity v12(r) from simulations: Top: we show
in black the measurement from the clusters in our mock catalogue, where
the shaded regions indicate the 1σ uncertainties. The solid red line shows
the mean pairwise velocity model of equation (9) evaluated at the median
redshift of zm 
 0.5, whereas the dashed red line represents the leading-order
term (the numerator of equation 9). Bottom: we show here the residuals of
the upper panel with respect to linear theory. In both panels, the red shaded
region (r < 40 Mpc) indicates scales that we exclude from our analysis, as
the simulations deviate by more than 2σ from the theoretical models.

(equation 9) evaluated at the median redshift of zm 
 0.5. The in-
dividual r bins of the simulation result are significantly correlated,
especially for r �80 Mpc, where the elements of the correlation ma-
trix Rij ≡ Cij /

√
CiiCjj are �0.7 for bins separated by �70 Mpc.

We find good agreement between our model and simulations for
large and intermediate scales, i.e. for pair separations r �40 Mpc
(linear and mildly non-linear scales).8 Although the template tends
to marginally (∼10 per cent) underestimate the pairwise velocities
on intermediate scales (r ∼ 100 Mpc), it is consistent with the sim-
ulation result computed from the true line-of-sight velocities within
the statistical uncertainties. As presented below, the uncertainties
in the pairwise kSZ measured from current data are several times
larger, so that this level of accuracy does not introduce a significant
bias into our results.

We note that at scales r �60 Mpc linear theory (the numerator of
equation 9) starts deviating from the full model, which provides a
marginally better match to the shape of the signal measured from
simulations down to scales r ∼ 40 Mpc. At even smaller scales, the
model does not describe the simulation result accurately, as also
shown by Bhattacharya & Kosowsky (2008). This is not surprising:
we are probing the velocities of the highest peaks of the density
field, so that perturbation theory cannot be expected to provide
accurate answers at small scales. We account for this by excluding
the separation bins r < 40 Mpc, where our template deviates from
the simulation result by more than 2σ , from the remainder of this
analysis. This exclusion is mainly relevant for the simulation results
that use the true redshifts, but has only small impact when adding
redshift uncertainties to the simulations or when analysing the real
data. The redshift errors in the latter completely erase the signal at
scales r �50 Mpc (see section 2.3 and below), so that on the scales of
interest for our analysis equation (9) provides a good representation
of the pairwise velocities.

We proceed by measuring the pairwise kSZ amplitude on the
simulations, applying the estimator of equations (19) and (20). In
all cases we discuss below, the error bars of the pairwise kSZ
measurement are estimated by applying JK resampling (see Sec-
tion 4.3 for details) to the respective simulated data set. We then
fit the pairwise kSZ signal measured from the simulations with our
template of equation (11). To disentangle the effect of photo-zs
from other sources of uncertainty, we first demonstrate this proce-
dure using kSZ-only simulations and show the results in Fig. 5.
Without added redshift errors – i.e. using the exact pair sepa-
ration – our template provides an excellent fit to the measured
signal; the best-fitting amplitude is given by an optical depth of
τ̄e = (3.79 ± 0.26) × 10−3.

We next add photometric redshift uncertainties with rms
σ z = {0.01, 0.015, 0.02}. This corresponds to an rms error in
the comoving distance of σdc 
 {35, 50, 65} Mpc; the central value
is comparable to the distance uncertainty of the typical DES cluster,
for which σdc 
 50 Mpc. Adapting the pair separation smoothing
scale accordingly (see Section 2.3), we repeat the kSZ template
fit; these results are also displayed in Fig. 5. In all three cases,
the template, and hence our simple model for the effect of redshift
uncertainties (equation 11), provides a good fit to the results com-
puted from simulations. Increasing the redshift errors significantly

8 The agreement between simulations and linear theory on large scales also
matches with the findings of Hernández-Monteagudo et al. (2015), who used
Gaussian simulations of the linear matter density field and the linearized
continuity equation to generate a theory prediction for the pairwise kSZ
signal.
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Detection of the kSZ effect with DES and SPT 3181

Figure 5. The effect of photo-z uncertainties on simulations: we show
the pairwise kSZ amplitude measured from kSZ-only simulations and the
template fits including the photo-z model. The recovered pairwise kSZ signal
is shown for several levels of redshift errors; the corresponding solid line
and shaded region are the template fit and its uncertainty. In all cases, the
two lowest separation points are excluded from the fit as on these scales
perturbation theory is not valid (denoted by the open symbols in this and
all subsequent figures). The results for the optical depth in the ‘photo-z’
cases are consistent with the ‘true-z’ results, demonstrating that redshift
uncertainties reduce the significance but do not bias our results.

Figure 6. Pairwise kSZ measurements on realistic simulations:
We show the pairwise kSZ amplitude for mock clusters with
9 × 1013 M� < M500c < 4 × 1014 M�, roughly corresponding to the DES
20 < λ̃ < 60 sample. The black points are from a kSZ-only simulation, the
blue colour shows the results with added primary CMB, foregrounds and
noise (but no tSZ) and green refers to the full simulation. In the red case,
we additionally add redshift errors at a similar level as in the real data. In
all cases, the solid line in the respective colour shows the theory template
scaled with the best-fitting optical depth; the shaded regions display the 1σ

uncertainties of the template fit. Once again the best-fitting optical depth
values remain consistent within the uncertainties, demonstrating that our
estimate is unbiased.

suppresses the signal on small scales (see Section 2.3), but with
the adapted template our estimates of τ̄e remain consistent with the
‘true-z’ result within the errors.

We finally show in Fig. 6 the pairwise kSZ results from the full
simulations including noise, primary CMB, and tSZ. The individ-
ual measurements and theory curves refer to, in order: the kSZ-only
simulation, a simulation with added primary CMB, noise, and fore-

grounds (but no thermal SZ9), our full mock catalogue (including
tSZ), and the full mock with added redshift uncertainties. This
comparison serves two purposes: first, it shows that within the cur-
rent measurement uncertainties we recover an unbiased estimate
of the kSZ amplitude in the presence of potential contaminants.
Secondly, by adding a random realization of the redshift uncer-
tainties, we obtain a realistic mock analogue of our measurement
on real data. From the latter, we obtain a best-fitting optical depth
of τ̄e = (4.34 ± 1.17) × 10−3, corresponding to a 3.7σ detection
from the mock catalogue. As we discuss in Section 6.1 below, the
pairwise kSZ amplitude measured from the mocks is therefore con-
sistent with our main result obtained from the real data, although
with slightly higher uncertainties. This minor difference can be ex-
plained by the lower number of clusters compared to the real data,
in addition to other effects such as the difference between a richness
cut and a mass cut.

5.3 Physical interpretation of τ̄e

Throughout this paper, τ̄e is primarily used as an effective parameter
to characterize the amplitude of the measured signal and its detec-
tion significance. However, if the matched filter profile is indeed
a good match to the average profile of the clusters in the sample,
then τ̄e can potentially be interpreted as a physically meaningful
quantity: the average central optical depth. In Section 4.1, we found
that a β-filter scale of θ c = 0.5 arcmin maximizes the detection S/N
in the simulations; thus this scale should roughly match the actual
scale in our cluster sample. Therefore, the matched filter with this
scale should return a reasonable estimate of the peak kSZ tempera-
ture T0, which can be translated into the central optical depth. We
test this hypothesis by comparing the ‘true’ central optical depth,
τ̄ true
e to the match-filtered central optical depth, τ̄ filt

e , as explained
below.

