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ABSTRACT
We present a new-generation tool to model and interpret spectral energy distributions (SEDs)
of galaxies, which incorporates in a consistent way the production of radiation and its transfer
through the interstellar and intergalactic media. This flexible tool, named BEAGLE (for BayEsian
Analysis of GaLaxy sEds), allows one to build mock galaxy catalogues as well as to interpret
any combination of photometric and spectroscopic galaxy observations in terms of physical pa-
rameters. The current version of the tool includes versatile modelling of the emission from stars
and photoionized gas, attenuation by dust and accounting for different instrumental effects,
such as spectroscopic flux calibration and line spread function. We show a first application of
the BEAGLE tool to the interpretation of broad-band SEDs of a published sample of ∼104 galax-
ies at redshifts 0.1 � z � 8. We find that the constraints derived on photometric redshifts using
this multipurpose tool are comparable to those obtained using public, dedicated photometric-
redshift codes and quantify this result in a rigorous statistical way. We also show how the
post-processing of BEAGLE output data with the PYTHON extension PYP-BEAGLE allows the char-
acterization of systematic deviations between models and observations, in particular through
posterior predictive checks. The modular design of the BEAGLE tool allows easy extensions to
incorporate, for example, the absorption by neutral galactic and circumgalactic gas, and the
emission from an active galactic nucleus, dust and shock-ionized gas. Information about public
releases of the BEAGLE tool will be maintained on http://www.jacopochevallard.org/beagle.

Key words: methods: data analysis – methods: statistical – dust, extinction – H II regions –
galaxies: evolution – galaxies: stellar content.

1 IN T RO D U C T I O N

Over the last 15 yr, our understanding of how galaxies form and
evolve has improved substantially. The combination of technologi-
cal and theoretical progress has brought this field into a new era: ad-
vances in observational techniques (e.g. multi-object spectroscopy,
efficient near-infrared CCDs) have enabled multiwavelength obser-
vations of large samples of galaxies out to the highest redshifts,
while the steady rise of computational power and refinement of
numerical techniques have fostered new approaches (e.g. semi-
analytic models, hydro-dynamic simulations) to model the forma-
tion and evolution of galaxies. This progress has led to a general
consensus about the main physical ingredients required to describe
the evolution of the galaxy population (e.g. Gonzalez-Perez et al.
2014; Lu et al. 2014; Vogelsberger et al. 2014; Henriques et al.
2015; Schaye et al. 2015): collapse and hierarchical growth of dark

� E-mail: jchevall@cosmos.esa.int
†ESA Research Fellow.

matter haloes; accretion of baryons on to these haloes; conversion of
baryons into stars; feedback of massive stars and active galactic nu-
clei (AGN) on star formation; supernova- and AGN-driven outflows
of metal-enriched gas; infall of both pristine and metal-enriched gas
on to galaxies. The large-scale environment can also affect galaxy
properties, in particular, by providing quenching mechanisms (e.g.
tidal or ram-pressure stripping, strangulation; e.g. Lagos et al. 2014;
Rafieferantsoa et al. 2015), and through its influence on the merger
rate (e.g. Lackner et al. 2012; Rafieferantsoa et al. 2015) and galac-
tic spins (e.g. Hahn, Teyssier & Carollo 2010; Codis et al. 2012).
Although these different ingredients are present in many galaxy
formation models, we still lack a detailed quantification of their
respective roles in shaping the properties of galaxies. This is be-
cause of the complexity inherent in galaxy physics, which combines
gravity, radiation hydro-dynamics, magnetic fields and high-energy
physics, acting on scales from less than a pc (e.g. for the formation
of proto-stellar cores) to over a Mpc (e.g. for environmental effects).
For this reason, ‘first-principles’ simulations of galaxy formation
remain far beyond the reach of current computational capabilities.
Instead, small-scale baryonic physics is generally subsumed into

C© 2016 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/462/2/1415/2589828 by C
N

R
S - ISTO

 user on 10 M
ay 2022

http://www.jacopochevallard.org/beagle
mailto:jchevall@cosmos.esa.int


1416 J. Chevallard and S. Charlot

sub-grid prescriptions, which vary from model to model (e.g. Scan-
napieco et al. 2012; Haas et al. 2013a,b; Vogelsberger et al. 2013;
Torrey et al. 2014; Crain et al. 2015). The appropriateness of such
prescriptions, and hence, our ability to understand galaxy forma-
tion, must be assessed by comparing simulated and observed galaxy
properties.

Comparing the predictions of galaxy formation models with ob-
servations requires one to relate properties pertaining to the evo-
lution of baryons in dark-matter haloes, such as gas cooling and
star formation, with observables, such as ultraviolet, optical and
infrared spectral energy distributions (SEDs). This can be achieved
using models of stellar population synthesis and of the transfer of
starlight through the interstellar and intergalactic media (e.g. Tins-
ley 1978; Bruzual 1983; Arimoto & Yoshii 1987; Guiderdoni &
Rocca-Volmerange 1987; Buzzoni 1989; Bressan, Chiosi & Fagotto
1994; Worthey 1994; Leitherer & Heckman 1995; Fioc & Rocca-
Volmerange 1997; Bruzual & Charlot 2003; Maraston 2005; Conroy
& Gunn 2010; Vazdekis et al. 2010; Maraston & Strömbäck 2011).
This spectral modelling involves several additional components,
such as the stellar initial mass function, prescriptions for the evolu-
tion, spectral properties and release of heavy elements by individual
stars of different initial masses and chemical compositions, and pre-
scriptions for the influence of the interstellar medium (ISM) and the
intergalactic medium (IGM) on stellar radiation. Galaxy SEDs can
be computed in this way from the histories of star formation and
chemical enrichment predicted by galaxy formation models. The in-
terpretation of photometric and spectroscopic galaxy observations
with such model SEDs to constrain stellar masses, metallicities, star
formation histories and ionized-gas properties is at the base of most
galaxy evolution studies.

Two major limitations, often neglected, affect this type of analy-
sis: the adoption of oversimplified models to describe the wide vari-
ety of observed galaxy SEDs and the presence of ‘systematic’ model
uncertainties. This second limitation has been addressed in several
studies already (e.g. Charlot, Worthey & Bressan 1996; Cerviño,
Luridiana & Castander 2000; Conroy, Gunn & White 2009; Perci-
val & Salaris 2009; Conroy & Gunn 2010; Conroy, White & Gunn
2010a). The difficulty of precisely quantifying systematic model
uncertainties has led to mainly qualitative conclusions, leaving the
problem unsolved. The first limitation is easier to tackle, for ex-
ample, by using more physically realistic models of galaxy SEDs
and combining these with advanced statistical techniques to extract
physical constraints from data. This appears as the most promising
route to fully exploit the information gathered by modern pho-
tometric and spectroscopic galaxy surveys. Yet, the several tools
proposed so far to interpret galaxy SEDs in terms of physical pa-
rameters do not allow one to fully exploit the high quality of modern
data. For example, most existing approaches rely on the adoption
of a rigid physical model (e.g. analytic, two-parameter star forma-
tion histories combined with a standard dust attenuation curve and
the assumption that all stars in a galaxy have the same metallicity)
to describe galaxy SEDs (e.g. Bolzonella et al. 2010; Wuyts et al.
2011; Hernán-Caballero et al. 2013; Ilbert et al. 2013; Bauer et al.
2013; Muzzin et al. 2013; Lundgren et al. 2014; Kochiashvili et al.
2015; Mortlock et al. 2015; Kawinwanichakij et al. 2016). Even
with the inclusion of superimposed bursts of star formation (e.g.
Kauffmann et al. 2003; Gallazzi et al. 2005; Pozzetti et al. 2007;
Gallazzi & Bell 2009; da Cunha et al. 2010), this does not allow a
physically consistent description of the contributions by stars, gas
and dust to the integrated emission from a galaxy, nor the inclusion
of a potential AGN component (a notable exception is the approach
of Pacifici et al. 2012, who incorporate star formation and chemical

enrichment histories from numerical simulations of galaxy forma-
tion and emission from photoionized gas). Also, current spectral
analysis tools are generally optimized to interpret either photomet-
ric or spectroscopic observations of galaxies, but not arbitrary com-
binations thereof. Finally, most existing tools suffer from additional
limitations: many focus on the selection of ‘best-fitting’ parameters
rather than on the uncertainties associated with these parameters
(e.g. chi-square minimization techniques; Arnouts et al. 1999; Bol-
zonella, Miralles & Pelló 2000; Kriek et al. 2009); when this is not
the case, the number of free parameters that can be explored is gen-
erally limited (e.g. with grid-based Bayesian techniques; da Cunha,
Charlot & Elbaz 2008; Noll et al. 2009; Pacifici et al. 2012); and
when more sophisticated (e.g. Markov Chain Monte Carlo, here-
after MCMC) techniques allow the exploration of more parameters,
instrumental effects are generally not incorporated in the analysis
(e.g. Acquaviva, Gawiser & Guaita 2011; Serra et al. 2011; Han &
Han 2014).

In this paper, we introduce a new-generation tool to interpret
galaxy SEDs, BEAGLE (for BayEsian Analysis of GaLaxy sEds),
which incorporates several main novelties. The modular design of
this tool, written in FORTRAN 2003/08, allows one to easily com-
bine, in a physically consistent way, different prescriptions for the
production of starlight in galaxies and its transfer through the ISM
(absorption and emission by gas, attenuation by dust) and the IGM
(absorption by gas). Other modules to be implemented in the fu-
ture include the infrared emission from dust and the emission from
an AGN. The BEAGLE tool includes several possible prescriptions
to describe the star formation and chemical enrichment histories
of galaxies, ranging from simple analytic functions to the pre-
dictions of sophisticated galaxy formation models. The flexible
parametrization of these and other model parameters allows one
to build mock galaxy catalogues as well as to interpret any com-
bination of photometric and spectroscopic observation of galaxies
by adapting model complexity (i.e. number of free parameters)
to the data, without sacrificing coherence. Moreover, the adopted
Bayesian framework allows the characterization of complex, non-
linear correlations among model parameters in high-dimensional
parameters spaces, comparisons between competing models, the
description within a hierarchical framework of single objects as
well as populations of objects, and a reduction of the parameter
space using informative priors based on high-quality observations.
Finally, posterior predictive checks comparing model predictions
with observations enable one to identify model failures, which can
drive future model developments.

In Section 2 below, we outline the modular, highly versatile ap-
proach used to describe the physical properties of stars, gas and
dust in the BEAGLE tool. In Section 3, we describe in detail the
statistical approach and output products arising from the analysis
of galaxy SEDs with this tool. In Section 4 we present an ex-
ample application of BEAGLE to the interpretation of broad-band
SEDs of galaxies in a wide range of redshifts and discuss the re-
sults of such modelling in Section 5. We also introduce also a
PYTHON-based extension to post-process BEAGLE results, named PYP-
BEAGLE (for PYthon Postprocessing of BEAGLE). We compare our
approach with existing SED fitting codes in Section 6 and summa-
rize our conclusions in Section 7. Throughout the paper, we adopt
a present-day solar metallicity Z� = 0.01524 (corresponding to a
zero-age metallicity of 0.017, see table 3 of Bressan et al. 2012)
and the latest constraints on cosmological parameters from Planck,
i.e. �� = 0.6911, �m = 0.3089, and H0 = 67.74 (see last column
‘TT,TE,EE+lowP+lensing+ext’ of table 4 of Planck Collaboration
2015).
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Modelling galaxy SEDs with BEAGLE 1417

2 A S T RO P H Y S I C A L I N G R E D I E N T S O F BEAGLE

Our main aim in this paper is to design a general, astrophysically
sound framework to fit any combination of photometric and spec-
troscopic galaxy observations, as well as to produce and analyse
mock catalogues of galaxy SEDs. The need for a single framework
to study both true and mock galaxy data arises from the growing role
played by simulations in the optimal preparation and exploitation of
modern surveys. Simulations are important to optimize the observa-
tional strategy (e.g. signal-to-noise thresholds, spectral resolution)
needed to answer a given scientific question, but also to charac-
terize the performances and systematics of the increasingly com-
plex instruments mounted on new ground-based and space-based
telescopes.

The ultraviolet, optical and infrared SEDs of galaxies include
contributions by stars, gas, dust and potentially an AGN. Since
these components are physically linked to one another, they must
be described in a consistent way in spectral models of galaxies.
In this section, we present our formalism to model the production
of starlight in galaxies and its transfer through the ISM and the
IGM. We appeal to the isochrone synthesis technique introduced
by Charlot & Bruzual (1991).1 In this approach, the luminosity (in

units of erg s−1 Å
−1

) emitted at wavelength λ by a galaxy at time t
from the onset of star formation can be expressed as

Lλ(t) =
∫ t

0
dt ′ ψ(t − t ′) Sλ[t ′, Z (t − t ′)] T ISM

λ (t, t ′), (1)

where ψ(t − t′) is the star formation rate at time t − t′ (which
traces the star formation history), Sλ[t ′, Z (t − t ′)] the luminosity
emitted per unit wavelength per unit mass by a simple stellar pop-
ulation (SSP) of age t′ and chemical composition Z (t − t ′) (each
element of this vector corresponding to a different chemical ele-
ment), and T ISM

λ (t, t ′) the transmission function of the ISM. The
function Sλ(t ′, Z ) can be expressed as (e.g. Conroy et al. 2009)

Sλ(t ′, Z )

=
∫ mup

mlow

dm φ(m) �λ[Lbol(m, Z , t ′), Teff (m, Z , t ′), Z ], (2)

where m is the stellar mass, φ(m) the stellar initial mass func-
tion [IMF; defined such that φ(m)dm is the number of stars born
with masses between m and m + dm] with lower and upper mass
cutoffs mlow and mup, and �λ[Lbol(m, Z , t ′), Teff (m, Z , t ′), Z ] the
spectral energy distribution of a star with bolometric luminosity
Lbol(m, Z , t ′), effective temperature Teff (m, Z , t ′), and chemical
composition Z .

Following Charlot & Longhetti (2001), we express the transmis-
sion function in the ISM as

T ISM
λ (t, t ′) = T +

λ (t, t ′) T 0
λ (t, t ′), (3)

where T +
λ (t, t ′) and T 0

λ (t, t ′) are the transmission functions of the
ionized gas and the neutral ISM, respectively. Here T +

λ (t, t ′) ac-
counts for both the absorption and the emission of photons in the
ionized gas, i.e. T +

λ (t, t ′) will be close to zero at wavelengths shorter
than the H-Lyman limit and greater than unity at those correspond-
ing to emission lines. The transmission functions of the neutral
interstellar gas and the IGM will be discussed separately in Sec-
tions 2.6 and 2.7 below.