We calculate τ̄ true
e from equation (1). For every cluster in the mock

catalogue, we use the true amplitude T0 of the kSZ temperature
profile computed as described in section 2.2 of F16, and the proper
line-of-sight velocity from the underlying N-body simulation; τ̄ true

e

is then the slope of the best-fitting linear scaling relation between the
two quantities. This approach is similar to the technique proposed
by Li et al. (2014) and used by Schaan et al. (2016); however, instead
of reconstructing velocities from the observed density field, we use
the actual velocities from the simulations, and furthermore the true
kSZ signal instead of a filtered CMB map. We obtain

τ̄ true
e = (3.39 ± 0.02) × 10−3. (25)

Repeating the above procedure with the temperatures measured
from the full, match-filtered CMB map (including all potential con-
taminants), we find

τ̄ filt
e = (3.13 ± 0.20) × 10−3 (26)

with a correlation coefficient (Pearson r) of r = 0.2. The agreement
between τ̄ filt

e and τ̄ true
e at the �10 per cent level indicates that indeed

our fiducial filtering scale of 0.5 arcmin is reasonably well matched
to the actual cluster scale.

Finally, the optical depths estimated directly from the tem-
peratures at cluster positions in the simulations with or with-
out match-filtering, τ̄ true

e and τ̄ filt
e , should also be consistent with

the pairwise values recovered from the kSZ-only simulations,

9 We further discuss tSZ contamination as a potential contaminant in Sec-
tion 7.2 below.
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3182 B. Soergel et al.

τ̄
sim,kSZ−only

e = (3.79 ± 0.26) × 10−3, as well as with the result from
the full realistic simulations derived in Section 5.2 above. Aver-
aging over multiple realizations of the photo-z errors, we obtain
τ̄

sim,full

e = (4.07 ± 1.26) × 10−3. We find that the τ̄e values recov-
ered with these different methods are all consistent within the real-
istic statistical uncertainty of our measurement, as the differences
are always �τ̄e < σ

sim,full

τ̄e
. Therefore – at the precision level of the

current measurement – we can interpret the measured value of τ̄e at
the matched filter scale as a physically meaningful parameter, i.e.
the average central optical depth of the clusters in the sample. We
discuss the implications of our results for cluster astrophysics in
Section 8 below.

We note that the changes in τ̄e appear instead more signifi-
cant when compared with the small statistical uncertainty of the
true-redshift, kSZ-only simulations: this indicates that future high-
significance measurements will require further work to improve
the pairwise kSZ modelling beyond the present accuracy level. A
further discussion of potential systematic uncertainties is given in
Section 7.

6 R ESULTS

6.1 Pairwise kSZ signal with DES and SPT

We show in Fig. 7 the pairwise kSZ signal measured from the DES
redMaPPer cluster catalogue and the SPT CMB temperature maps
using the estimator of equations (19) and (20); this is the main result
of our paper. The uncertainties on the pairwise kSZ amplitude are
determined from the JK covariance matrix (equation 21), which is
estimated as described in Section 4.3. We show the corresponding
correlation matrix, which we find to be nearly diagonal, in Fig. 8.

The significance of this detection is estimated as described in
Section 4.4. Fitting the pairwise velocity template of equation (11)
to the measured data points yields an average optical depth of

τ̄e = (3.75 ± 0.89) × 10−3, (27)

corresponding to a 4.2σ detection of the pairwise kSZ effect. This
measurement represents the first detection of the kSZ using photo-
metric redshift data. The signal is consistent with that obtained from
simulations: see Section 5.2 and Fig. 6. We discuss the implications
of this result for cluster astrophysics in Section 8 below.

As an additional test of the detection significance, we calculate
the χ2 with respect to the no-signal hypothesis (χ2

0 ) as defined in
Section 4.4; we find χ2

0 = 29 for 15 dof. This corresponds to a PTE
of 1.6 per cent or, assuming Gaussian uncertainties, a rejection of the
no-signal hypothesis at the 2.4σ level. As expected, this test yields
a lower significance than the template fit, which includes additional
information about the predicted shape of the pairwise kSZ signal.
However, even with the agnostic approach of the χ2

0 procedure, the
no-signal hypothesis is rejected at a statistically significant level.

To further validate the 
4σ significance of the template fit, we
create a set of 1000 null measurements by shuffling the cluster pairs
and then estimating the pairwise kSZ amplitude; a histogram of
the measured τ̄e from these realizations is shown in Fig. 9. Their
distribution should be statistically consistent with a null signal –
this is one of the null tests discussed in Section 7.1. We find a mean
of 〈τ̄e〉 
 −10−5 and a standard deviation of στ̄e = 0.92 × 10−3,
in excellent agreement with the template fit uncertainty. This test
supports the 
4σ significance of the template fit.

6.2 Dependence on filtering scale and profile

In this section, we explore how the detection significance depends
on the details of the CMB filtering we introduced in Section 4.1.
The top panel of Table 1 shows the dependence of the best-fitting
optical depth on the filter scale, θ c. A significant (>3σ ) signal
is detected for filter scales up to θ c = 2 arcmin; this is expected
since the instrumental beam dominates the filter shape for these
small filters. The recovered amplitude τ̄e drops monotonically with
increasing θ c: in this sense τ̄e can be seen as an ‘effective parameter’
that is sensitive to the filtering scale. A physical interpretation of
τ̄e is nevertheless possible by using a filtering scale that is matched
to the actual angular size of the cluster; in our case, this choice
corresponds to the θ c = 0.5 arcmin filter.10 We have established
this possibility of a physical interpretation in Section 5.3 and will
discuss the implications for cluster astrophysics in Section 8 below.

We further test whether the signal depends on the filter profile
shape by replacing the β-profile from equation (14) with a projected
Navarro, Frenk, and White (NFW) density profile (Navarro, Frenk
& White 1996). The 3D NFW profile is given by

ρ(r) = ρ0
1

r/rs (1 + r/rs)
2 , (28)

where r is the (3D) radius from the cluster centre and rs ≡ R500/c500

is the scale radius. Here, R500 is the radius inside which the mass
density of the halo is equal to 500 times the critical density at the
cluster redshift, and c500 is the dimensionless concentration param-
eter. We set the latter to c500 = 3 based on the typical cluster mass
and redshift and the mass–concentration relation of Bhattacharya
et al. (2013). We use the analytic 2D projection of this profile given
by Wright & Brainerd (2000), and parametrize the angular scale in
terms of θ500, the angular counterpart to R500. For the clusters in our
sample, we find the mean θ500 to be around 2 arcmin.

In the bottom panel of Table 1, we show the optical depth mea-
sured using the NFW-profile filter as a function of filter scale, θ500.
The signal behaves in essentially the same way as for the β-filter:
the amplitude decreases monotonically with increasing θ500. We
have tested NFW filters with θ500 ∈ [0.75 arcmin, 3.5 arcmin], and
obtain a significant detection with all of them. The relative size of
the optical depths obtained with the β- and NFW profiles is roughly
consistent with the expectation based on θ500 ∼ 5θ c (e.g. Plagge
et al. 2010; Liu et al. 2015). Additionally, the maximum significance
for either filter profile is identical (4.4σ ).

Finally, we have also investigated using an adaptive filter scale
based on the cluster radius and its angular diameter distance, and
have detected the signal at a comparable significance. The results
of this section demonstrate that our detection significance is not
sensitive to the details of the assumed cluster profile.

6.3 Redshift dependence

At large scales, where linear perturbation theory holds, the pairwise
kSZ signal can be written as TpkSZ ∝ b τ̄e ξ δv . The redshift evolution
of the signal is thus driven by the evolution in bias, average optical
depth, and peculiar velocities of the cluster sample.

From the linearized continuity equation (4), it follows that pecu-
liar velocities grow as v ∝ a1/2 during matter domination. In the

10 For θ �1′ arcmin, the β-profile with θ c = 0.5 arcmin matches within
�30 per cent accuracy a projected NFW profile with concentration c200 

3.5 and θ200 
3′, which are the mean NFW-parameters from the clusters in
our main sample.
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Detection of the kSZ effect with DES and SPT 3183

Figure 7. Pairwise kSZ amplitude measured from the DES Y1 redMaPPer catalogue and the SPT-SZ temperature maps, using the baseline sample of clusters
with 20 < λ̃ < 60. The solid red line shows the analytic pairwise velocity template (equation 11) scaled with the best-fitting optical depth τ̄e; the shaded
regions are the corresponding 1σ uncertainties. As before, the two lowest separation points shown with empty symbols are excluded from the fit, as on these
scales perturbation theory is not valid.