1 The term ‘isochrone’ refers to the location of coeval stars with homo-
geneous chemical composition and different masses in the Hertzsprung–
Russell diagram.

For a galaxy at redshift z, the spectral flux density (in units
of erg s−1 Å−1 cm−2) reaching the observer at wavelength λobs =
λ (1 + z) is related to the luminosity Lλ emitted at rest wavelength
λ (equation 1) by the relation

Fλobs = Lλ

4πdL(z)2

1

1 + z
T IGM

λ,z , (4)

where dL is the luminosity distance at redshift z, T IGM
λ,z the (redshift-

dependent) transmission function of the IGM, and the factor
1/(1+z) ensures energy conservation, by accounting for the wave-
length stretching dλobs = (1 + z) dλ.

In the next sections, we describe our prescriptions for the emis-
sion from stars and the ionized gas, the star formation and chemical
enrichment histories, changes in the α-element to iron abundance
ratio (α/Fe), attenuation by dust and IGM absorption. We stress that
a main feature allowed by the modular design of the BEAGLE tool
is that the prescriptions adopted here for these different physical
ingredients can be easily replaced by alternative ones. We do not
discuss here our prescriptions for an AGN component and infrared
dust emission, which are currently being incorporated and will be
the subject of a future release (Section 7).

2.1 Stellar population synthesis code

We adopt the latest version of the Bruzual & Charlot (2003) code
to describe the emission of stellar populations at wavelengths be-
tween 91 Å and 190 µm (equation 2). This version of the code in-
corporates updated stellar evolutionary tracks (Bressan et al. 2012;
Marigo et al. 2013) and the MILES library of observed optical stellar
spectra (Sánchez-Blázquez et al. 2006) to describe the properties
of stars in the Hertzsprung–Russell diagram [�λ(Lbol, Teff, Z ) in
equation (2)]. We compute in this way SSPs in wide ranges of ages,
t′ ∈ [105, 2 × 1010] yr, and metallicities, Z ∈ [0.0001, 0.04] (i.e.
[Fe/H] ∈ [−2.18, 0.42]).2

2.2 Stellar initial mass function

The stellar IMF [term φ(m) in equation 2] controls the relative
contributions by stars of different masses to the integrated SED
of a galaxy. Recently, several studies have claimed the presence
of systematic variations of the IMF, such as a potential steepening
in early-type galaxies (e.g. van Dokkum & Conroy 2010; Conroy
& van Dokkum 2012b; Cappellari et al. 2012; La Barbera et al.
2013; Sonnenfeld et al. 2015), for which theoretical motivations
exist (e.g. Chabrier, Hennebelle & Charlot 2014). The implication
of these claims for stellar population synthesis modelling are being
complicated by the fact that different studies produce inconsistent
results (Smith 2014; Zieleniewski et al. 2015) and may depend on
underlying assumptions (Tang & Worthey 2015; McConnell, Lu
& Mann 2016). In this paper, we adopt a fixed IMF correspond-
ing to the Galactic-disc IMF of Chabrier (2003), with lower and
upper mass cutoffs mlow = 0.1 and mup = 100 M�. We note that
the Chabrier (2003) IMF is very similar to the ‘universal’ IMF of
Kroupa (2001) and differs from the classical Salpeter (1955) IMF
[φ(m) ∝ m−2.35] through the turn-over of the distribution φ(m) at
stellar masses m < 1 M�.

2 Here Z stands for the sum of the elements of vector Z , which corresponds
to the mass fraction in all elements heavier than helium.

MNRAS 462, 1415–1443 (2016)
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1418 J. Chevallard and S. Charlot

2.3 α element-to-iron abundance ratio

Many spectral evolution models available in the literature (e.g.
Pégase, Fioc & Rocca-Volmerange 1997; Le Borgne et al. 2004;
GALAXEV, Bruzual & Charlot 2003; FSPS, Conroy et al. 2009;
; Vazdekis et al. 2010; MaStro, Maraston & Strömbäck 2011;
Conroy & van Dokkum 2012a) rely on libraries of observed spectra
of solar-neighbourhood stars (e.g. ELODIE, Prugniel & Soubiran
2001; Prugniel et al. 2007; STELIB, Le Borgne et al. 2003; Indo-US,
Valdes et al. 2004; MILES, Sánchez-Blázquez et al. 2006). This is
because current theoretical spectral libraries suffer from persisting
inaccuracies linked to, for example, the inclusion of line blanketing,
incomplete line lists, the accuracy of quantum-mechanical calcula-
tions, the treatment of convection in stellar interiors (see e.g. Martins
& Coelho 2007). The problem of appealing to observed spectral li-
braries is that the abundances of solar-neighbourhood stars are tied
to the particular star formation and chemical enrichment history at
our location in the Milky Way. This potentially biases the interpreta-
tion with such libraries of galaxies with different star formation and
chemical enrichment histories, such as massive, early-type galaxies,
which have typically larger α/Fe ratio than star-forming, late-type
galaxies like the Milky Way (e.g. Milone, Barbuy & Schiavon 2000;
Worthey, Tang & Serven 2014).

A way to overcome the limitations of observed spectral libraries
is to adopt theoretical libraries to compute differential properties of
stellar populations with non-scaled solar element abundance ratios
relative to the well-calibrated scaled-solar case. Following Walcher
et al. (2009, see also Vazdekis et al. 2015), we account for the
dependence of the function Sλ on α/Fe ratio in equation (1) by
writing

Sλ(t ′, Z, [α/Fe]) = S theor
λ (t ′, Z, [α/Fe])

S theor
λ (t ′, Z)

Sλ(t ′, Z), (5)

where Sλ(t′, Z) is the luminosity per unit wavelength of an SSP
of age t′ and metallicity Z computed using an empirical library
of stellar spectra (Section 2.1), for which α/Fe ≈ α/Fe� (i.e.
[α/Fe] ≈ 0), and S theor

λ (t ′, Z) and S theor
λ (t ′, Z, [α/Fe]) are the the-

oretical predictions for SSps of same age t′ and metallicity Z for
scaled-solar ([α/Fe] = 0) non-scaled solar ([α/Fe] 	= 0) α element-
to-iron abundance ratio, respectively. We adopt for S theor

λ (t ′, Z)
and S theor

λ (t ′, Z, [α/Fe]) the predictions of Coelho et al. (2007,
as updated by Coelho 2014), which cover the wavelength range
λ ∈ [0.13, 100] µm at low resolution, and λ ∈ [0.25, 0.9] µm
at high resolution, ages between 30 Myr and 14 Gyr, iron abun-
dances [Fe/H] ∈ [−1, 0.2] and α elements-to-iron abundance ratios
[α/Fe] ∈ [0, 0.4].

2.4 Nebular emission

We adopt the recent photoionization models of star-forming galax-
ies of Gutkin, Charlot & Bruzual (2016, who follow the prescription
of Charlot & Longhetti 2001) to describe the transmission function
of the ionized gas T +

λ (t, t ′) in equation (3). These models combine
the stellar population synthesis code described in Section 2.1 above
with the latest version of the photoionization code CLOUDY (ver-
sion 13.3, last described by Ferland et al. 2013). In this approach,
the ensemble of H II regions and the diffuse gas ionized by young
stars throughout a galaxy are described by means of effective (i.e.
galaxy-wide) parameters. The main adjustable parameters of the
photoionized gas are the interstellar metallicity, ZISM, the typical
ionization parameter of a newly ionized H II region, US (which char-
acterizes the ratio of ionizing-photon to gas densities at the edge

of the Stroemgren sphere), and the dust-to-metal (mass) ratio, ξd

(which characterizes the depletion of metals on to dust grains).
We adopt the large grid of models computed by Gutkin et al.
(2016) for ZISM ∈ [0.0001, 0.04] (i.e. [Fe/H] ∈ [−2.18, 0.42]),
log US ∈ [−4, −1] and ξd ∈ [0.1, 0.5]. These provide the nebular
(lines+continuum) emission at all SSP ages less than t′ = 10 Myr
(equation 3), over which 99.9 per cent of the ionizing photons
are released by a single stellar generation. Hence, in this pre-
scription, T +

λ (t, t ′) = 1 for t′ > 10 Myr. We do not include in
the present paper the nebular emission produced by faint, post-
asymptotic-giant-branch stars, shocks and a potential AGN com-
ponent (these will be implemented in future releases of the BEAGLE

tool).

2.5 Star formation and chemical enrichment histories

The star formation history ψ(t − t′) and chemical enrichment history
Z(t − t′) entering the expression of the spectral energy distribution
Lλ(t) of a galaxy (equation 1) depend on the complex physical pro-
cesses affecting baryons trapped in dark-matter potential wells (see
Section 1). In principle, one should be able to constrain ψ and Z
by comparing the observed SED of the galaxy to the predictions of
spectral evolution models corresponding to different star formation
and chemical enrichment histories (e.g. Heavens et al. 2004; Cid
Fernandes et al. 2007; Panter et al. 2007; Pacifici et al. 2013; Tojeiro
et al. 2013). This requires an approach including the broadest possi-
ble ranges in ψ and Z, enabling one to identify the parametrization
best describing the observations as well as potential biases linked
to the adoption of less appropriate assumptions (e.g. Pacifici et al.
2015).

A common way to parametrize the star formation and chemical
enrichment histories of galaxies is to adopt a smooth, analytic (e.g.
constant, exponentially declining or rising) function to describe
ψ(t − t′) and a fixed metallicity Z to describe the chemical compo-
sition of stars of all ages in a galaxy. Although such parametrization
may be adequate to describe the average properties of different
galaxy classes (e.g. massive galaxies of different morphological
types in the nearby Universe), they cannot account for the com-
plex star formation and chemical enrichment histories of individual
galaxies in a hierarchical universe. As an example, the Milky Way is
known to have experienced different bursts of star formation in the
past (e.g. Rocha-Pinto et al. 2000b) and to currently harbour stars
spanning a broad range of chemical compositions (e.g. Rocha-Pinto
et al. 2000a).3

This complexity may be more appropriately modelled by appeal-
ing to non-parametric descriptions of ψ(t − t′) and Z(t − t′). This
requires discretizing the evolution in a finite number of ‘star forma-
tion periods’ (or ‘bins’, each spanning a range of ages), adjusting
the mass fraction and metallicity in each period to best reproduce a
given observation (see, e.g.; STARLIGHT, Cid Fernandes et al. 2004,
2005; MOPED, Heavens, Jimenez & Lahav 2000; STECKMAP, Ocvirk
et al. 2006 and VESPA, Tojeiro et al. 2007). A common limitation
of this approach is the large number of free parameters involved
and their correlations, which requires high-S/N spectroscopic
observations across a broad wavelength range to produce useful

3 The superposition of ‘stochastic’ bursts on top of smooth star formation
histories, has been shown to better reproduce the observed spectroscopic
properties of individual galaxies (e.g. Kauffmann et al. 2003; Brinchmann
et al. 2004), but still assuming that all stars in a given galaxy have a fixed
metallicity.
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Modelling galaxy SEDs with BEAGLE 1419

constraints (e.g. Tojeiro et al. 2013; McDermid et al. 2015; Citro
et al. 2016; López Fernández et al. 2016). An alternative approach
was recently proposed by Pacifici et al. (2012), who adopt physi-
cally motivated prescriptions for ψ(t − t′) and Z(t − t′) extracted
from the semi-analytic post-treatment of a cosmological dark-matter
simulation. They show that this provides a powerful new means of
interpreting observed SEDs of galaxies in terms of physical pa-
rameters (e.g. Pacifici et al. 2013, 2015). They also show how the
dependence of ψ(t − t′) and Z(t − t′) on the adopted galaxy forma-
tion model can be alleviated by resampling the model star formation
and chemical enrichment histories to widen the range of evolution-
ary stages probed at any redshift, at the expense of weakening the
link between the resulting library of star formation and chemical en-
richment histories and the input cosmological and galaxy formation
model (Pacifici et al. 2012).

We incorporate in BEAGLE all of the above approaches to de-
scribe the functions ψ(t − t′) and Z(t − t′) in equation (1). We
achieve this by means of a general parametrization of the star for-
mation and chemical enrichment histories of a galaxy, described
as a succession of a flexible number of star formation periods, and
by interpolating on the fly the grid of input SSPs (Section 2.1)
to compute Sλ[t ′, Z (t − t ′)] in equation (2) for any combination
of age and metallicity. The shapes of ψ(t − t′) and Z(t − t′) in
these components can be drawn from analytic functions or from
different flavours of galaxy formation models, such as phenomeno-
logical and semi-analytic models and hydro-dynamic simulations.
We note that such a parametrization allows one to easily separate
the past history of star formation, imprinted in the spectral signa-
tures of low-mass, long-lived stars, from the ‘current’ (i.e. averaged
over the last 10–100 Myr) star formation, traced by young mas-
sive stars, which controls the nebular and far-ultraviolet emission
(ignoring the contribution from shocks and a potential AGN). This
parametrization is also appropriate to describe the stochastic na-
ture of the star formation process in galaxies. A main advantage
of the flexible approach presented here is the possibility to adapt
the complexity of the description of the star formation and chemi-
cal enrichment histories of a galaxy to the type and quality of the
available data (e.g. photometry versus spectroscopy, low- versus
high-S/N).

2.6 Dust attenuation

In the previous sections, we have presented our prescriptions for
the emission from stars and ionized gas, changes in heavy-element
abundance ratios and the star formation and chemical enrichment
histories of a galaxy in the BEAGLE tool. We now turn to the effect of
dust attenuation on the stellar and nebular emission, expressed by
the function T 0

λ (t, t ′) in equation (3). The signatures of this effect
compete with those of age and metallicity in galaxy SEDs (e.g. Wise
& Silva 1996; Papovich, Dickinson & Ferguson 2001; Guo et al.
2011). The importance of a careful description of dust properties
is also that this may be used to constrain the mechanisms of dust
production (e.g. winds from asymptotic-giant-branch stars, super-
nova explosions; Höfner 2009; Cherchneff 2010) and destruction
(e.g. shocks; Jones 2004; Jones & Nuth 2011) from the analysis of
different types of galaxies at various redshifts.