Figure 8. Correlation matrix of the pairwise kSZ measurement of Fig. 7
estimated from 120 JK samples drawn from the cluster catalogue.

standard cosmological model, this growth slows down and the ve-
locity field decays at late times, where the cosmological constant
dominates. With our analysis, we are probing the redshift range
in the transition between these two regimes. To first approxima-
tion, we can thus assume that the peculiar velocities do not evolve
significantly with redshift. This simple argument is confirmed by
evaluating the full redshift dependence of ξ δv(r, z) from equation
(5). On large scales, and in the redshift range considered here, we
find ξ δv(r, z) to be within ∼20 per cent from its value at the median
redshift of zm 
 0.5.

Secondly, the growth of clusters leads to an increased mean op-
tical depth towards low redshifts. On the other hand, if we apply a
constant mass threshold to a sample that is entirely complete and
pure, we would be selecting objects that are more strongly biased
at high redshift. In this somewhat idealistic case, these different
effects influence the pairwise kSZ amplitude in opposite direc-
tions and would therefore partially cancel, leading to a relatively
weak redshift evolution. However, as explained in Section 3.1, the

Figure 9. Validating the statistical significance of the template fit: We
show in blue a histogram of the best-fitting τ̄e values of 1000 null-signal
realizations obtained by shuffling the cluster pairs. The red curve is a normal
distribution fit to the histogram and has a width of στ̄e = 0.92 × 10−3. This
validates the ∼4σ significance of the unshuffled result (τ̄e = 3.75 × 10−3),
which is shown by the vertical thick dashed line. The thin dotted lines
represent the mean and the ±1σ to ±5σ confidence intervals.

high-redshift end of the cluster sample is still partially affected by
Malmquist bias (increasing the effective richness threshold) and Ed-
dington bias (decreasing the effective threshold by scattering lower
richness objects into the sample). Furthermore, the richness–mass
relation can also evolve with redshift. A better theoretical under-
standing of the redshift evolution of the measured pairwise kSZ
signal would require a detailed modelling of all of these effects,
which is beyond the scope of this work.

We first test our expectation for the redshift evolution with our
mock catalogue, i.e. for the case of a complete and pure sample.
For this purpose, we split the sample at the median redshift of zm 

0.5 and recompute the pairwise kSZ amplitude from the two bins.
Indeed we find that the two measured amplitudes are comparable.
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3184 B. Soergel et al.

Table 1. Filter profile dependence: we show the best-fitting optical depth and S/N ratio for different choices of the filter profile and scale. Top: we explore
various angular core radii θ c of the β-profile. The detection significance is almost independent of the filtering scale for θc ≤ 1 arcmin and weakly decreases
with θ c for θ c > 1 arcmin. The highlighted scale of θ c = 0.5 arcmin was used for the main analysis. Bottom: filtering with a projected NFW profile with
various angular radii θ500. Both the amplitude and detection significance are comparable to the results with the smallest β-profile filters.

Filter type Filter scale

β-profile θ c 0.25 arcmin 0.5 arcmin 1 arcmin 2 arcmin
103 × τ̄e 7.63 ± 1.72 (4.4σ ) 3.75 ± 0.89 (4.2σ ) 2.15 ± 0.58 (3.7σ ) 1.68 ± 0.51 (3.3σ )

NFW-profile θ500 0.75 arcmin 1.5 arcmin 2.5 arcmin 3.5 arcmin
103 × τ̄e 11.26 ± 2.55 (4.4σ ) 8.00 ± 1.82 (4.4σ ) 6.27 ± 1.46 (4.3σ ) 5.46 ± 1.32 (4.1σ )

Figure 10. Redshift dependence: pairwise kSZ amplitude from DES Y1 and
SPT-SZ data in two redshift bins, below and above the median redshift zm 

0.5. We detect the signal in both redshift bins with comparable amplitudes.

We then proceed to the measurement on real data, where additionally
the sample selection effects mentioned above could influence the
redshift dependence. We show in Fig. 10 the results for the two
redshift bins: we obtain τ̄e = (4.44 ± 1.54) × 10−3 (2.9σ template
fit significance) from the low-redshift bin, whereas from the high-
redshift bin we find τ̄e = (3.71 ± 1.63) × 10−3 (2.3σ template fit
significance). The amplitudes from the two bins are comparable and
in good agreement with our main result of equation (27). We further
note that the combined significance of the two bins (3.7σ ) is slightly
lower than the main result with only one redshift bin because the
redshift split removes all pairs with radial separations that cross the
redshift boundary.

Given the measurement uncertainties on our data, there is no ev-
idence that τ̄e evolves significantly with redshift. If future data (see
also Section 9 below) provides sufficiently large, volume-limited
cluster catalogues, the signal could be measured in multiple redshift
bins with higher precision. This would yield significantly tighter
constraints on the redshift evolution of the pairwise kSZ, and hence
of the peculiar velocity field, than currently possible.

6.4 Richness limits

In general, the mean optical depth should scale roughly as τ̄e ∝
M̄ ∝ λ̄, where M̄ and λ̄ are the mean mass and richness of the clus-
ter sample. Including clusters with lower richness into the sample
increases the number counts significantly, but at the price of a higher
uncertainty in purity, centring, and photometric redshifts. Here we
test the effect of a less stringent richness cut of 10 < λ̃ < 60, which
leaves 28 760 (instead of 6693) clusters in the sample. In this case,
the result of the template fit is τ̄e = (1.37 ± 0.41) × 10−3. The best-
fitting optical depth has decreased by a factor of 
3 compared to

the fiducial 20 < λ̃ < 60 sample, which is a stronger trend than one
would expect based on the simple scaling given above. This steeper
decrease could point to miscentring or impurities in the cluster cata-
logue being more pronounced in the low-mass sample. On the other
hand, as the number of clusters is larger, the error on τ̄e is smaller as
well, so that the overall significance (3.4σ ) is broadly comparable
to the higher-mass sample. Despite the large increase in number
counts, the low-λ sample does not add to the detection significance
of the main sample, and indeed there is only marginal signal in the
10 < λ̃ < 20 range: here we find τ̄e = (0.77 ± 0.39) × 10−3.

To compare the 10 < λ̃ < 60 sample from the DES data to sim-
ulations, we select a sample with 4 × 1013 M� < M500c < 4 ×
1014 M� from our mock catalogue. It contains ∼28 000 clusters,
which is comparable to the number in the 10 < λ̃ < 60 sample. We
further simulate photometric redshifts by adding random errors with
rms σ z = 0.02, which is comparable to the photo-z uncertainty in
the real data. From this sample, we obtain a best-fitting optical depth
of τ̄e = (2.66 ± 0.68) × 10−3, corresponding to an ∼4σ detection.
While the detection significance is comparable to the real data, the
value of τ̄e from the simulations is somewhat higher, and consistent
with the expectation based on the mass limits. When analysing the
4 × 1013 M� < M500c < 9 × 1013 M� range (corresponding to
10 < λ̃ < 20) separately, we find a similar behaviour. These obser-
vations support the hypothesis that miscentring and imperfections
in the cluster catalogue are non-negligible at the low-mass end. Ad-
ditionally, given the increased level of redshift uncertainty in the
10 < λ̃ < 60 sample, it is not surprising that we do not find a more
significant detection from these clusters.

We have also explored other lower richness limits, such as λ̃ >

15, which approximately splits the 10 < λ̃ < 60 sample into a low-
richness and high-richness half. Our findings are consistent with
the trend we have observed from the two main samples: including
clusters with λ̃ < 20 significantly reduces the optical depth and does
not improve the overall S/N ratio.