We follow the standard terminology and refer by attenuation (or
‘effective absorption’) to the combined effects of absorption and
scattering in and out of the line of sight to a galaxy caused by
both local and global geometric effects, the term extinction being
reserved for photon absorption along and scattering out of a sin-
gle line of sight (e.g. Charlot & Fall 2000). The dependence of

extinction on wavelength (i.e. the extinction curve) has been mea-
sured in the Milky Way, the Small and the Large Magellanic Clouds
(MW, SMC and LMC; Prevot et al. 1984; Bouchet et al. 1985;
Clayton & Martin 1985; Cardelli, Clayton & Mathis 1988, 1989).
These studies show that, in the Milky Way, the ultraviolet-to-near-
infrared extinction curve varies along different lines of sight, while
the strength of the characteristic absorption bump near 2175 Å drops
from the average MW, to the LMC, to the SMC extinction curves.
These extinction curves are commonly used to model the effect of
attenuation by dust on galaxy SEDs, although this amounts to as-
suming that dust in unrealistically distributed in a uniform screen
between the source and the observer.4 Such an assumption may
introduce unwanted biases in the interpretation of galaxy SEDs. It
also neglects the fact that young stars in their birth clouds are typ-
ically more attenuated than older stars in galaxies (e.g. Silva et al.
1998; Charlot & Fall 2000).

We adopt a more physically motivated prescription for attenua-
tion by dust and express the transmission function of the neutral
ISM (equations 1 and 3) as a function of stellar age t′ and galaxy
inclination θ ,

T 0
λ (t, t ′) ≡ T 0

λ (t ′, θ ). (6)

Here we have dropped the dependence of T0 on galaxy age t, i.e.
we assume that attenuation by dust depends only on the current
ISM properties and on the age distribution of stellar populations in
a galaxy. We can rewrite the transmission function as

T 0
λ (t ′, θ ) = exp[−τ̂λ(t ′, θ )], (7)

where τ̂λ(t ′, θ ) is the attenuation (or effective absorption) optical
depth of the dust affecting photons emitted at wavelength λ in all
directions by all stars and gas in the galaxy, which emerge in the
direction θ from the normal to the equatorial plane of the galaxy
(assuming azimuthal symmetry).

We use the general parametrization in equation (7) to imple-
ment in a flexible way in the BEAGLE tool different prescriptions for
τ̂λ(t ′, θ ), summarized in Table 1. These include simple mean extinc-
tion curves (MW, LMC, SMC), the starburst attenuation curve of
Calzetti, Kinney & Storchi-Bergmann (1994), the two-component
dust model of Charlot & Fall (2000, hereafter CF00) and new pre-
scriptions by Chevallard et al. (2013, hereafter C13). We indicate
in Table 1 how these different prescriptions account for thee major
features affecting dust attenuation in galaxies: the distribution of
dust relative to stars (geometry); the enhanced attenuation of young
stars in their birth clouds relative to older stars; and disc inclination.5

The mean MW, LMC and SMC extinction curves often adopted in
galaxy spectral analyses do not account for any of these features.
The (angle-averaged) attenuation curve of Calzetti et al. (1994),

4 A special case in which the use of mean extinction curves is physically
motivated is the analysis of occulting galaxy pairs. In this case, dust in the
foreground galaxy attenuates the light coming from the background one,
hence motivating the adoption of a screen geometry to describe the effect of
dust on the light emitted by the background galaxy (e.g. Holwerda, Keel &
Bolton 2007; Holwerda & Keel 2013).
5 We do not consider explicitly here changes in the size distribution and
optical properties of dust grains, as these are implicitly included in Table 1,
either through the difference between the MW, LMC and SMC extinction
curves or the possibility to change the slope of the attenuation curve in the
CF00 and C13 prescriptions. Such changes are expected to have less effect on
integrated galaxy SEDs than geometry, age dependence and inclination (e.g.
Granato et al. 2000; Fontanot et al. 2009, C13), except perhaps around the
2175 Å absorption feature (e.g. Conroy, Schiminovich & Blanton 2010b).
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1420 J. Chevallard and S. Charlot

Table 1. Different prescriptions for dust attenuation implemented in the BEAGLE tool (see Section 2.6 for details).

Prescription for dust attenuation Effects accounted for Adjustable parameters
Geometrya Age dependenceb Inclinationc

Mean extinction curve (MW, LMC, SMC) no no no τ̂V

Calzetti et al. (1994) yes yes (implicitly) no τ̂V

Charlot & Fall (2000) yes yes no τ̂V , μ

Chevallard et al. (2013) ‘quasi-universal’ relation yes yes yes (implicitly) τ̂V , μ

Chevallard et al. (2013) ‘full model’ yes yes yes τ̂V , μ, θ , tthin, tthick, tbulge

Notes. aInfluence of the relative distributions of stars and dust on attenuation (a ‘no’ refers to a uniform foreground screen model).
bInfluence of stellar age on attenuation (enhanced attenuation of young stars in their birth clouds relative to older stars).
cInfluence of disc inclination on attenuation (when some stars and dust components are distributed in discs).

empirically determined from the spectra of 39 nearby starburst and
blue-compact galaxies, implicitly incorporates the effects of geom-
etry (as indicated by the shallower slope of this curve relative to
standard extinction curves) and of the dependence of attenuation
on stellar age (as indicated by the factor of ∼2 difference in the
attenuation affecting line and continuum photons in this sample).
The main limitation of this prescription is that it was derived by
neglecting the strong dependence of the slope of the attenuation
curve on dust optical depth (see section 3.1.2 of C13). In Table 1,
only the C13 prescriptions include the dependence of attenuation
on galaxy inclination.

We now describe in slightly more detail the implementation in
the BEAGLE tool of the CF00 and C13 dust prescriptions. The CF00
prescription is based on an angle-averaged, two-component model,
which accounts for the fact that stars are born in dense molecu-
lar clouds, which dissipate on a time-scale of typically 10 Myr.
The dust attenuation optical depth in this model can be expressed
as

τ̂λ(t ′) =
{

τ̂BC
λ + τ̂ ISM

λ for t ′ � 10 Myr,

τ̂ ISM
λ for t ′ > 10 Myr,

(8)

where τ̂BC
λ and τ̂ ISM

λ are the dust optical depths in stellar birth clouds
and the ambient (diffuse) ISM, respectively. The attenuation curves
in these two components are parametrized as

τ̂BC
λ = τ̂BC

V

(
λ

0.55 µm

)−nBC
V

, (9)

τ̂ ISM
λ = τ̂ ISM

V

(
λ

0.55 µm

)−nISM
V

, (10)

where τ̂BC
V and τ̂ ISM

V are the V-band attenuation optical depths in
stellar birth clouds and in the ambient ISM and, following Wild
et al. (2007, see also da Cunha et al. 2008), we adopt nBC

V = 1.3
and nISM

V = 0.7. We parametrize this model in terms of the total V-
band attenuation optical depth, τ̂V = τ̂BC

V + τ̂ ISM
V , and the fraction

of this arising from dust in the ambient ISM, μ = τ̂ ISM
V /τ̂V , which is

typically constrained in the range [0.3, 0.5] (e.g. Wild et al. 2007).
Recently, C13 proposed a new approach to account for the ef-

fects of inclination and dust/star geometry on the attenuation of
galaxy SEDs. C13 incorporate the generic predictions of different
types of sophisticated models of radiative transfer in dusty media
into the two-component dust model of CF00. C13 show that these
predictions can be subsumed in a quasi-universal relation between
V-band attenuation optical depth in the diffuse ISM and shape of
the attenuation curve. This relation, which accounts for the effects
of dust/star geometry (including ISM clumpiness) and galaxy incli-
nation, exhibits a steepening of the attenuation curve (from more
starburst-like to more MW-like) at increasing dust optical depth (as

a consequence of either a rise in the amount of dust or a higher
inclination). A fit to a wide range of models yields (see fig. 4 of
C13)

nISM
V = 2.8

1 + 3
√

τ̂ ISM
V

(±25 per cent), (11)

where the typical scatter is indicated in parentheses. The above
expression was derived at optical wavelengths. C13 show that, by
adopting a wavelength-dependent exponent of the power law in
equation (10), one can reproduce the generic predictions of radiative
transfer models over the entire wavelength range from the near
ultraviolet to the near-infrared, neglecting the 2175 Å bump. This
can be achieved by rewriting equation (10) as

τ̂ ISM
λ (θ ) = τ̂ ISM

V

(
λ

0.55 µm

)−nISM
λ

, (12)

where the exponent of the power law is a linear function of wave-
length,

nISM
λ (τ̂ ISM

V ) = nISM
V + b (λ/µm − 0.55), (13)

valid over the range 0.1 ≤ λ ≤ 2.5 µm, and the coefficient b is given
by

b = 0.3 − 0.05 τ̂ ISM
V (±10 per cent). (14)

We note that the above implementation of the C13 prescription does
not require more parameters than the original CF00 model, since
equations (11)–(14) depend only on the V-band attenuation optical
depth in the diffuse ISM, τ̂ ISM

V (see column ‘Adjustable parameters’
of Table 1).

Finally, we also implement in the BEAGLE tool the more sophisti-
cated dust prescription proposed by C13 (referred to as ‘full model’
in Table 1), which allows one to explicitly express the dependence
of attenuation in the ambient ISM on the viewing angle θ . This
is achieved by associating stars in different age ranges with the
thin-disc, thick-disc and bulge components of the versatile model
of radiative transfer of Tuffs et al. (2004). In this case, we rewrite
equation (10) as

τ̂ ISM
λ (θ, t ′) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τ̂ thin
λ (θ ) for t ′ � tthin,

τ̂ thick
λ (θ ) for tthin < t ′ � tthick,

τ̂
bulge
λ (θ ) for tthick < t ′ � tbulge,

0 for t ′ > tbulge,

(15)

where τ̂ thin
λ (θ ), τ̂ thick

λ (θ ) and τ̂
bulge
λ (θ ) are the attenuation curves at

inclination θ for a thin stellar disc, thick stellar disc and bulge
in the Tuffs et al. (2004) model. We stress that equations (11)–
(15) affect only the dust attenuation arising from the diffuse ISM
(the term τ̂ ISM

λ in equation 8), while the birth-cloud component
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Modelling galaxy SEDs with BEAGLE 1421

Figure 1. Predictions of the IGM absorption models of Madau (1995, dotted
lines) and Inoue et al. (2014, solid lines) for sources at different redshifts.

(τ̂BC
λ in equation 8) is treated in C13 as in the original CF00 model.

We also emphasize that the flexible modular structure of the BEAGLE

tool enables one to easily substitute the predictions of any other
model of radiative transfer for those of the Tuffs et al. (2004) one.

2.7 IGM absorption

We now consider the absorption of photons emerging from galaxies
by gas in the IGM along the line of sight. This is modelled through
the transmission function T IGM

λ,z of the IGM in equation (4). The IGM
is composed primarily of hydrogen and helium and contains three
main cloud components: the Lyα forest, Lyman-limit systems (LLS)
and damped Lyα systems (DLA), in order of increasing H I column
density and decreasing number density (e.g. Rauch 1998; Péroux
et al. 2003; Wolfe, Gawiser & Prochaska 2005). The Lyα forest
consists mainly of primordial gas, while LLS and DLA, which are
thought to be associated with haloes and galaxies, are enriched in
metals. Neutral hydrogen is the primary contributor to T IGM

λ,z , which
can thus be estimated from the H I column density distributions and
number density evolutions of the different cloud components.

Madau (1995) proposed a first, simple analytic model to compute
the contributions to T IGM

λ,z by H I in the Lyα forest and LSS, neglect-
ing the much rarer DLA. This model includes photoelectric absorp-
tion of Lyman-continuum photons and blanketing by Lyman-series
lines (from the combined absorption in many intervening clouds)
of the background galaxy SED, which produces a characteristic
‘staircase’ profile of T IGM

λ,z as a function of observed wavelength
(Fig. 1). Recently, Inoue et al. (2014) updated this widely used
model by revising the H I column density distributions and number
density evolutions of the Lyα forest and LSS and by adding the
contribution to T IGM

λ,z by H I in DLA. In Fig. 1, we compare the
IGM transmission functions predicted by this model (solid lines)
and the Madau (1995) model (dotted lines), for background sources
at different redshifts. For sources at z � 5, the model of Madau
(1995) predicts a lower transmission than that of Inoue et al. (2014)
at all rest wavelengths λobs/(1 + z) < λLyβ , while at z � 6, the trend
is partially reversed. For sources at z = 7, the Inoue et al. (2014)
model predicts that nearly all photons emitted at rest wavelengths
λobs/(1 + z) < λLyα are absorbed by the IGM, while 1–7 per cent
of the emission is transmitted at λobs/(1 + z) ∈ [λLyβ, λLyα] in the

Madau (1995) model. It is important to note that, because of the
steepness of the IGM transmission curves in Fig. 1, these differ-
ences between the two models can translate into differences of up
to ∼1 mag in the observed colours of high-redshift galaxies (see
fig. 8 of Inoue et al. 2014).

The analytic prescriptions of Madau (1995) and Inoue et al.
(2014) for T IGM

λ,z are both limited by the fact that they pertain to aver-
ages over infinite numbers of sight lines, while individual galaxies
probe single lines of sight through the IGM. In the future, we plan
to account for variations in T IGM

λ,z along different lines of sight in the
BEAGLE tool by appealing to the prescription of Harrison, Meiksin
& Stock (2011).

2.8 Line-of-sight velocity distribution

The precise fitting of spectroscopic galaxy observations requires
one to also account for the effects of stars and gas kinematics on
the emergent SED. We implement this feature in the BEAGLE tool by
introducing a flexible description of the line-of-sight velocity dis-
tribution (LOSVD) taken from van der Marel & Franx (1993, see
also Gerhard 1993). This consists in decomposing the LOSVD into
orthogonal functions via a Gauss–Hermite series, which enables
the clean modelling of deviations from pure Gaussian line profiles
(the orthogonality of the Hermite polynomials minimizing correla-
tions among the adjustable coefficients). In terms of the standard-
ized variable x = (v − vsys)/σ , we therefore express the LOSVD
as

Lx(vsys, σ, h3, h4) = 1

σ
√

2π
exp

(
−x2

2

)

× [1 + h3H3(x) + h4H4(x)] , (16)

where vsys is the galaxy systemic velocity, σ the velocity dispersion,
and H3(x) and H4(x) the Hermite polynomials of order 3 and 4,

H3(x) = 1√
3

(
2
√

2x3 − 3
√

2x
)

, (17)

H4(x) = 1√
24

(
4x4 − 12x2 + 3

)
. (18)

The adjustable coefficients h3 and h4 measure, respectively, asym-
metric and symmetric deviations from pure Gaussian LOSVD. They
can be determined separately for stars and gas.