Finally, we have explored raising the lower richness threshold and
found that this also does not enhance the overall S/N ratio, mainly
because of the significant reduction in cluster number. As an exam-
ple, we have measured the kSZ signal from the 2324 clusters with
30 < λ̃ < 60. We find τ̄e = (5.16 ± 2.20) × 10−3, corresponding
to a 2.3σ detection. The optical depth is about 40 per cent higher
than in our main sample; the change is consistent with the expec-
tation based on the increased mean cluster mass. This indicates
that imperfections in the cluster catalogue such as miscentring do
not further decrease significantly when increasing the lower rich-
ness threshold beyond λ̃ = 20. Also, the photo-z performance does
not improve significantly anymore; we find only an ∼10 per cent de-
crease in the rms distance uncertainty compared to the main sample.
Furthermore, we have studied the 20 < λ̃ < 30 sample containing
4369 clusters. Again we obtain a relatively weak detection, but
the change in the optical depth is consistent with the expectation.
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Detection of the kSZ effect with DES and SPT 3185

Table 2. Tests for potential systematic effects: we show the measured optical depth for all simulated data scenarios considered in this work. The first two rows
are estimated from equation (1) using the true cluster velocities from the simulations (see Section 5.3). The remaining rows are obtained with the pairwise
method used in the main analysis, i.e. by fitting the template of equation (11) to the result of the pairwise kSZ estimator (equations 19 and 20). The individual
columns show the respective data set used, the section(s) in which it is analysed or discussed, its best-fitting optical depth, the reference data combination
and row number used for the comparison, and the deviation from this reference value in units of the statistical uncertainty of the full mock measurement

averaged over multiple realizations of the photo-zs, σ
sim,full

τ̄e
= 1.26 × 10−3. This detailed comparison allows us to isolate the effect of each individual potential

systematic. We find that all cases are consistent within the realistic statistical errors of our measurement, demonstrating that the effect of systematics on our
measurement is small given the present statistical uncertainties.

Data used Section(s) 103 × τ̄e Reference data [row number] (τ̄e − τ̄ ref
e )/σ

sim,full

τ̄e

Velocity correlation: kSZ only (‘true’) 5.3 3.39 ± 0.02 – –
Velocity correlation: full CMB, filtered 5.3 3.13 ± 0.20 ‘true’ [1] −0.2
Pairwise: kSZ only 5.2 3.79 ± 0.26 ‘true’ [1] +0.3
Pairwise: kSZ + primary, noise, foregrounds (‘no tSZ’) 5.2 3.65 ± 0.65 pairwise: kSZ only [3] −0.1

+ tSZ (‘full CMB’) 5.2, 7.2 4.46 ± 0.86 pairwise: kSZ only [3] +0.5
Pairwise: full CMB + photo-z (mult. realis.) 5.2, 5.3 4.07 ± 1.26 full CMB [5] −0.3
full CMB + miscentring Johnston 7.3 4.03 ± 0.82 full CMB [5] −0.3
full CMB + miscentring Saro 7.3 3.91 ± 0.82 full CMB [5] −0.4
full CMB + mass scatter 7.4 3.56 ± 0.86 full CMB [5] −0.7
Pairwise: full CMB + photo-z 5.2, 5.3 4.07 ± 1.26 ‘true’ [1] +0.5

Overall, the results of this section demonstrate that λ̃ = 20 is as
good choice for the lower richness limit for kSZ studies with cur-
rent cluster data.

7 TESTS FOR SYSTEMATICS

In this section, we perform multiple tests to estimate the effects of
potential systematics on our result. First, we carry out a set of null
tests using the real data. Subsequently, we test for contamination
by thermal SZ, centring uncertainties and mass scatter using the
simulations. We show a compilation of the test results in Table 2.
Finally, we briefly list and discuss other potential systematics, such
as position-dependent foregrounds in the optical catalogue. Overall,
we find that none of the systematic candidates considered has a
significant effect on our results, given the current measurement
uncertainties.

7.1 Null tests

We first produce null tests by modifying the pairwise estimator
(equation 19) in three simple ways. The results of these null tests
are shown in Fig. 11: in all three cases, the best-fitting optical depth
is consistent with zero within the 1σ uncertainties.

(1) We replace the minus sign in the estimator with a plus to
remove the sensitivity to the pairwise kSZ signal (H12). The result
is consistent with a null signal (χ2

0 ≈ 15 for 15 dof).
(2) We randomly shuffle the clusters before estimating the pair-

wise kSZ amplitude, but keep the same weights cij as in the unshuf-
fled case (see H12). We have already shown in Fig. 9 a histogram of
the best-fitting amplitude of 1000 realizations of this shuffling; the
results are consistent with a null signal. Furthermore, Fig. 11 dis-
plays one representative realization of this shuffling with χ2

0 ≈ 11
(15 dof).

(3) We compute the pairwise kSZ amplitude from a catalogue of
random positions. For this purpose, we use random points produced
with the redMaPPer algorithm by creating random {z, λ} pairs from
the real catalogue and assigning random positions on the sky to
them, while ensuring that they cover the same volume and have the
same distribution in richness and redshift as the original catalogue
(Rykoff et al. 2016). We then apply the same cuts and process the

Figure 11. Null tests for the 20 < λ̃ < 60 sample: the large black squares
show the actual signal; the green (null test ‘+ in estimator’), blue (null test
‘shuffled’) and red (null test ‘random positions’) points display the results
of the three null tests described in Section 7.1. All three tests are consistent
with the expectation of a null signal.

random points with the same analysis steps as for the real data before
estimating the pairwise kSZ amplitude. This test yields χ2

0 ≈ 4 (15
dof), so it is fully consistent with a null signal. The success of these
three null tests demonstrates that there are no obvious systematic
contaminants affecting our measurement.

7.2 Contamination by the tSZ effect

On individual clusters the kSZ signal is only a subdominant con-
tribution to the millimetre-wave signal, which is instead dominated
by primary CMB, noise residuals, and the thermal SZ component.
The primary CMB and noise are uncorrelated with cluster positions,
and they would therefore already average out in a stacking analysis,
whereas the thermal SZ component is only removed by the pair-
wise estimator (equation 19). This cancellation might however be
insufficient for the most massive clusters, as these are rare objects
and have the highest tSZ temperature decrement. For this reason, we
have excluded the most massive clusters (λ̃ > 60) from the sample
and hence we do not expect a high degree of tSZ contamination.
None the less, we test for this possible systematic by processing a
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mock CMB data set with all components except for the tSZ com-
ponent through the same pipeline as before, in order to estimate the
impact of the tSZ to our measurement.

The comparison of the result from the ‘kSZ-only’, the ‘full CMB’
and the ‘no tSZ’ mocks were shown in Fig. 6 above, and are sum-
marized in Table 2 for convenience. Here, we find that the measured
optical depth from the ‘no tSZ’ case is in excellent agreement with
the ‘kSZ-only’ model, whereas the full mock yields a marginally
higher result (0.8σ using the true redshifts, reducing to 0.5σ when
adding redshift uncertainties); nevertheless all three are consistent
within the measurement uncertainties.11 We have also tested the
impact of including the high-mass clusters on the degree of tSZ
contamination. We find that including them reduces the overall S/N,
but still tSZ contamination does not cause our result for the optical
depth to be substantially biased. Therefore we conclude that, with
the currently available data, tSZ contamination is not a significant
issue for the pairwise kSZ measurement.

7.3 Centring uncertainties

Offsets between the cluster centre derived from optical data and the
centre of the SZ emission have the potential of diluting the pairwise
kSZ signal. This miscentring can happen for clusters in which the
brightest cluster galaxy (BCG) is not at the location of the potential
minimum, such as in unrelaxed or merging clusters. Furthermore,
there are cases where the galaxy labelled as the central galaxy by the
redMaPPer algorithm is not truly the BCG. Here, we test the impact
of miscentring on the measurement of τ̄e by introducing random
offsets into the mock cluster catalogue.

Following F16, we consider here two different miscentring mod-
els. Our first miscentring model follows Johnston et al. (2007),
where we assume that a fraction fJ = 0.75 of clusters in the
sample have the correct centre, and a fraction 1 − fJ of clusters
are miscentred, following a 2D-Gaussian distribution with width
σ J = 300 h−1kpc (see F16 for a discussion of the choice of the
parameters fJ and σ J). The second miscentring model adopts the
best-fitting parameters of the model by Saro et al. (2015), which
characterizes the offset distribution as a two-component Gaussian
distribution. We show in Table 2 the best-fitting optical depth mea-
sured from simulations where we have introduced random offsets
in the cluster positions according to these two miscentring models.
In agreement with F16, we find that for both models miscentring
reduces the pairwise kSZ amplitude by �10 per cent, which is not
significant given the error bars in our measurement. We therefore
conclude that miscentring at the level suggested by the models con-
sidered here is not a significant problem for our analysis. We note
however that for more precise measurements of the pairwise kSZ
amplitude in the future, a better understanding of the miscentring
distribution and potentially a correction of this small bias will be
necessary.

7.4 Mass scatter

In order to obtain a good match between the optical cluster catalogue
(selected in richness) and the mock catalogue (selected in mass),

11 We note that this small, but non-zero degree of tSZ contamination could
also be caused by a chance correlation in our particular simulated realiza-
tion. This could be studied in more detail only with multiple independent
realizations of simulated tSZ and kSZ signals, which is computationally
expensive, and beyond the scope of the present work (see also Section 4.3).

an accurate knowledge of the mass range and average mass of
the cluster sample is required. Furthermore, the calculation of the
theory template also requires a mass range. If incompleteness and
impurities in the catalogue or a large scatter in the mass–richness
relation substantially affect the typical cluster mass in the optical
catalogue, the inferred optical depth could be biased, both with
respect to the true value and the simulations. In this work, we have
selected our sample based on the mass–richness relation calibrated
by Saro et al. (2015), who also accounted for scatter in the relation,
finding good agreement between the optical depth from the real data
and simulations.

To further test for the impact of scatter in the mass–richness rela-
tion, we use an alternative approach for selecting our mock sample:
here we explicitly model the scatter by adding a logarithmic mass
error drawn from a normal distribution with width σ ln M = 0.3 to
the masses in our catalogue and selecting the sample based on this
‘observed’ mass. We use a mass range of 1 < M500c/1014 M� < 3,
where the lower and upper limits corresponds roughly to λ = 20 and
λ = 60, respectively (e.g. Rykoff et al. 2012). We then recompute
the pairwise kSZ amplitude from the alternative sample. To be able
to disentangle the effect of the mass scatter from the photomet-
ric redshift uncertainties, we do not add additional photo-z errors
here. Averaging over several realizations of the mass scatter, we
find τ̄e = (3.56 ± 0.86) × 10−3, which is ∼1σ lower than the result
with our main sample. However, when adding redshift errors, the
uncertainties on the pairwise kSZ amplitude increase, so that the
difference between the two samples reduces to ∼0.7σ (see Table 2).

We further note that our main sample was not selected in the
richness λ, but in the galaxy counts λ̃ (see Section 3.1). This more
conservative cut tends to remove clusters with large richness un-
certainties even if they have λ > 20 (see top-right panel of Fig. 2).
Therefore it is not surprising that our result for the optical depth
slightly decreases if we directly translate a lower richness bound of
λ = 20 into a mass limit. Finally, our result for τ̄e from the data
is consistent with both the main and the alternative mock sample
within the uncertainties. Therefore, we conclude that given the cur-
rent measurement uncertainties mass scatter does not introduce a
statistically significant bias into our results.

7.5 Other potential systematics

We finally discuss other systematic effects that could potentially
affect the pairwise kSZ measurement and bias our estimate of τ̄e.

(1) The calculation of the pairwise velocity template relies on
several assumptions, such as the validity of the model in the quasi-
linear regime, a prescription for the halo bias, and a negligible
velocity bias. We have shown that our theory template is accurate
to within ∼10 per cent (see Fig. 4), significantly below the current
measurement uncertainties, so that we discard remaining model
inaccuracies as a potential source of significant bias.

(2) Additionally, when relating the mean pairwise velocity to
the pairwise kSZ signal in equation (3), we implicitly assume that
there are no strong correlations between the velocities and optical
depths of individual clusters, such that the average 〈vτ e〉 effectively
reduces to 〈v〉 × 〈τ e〉. We have shown in Section 5.3 that the optical
depth measured from the pairwise kSZ is consistent with the true
optical depth of the cluster sample. Therefore this assumption does
not bias our results given the current measurement uncertainties.

(3) As described in Section 2.3, we have heuristically modelled
the effect of photometric redshift uncertainties on the pairwise
kSZ signal. We have shown in Section 5.2 that given the current
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Detection of the kSZ effect with DES and SPT 3187

measurement uncertainties this simple model is sufficient to obtain
results that are unbiased within the uncertainties.

(4) Finally, position-dependent foregrounds of the optical cata-
logue, such as Galactic extinction, seeing, airmass, and sky bright-
ness, can contaminate the cluster sample, thus potentially affecting
the results. We describe in Appendix B a number of tests we have
performed on these potential systematics, and we demonstrate that
their impact is negligible.

We therefore conclude that at the significance level reported here,
these potential systematics are not significant. With the precision
measurements that are likely to be achieved with future data how-
ever (see e.g. F16 for a forecast), more careful quantifications and
corrections will be required.

8 IM P L I C AT I O N S FO R C L U S T E R
ASTROPHYSICS

As described in Section 2.4, the pairwise kSZ amplitude is sensi-
tive to a combination of astrophysical and cosmological parameters,
namely bτ̄e × f σ 2

8 , where b is the cluster bias, τ̄e is the mean central
optical depth of the cluster sample, f is the growth rate of density
perturbations, and σ 8 is the current rms linear matter fluctuation on
scales of 8 h−1 Mpc. In principle, it is possible to combine a mea-
surement of the pairwise kSZ amplitude with external constraints
on b (e.g. from a clustering measurement) and τ̄e (from the thermal
SZ signal or X-ray observations) to derive constraints on f σ 2

8 . The
latter could be used as a test of gravity, complementary to other
probes such as redshift-space distortions. At the current detection
significance, however, the resulting cosmological constraints would
be weak and strongly degenerate with the still relatively uncertain
cluster astrophysics. We have therefore fixed the cosmological pa-
rameters to the fiducial Planck 2015 values of the base �CDM
model12 and have used the measurement of the pairwise kSZ signal
to place constraints on the average optical depth of the cluster sam-
ple, τ̄e. As discussed in Section 5.3, physical interpretations of τ̄e

are only considered at the fiducial filtering scale θ c = 0.5 arcmin.
We first compare our results for the optical depth to those obtained

by Planck Collaboration XXXVII (2016) when extracting the kSZ
signal by cross-correlation with reconstructed velocities. For our
fiducial filtering scale of θ c = 0.5 arcmin, we have obtained a
value of τ̄e = (3.75 ± 0.89) × 10−3. This is significantly larger than
τ̄e = (1.4 ± 0.5) × 10−4 found by Planck Collaboration XXXVII
(2016). The difference is however not surprising: the Planck analysis
uses a catalogue of around 260 000 central galaxies, whose typical
host halo masses are significantly below the mass range used in this
work. Furthermore, the authors of Planck Collaboration XXXVII
(2016) used aperture photometry (as opposed to a matched filter),
thus the significantly broader beam of Planck (FWHM 5 arcmin–
7 arcmin for the maps used) dilutes the SZ signal over a much larger
area, resulting in a lower effective optical depth.

Next, we study the behaviour of τ̄e as a function of the matched-
filter scale; this probes the spatial extent of the average cluster pro-
file. Our main result, τ̄e = (3.75 ± 0.89) × 10−3, is derived using a
matched filter that follows a β-profile with θ c = 0.5 arcmin, which
corresponds roughly to the average cluster profile in our sample.
Here we vary the filter scale and plot the best-fitting τ̄e as a function

12 We have tested that the change of the theory template when varying
the cosmology is subdominant compared to the measurement uncertainties.
Therefore there is no need to marginalize over the cosmological parameters.