2.9 Instrumental effects

So far, we have discussed the production of starlight in galaxies and
its transfer through the interstellar and the intergalactic media. In
this section, we address important instrumental effects altering the
SED of a galaxy observed through a telescope: the spectral response
and the spectroscopic flux calibration. In a Bayesian framework,
accounting for instrumental effects is straightforward so long as
these can be parametrized, as this amounts to adding ‘nuisance’
parameters.6 In the next subsections, we describe two instrumental
effects incorporated in the BEAGLE tool : the instrumental spectral
response (i.e. the line spread function) and the spectroscopic flux
calibration. Other effects potentially biasing the interpretation of
galaxy SEDs, such as the calibration of photometric zero-points,

6 A nuisance parameter is a parameter of no direct interest, but which must
be included in the analysis to obtain reliable inference about the parameters
of interest.
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1422 J. Chevallard and S. Charlot

require a different approach. For example, a rigorous treatment
of zero-point offsets can be performed by adopting a hierarchical
Bayesian modelling approach. This and other instrumental effects
will be investigated in future work.

2.9.1 Line spread function

The line spread function, noted LLSF
λobs

, describes the instrumental
spectral response, which relates the spectral flux density Fλobs reach-
ing the telescope at wavelength λobs (equation 4) to that effectively
measured by the observer, F ′

λobs
, in such a way that

F ′
λobs

= Fλobs ⊗ LLSF
λobs

, (19)

where the symbol ⊗ indicates convolution. A common first-order
approximation is to model the line spread function as a Gaussian
function,

LLSF
λobs

(μLSF, σLSF) = 1

σLSF

√
2π

× exp

[
−1

2

(
λobs − μLSF

σLSF

)2
]

, (20)

with mean μLSF = 0 and dispersion σLSF(λobs) = λobs/R, where
R = λobs/�λobs is the instrumental spectral resolution. In practice,
this may provide only a poor approximation of the true line spread
function, which depends on, for example, the intrinsic light profile
of the source, the point spread function and the width of the spec-
troscopic aperture (slit or fibre). Ideally, therefore, the line spread
function should be determined on an object-by-object basis. An-
other complication is that, for spectral analyses involving models
based on observed stellar spectral libraries, the line spread function
affecting the original stellar spectra should also be accounted for
to perform meaningful comparisons with galaxy observations (see
e.g. Koleva et al. 2009).

In the BEAGLE framework, we adopt a flexible parametrization of
the line spread function, in which the parameters μLSF and σLSF in
equation (20) are taken to be polynomials of adjustable degree in
λobs, i.e.

μLSF(λobs) =
n∑

i=0

ci Pi(λobs − λc
obs), (21)

σLSF(λobs) =
n∑

i=0

di Pi(λobs − λc
obs), (22)

where n indicates the degree of the polynomial, ci and di

the coefficients of the polynomial, and Pi the ith term of the
polynomial expanded around the central wavelength λc

obs. The co-
efficients of the polynomials ci and di are treated as nuisance
parameters and marginalized out when computing the posterior
probability distributions of the model parameters of interest. This
ensures that uncertainties arising from an inaccurate knowledge of
the line spread function are correctly propagated to the statistical
constraints on interesting model parameters. Moreover, the possibil-
ity for μLSF(λobs) to differ from zero enables one to straightforwardly
account for any inaccurate wavelength calibration.

2.9.2 Spectroscopic flux calibration

A major challenge in the reduction of spectroscopic data is to
achieve a reliable flux calibration, both absolute and relative. We
refer here by ‘absolute’ to the calibration of an observed SED on

an absolute flux scale using observations of standard stars (and ac-
counting for any required aperture correction). By ‘relative’, we
refer to the calibration of the flux at any wavelength with respect
another. The quality of the absolute calibration determines how well
galaxy properties depending on total flux, such as stellar mass and
star formation rate, can be evaluated. The quality of the relative flux
calibration can potentially affect all galaxy properties, as it alters
the shape of the SED. Obtaining an accurate relative flux calibration
is challenging because of the contamination by several factors, such
as the wavelength dependences of the point spread function and the
galaxy light profile.

Two main approaches are generally considered to deal with in-
accurate relative flux calibrations: one is to continuum-normalize
the observed and model spectra before comparing them (e.g. Wolf
et al. 2007; Spiniello et al. 2014); the other is to introduce a smooth
correction function by which to multiply the model continuum, in
order to bring it in agreement with the observed one (e.g. Kelson
et al. 2000; Koleva et al. 2009). We implement both strategies in
the BEAGLE tool to account for inaccurate relative flux calibrations.
We allow either the observed and model spectra to be continuum-
normalized, or a series of Legendre polynomials of adjustable order
to be used to correct the model continuum shape, the coefficients
of this series being treated as nuisance parameters (as in the case
of the LOSVD in Section 2.8, we choose orthogonal polynomi-
als to minimize correlation between adjustable parameters). This
second, more flexible approach presents several advantages over a
continuum normalization, which requires a fixed determination of
the continuum, is highly sensitive to noise and erases valuable infor-
mation contained in the spectral continuum shape. The subtlety is to
select the smallest possible order of the series of Legendre polyno-
mials able to account for the continuum-shape mismatch between
model and observed spectra, while preserving informative spectral
features such as the 4000 Å break and broad molecular absorption
lines. This order is typically around 2–3.

3 MA I N C H A R AC T E R I S T I C S O F B E AG L E

In Section 2, we presented the astrophysical ingredients used to
model galaxy SEDs in the framework of the BEAGLE tool. These in-
clude, at the present time: the consistent modelling of the emission
from stars and ionized gas by means of combined stellar popu-
lation synthesis and photoionization codes; a prescription to ac-
count for the effects of changes in the α element-to-iron abundance
ratio on stellar population spectra; different prescriptions for the
star formation and chemical histories of galaxies, dust attenuation
and IGM absorption; and simple analytic models of the LOSVD
and instrumental effects. In this section, we describe the statisti-
cal approach at the basis of the BEAGLE tool, the combined imple-
mentation of the different model ingredients and the main output
products.

3.1 Statistical approach

Our main goal in this paper is to develop a new-generation tool for
the analysis of galaxy SEDs. In addition to enabling the production
of mock catalogues of any spectroscopic and photometric galaxy
properties, this tool must allow one to derive statistical constraints
on a wide range of galaxy physical parameters from observed SEDs.
To achieve this, we appeal to the modelling approach outlined in
Section 2 to perform statistical inference on physical parameters
from observed galaxy samples. A plethora of approaches have been
proposed in the literature to perform such inference on the basis of
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Modelling galaxy SEDs with BEAGLE 1423

various statistical methods (e.g. minimum χ2, maximum likelihood,
Bayesian; see Section 1). To select the approach optimal for our
purpose, we require the constraints on galaxy physical parameters
derived through an inference process to allow:

(i) a rigorous propagation of observational errors into statistical
constraints on model parameters, to compute realistic uncertainties
in these parameters;

(ii) a full characterization of correlations among model parame-
ters, to deal with parameter degeneracies and multimodal solutions;

(iii) a proper accounting of instrumental effects, to minimize the
impact of instrumental systematics on inference products.

In addition to these requirements, the full exploitation of high-
quality data will require complex models with multiple parame-
ters. The choice of the optimal statistical approach therefore also
depends on the computational and memory requirements of such
multidimensional models.

In the framework of the BEAGLE tool, we adopt a Bayesian ap-
proach to perform inference on galaxy physical parameters from
observed SEDs. This approach satisfies the above requirements
through the characterization of prior and posterior probability dis-
tributions of model parameters, the consideration of nuisance pa-
rameters, and a precise framework to perform model comparisons
and hierarchical analyses of multilevel observational constraints us-
ing multiparameter models. This kind of approach is now routinely
employed to interpret large astrophysical data sets in the context of
parameter spaces of very high dimensions (>107 parameters, e.g.
Jasche, Leclercq & Wandelt 2015) by appealing to efficient compu-
tational techniques (e.g. Markov chain Monte Carlo, Hamiltonian
Monte Carlo, Nested Sampling).

In practice, Bayes’ theorem allows one to perform inference on
a set of model parameters by combining information obtained from
an experiment (through the ‘likelihood function’) with any prior
knowledge about the parameters (through the ‘prior probability
distribution’). Past and current knowledge is therefore combined in
the posterior probability distribution of the parameters, which can
be expressed as (e.g. Jeffreys 1961)

posterior = prior · likelihood

evidence
, (23)

and, mathematically, as

P (� | D , H ) = P (� | H ) P ( D | �,H )∫
P (� | H ) P ( D | �,H ) d�

, (24)

where � refers to a set of parameters of a model (hypothesis) H,
D to a data set, and the denominator (i.e. the evidence, or marginal
likelihood) is often written simply as P ( D | H ). For simplicity, in
the remainder of this paper, we refer to the prior distribution of
a model H with parameters � as π (�) ≡ P (� | H ), and to the
likelihood function of a data set D given a model H with parame-
ters � as L(�) ≡ P ( D | �, H ). This function depends on both
the physical model and the statistical description of the noise in
the data (e.g. Gaussian, Poisson). Given a prior probability distri-
bution, which reflects our belief about the model parameters before
considering the data set D , equation (24) enables rigorous sta-
tistical constraints on these parameters from observations at any
S/N ratio. These constraints do not require any assumption about
the shape of the posterior probability distribution (unlike, e.g. the
Gaussian shape implicitly assumed when estimating confidence in-
tervals with the criterion �χ2 < 1). We note that, as described in
Section 2.9, instrumental systematics can also be incorporated in a
Bayesian approach, by means of nuisance parameters, which can be

marginalized out when computing the posterior probability distri-
butions of the model parameters of interest (see, e.g. the treatment
of nuisance parameters in Planck Collaboration 2015).

Another main interest of equation (24) is the possibility to fully
characterize complex, non-linear correlations among model param-
eters, an achievement often ignored in statistical approaches focus-
ing on simple point-wise (e.g. minimum χ2) estimates of best-fitting
model parameters. Such correlations can reveal parameter degen-
eracies and lead to multimodal solutions, i.e. to different parameter
combinations providing similarly good fits to the data (which one
may then try to break by appealing to new observables; see, e.g.
fig. 19 of Planck Collaboration 2015). The problem is particularly
acute, for example, in the context of galaxy redshift determinations
from deep photometric observations (see Section 4.3). A Bayesian
analysis provides a rigorous solution to this problem, through the
methodical comparison of models populating the different modes of
a posterior probability distribution (Section 5.2). Such statistically
driven comparison allows the selection of the best subset of models
able to account for a data set, beyond the selection of simply the
best set of model parameters.

It is worth discussing briefly the role of the prior probability dis-
tribution entering equation (24). In most situations, the data entering
equation (24) through the likelihood function will be informative
enough for the prior probability distribution to have a negligible
impact on inference results. In the case of poorly informative data,
the influence of the prior can be studied by testing different choices
and by comparing the prior and posterior probability distributions
of model parameters.7 As an example, the analysis of low-S/N pho-
tometric observations does not allow one to put strong constraints
on all model parameters, but the presence of a prior term in equa-
tion (24) allows one to properly incorporate our ignorance about
the value of these parameters into their posterior probability distri-
bution (see Section 4.4 below). The current version of the BEAGLE

tool allows the user to choose, for any adjustable parameter of the
model, between uniform (linear or logarithmic), Gaussian (linear
or logarithmic) or Cauchy (to allow for broader tails) prior distri-
butions. Additional prior distributions will be made available in the
future. Finally, we note that prior probability distributions can also
be used in a hierarchical way in Bayesian analyses, by adopting
‘hyper-priors’ with their own ‘hyper-parameters’ to describe the
parameter priors. This enables a multilevel analysis, which reduces
the final uncertainties in model parameters by allowing data to share
information with one another (see, e.g. Sonnenfeld et al. 2015).

3.2 Model implementation

We now describe our strategy to implement the various astrophys-
ical ingredients of BEAGLE (Section 2) into the Bayesian statistical
framework outlined in Section 3.1, with the aim of creating a flexi-
ble, physically motivated tool for the analysis of galaxy SEDs. The
flexibility of this tool is crucial to overcome a major challenge faced
by any SED modelling approach: to adapt to a wide variety of data
(from photometric to spectroscopic; from high- to low-S/N; at di-
verse spectral resolution over different wavelength ranges) without
neither sacrificing model completeness nor over-fitting data with
too many uncontrolled adjustable parameters.

7 We refer the interested user to Loredo (2012) for an interesting discussion
about common misconceptions regarding Bayesian methods, including the
role of prior distributions.
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1424 J. Chevallard and S. Charlot

Figure 2. Workflow diagram showing the different building blocks of the BEAGLE tool. The astrophysical ingredients indicated with stars are currently being
implemented and will soon be available. Dotted arrows indicate how external models can be incorporated into BEAGLE to inform the various ingredients. See
Section 2 for details.

Fig. 2 shows our implementation in a fully integrated tool of
the different astrophysical ingredients described in Section 2. This
workflow diagram highlights the different steps leading to either the
production of synthetic catalogues of galaxy SEDs or the quantita-
tive interpretation of observed SEDs with model ones. The ingre-
dients used to define an intrinsic galaxy SED are shown at the top,
and the external inputs used to inform these ingredients on the sides
(e.g. galaxy formation and spectral evolution models). The light
emerging from the model galaxy is then processed through IGM
absorption and instrumental effects to produce observables directly
comparable with data.

As a complement to Fig. 2, Table 2 summarizes the adjustable
parameters used to compute galaxy observables in the BEAGLE tool.
To achieve the flexibility required to handle different types of (both
true and pseudo) observations, we allow each adjustable parame-
ter to be either ‘free’, ‘fixed’ or ‘dependent’. Free parameters are

drawn from prior probability distributions (e.g. uniform, normal,
log-normal), both when building synthetic catalogues of galaxy
SEDs and when fitting an observation, in which case they enter
equation (24) as elements of array � . Alternatively, an adjustable
parameter can be fixed to a default (or standard) value, both when
producing synthetic observations and when fitting an observed SED.
This is useful to preserve the full coherence of a multiparame-
ter model when dealing with observations with low constraining
power, such as limited-band photometry at moderate S/N. Finally,
the value of an adjustable parameter can also be set to depend
on other adjustable parameters, for example, through an analytic
relation.

We note that, from a Bayesian point view, the consideration of
an adjustable parameters as free, fixed or dependent corresponds
simply to different choices of prior probability distributions. The
prior probability distribution of a fixed parameter is a Dirac δ
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Modelling galaxy SEDs with BEAGLE 1425

Table 2. Summary of the adjustable parameters available to build the intrinsic SED of a galaxy in the BEAGLE tool. This table does not include the adjustable
parameters used to describe instrumental effects (see Section 2.9).