Figure 12. Pairwise kSZ detection as a function of filtering scale θc for the
measurement from DES×SPT (red) and our mock catalogues (blue). The
dashed vertical line marks our fiducial filtering scale of θc = 0.5 arcmin.
Top: we show the best-fitting optical depth, in the case of the simulations
averaged over 40 random realizations of the photo-z errors. Bottom: the
lines represent the detection significance τ̄e/στ̄e for both data and simula-
tions. For the latter, we additionally show the scatter caused by the random
realizations of the photo-z errors: the shaded regions in dark (light) blue are
the 68 per cent (95 per cent) confidence regions estimated from the scatter of
the realizations.

of filter scale in the top panel of Fig. 12. As already demonstrated in
Section 6.2, the pairwise kSZ amplitude decreases with increasing
filter scale as the filter essentially averages over a region larger than
the cluster. This trend flattens off at θ c ≈ 1 arcmin; for larger θ c we
measure a roughly constant value of τ̄e 
 2 × 10−3.

The S/N ratio of the measurement is displayed in the bottom
panel of Fig. 12, where the shaded band indicates the uncertainties
caused by the random realisations of the photometric redshift errors.
We detect the signal with S/N ≥ 3 out to θ c = 3 arcmin; even at
θ c = 10 arcmin there is still a marginal detection (S/N 
 2). The
behaviour of the S/N as a function of filter scale is consistent with
the expectations from the simulations, i.e. there is no evidence in
the data for an additional ionized gas component that is not included
in the astrophysical model.

It is important to note that the signal found using θ c = 10 ar-
cmin should not be interpreted as a detection of diffuse ionized gas
at large distances from the cluster centre; when a large-aperture
matched filter is used, a signal may be detected even from clusters
with a significantly smaller spatial extent. The spatial extent of the
gas could be studied with a compensated top-hat filter (i.e. aper-
ture photometry; Hernández-Monteagudo et al. 2015); however,
this would reduce the significance of the already marginal detection
(see for example, F16).

As shown in the Section 5.3, our result for τ̄e is a good estimate of
the true average optical depth when using our fiducial filtering scale
of θ c = 0.5 arcmin. Therefore we can convert it into the average
gas fraction fgas as follows: the matched filter estimates the central
amplitude of the temperature profile, hence τ̄e corresponds to the
optical depth along a line of sight through the centre of the cluster.
The central electron density ne, 0 is therefore related to τ̄e via

τ̄e = σT

∫ R

−R

dr ne(r), (29)
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with the 3D β-profile ne(r) = ne,0 (1 + r2/r2
c )−3/2. The total num-

ber of electrons is

Ne = 4π

∫ R

0
dr r2ne(r). (30)

As ne(r) ∝ r−3 for large r, this integral has a logarithmic divergence
and needs to be truncated (the same holds true for the NFW profile).
The number of electrons associated with a cluster is of course finite;
the divergence merely reflects the fact that for sufficiently large
radii the gas profile will deviate from the simple functional form of
the β-profile. Here, we truncate the integrals in equations (29) and
(30) at a fixed physical radius given by the mean R500 (w.r.t. critical
density) of our mock cluster sample, 〈R500〉 
 0.65 Mpc. The gas
fraction within R500 is then computed as fgas = Neμemp/M̄ , where
mp is the proton mass and the mean particle weight per electron is
given by μe = 1.17 assuming primordial abundances. We further
use M̄ = 〈M500〉 
 1.4 × 1014 M�, which is the mean mass of the
clusters in our mock catalogue.

Assuming that the average density profile of the cluster sample
follows a β-model profile with θ c = 0.5 arcmin, we obtain

f 500
gas = 0.080 ± 0.019 (stat.), (31)

which is in good agreement with the values suggested by X-ray
observations of clusters in a similar mass range (e.g. Vikhlinin et al.
2006; Arnaud, Pointecouteau & Pratt 2007; Giodini et al. 2009; Sun
et al. 2009) and recent results from hydrodynamical simulations
(e.g. McCarthy et al. 2016). From the simulations by F16 analysed
in this work, we infer a gas fraction of f 500

gas = 0.086 ± 0.027 (stat.).
In addition to these statistical errors, systematic uncertainty arises
from determining the central optical depth τ̄e via the pairwise kSZ
measurement, and from converting the latter into the gas fraction.
Concerning the former, Section 5.3 demonstrated that in simula-
tions, we recover the ‘true’ optical depth to within statistical uncer-
tainties. Regarding the conversion to gas fraction, the ‘true’ value
of fgas in the simulations is given by the fiducial model of Shaw
et al. (2010), which was used to generate the kSZ simulations used
here; this model predicts f 500

gas 
 0.09 for the clusters in the mass
range considered here (see fig. 4 in that work). Our results from
simulations and also from the real data are in good agreement with
this value.

Our choice of profile and integration radius are, however,
somewhat arbitrary. Integrating to R = 〈R200〉 
 1 Mpc, and using
M̄ = 〈M200〉 
 2.2 × 1014 M�, we obtain f 200

gas = 0.070 ±
0.016 (stat.) from the data and f 200

gas = 0.076 ± 0.023 (stat.)
from the simulations. These values are slightly smaller than the
corresponding results for f 500

gas . This is against the expectation
of a growing gas fraction with increasing R, and could indicate
that the simple β-profile does not describe the kSZ signal from
the cluster outskirts accurately (see also Vikhlinin et al. 2006 for
similar findings from X-ray data). Our results for f 200

gas are also in
some tension with simulation results by Battaglia et al. (2013) and
extrapolations from X-ray observations of clusters (Mantz et al.
2014), which points to the limitations of our simple calculation of
fgas. We reiterate here that the assumed profile shape is a significant
source of systematic uncertainty in our measurement of fgas, and
extracted fgas values are only valid where the profile is a good match
to the actual cluster profile. An alternative, equally valid choice
would be to replace the β-profile with the appropriate NFW profile
matched to our sample (see Section 6.2); however, the NFW profile
diverges for r → 0, so that the simple integration of equation (29)
would require a further regularization in the cluster centre. The

same holds true for the universal pressure profile by Arnaud et al.
(2010).

Future kSZ studies with improved CMB and/or cluster data will
need to address these limitations, but have the potential to study
cluster astrophysics in significantly more detail. In particular, high-
significance kSZ detections would allow us to place tighter con-
straints on the gas fraction, both as a function of cluster mass and
distance from the cluster centre.

9 C O N C L U S I O N S

The pairwise kSZ signal is a probe of the mean relative velocities of
galaxy clusters and, as such, it has the potential to provide important
information about both cosmology and cluster astrophysics. In this
work, we have presented a detection of the pairwise kSZ signal with
a statistical significance of 4.2σ by combining a cluster sample
obtained from the first year of DES data with CMB temperature
maps at 150 GHz from the SPT-SZ survey. This is the first detection
of the kSZ effect using cluster redshifts derived from photometric
data.13

Our main results are based on a catalogue of galaxy clusters
selected with the redMaPPer algorithm on the ∼1200 deg2 of
DES-Y1 data that overlap with the SPT-SZ survey. We have used
clusters within the richness range 20 < λ̃ < 60 and redshift range
0.1 < z < 0.8, in combination with CMB temperature maps from
the SPT that have been match-filtered to extract an estimate for
the SZ signal at the position of the clusters. In parallel to the mea-
surement on these data, we have repeated the analysis on a set of
mock cluster catalogues and CMB maps derived from a new suite
of high-resolution kSZ simulations, introduced by F16.