Physical module Adjustable parameters Default range Physical meaning

tSSP/Gyr [0.01, tU,z
a] Age of stars when approximating a galaxy by a simple stellar populationb

tstart/Gyr, tend/Gyr [0, tU,z
a] Start/end look-back times of an arbitrary number of star formation periodsc

M/M� [0, 1012] Mass of stars formed during a star formation period
τSFR/Gyr [0.01, 2 × tU,z

a] Star formation time-scale during a star formation period (for analytic star
formation histories, such as exponentially declining, delayed, rising, etc.)

log(Z/Z�) [−2, 0.25] Metallicity of stars formed during a star formation period
Star formation and chemical

[α/Fe] [0, 0.4] α/Fe ratio of stars formed during a star formation period (relative to Solar)d
enrichment histories

�tSFR/yr [107, 108] Duration of the current episode of star formation
log(ψS/yr−1) [−12, −7] Specific star formation rate (averaged over �tSFR)

log(Zyoung/Z�) [−2, 0.25] Metallicity of stars younger than 10 Myr
z [0, 15] Redshift of observation

zform (tform) [z, 50] Formation redshift (look-back time) of the first stellar generation

τ̂V [0, 5] Vband attenuation optical depthe, f

μ [0, 1] Fraction of τ̂V arising from the dust in the diffuse ISMe, f

θ/deg [0, 90] Galaxy inclinationf
Dust attenuation

tthin/Gyr [0.1, tform] Stars with ages t ≤ tthin pertain to thin stellar discf

tthick/Gyr [tthin, tform] Stars with ages tthin ≤ t ≤ tthick pertain to thick stellar discf

tbulge/Gyr [tthick, tform] Stars with ages tthick ≤ t ≤ tbulge pertain to stellar bulgef

log U [−4, −1] Effective galaxy-wide ionization parameterg

Nebular emission log(ZISM/Z�) [−2, 0.25] Effective galaxy-wide interstellar metallicityg

ξd [0.1, 0.5] Effective galaxy-wide dust-to-metal mass ratiog

vsys/km s−1 [0, 104] Systemic velocity
Kinematicsh σ/km s−1 [0, 400] Velocity dispersion

h3 [−1, 1] Coefficient of the third-order Hermite polynomiali

h4 [−1, 1] Coefficient of the fourth-order Hermite polynomiali

Notes. aThis indicates the age of the Universe at redshift z, assuming a cosmological model and a fixed set of cosmological parameters.
bAlthough we de not favour the adoption of SSPs to describe galaxy star formation and chemical enrichment histories, we have implemented this model to
allow an easier comparison with previous analysis tools adopting SSPs (and for spectral analyses of individual star clusters).
cAs defined in Section 2.5.
dCoelho et al. (2007); Coelho (2014); Walcher et al. (2009).
eCF00.
fC13.
gCharlot & Longhetti (2001); Pacifici et al. (2012); Gutkin et al. (2016).
hDifferent kinematic parameters can be used to describe the LOSVD of stellar and nebular emission.
ivan der Marel & Franx (1993); Gerhard (1993).

function, as is that of a dependent parameter, only conditional in
this case on the values of other parameters. In the current version
of the BEAGLE tool, the prior probability distribution of each model
parameter is independent of the others, which makes the general-
ized Bayesian formulation of the above three parameter classes not
easy to implement. In the future, we will expand the flexibility of
prior probability distributions to allow the choice of any type of
joint and conditional probability distributions. This will enable the
incorporation in the inference process of a priori relations between
different galaxy physical parameters (e.g. the mass–metallicity re-
lation), accounting at the same time for the scatter about such
relations.

The number of adjustable parameters of the BEAGLE tool in Table 2
is fairly large. Since many of these parameters cannot be easily set to
standard values nor related to other parameters, in typical situations,
many will have to be considered as free parameters. In practice,
the actual number of free parameters will be chosen on a case
by case basis as a function of the available data. It is worth briefly
pausing here to comment on a common misconception regarding the
influence of the number of free parameters on a statistical analysis.
It is often stated that, when fitting a model to a data set, the number
of free parameters should not exceed that of (independent) data

points. In reality, this statement is true only for linear models, i.e.
models depending linearly on free parameters (e.g. polynomials,
linear least-squares). In the more general case of non-linear models,
such as in the BEAGLE tool (Fig. 2), the rule does not apply. While
simple models should generally be preferred over more complex
ones at equal predictive power, in some situations, having more free
parameters than data points may be recommended to account for
uncertainties about these parameters.8

Another potential source of ambiguity relates to the parametriza-
tion of galaxy physical properties in SED fitting tools. In standard
spectral analyses, galaxies are often characterized simply in terms
of stellar mass, age and metallicity. The stellar mass of a galaxy re-
flects the integral of the star formation history.9 Thus, a same galaxy
stellar mass could result from an infinite number of different star

8 See the interesting discussion about the relative numbers of
free parameters versus data points at https://jakevdp.github.io/blog/
2015/07/06/model-complexity-myth/
9 A fraction of the stellar mass is actually returned to the ISM through stellar
winds and SNe explosions during the evolution of the stellar population. This
fraction, and hence the mass currently locked into stars, is computed using
stellar population synthesis models and is recorded in BEAGLE as the quantity
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1426 J. Chevallard and S. Charlot

formation histories. This implies that, in turn, the distributions of
stellar age and metallicity will depend on the specific star formation
and chemical enrichment histories of a galaxy. The definition of
global galaxy age and metallicity at fixed stellar mass is therefore
ambiguous. In this context, it is customary to define light- and mass-
weighted ages and metallicities, which are also integral quantities
computed from the star formation and chemical enrichment histo-
ries of a galaxy. Finally, we note that, in many spectral analyses,
the age of a galaxy is defined as the age of the oldest stars in that
galaxy. This quantity is most relevant to studies of young galaxies
near the reionization epoch, as it is otherwise difficult to constrain,
the oldest stars tending to be out-shined by younger ones.

3.3 Output products

In this section, we briefly describe the output products of the BEAGLE

tool (we refer the reader to the code manual for a more detailed de-
scription of these products).10 These are organized in FITS files with
multiple extensions, each extension containing information about a
physical module (e.g. star formation and chemical enrichment his-
tories, dust). We use a standard output format to produce synthetic
SED catalogues, in the sense that the properties of different simu-
lated galaxies are written on different rows. We describe in more
detail here the output products of a model fit to an observed galaxy
SED, which are more specific to the statistical approach inherent in
the BEAGLE tool.

In the output FITS extension produced for a given physical mod-
ule by a spectral fit, the entries on each row are the properties
predicted by a model with free parameters drawn from the pos-
terior probability distribution of equation (24) using a dedicated
Bayesian algorithm (e.g. MULTINEST; see Section 4.2). The posterior
probability distributions of the parameters themselves are reported
in a separate extension of the output FITS file. This generalized
format allows one to interpret in a probabilistic way the constraints
on not only the model free parameters, but also all other physical
quantities included in the output files, which we refer to as ‘derived
quantities’. For example, the uncertainties in the mass-weighted
age and metallicity of a galaxy can be computed from the val-
ues of these quantities across all rows of the corresponding output
file, weighted by the posterior probability value associated with
each row. This approach allows one to easily compute the probabil-
ity distribution of any theoretical or observable quantity predicted
by the model (e.g. mass-weighted age, rate of ionizing photons,
ultraviolet spectral slope, broad-band magnitude, emission-line lu-
minosity, absorption-line strength), as resulting from the posterior
probability distribution of the adjustable parameters.

Another advantage of the above approach is that it simplifies
the adoption of posterior predictive checks to quantify how well
model predictions match the data in a given observable (see Section
5.1 for an example). This can be readily extended to the study of
residuals, which in this context are no more a point-wise estimate
of the difference between model predictions and observations, but
rather a probabilistic distribution of such differences. We believe

M∗, which differs from the model parameter M reflecting the integral of the
star formation history.
10 The BEAGLE tool will be released in the near future as an open-source
project. To be informed about the code release, please visit and register at
http://www.jacopochevallard.org/beagle. In the meantime, interested users
should contact the corresponding author of this paper.

that this will be a powerful means of identifying model failures and
driving the development of better models with the BEAGLE tool.

4 PHOTO METRI C SED A NA LY SI S W I TH
BEAGLE

In this section, we present a first application of the BEAGLE tool
to interpret the broad-band SEDs of a published sample of about
104 galaxies at redshifts 0.1 � z � 8. The observational challenge
of gathering large spectroscopic samples of galaxies at high red-
shifts is forcing much progress in the field of galaxy formation
and evolution to rely on photometric surveys. Interpreting broad-
band SEDs is therefore a common task in galaxy evolution stud-
ies. Historically, the derivation of galaxy physical parameters from
broad-band galaxy SEDs has often been decoupled from that of red-
shift. In fact, redshift is considered to be the most robust quantity
that can be constrained from broad-band photometric data, while
determinations of galaxy physical parameters are expected to be
more model-dependent (e.g. Dahlen et al. 2013; Mobasher et al.
2015). Dedicated photometric-redshift codes generally rely on a
small library of ‘representative’ SEDs of different types of galax-
ies, either built using spectral evolution models (e.g. EAZY Brammer,
van Dokkum & Coppi 2008) or consisting of a small number of ob-
served galaxy SEDs (e.g. BPZ Benı́tez 2000; LEPHARE, Arnouts et al.
1999; Ilbert et al. 2006). Such libraries enable the extraction of only
limited information about physical parameters from photometric
SEDs of galaxies.11 In contrast, most codes designed to constrain
galaxy physical parameters from photometric data require an in-
dependent determination of redshift, often estimated using one of
the above photometric-redshift codes (e.g. FAST, Kriek et al. 2009;
CIGALE, Burgarella, Buat & Iglesias-Páramo 2005; Noll et al. 2009).

In the BEAGLE tool, we follow an alternative approach, similar that
adopted by Acquaviva, Raichoor & Gawiser (2015, see also HYPERZ,
Bolzonella et al. 2000; Pozzetti et al. 2007), and consider redshift
just as an additional model parameter to be constrained along with
the other physical parameters when fitting a galaxy SED. As we
shall see below, a major advantage of this approach is to allow a rig-
orous propagation of the uncertainty on photometric redshift to the
statistical constraints on other galaxy physical parameters, account-
ing at the same time for any potential correlation between redshift
and other parameters. In addition, our statistical approach, based
on the MULTINEST algorithm (a Bayesian analysis tool based on the
Nested Sampling algorithm of Skilling et al. 2006; see Appendix A
and Feroz, Hobson & Bridges 2009), can naturally deal with multi-
modal solutions, i.e. with the occurrence of different combinations
of parameters yielding similar posterior probability distributions
(Section 3.1). This can often be the case in determinations of pho-
tometric redshifts of faint sources (e.g. Edmondson, Miller & Wolf
2006). We now describe the photometric sample of distant galaxies
we appeal to for our study (Section 4.1) and the results of SED
fitting of this sample using the BEAGLE tool (Section 4.2 for redshift
and Section 4.4 for other physical parameters).

11 Other approaches to estimate photometric redshifts also exist: ‘data-
driven’ methods are based on the application of machine-learning techniques
to determine the relation between galaxy colours and redshift (e.g. Collister
& Lahav 2004; Hogan, Fairbairn & Seeburn 2015), while ‘clustering-based’
methods are based on the redshift evolution of spatial correlations between
galaxies (e.g. Schmidt et al. 2013; Rahman, Ménard & Scranton 2016). We
do not discuss such approaches here, as they typically do not provide any
information about galaxy physical parameters.
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Modelling galaxy SEDs with BEAGLE 1427

Figure 3. Relation between total signal-to-noise ratio, computed by sum-
ming in quadrature the S/N of all bands with available measurements, and
observed ACS/WFC F850LP magnitude, along with their marginal distri-
butions, for all galaxies in the UVUDF catalogue.

4.1 Galaxy sample

To illustrate our approach to broad-band SED fitting, we appeal
to the photometric galaxy catalogue assembled by Rafelski et al.
(2015, hereafter ‘UVUDF’ catalogue). This consists of (up to) 11
bands at ultraviolet to near-infrared wavelengths for 9927 galaxies
in the Hubble Ultra Deep Field (Beckwith et al. 2006). The ul-
traviolet data come from observations in three HST/WFC3 filters,
F225W, F275W and F336W (observations in Teplitz et al. 2013),
reanalysed by Rafelski et al. (2015) to improve the photometric
and astrometric calibrations. The optical data come from obser-
vations in four ACS filters, F435W, F606W, F775W and F850LP
(imaging in Beckwith et al. 2006), and the near-infrared ones in
four WFC3 bands, F105W, F125W, F140W and F160W, from the
UDF09, UDF12 (Oesch et al. 2010a,b; Bouwens et al. 2011; Ellis
et al. 2013; Koekemoer et al. 2013) and CANDELS GOODS-S pro-
grams (Grogin et al. 2011; Koekemoer et al. 2011). To maximize
the depth of their catalogue, Rafelski et al. (2015) combine, pixel
by pixel, the four optical and four near-infrared images to create a
‘detection image’. They identify sources in this image by running
a standard extraction algorithm with different settings, varying the
detection and deblending threshold parameters, then merging in a
single catalogue the sources identified with the different settings.
Finally, to produce a homogeneous source catalogue, they extract
PSF-corrected aperture-matched photometry in all bands, and com-
pute the total (Kron 1980) flux in each band by applying an aperture
correction to the isophotal flux.

We show in Fig. 3 the relation between total signal-to-noise ratio
(S/N)tot, computed by summing in quadrature the S/N of all bands
with available measurements, and observed ACS/F850LP magni-
tude, along with the marginal distributions of these quantities, for
all UVUDF galaxies. We select the F850LP band as it is the one
with the largest fraction (9919/9927) of detected objects (defined as
entries in the catalogue with positive measurements of both flux and
flux error). The catalogue peaks around mAB = 29.5, with a typical
(S/N)tot in the range ∼[10, 30] and a long tail of bright objects
with (S/N)tot � 100. For a small fraction (about 1.7 per cent) of the
galaxies in the UVUDF catalogue, reliable spectroscopic redshifts
are available from the literature. In Fig. 4, we compare the frequency
distribution of redshift for this spectroscopic subsample (in blue)

Figure 4. Frequency distribution of redshift for the full UVUDF photomet-
ric catalogue (in red) and for galaxies with spectroscopic redshift measure-
ments (in blue). The photometric redshifts are computed with the BEAGLE

tool (see Section 4.3).

to that for the full photometric sample (in red), using photo-z esti-
mates obtained with the BEAGLE tool (see Section 4.2 below). Aside
from the low number of spectroscopic detections, Fig. 4 highlights
the different redshift distributions of the two samples. The spec-
troscopic sample peaks around z∼1 and has very few galaxies at
z � 3, while the photometric sample displays a broader distribution,
which extends out to z � 6.