In both data and simulations, the temperature estimates at the
positions of individual clusters are dominated by thermal SZ and
primary CMB, foregrounds and noise residuals. We have removed
these contaminants statistically with a differential measurement that
isolates the pairwise kSZ signal. We have then fit the recovered sig-
nal with an analytic template that models the mean pairwise velocity
on linear and mildly non-linear scales and incorporates the effect of
photo-z uncertainties. Given a set of cosmological parameters and
a prescription for the halo bias, this template completely specifies
the shape of the pairwise kSZ signal. Its amplitude, the only free
parameter, is given by the average central optical depth of the cluster
sample under consideration. For the main sample used in this work,
we have measured τ̄e = (3.75 ± 0.89) × 10−3, corresponding to a
4.2σ detection of the pairwise kSZ signal. Using the simulations,
we have validated this procedure, finding that it recovers the ‘true’
mean optical depth within the statistical uncertainties.

We have tested the robustness of the signal to the details of the
analysis: we have detected the signal at comparable significance
over a broad range of filtering scales, and for two different assump-
tions about the cluster gas profile. Furthermore, we have split the
main sample into two redshift bins and have detected the pairwise
kSZ effect in both of them, with no evidence of an evolution of the
kSZ amplitude with redshift. When extending the sample to lower
richness clusters, we have obtained a detection at a slightly lower
significance despite the much larger number of clusters. This is
likely caused by the higher level of impurities and incompleteness
in the optical catalogue, as well as higher centring uncertainties and

13 We note that in the final stages of preparing this manuscript, a kSZ
detection with a complementary method using the projected density field by
Hill et al. (2016) appeared.
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photometric redshift errors in this sample. The combination of these
effects is currently the main limitation for the statistical significance
of our measurement.

Additionally, we have demonstrated with an extensive set of null
tests that our result is not significantly affected by systematic un-
certainties. We have explicitly tested for the effect of extinction by
Galactic dust and for a range of spatially varying DES observing
conditions. Based on the simulated catalogues, we have also inves-
tigated the effect of centring errors, thermal SZ contamination and
mass uncertainties, finding that they do not cause any significant
bias for our main result.

As an astrophysical application of our measurement, we have
studied the optical depth as a function of the scale of the matched
filter and found a consistent behaviour between the data and the
simulations, indicating that the data are in agreement with the as-
trophysical model used in the simulations. At our fiducial filtering
scale of θ c = 0.5 arcmin, we have translated the central optical depth
into a gas fraction within R500 of f 500

gas = 0.080 ± 0.019 (stat.), in
agreement with results from X-ray observations.

Ongoing and upcoming observational campaigns will provide
larger and deeper cluster catalogues, as well as CMB maps to higher
sensitivity, with which the pairwise kSZ signal will be detectable
at high significance: a cluster catalogue corresponding to our cur-
rent 10 < λ̃ < 60 sample, but with spectroscopic redshifts, would
result in an ∼9σ detection of the pairwise kSZ effect with current
CMB data. A more accurate modelling of v12(r) on smaller scales
(see e.g. Sugiyama, Okumura & Spergel 2015), enabling the use
of separations r < 40 Mpc, would further enhance the detection
significance. Another potential analysis improvement, relevant for
future data sets, would be an additional weighting of clusters pairs
in the pairwise estimator, based on their expected contribution to
the signal given their two masses. The extra weighting could reduce
the scatter in the estimated pairwise signal caused by large vari-
ations in cluster masses, which would be particularly relevant for
future analyses pushing towards lower mass thresholds and hence
spanning a broader range in cluster masses.

Future spectroscopic cluster catalogues with lower mass lim-
its (and thus larger sample sizes) will enable a vast increase in
the kSZ detection significance. The possibilities for photo-z cata-
logues, however, are currently limited by the redshift uncertainties,
but could improve substantially if deeper imaging data (from e.g.
the full depth DES survey or, in the longer term, the Large Syn-
optic Survey Telescope; LSST Science Collaboration et al. 2009)
also leads to improved photo-z performance. An interesting mid-
dle ground between high-resolution spectroscopic and broad-band
photometric surveys will be covered by narrow-band photometric
surveys such as PAU (Martı́ et al. 2014) and J-PAS (Benitez et al.
2014) and low-resolution spectroscopic surveys such as SPHEREX
(Doré et al. 2014). However, kSZ analyses from future photomet-
ric or low-resolution spectroscopic data might require a more so-
phisticated modelling of the effect of photo-z uncertainties to en-
sure that the results stay unbiased within their significantly reduced
uncertainties.

Next-generation CMB experiments like SPT-3G (covering the
same region as SPT-SZ, but to much lower noise levels; see Benson
et al. 2014) and AdvACTPol (covering ∼15 000 deg2, but not as
deeply as SPT-3G; see e.g. Calabrese et al. 2014) should measure the
kSZ signal with dramatically increased precision. In contrast to the
single-frequency analysis presented here, the deep multi-frequency
data of these experiments could be combined to further isolate the
kSZ signal from noise and tSZ contamination. F16 forecast that
by combining AdvACTPol with spectroscopic clusters from the

Dark Energy Spectroscopic Instrument (DESI; Levi et al. 2013),
the pairwise kSZ could be detected at the 20σ level; this number
increases to 27σ–57σ in the optimistic scenario where the kSZ
can be separated from the other components. Similar significances
are possible when SPT-3G is combined with a cluster catalogue
reaching down to M500c ∼ 3 × 1013 M� and σ z/(1 + z) 
 0.003,
which could be achieved by narrow-band photometric surveys (see
e.g. Benitez et al. 2014; Martı́ et al. 2014).

If the potential systematic uncertainties (such as tSZ contam-
ination, miscentring and mass scatter) that we have discussed in
Sections 7.2–7.5 can be accurately determined and modelled, these
future measurements will allow for an ∼5 per cent (∼2 per cent opti-
mistically) constraint on the cosmological and astrophysical param-
eters that determine the pairwise kSZ amplitude. A joint analysis
of pairwise kSZ measurements with other probes would then be
a valuable ingredient for precision cosmology and cluster astro-
physics: the combination of kSZ with X-ray and tSZ data could
provide valuable insight into cluster profiles and the gas fraction,
whereas a combination of the kSZ signal with other cosmological
observables such as galaxy clustering and redshift-space distortions
could measure the growth rate with high precision and hence tighten
the constraints on dark energy or modified gravity.
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A P P E N D I X A : ER RO R BU D G E T A N D
C OVA R I A N C E E S T I M AT I O N

In the main analysis, we estimate the covariance matrix from JK
resamples drawn from the cluster catalogue. Here we perform fur-
ther tests that illustrate the error budget of our measurement, justify
our choice of resampling techniques for the covariance estimation,
and demonstrate the stability of our estimate. First, we decompose
the error on the optical depth into the contributions of the different
components of the simulated mm-sky. Secondly, we demonstrate
the stability of our resampling covariance estimate and explore al-
ternative resampling methods.

A1 Decomposition of the error budget

We decompose the error budget making use of the different ingre-
dients of the simulated mm-signal that are described in Section 5.1,
namely primary CMB, foregrounds, instrumental noise, and ther-
mal SZ. To identify the strongest source of uncertainty, we measure
τ̄e for different combinations of the kSZ signal with the various
contaminants. We use the same template fit as in the main analy-
sis (see Section 4.4) and compare the error on the optical depth,
στ̄e , for the different simulated data scenarios. This compresses the
contribution of the individual components into a single number per
simulated data scenario, allowing an easy comparison.

We show in Table A1 the error on τ̄e for various combinations
of simulated mm-signals. We find that the strongest increase of
στ̄e , and hence the largest contribution to the total error budget of
our measurement, can be attributed to thermal SZ. The latter is
closely followed by instrumental noise, while the primary CMB
and foregrounds contribute significantly less. This ranking can be
understood by recalling that the tSZ signal is always negative at
150 GHz and is spatially correlated with the cluster kSZ signal,

Table A1. We show in this table the 1σ uncertainty on τ̄e when combining
the simulated kSZ signal with other components of the mm-sky. A compar-
ison of the respective errors provides a ranking of the relative importance of
the various uncertainties. We find that thermal SZ is the strongest source of
noise in our measurement, closely followed by instrumental noise.

mm-sky components 103 × στ̄e

kSZ only 0.26
kSZ + CMB/foregrounds 0.39
kSZ + instr. noise 0.60
kSZ + CMB/foregrounds + instr. noise (‘no tSZ’) 0.65
kSZ + tSZ 0.63

all (‘full CMB’) 0.86

while the primary CMB and instrumental noise can be positive or
negative and are uncorrelated with the signal.