4.2 Modelling approach

To analyse the photometric SEDs of galaxies in the UVUDF cata-
logue with the BEAGLE tool, we adopt the following prescriptions
for the adjustable parameters listed in Table 2. For simplicity,
we describe the star formation histories of model galaxies as de-
layed exponential functions over a single star formation period,
ψ(t ′) ∝ t ′ exp(−t ′/τSFR) for t ′ ≤ tU,z − tform, and assume that all
stars in a given galaxy have the same metallicity Z. We account
for the stochastic nature of star formation by adding a ‘current’
burst of star formation to describe stars assembled in the last
�tSFR = 10 Myr of a galaxy star formation history. The strength
of the burst component is parametrized in terms of the specific star
formation rate ψS. We compute the photoionization of interstellar
gas by young stars in the burst as described in Section 2.4. For
simplicity, in the absence of spectroscopic constraints, we adopt the
same metallicity for the interstellar gas as for the stars (ZISM = Z),
a fixed (intermediate) dust-to-metal mass ratio (ξd = 0.3), and the
following relation between ZISM and log US, derived from the anal-
ysis of SDSS galaxies by Brinchmann et al. (2004, and Carton et al.
2016, in preparation):

log US =
{ −3.638 + 0.055 x forx ≤ −0.04,

−3.640 forx > −0.04,
(25)

where x = log(ZISM/Z�). We use the prescription of C13 to de-
scribe attenuation by dust, fixing the fraction of the dust optical
depth arising from the diffuse ISM at μ = 0.4 (Wild et al. 2011).
Together with the mass M of stars formed, which provides the ab-
solute scaling of the luminosity, and the redshifts of observation
and formation, z and zform, these represent seven free parameters, in
the sense defined in Section 3.2. We also include absorption by the
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1428 J. Chevallard and S. Charlot

Table 3. Prior distributions of the seven free parameters
adopted to interpret the photometric SEDs of UVUDF galax-
ies in Sections 4.2 and 4.4. A galaxy is assumed to form over
a single star formation period extending from zform to z (see
Table 2 for a description of the different parameters).

Parameter Prior range

log(M/M�) [5, 12]
log(τSFR/yr) [7, 10.5]
log(Z/Z�) [−2.2, 0.25]
log(ψS/yr−1) [−14, −7]
τ̂V [0.001, 5]
z [0, 15]
zform [z, 50]

IGM using the prescription of Inoue et al. (2014, see Section 2.7
above).

To compute the posterior probability distribution P (� | D , H )
of the free model parameters favoured by the observations of a given
UVUDF galaxy, we must specify the likelihood function L(�) and
prior distribution π (�) entering the right-hand side of equation
(24). We adopt flat linear prior distributions for z, zform, log M,
log τSFR, log Z and log ψS, and a flat logarithmic prior distribution
for τ̂V , within the ranges reported in Table 3. We do not introduce
any luminosity function-based prior in this analysis, since we wish
to investigate the presence of multimodal solutions in the posterior
distribution of model parameters in the absence of any external in-
formation. To build the likelihood function, we model the observed
fluxes y of the UVUDF galaxy as a multivariate Gaussian random
variable, with mean given by the prediction ŷ ( � k) of our model for
a set of parameters �k = [M, τSFR, Z,ψS, τ̂V , z, zform]k , and noise
described by a diagonal covariance matrix �.12 We therefore write
the likelihood function of that galaxy as

−2 lnL(�k) =
∑

i

[
yi − ŷi(�

k)

σi

]2

, (26)

where the summation index i runs over all bands observed, even in
the absence of detection (i.e. with negative flux after an uncertain
background subtraction), and the σ is are the diagonal elements of
matrix �. Bands with no detection are of crucial importance to track
the absorption of radiation blueward of hydrogen Lyα by the IGM
(and blueward of the Lyman limit by the ISM) at high redshift.

The parameter σ i in equation (26) is not purely the observational
error. In fact, when fitting broad-band photometry with spectral
evolution models, it is customary to introduce an additional error
term to account for uncertainties potentially unaccounted for in
the observed fluxes (linked to, e.g. background subtraction, flux
calibration, aperture effects) and for (unquantified) systematic un-
certainties in model predictions (e.g. Brammer et al. 2008; Dahlen
et al. 2013; Acquaviva et al. 2015). We account for this effect by

12 We note that the use of a Gaussian likelihood function to describe data
originating from the difference between two Poisson processes (i.e. the dif-
ference between source+background and background counts on a detector)
is justified only in the limit of large counts, in which case the Poisson dis-
tributions can be approximated by Gaussian ones. The presence of objects
with negative fluxes in the UVUDF catalogue suggests that this approxi-
mation may not be valid for the faintest sources. In those cases, a better
approach would be introduce a background term in the likelihood function
and use a Poisson distribution to describe the combined source+background
signal (e.g. Thompson 1999). Unfortunately, the information in the UVUDF
catalogue is not sufficient to allow us to perform such an analysis.

adding a 2 per cent relative error in quadrature to the fluxes in
all photometric bands, i.e. we write σi =

√
σ 2

obs + (σ0 yi)2, where
σobs is the observational error and σ 0 = 0.02.13 Although this ad-
ditional error term does not correct for potential biases originating
from systematic uncertainties, it reduces their impact on the re-
sults by widening the posterior probability distribution of model
parameters. We note that adopting σ 0 = 0.02 translates into in-
creasing flux errors in each band by factors of 1.08, 1.16 and 1.28
for S/N = 20, 30 and 40, respectively. We can estimate the typical
S/N of a UVUDF band starting from Fig. 3, by considering the
quantity 〈S/N〉 ∼ (S/N)tot/

√
Nbands, where Nbands varies from 8 to

11 depending on the galaxy. This leads to 〈S/N〉 � 10 for most
galaxies, implying that only the few brightest UVUDF galaxies
might be significantly affected by the addition of this error term.
These also tend to be the lowest redshift galaxies with spectroscopic
redshifts (Fig. 4). Without the additional error term, therefore, the
results for the high- and low-S/N subsamples could be dominated
by different error sources: (uncontrolled) systematics originating
from both data and models for the former, and S/N ratio of the data
for the latter. In this case, the conclusions drawn from, for example,
the comparison between spectroscopic and photometric redshifts
for bright galaxies, would be irrelevant to the fainter sample.

To compute the posterior probability distribution of the model
parameters in Table 3 (and of other derived quantities; see Section
3.3) with the BEAGLE tool, we adopt MULTINEST, an efficient Bayesian
inference tool based on the Nested Sampling algorithm of Skilling
et al. (2006, see Appendix A for detail). We start by focusing on
photometric redshift estimates, with the purpose of comparing these
with estimates derived using the dedicated photometric redshift
codes BPZ and EAZY in the UVUDF catalogue. To this goal, we
adopt as a measurement of z the mean of the marginal posterior
probability distribution provided by the BEAGLE tool. In the case of
multiple-redshift (i.e. multimodal) solutions, we identify the mode
with highest local evidence, as computed using MULTINEST, and take
the posterior mean within that mode to be a measurement of z (see
Section 5.2 for a more detailed discussion of multimodal solutions).

4.3 Photometric redshifts

In their original study, Rafelski et al. (2015) estimate the photomet-
ric redshifts of all UVUDF sources by appealing to two standard
codes, BPZ (Benı́tez 2000) and EAZY (Brammer et al. 2008). Both
codes rely on a small set of template galaxy SEDs computed using
the PEGASE population synthesis code (Fioc & Rocca-Volmerange
1997), although with different prescriptions for the contamination
of broad-band fluxes by nebular emission lines. The BPZ code relies
on the original prescription of PEGASE for nebular emission, while
the EAZY code incorporates a simplified model relating the Ly α,
H α, H β, H γ , [O II] λ3727 and [O III] λλ4959, 5007 line luminosi-
ties to the star formation rate (see Brammer et al. 2011). The BPZ

code also includes a Bayesian prior, based on previously measured
galaxy luminosity functions, to help constrain redshift estimates in
cases of multiple solutions.

Rafelski et al. (2015) use the subsample of 169 galaxies with
spectroscopic redshifts in the UVUDF catalogue to assess the qual-
ity of photometric redshifts derived using the BPZ and EAZY codes,
although this quality check is limited by construction to redshifts

13 After experimenting with values in the range 0.01 ≤ σ 0 ≤ 0.04, we find
that fixing σ 0 = 0.02 minimizes the dispersion between zBEAGLE and zspec,
as measured by the quantity σNMAD (equation 27).
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Modelling galaxy SEDs with BEAGLE 1429

Table 4. Bias, normalized median absolute deviation and outlier fraction
for the comparisons between BEAGLE-derived photometric redshifts and spec-
troscopic (169 galaxies) and BPZ- and on EAZY-derived photometric redshifts
(9927 galaxies) from the UVUDF catalogue.

Comparison Biasa σNMAD
b Outlier fractionc

zBPZ − zspec 0.005 0.028 2.4 per cent
zEAZY − zspec −0.013 0.030 5.9 per cent
zBEAGLE − zspec 0.007 0.047 7.1 per cent
zBEAGLE − zBPZ 0.005 0.042 8.3 per cent
zBEAGLE − zEAZY 0.039 0.058 7.3 per cent

Notes. aMedian of the distribution of (z − zref )/(1 + zref ), where zref stands
for zspec, zBPZ or zEAZY, depending on the comparison.
bComputed using equation (27) by substituting zspec, zBPZ or zEAZY for zref ,
depending on the comparison.
cFraction of galaxies with |�z|/(1 + zref ) > 0.15 for the comparisons
zBPZ − zspec, zEAZY − zspec and zBEAGLE − zspec, and with |�z|/(1 + zref ) >

0.25 in the other two cases.

z � 3 (Fig. 4). They compute for both BPZ and EAZY the scatter of the
difference �z between photometric redshift and spectroscopic red-
shift, which they quantify through the normalized median absolute
deviation

σNMAD = 1.48 × median

∣∣∣∣�z − median(�z)

1 + zref

∣∣∣∣ , (27)

where the reference redshift is the spectroscopic one (zref =
zspec), and the factor 1.48 ensures that σNMAD be equal to the
standard deviation for a Gaussian distribution. Rafelski et al.
(2015) find σNMAD = 0.028 with the BPZ code and σNMAD = 0.030
with the EAZY code. Following Brammer et al. (2008), they de-
fine the fraction of outliers (OLF) as the fraction of galaxies
with |�z|/(1 + zspec) > 5σNMAD, i.e. |�z|/(1 + zspec) > 0.15. This
yields OLF ∈ [1.2 per cent, 4.2 per cent] (4 outliers) with the BPZ

code, and OLF ∈ [4.1 per cent, 8.4 per cent] (10 outliers) with the
EAZY code, where the interval in brackets indicates the 68 per cent
confidence range computed assuming a Poisson distribution.14 We
follow Rafelski et al. (2015) and define the OLF in the comparison
between BEAGLE-derived and spectroscopic redshifts as the fraction
of galaxies with |�z|/(1 + zspec) > 0.15. We increase the thresh-
old from 0.15 to 0.25 when comparing BEAGLE-derived photometric
redshifts with BPZ- and EAZY-derived ones, as σNMAD in those cases
is typically around 0.05 (see Table 4).

Fig. 5 shows that, for the 169 galaxies with spectroscopic detec-
tions in the UVUDF catalogue, the photometric redshifts computed
as described in Section 4.2 above using the BEAGLE tool agree well
with the spectroscopic ones. The corresponding normalized median
absolute deviation is σNMAD = 0.047, and the fraction of outliers
OLF ∈ [5.1 per cent, 9.8 per cent] (12 outliers; see Section 4.1).
The value of σNMAD is larger than that obtained using both the BPZ

and EAZY codes. This is likely because the two standard codes BPZ

and EAZY rely on restricted sets of spectral templates optimized for
the determination of photometric redshifts, while we consider a full
model spanning a broad parameter space to describe the emission
from a galaxy. Thus, in our approach, a large number of templates
corresponding to different sets of parameters can potentially be
consistent with the observed fluxes within the errors, which tends

14 Given k observations originating from a Poisson process with mean m,
the confidence level 1 − α on the mean can be computed as 1

2 χ2(α/2; 2k) ≤
m ≤ 1

2 χ2(1 − α/2; 2k + 2), where χ2(p; n) indicates the quantile function
of the chi-squared distribution with n degrees of freedom.

Figure 5. Photometric redshift zBEAGLE derived with the BEAGLE tool plotted
against spectroscopic redshift zspec, for the 169 galaxies with spectroscopic
detection in the UVUDF catalogue. The green line shows the identity rela-
tion.

to increase the dispersion in the photometric redshifts derived for
a galaxy at a given spectroscopic redshift. In return, the BEAGLE

tool has the advantage of providing valuable constraints on galaxy
physical properties other than redshift (Figs 8 and 9 below), as
well as unique insight into the fundaments of photometric redshift
determinations (Section 5). Regarding this last point, for example,
we can identify those galaxies with multimodal posterior proba-
bility distributions and quantify the integrated probability in each
mode (Section 5.2). We note that, when considering only those
galaxies with a single significant mode (i.e. 107 out of 169 galax-
ies exhibiting 2 ln K > 10, where K is the ‘Bayes factor’ defined
by equation 31), we obtain σNMAD = 0.037 and a single outlier,
object no. 4721.

It is instructive to investigate the origin of the 12 outliers in the
comparison between zBEAGLE and zspec. For five galaxies (no. 1990,
no. 8292, no. 21130, no. 22245, no. 50714), the BEAGLE tool iden-
tifies two redshift solutions of comparable probability, for which
the second solution matches the spectroscopic redshift (see Section
5.2 for an in-depth discussion of multimodal solutions). To gain
insight into the origin of the remaining seven outliers, we run a
query at the location of each galaxy to obtain its classification in the
Simbad15 data base. We also visually examine the SED and image
of each outlier from the UVUDF website.16 Two outliers (no. 7024
and no. 10157) appear to be contaminated by nearby objects. One
(no. 4721), classified in Simbad as an AGN, exhibits a strong ultra-
violet upturn, which cannot be reproduced by the AGN-free model
adopted here (but see Section 7). The SEDs of two galaxies (no.
4658 and no. 31320) with zspec ∼ 0.2 lack ultraviolet observations,
and therefore do not sample any strong spectral continuum break
useful to constrain photometric redshifts (Lyman, Balmer; these
galaxies are outliers in the BPZ-based analysis too). For one outlier
(no. 4562, zspec = 2.15), classified as a ‘near-IR’ source in Simbad
and with no ultraviolet observation, we obtain the same photometric
redshift (≈2.71) as that derived by Rafelski et al. (2015) using BPZ,

15 http://simbad.u-strasbg.fr/simbad/
16 http://asd.gsfc.nasa.gov/UVUDF/catalogs.html
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1430 J. Chevallard and S. Charlot

Figure 6. Comparison of photometric redshifts estimated using different
approaches (zBEAGLE: this work; zBPZ and zEAZY: Rafelski et al. 2015),
for the 9927 galaxies in the UVUDF catalogue. The distributions are
those of (zBEAGLE − zBPZ)/(1 + zBPZ) (blue filled histogram), (zBEAGLE −
zEAZY)/(1 + zEAZY) (red filled histogram) and (zBPZ − zEAZY)/(1 + zEAZY)
(black open histogram). In each case, a triangle indicates the median of the
distribution.

indicating that the information contained in the SED is insufficient to
provide an accurate photometric redshift estimate. Another galaxy
(no. 10496, zspec = 1.10) exhibits a similarly featureless continuum,
with no ultraviolet observation.

In Fig. 6, we compare the photometric redshifts computed using
the BEAGLE tool with those obtained by Rafelski et al. (2015) us-
ing the BPZ and EAZY codes. The corresponding normalized median
absolute deviations and outlier fractions are reported in Table 4.
Together, Fig. 6 and Table 4 show that the photometric redshifts
computed with our approach and those derived by Rafelski et al.
(2015) are globally consistent with each other, as σNMAD and OLF
are typical of comparisons between different photometric redshift
codes (e.g. see section 4.2 of Dahlen et al. 2013). Fig. 6 reveals a
difference between the distribution of (zBEAGLE − zBPZ)/(1 + zBPZ)
(blue filled histogram), which is roughly centred around zero, and
that of (zBEAGLE − zEAZY)/(1 + zEAZY) (red filled histogram), which
is highly skewed towards positive values. This is mainly because of
the presence of a second peak including ∼30 per cent of the objects
around zBEAGLE − zEAZY ≈ 0.08(1 + zEAZY) in the latter distribu-
tion. The similarity between BEAGLE- and BPZ-derived photomet-
ric redshifts implies that the distribution of (zBPZ − zEAZY)/(1 +
zEAZY) is also skewed towards positive values, although in a less
severe way (black open histogram in Fig. 6).

Fig. 7 shows a more detailed comparison of the photometric red-
shifts derived using the BEAGLE tool with those derived by Rafelski
et al. (2015) using the EAZY (top panel) and BPZ (bottom panel) codes.
In each panel, different grey levels correspond to different logarith-
mically spaced galaxy densities, while red circles mark galaxies
with multiple redshift solutions of comparable probability (see Sec-
tion 5.2 for an extended discussion). In Fig. 7a, the vast majority of
galaxies lie around the identity relation (green line) at all redshifts.
A few galaxies with small zBEAGLE (�1) have large associated zBPZ,
while a few with high zBEAGLE have low zBPZ (�1). The presence of
red circles in these outlying regions suggests that multiple redshift
solutions may be related to large discrepancies between photomet-
ric redshift estimates. In Fig. 7b, most galaxies also lie close to the

identity relation, but, as expected from Fig. 6, the estimates of zEAZY

for a subtantial fraction of galaxies (at redshifts 2 � zEAZY � 5) are
systematically smaller than those of zBEAGLE. As in the case of
Fig. 7a, the outlying regions occupied by galaxies with discrepant
zBEAGLE and zEAZY are also populated by galaxies with multiple
redshift solutions (see Section 5.2). We conclude from Figs 6 and
7 that the photometric redshifts estimated using the BEAGLE tool are
in good general agreement with those estimated by Rafelski et al.
(2015) using the BPZ and EAZY codes. The agreement between zBPZ

and zBEAGLE is good at all redshifts, while at 2 � zEAZY � 5, the
redshifts estimated with the EAZY code are systematically lower, by
∼0.08(1 + zEAZY), than those estimated using the BEAGLE and BPZ

tools.

4.4 Posterior probability distribution of model parameters

The advantage of the BEAGLE tool over dedicated photometric red-
shift codes, such as BPZ and EAZY, is that it also allows the derivation
of rigorous statistical constraints on galaxy physical parameters. We
compute the one-dimensional (i.e. marginal) and two-dimensional
(joint) probability distributions of the model parameters in Table 3
(and of other derived quantities) using the GETDIST Python pack-
age, which we integrate into PYP-BEAGLE, our package for post-
processing BEAGLE results obtained with the MULTINEST algorithm
(Appendix A). The GETDIST package17 has been developed within
COSMOMC,18 a powerful Bayesian framework for the analysis of
cosmological data originally presented in Lewis & Bridle (2002)
and extensively exploited to interpret Planck data. Both MULTI-
NEST and GETDIST are well documented and can be used as stand-
alone packages. In particular, GETDIST allows one to compute con-
tinuous posterior probability distributions from the samples ob-
tained through MULTINEST by means of one-dimensional and two-
dimensional kernel density estimates. This presents several advan-
tages over density estimation through standard histograms (e.g.
continuity, well defined derivatives, no requirement of a bin width).
The major difficulty associated with the use of kernel density esti-
mates lies in the handling of boundary effects, which are, however,
rigorously treated in GETDIST, following the approach outlined in
Lewis (2015).

We compute in this way the posterior probability distribution
of model parameters and derived quantities for all galaxies in the
UVUDF sample. For the sake of illustration, we focus here on
two particularly instructive cases: a faint, high-redshift galaxy (no.
1021); and a galaxy exhibiting multiple probability modes (no.
5866), i.e. different regions of high posterior probability in the
multidimensional parameter space of the model. The main panel of
Fig. 8 shows, on the diagonal, the marginal posterior probability
distributions of the derived quantity M∗ (the current stellar mass,
which accounts for the fraction of mass returned to the ISM during
stellar evolution; see footnote 9) and the model parameters τSFR, Z,
ψS, τ̂V , z and zform for the galaxy no. 1021 (F850LP = 27.6 AB
mag), and off diagonal, the joint posterior probability distribution
of every combination of these parameters. The small inset panel
shows the observed SED of the galaxy (blue diamonds), along
with the distribution of predicted fluxes (orange ‘violins’) resulting
from the posterior probability distribution of the model parameters.
This was computed by considering the posterior probability and
predicted broad-band fluxes corresponding to each set of parameters

17 Available at https://github.com/cmbant/getdist
18 Downloadable from http://cosmologist.info/cosmomc/
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Modelling galaxy SEDs with BEAGLE 1431

Figure 7. (a) Photometric redshift zBPZ derived by Rafelski et al. (2015) using the BPZ code plotted against that derived in this work using the BEAGLE tool,
zBEAGLE, for the 9927 galaxies in the UVUDF catalogue. (b) Same as (a), but comparing the photometric redshift zEAZY derived by Rafelski et al. (2015) using
the EAZY code to zBEAGLE. In both panels, different grey levels correspond to different logarithmically spaced galaxy densities (indicated on the right), red
circles mark galaxies with multiple redshift solutions of comparable probability, and the green line shows the identity relation. See Section 4.2 for detail.
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1432 J. Chevallard and S. Charlot

Figure 8. Posterior probability distribution of the model parameters in Table 3 for the UVUDF galaxy #1021 (F850LP = 27.6 AB mag, p-value = 0.13). The
diagonal panels show the marginal distributions of M∗, τSFR, Z, ψS, τ̂V z and zform, and the off-diagonal panels the joint distribution of every pair of these
parameters. The inset panel on the top right shows the observed SED of the galaxy (blue diamonds), along with the distribution of predicted fluxes (orange
‘violins’) resulting from the posterior probability distribution of the model parameters (see Section 4.4 for details). This object does not have any measurement
in the F225W, F275W and F336W ultraviolet bands nor in the F140W near-infrared band.

in the posterior probability distribution sampled by MULTINEST. A
kernel density estimate was then performed separately for each
band to obtain a smooth flux distribution visualized by the violin
(see Section 5.1 for details about violin plots). The SED of object
no. 1021 reveals strong IGM absorption at λ � 8000 Å, suggesting
a high redshift for this galaxy.

The diagonal panels of Fig. 8, in which we show for each pa-
rameter the 68 per cent central credible interval as a grey shaded

area, indicate that object no. 1021 is a moderately massive galaxy
[log(M∗/M�) ∼ 10.2] at redshift z ∼ 6.9, with a moderate dust
content (τ̂V ∼ 0.4). The model favours a long star formation time-
scale [log(τSFR/yr) � 9], high formation redshift [zform � 20], low
metallicity [log(Z/Z�) � −0.7] and low specific star formation
rate [log(ψS/yr−1) � −10], although the widths of the marginal
posterior probability distributions of these parameters indicate that
they are barely constrained by the observations. The off-diagonal
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Modelling galaxy SEDs with BEAGLE 1433

Figure 9. Same as Fig. 8, but for the galaxy no. 5866 (F850LP = 30.2 AB mag, p-value = 0.78). This object does not have any measurement in the F225W,
F275W and F336W ultraviolet bands.

panels illustrate the potential of a Bayesian approach to study
degeneracies between model parameters: the three contour levels,
showing the 68, 95 and 99 per cent central credible regions, reveal a
correlation between stellar mass and dust attenuation optical depth,
in the sense that larger M∗ implies larger τ̂V . This is because the
enhanced flux produced by a more massive galaxy must be attenu-
ated by more dust to produce the same observed flux, when all other
parameters are fixed. The figure also shows a mild anti-correlation
between dust attenuation optical depth and metallicity, a well known
degeneracy resulting from the similar effects of an increase in Z and
τ̂V on galaxy colours.

Fig. 9 shows the analogue of Fig. 8 for the much fainter
galaxy no. 5866 (F850LP = 30.2 AB mag). The inset panel il-

lustrates how the larger observational errors in this case allow
much more extended distributions of the predicted fluxes. The
marginal posterior probability distributions of τSFR, Z, ψS, τ̂V

and zform in the diagonal panels of Fig. 9 show that these pa-
rameters are only weakly constrained by the observations. Also,
in contrast to Fig. 8, the marginal posterior probability distribu-
tions of M∗ and z show two peaks, indicating the presence of
two solutions of comparable probability. The joint posterior prob-
ability distribution of M∗ and z further shows that these mul-
tiple solutions are correlated (i.e. the parameters are degener-
ate), since the low-redshift solution at z ∼ 0.8 favours a lower
mass [log(M∗/M�) ∼ 7] than the high-redshift one at z ∼ 4
[log(M∗/M�) ∼ 8.7]. Such a correlation is expected because, at
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1434 J. Chevallard and S. Charlot

comparable mass-to-light ratio, a larger mass is required to produce
the same apparent luminosity at high relative to low redshift. We
note that the existence of this multimodal solution arises primarily
from the faintness of the galaxy no. 5866: the low observational
S/N ratio of this galaxy causes both the Balmer break at λ ∼3600 Å
and the Lyman break at λ ∼ 1216 Å to be compatible with the
observed drop in flux between the F435W and F606W bands.
Fig. 9 also shows correlations between dust attenuation optical
depth and stellar mass, for the same reason as outlined above,
and dust attenuation optical depth and redshift, for which so-
lutions implying high values of τ̂V correspond to higher z. Fi-
nally, the tighter constraint on zform in the case of the high-
redshift solution (z ∼ 4) results from the smaller age spread
(and hence luminosity range) of stars in the galaxy in this
case, implying less uncertainty on the age of the oldest stellar
generation.

It is also important to note that, while dedicated photometric
redshift codes, such as those adopted in Rafelski et al. (2015),
can warn against the presence of multiple redshift solutions, the
Bayesian approach implemented in the BEAGLE tool allows one
to accurately characterize these solutions, for instance by pro-
viding their respective integrated probability. We return to this
point in Section 5.2 below, where we illustrate the power of the
BEAGLE tool in such situations by performing a Bayesian model
comparison of the different modes of a posterior probability
distribution.

5 A DVA N C E D STAT I S T I C A L A NA LY S I S
WITH BEAGLE

In the previous section, we have seen that the BEAGLE tool enables
one to fit broad-band galaxy SEDs to derive constraints not only
on redshift, but also on other model parameters (e.g. stellar mass,
star formation history, dust content) and derived quantities. We now
describe another main feature of the BEAGLE tool, which is to allow
advanced statistical analyses, such as the rigorous quantification of
goodness of fit and the detailed study of potential correlations (i.e.
degeneracies) between model parameters, to identify and character-
ize multimodal solutions.

5.1 Posterior predictive checks

The outcome of any Bayesian analysis is the posterior probability
distribution of a set of parameters conditional to a set of obser-
vations. Still, the posterior probability distribution alone does not
allow one to determine whether the assumed model is a good de-
scription of the data, or whether it needs to be changed and im-
proved. In a ‘frequentist’ statistical framework, the goodness of a
fit can be evaluated by comparing the value of a test statistics, such
as χ2, to a reference distribution. This is often achieved via the
computation of the p-value, i.e. the integrated tail probability. A
major challenge in this case is to define the appropriate reference
distribution for the adopted test statistics. For example, the refer-
ence distribution for a χ2 statistics is tied to the number of degrees
of freedom of the assumed model. While this number can be known
a priori in a few special cases, such as linear models, it is difficult to
estimate in many practical situations. In contrast, in a Bayesian ap-
proach, one can design goodness-of-fit tests in which the reference
distribution of the adopted test statistics is estimated straightfor-
wardly using the model itself. Such tests, called posterior predictive
checks (e.g. Guttman 1967; Rubin et al. 1984; Gelman, Meng &

Stern 1996), enable the probabilistic assessment of whether a model
is a reasonable description of a data set.

The general idea motivating posterior predictive checks is the
following: if the assumed model is a good description of a set of
observations, the model should be able to produce ‘replicated ob-
servations’ statistically indistinguishable from the true ones. These
replicated data can be thought of as observations which could have
been measured, assuming that the variability in the data is entirely
captured by the adopted statistical model. The ‘posterior predictive
probability distribution’ of replicated data can be written as (e.g.
Gelman et al. 1996)

P ( D rep | D , H ) =
∫

P ( D rep | �, H ) P (� | D , H ) d�, (28)

where H, � and D have the same meaning as in equation (24),
and D rep is the replicated data set. The first factor in the integral
on the right-hand side of equation (28) is the probability distribu-
tion of replicated data conditional to the model parameters, while
the second is the posterior probability distribution obtained by ap-
plying Bayes’ theorem (equation 24). An advantage of a Bayesian
goodness-of-fit test based on equation (28) is that, once a set of sam-
ples drawn from the posterior probability distribution is available,
no further heavy computation is required.