Because the tSZ signal is the largest source of uncertainty in
the measurement, it is not feasible to compute the covariance ma-
trix from Monte Carlo simulations. We could simulate many re-
alizations of the CMB and instrumental noise, however, random
tSZ realizations would lack spatial correlation with the kSZ signal.
Simulating tSZ signal with the correct spatial correlations requires
N-body simulations, which is not computationally feasible. This
leaves resampling techniques as the only sensible option to esti-
mate the contribution of the tSZ signal to the covariance of our
measurement.

Additionally, for our next dominant noise contribution – instru-
mental noise – the SPT noise is approximately white at the scales of
interest for our matched filter (see e.g. fig. 7 in Schaffer et al. 2011).
As the matched filter strongly down-weights low-� modes (thus
precluding large-scale correlations), JK resampling techniques are
reasonable estimates of the covariance for this contribution as well.

A2 Stability of the resampling covariance

As described in detail in Section 4.3, for the main analysis we
create NJK = 120 JK resamples from the cluster catalogue and then
estimate the covariance matrix via equation (21). To demonstrate
that our estimate is stable with respect to the choice of NJK, we
repeat the covariance estimation using NJK = {60, 240}. We show
in the top panel of Fig. A1 the errors on the pairwise kSZ amplitude
obtained in this way. They are in good agreement with our original
estimate, demonstrating the stability of our procedure to changes in
NJK.

Secondly, we compare four different strategies of estimating the
covariance via JK and bootstrap (BS) resampling, namely:

(i) Catalogue JK with NJK = 120: this is the technique used for
the main analysis.

(ii) Area JK with NJK = 120: we follow a similar procedure as
for the catalogue JK. However, instead of resampling directly from
the catalogue, for every resample we remove all clusters located in
a given rectangular sky patch covering roughly 1/NJK of the total
survey area.

(iii) Catalogue bootstrap: we create NBS resampled cluster cata-
logues with the same size as the original catalogue by drawing with
replacement from the latter. We then calculate the covariance as
ĈBS

ij = (NBS − 1)−1
∑NBS

α=1(T̂ α
i − T̄i) (T̂ α

j − T̄j ). It is worth noting
that the typical BS realization is more different from the original
catalogue than a typical JK realization. Therefore a higher number
of resamples is required for the error estimate to converge; here we
use NBS = 480.
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Figure A1. Tests for the stability of the error estimate. Top: we show here
the errors of the pairwise kSZ measurement estimated via JK resampling
from the cluster catalogue. The black points and error bars used 120 re-
samples (as for the main analysis), whereas in the red/blue case we have
decreased/increased the number of resamples by a factor of 2. Bottom: this
panel displays error estimates from four different resampling techniques,
namely JK and bootstrap, in both cases sampling either directly from the
catalogue or by sky area. The numbers in brackets in the legend denote the
number of samples used; for a motivation of these numbers and a detailed
description of the methods see Appendix A2.

(iv) Area bootstrap/sky patches (SP): we split the survey area
into NSP approximately equal-sized subpatches. In the presence of
an irregularly shaped mask (see Fig. 1) it is non-trivial to obtain
subpatches with exactly the same size and similar geometry. Here
we approximate by restricting the survey area to the largest rect-
angle oriented along lines of constant RA and Dec. The price for
this simplification is using a slightly smaller sky area than the main
analysis. Additionally, cluster pairs across patch boundaries do not
contribute to the signal. This limits NSP to relatively small numbers;
here we use NSP = 40. From the pairwise kSZ amplitude computed
on the individual patches, we estimate the covariance as for the
catalogue bootstrap, but rescale it with a factor of 2/NSP to account
for the smaller size of the individual patch. Due to the limitations
discussed above, we expect this method to provide slightly larger
error estimates than the other three, especially for large pair sepa-
rations. Nevertheless it still provides an instructive cross-check of
our error estimate.

We show in the bottom panel of Fig. A1 the errors on the pair-
wise kSZ amplitude estimated with these four techniques. Both JK
methods and the catalogue BS give similar results, whereas as ex-

pected the area BS yields slightly larger, but still comparable error
estimates. The slight differences in the uncertainties of the two low-
est separation bins do not affect our analysis, as these two bins are
excluded from the template fits in the main analysis anyway (see
Section 5.2). We therefore conclude that our error estimate is robust
against the details of the used resampling technique.

APPENDI X B: TESTS FOR
POSI TI ON-DEPENDENT OBSERVATI ONA L
SYSTEMATI CS

In this appendix, we test for spatially varying systematics in the
optical catalogue that could bias the kSZ measurement. Although
these are taken into account during the production of the cluster
catalogue, there could be residual correlation of these systematics
with properties of the catalogue, which could cause a contami-
nation of the signal. Given that the pairwise kSZ estimation is
most sensitive to pairs along the line of sight, we expect a possi-
ble contamination by these effects to be small. Nevertheless, here
we test the stability of our results with respect to a selection of
these contaminants, to ensure the robustness of our signal. In par-
ticular, we consider: extinction by Galactic dust as quantified by
the E(B − V) map produced by Planck Collaboration XI (2014),
seeing, airmass, and sky brightness. For the latter three, we use the
i-band systematics maps produced within the DES collaboration
using the approach described by Leistedt et al. (2015) for the SV
area.

To test for a correlation of our results with these systematic
candidates, we measure their values at the cluster positions. We
then recompute the pairwise kSZ amplitude from the {98, 95, 90,
80, and 50 per cent} of the clusters with the lowest value in the
systematic candidate under consideration. The results are given in
the left-hand panel of Table B1. Additionally, we show in Fig. B1
the results for the 90 per cent cuts in all four systematic candidates.

When using only a subset S of the full data set, we expect the
inferred value of τ̄e to change on average by

〈(�τ̄e)2〉 = 〈(τ̄ S
e − τ̄e)2〉 = (σS

τ̄e
)2 − (στ̄e )2 (B1)

due to purely statistical scatter, even if there is no effect of the
given systematic (e.g. Planck Collaboration XI 2015). We show the
results for the change in our estimation of τ̄e in units of the ex-
pected mean scatter in the right-hand panel of Table B1. We find
that the results are mostly consistent with purely statistical scatter.
The only exception is a weak trend of increasing τ̄e when cut-
ting in seeing full width at half-maximum (FWHM): τ̄e changes by

1.4 ×

√
〈(�τ̄e)2〉 when using the 80 per cent clusters with the best

seeing. Nevertheless the result for this particular cut is still consis-
tent with the main result within the measurement uncertainties. We
further note that results from different cuts in the same systematic
candidate are correlated due to the overlap in samples, so a weak
‘trend’ should not be overinterpreted. Furthermore, if testing mul-
tiple different cuts for several systematic candidates, one expects a
few of them to show a weak correlation with the data. In that sense,

Table B1. Test for observational systematics: Left: The best-fitting optical depth (here shown as 103 × τ̄e) for the given systematic cut.
Right: the change in τ̄e in units of the expected scatter given the increased uncertainties due to the smaller sample size (equation B1).
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Figure B1. Tests for the impact of spatial variation of DES observing
conditions on the pairwise kSZ amplitude: the black points show the original
measurement, whereas the colours show the results using only the 90 per cent
best clusters in the four systematic candidates considered here.

the 1.8(1.9) ×
√

〈(�τ̄e)2〉 fluctuations from the 80 per cent of sky
brightness (airmass) cuts are consistent with the expectation due to
statistical scatter. We therefore conclude that at the level of preci-
sion reported here, there is no significant contamination by spatially
varying observing conditions or extinction.
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