We consider here two types of posterior predictive checks: a
numerical one, based on the χ2 test statistics, and a graphical one. In
both cases, for each galaxy in the UVUDF catalogue, we need a set
of replicated data drawn from the probability distribution defined in
equation (28). For this, we start from the output of MULTINEST, which
consists in an ensemble of Nout sets of parameters weighted by the
posterior probability distribution (see Appendix A). Then, we draw
Nrep = 2000 replicated data sets as follows (we have checked that
adopting a larger Nrep has a negligible influence on the results):

(1) we draw Nrep sets of model parameters �k , with 1 ≤ k ≤
Nrep, from the posterior probability distribution obtained with MULTI-
NEST, using a ‘weighted sampling with replacement’ scheme (see
Appendix B for detail);

(2) for each set of parameters �k , we draw the replicated data
y rep from a Gaussian distribution N [ ŷ (�k), �], where ŷ (�k) in-
dicates the fluxes predicted by the model given the set of parameters
�k , and � is the covariance matrix of the data, i.e. in our case a
diagonal matrix with elements �i,i = σ 2

i (as in Section 4.2).

To perform the numerical posterior predictive check, we adopt the
χ2 test statistics as a measure of deviance between model predictions
and data. For each galaxy in the UVUDF catalogue, we compute
the χ2 deviance as

χ2(�k) =
∑

i

[
yi − ŷi(�

k)

σi

]2

, (29)

where, as in equation (26), yi indicates the observed flux in the ith
band, ŷi(�

k) the flux predicted by the model in the same band for
a set of parameters �k , and σ i the error (which, as in equation 26,
includes both the observational error and the 2 per cent relative error
added in quadrature). We compute χ2(�k) for all Nrep sets of model
parameters �k . Then, for each set of parameters, we substitute y

rep
i

for yi in equation (29) and compute the corresponding χ2
rep(�k).

In this way, we obtain two distributions of the χ2 statistics, one
pertaining to the true data, and one to replicated data. To compare
the two distributions, we adopt as p-value the fraction of replicated
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Modelling galaxy SEDs with BEAGLE 1435

Figure 10. Distribution of p-values, computed according to equation (30),
for the 9927 galaxies in the UVUDF catalogue fitted with the model pre-
sented in Section 4.2.

data with χ2 larger than the corresponding one obtained with the
true data (Gelman et al. 1996), i.e.

p-value =
N

[
χ2

rep(�) > χ2(�)
]

Nrep
. (30)

Fig. 10 shows the distribution of p-values computed in this way
for all galaxies in the UVUDF catalogue. This reveals that most
galaxies have p-values in the range 0.05–0.95, indicating a satis-
factory model fit, while 7 (13) per cent have p-values less than 0.01
(0.05). Such very low p-values suggests that there may be a problem
with either the data or the model, or both, in the fit of these galaxies.
We note that a way to discriminate between a data or model origin
of a bad fit is to study the fit residuals in the observer and rest
frames: while data-driven mismatches arise at the instrument (or
reduction) level, hence acting in the observer frame, model-driven
ones are caused by an inaccurate physical representation of galaxy
SEDs, hence acting in the galaxy rest frame.

While Fig. 10 summarizes the global quality of photometric fits
of UVUDF galaxies obtained with the model of Section 4.2, it does
not allow us to characterize this performance in detail, i.e. band
by band. For this reason, we also perform a graphical posterior
predictive check. We randomly select 12 well-fitted galaxies with
p-values greater than 0.1, and 12 badly fitted galaxies with p-values
less than 0.01. For each galaxy and each set of replicated data of
that galaxy, we compute the residual between replicated and true
data, (yrep

i − yi)/σi , in each photometric band (where the symbols
have the same meaning as in equation 29). Fig. 11 shows a ‘violin’
plot of the resulting distribution of residuals for the 12 galaxies with
p-values greater than 0.1. Each violin was computed by perform-
ing, for each band separately, a kernel density estimate to obtain a
continuous distribution of the Nrep residuals and then plotting the
0.997 central credible region of this distribution. As is customary
in violin plots, the distribution was mirrored with respect to an axis
parallel to the ordinate axis and the maximum width of each violin
adapted to avoid overlap. Each violin of Fig. 11 therefore reflects
the probability of obtaining a given residual in a given photometric
band: the more extended the violin in the ordinate direction, the
broader the distribution of the residual.

As a complement to Fig. 11, Table 5 lists for each galaxy the
p-value computed using equation (30). We also report the p-value
computed in the same way for each photometric band separately,

by considering the contribution of only that band to χ2 in equation
(29). In the case of (random) noise-driven residuals, and assuming
that σ (where we have dropped the band index) accounts for all
possible sources of noise, we expect residual distributions centred
around zero with a dispersion comparable to σ . This is what most
violins reflect in Fig. 11, although some bands for some galaxies
display larger residuals (∼2 σ ; e.g. no. 22363: band F336W and
F140W; no. 1811: band F105W). Table 5 quantifies this information
by providing the significance of residual deviations by means of
the p-value: band F336W and F140W for object no. 22363 and
band F105W for object no. 1811 all have p-values in the range
∼[0.07, 0.03].

Fig. 12 and Table 6 show the analogues of Fig. 11 and Table 5
for the 12 randomly selected galaxies with p-values less than 0.01.
In contrast to Fig. 11, Fig. 12 shows significant residual devia-
tions between replicated and true data. These deviations differ from
galaxy to galaxy, as Table 6 also highlights. Although a compre-
hensive analysis of fitting residuals from posterior predictive checks
goes beyond the scope of the present paper, we stress that studying
the distributions of these residuals in the observer and galaxy rest
frames can help discriminate between a data or model origin (see
above).

Hence, by means of posterior predictive checks, we have shown
that the relatively simple model of Section 4.2 provides a satisfac-
tory fit to the photometry of a vast majority of UVUDF galax-
ies. We have illustrated how the combination of graphical and
numerical posterior predictive checks can provide valuable insight
into the origin of discrepancies between model and data. Distri-
butions of residual deviance between model predictions and data,
of the type shown in Figs 11 and 12 for individual galaxies, can
be straightforwardly extended to combine residuals from differ-
ent objects, enabling the identification of data- and model-driven
discrepancies too subtle to be detected in single galaxies. In this
context, we believe that the BEAGLE tool will be valuable both to
identify subtle systematics in observed data sets, and to character-
ize current limitations and drive future developments of spectral
models.

5.2 Multimodal solutions

So far, we have shown that: (i) multiband photometric fitting of
UVUDF galaxies with the BEAGLE tool leads to photometric redshift
estimates in good agreement with those derived from standard dedi-
cated codes (Section 4.3); (ii) the accurate Bayesian characterization
of the posterior probability distribution of model parameters with
the BEAGLE tool allows a rigorous study of multiple solutions and
degeneracies between model parameters (Section 4.4); and (iii) the
relatively simple model of Section 4.2 provides satisfactory fits to
the photometry of most UVUDF galaxies (Section 5.1). In this sec-
tion, we focus on the study of multimodal solutions, which as noted
above could be a major cause of discrepancy between photometric
redshifts derived using different approaches (Fig. 7).

We start by noting that the BPZ and EAZY codes adopted by Rafelski
et al. (2015) to estimate photometric redshifts provide a quantity,
the ‘odds’, which is sensitive to the occurrence of multiple redshift
solutions. Both codes compute the marginal probability distribution
of redshift and integrate this over some fixed range. In the BPZ code,
this range is an interval of width 0.06 × (1 + z) around the peak,
while in the EAZY code, the interval is 0.2 × (1 + z) wide. Such a
fixed interval of integration can provide some indication about the
concentration of the marginal probability distribution of redshift
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1436 J. Chevallard and S. Charlot

Figure 11. Graphical posterior predictive check for 12 randomly selected galaxies with p-value > 0.1 (as computed using equation 30 when fitting with the
model presented in Section 4.2) in the UVUDF catalogue (the galaxy ID is indicated in the top right corner of each panel). In each panel, each ‘violin’ shows
the probability distribution of the residual between replicated and true data in a given photometric band, with the median marked by a black horizontal line.
Crosses indicate bands with no measurement. The solid and dashed grey lines indicate zero and ±3 σ residuals, respectively (see Section 5.1 for details).

Table 5. Posterior predictive p-values in the different photometric bands, and global p-value computed using equation (30) (rightmost column), for
the 12 galaxies in Fig. 11 (see Section 5.1 for details).

Galaxy ID Photometric band
F225W F275W F336W F435W F606W F775W F850LP F105W F125W F140W F160W All

22774 0.53 0.38 0.30 0.47 0.54 0.57 0.53 0.50 0.41
1730 0.48 0.53 0.56 0.55 0.45 0.53 0.60 0.59
8871 0.47 0.44 0.21 0.32 0.63 0.24
6223 0.56 0.58 0.51 0.64 0.86 0.69 0.14 0.58
4888 0.49 0.75 0.51 0.38 0.59 0.22 0.51 0.55 0.54 0.38 0.47 0.53
438 0.43 0.58 0.23 0.50 0.52 0.44
3788 0.97 0.56 0.55 0.52 0.76 0.38 0.60 0.76
22363 0.72 0.063 0.65 0.58 0.71 0.54 0.39 0.67 0.072 0.29 0.21
280 0.46 0.16 0.21 0.76 0.76 0.47 0.78 0.33
1811 0.86 0.55 0.51 0.42 0.031 0.73 0.58 0.22
10630 0.51 0.52 0.59 0.58 0.79 0.28 0.14 0.47
3270 0.36 0.46 0.25 0.21 0.44 0.61 0.68 0.28

around the peak, but not a measure of the relative probabilities of
different potential solutions. For reference, Rafelski et al. (2015)
consider a redshift estimate to be reliable is the corresponding odds
are greater than 0.9.

As emphasized in Sections 4.3 and 4.4, our approach in the BEAGLE

tool differs from that of most template-based photometric redshift
codes, in that we consider redshift as just one of several model pa-
rameters influencing the predicted observables (Table 2). Thus, each
value of photometric redshift is explored along with a set of other
galaxy parameters. This implies that different redshift solutions also
correspond to different solutions of other physical parameters, via
the multidimensional posterior probability distribution of equation
(24). We note in passing that this may also potentially provide use-
ful information to exclude some redshift solutions, for example, be-
cause of unlikely combinations of parameters (e.g. massive galaxy
with very low metallicity). In the case of multimodal solutions, the
BEAGLE tool allows one to compute the probability associated with

each mode and perform a Bayesian model comparison to interpret
the results in a probabilistic way. In practice, we identify different
modes (higher probability contours in the multidimensional param-
eter space separated by lower probability valleys) in the posterior
probability distribution of model parameters provided by MULTINEST

(Appendix A) and compute the local evidence within each mode.
We then consider the two modes with largest local evidence, which
we label H1 and H2 in order of decreasing local evidence. To as-
sess the plausibility of these two solutions, we compute the ‘Bayes
factor’ K given by the ratio of local evidences

K = P ( D | H1)

P ( D | H2)
=

∫
P (�1 | H1) P ( D | �1, H1) d�1∫
P (�2 | H2) P ( D | �2, H2) d�2

. (31)

In this expression, the local evidence within each mode is the in-
tegral of the prior distribution times the likelihood (equation 24)
in the subset of the entire parameter space occupied by that mode.
We stress that this Bayesian framework enables the straightforward
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Modelling galaxy SEDs with BEAGLE 1437

Figure 12. Same as Fig. 11, but for 12 randomly selected galaxies with p-value ≤ 0.01.

Table 6. Same as Table 5, but for the 12 galaxies in Fig. 12.

Galaxy ID Photometric band
F225W F275W F336W F435W F606W F775W F850LP F105W F125W F140W F160W All

5024 0.046 0.065 0.57 0.062 0.42 0.042 0.43 0.56 0.61 0.35 0.43 0.0025
6640 0.28 0.30 0.13 0.67 0.046 0.035 0.55 0.0095
3458 0.0035 0.13 0.076 0.19 0.48 0.38 0.0030
5725 0.0070 0.66 0.54 0.47 0.023 0.038 0.52 0.0050
10404 0.19 0.54 0.49 0.46 0.031 0.0090 0.53 0.51 0.52 0.0090
4897 0.018 0.40 0.24 0.0005 0.35 0.58 0.30 0.0020
4863 0.35 0.13 0.39 0.069 0.082 0.020 0.48 0.0030
3422 0.51 0.55 0.52 0.069 0.088 0.020 0.15 0.0090
1493 0.43 0.032 0.37 0.0035 0.81 0.13 0.88 0.0035
9724 0.23 0.052 0.19 0.085 0.037 0.093 0.49 0.0040
2077 0.57 0.016 0.0020 0.61 0.85 0.27 0.0055
5606 0.072 0.046 0.042 0.60 0.082 0.40 0.60 0.0025

implementation of any type of prior distribution of model parame-
ters (through equation 31), such as those based on galaxy luminosity
functions often adopted in photometric redshift codes (e.g. Benı́tez
2000; Brammer et al. 2008).

We analyse in this way the posterior probability distributions of
all galaxies in the UVUDF catalogue and label as multimodal those
with redshift solutions separated by |�z| > 0.5. This minimum �z

threshold, which corresponds roughly to the typical posterior stan-
dard deviation of redshift for a faint source (with single solution)
in the catalogue, allows us to remove multiple redshift solutions
with statistically non-significant separation. To interpret the results
of our analysis, we consider the quantity 2 ln K, which, according
to Kass & Raftery (1995), is better suited than the Bayes factor K
itself to drive the choice between different modes.19 Fig. 13 shows

19 The choice of an optimal scale for the interpretation of the Bayes factor is a
classical challenge in statistics, with no unique solution. The scale adopted
here, first proposed by Kass & Raftery (1995), is similar to the original
scale of Jeffreys (1961), hence switching between the two scales will not
significantly alter our conclusions.

the distribution of 2 ln K for the 3243 UVUDF galaxies identified
to have multiple redshift solutions separated by |�z| > 0.5. Dashed
vertical lines divide the 2 ln K axis into the four ‘belief’ categories
defined by Kass & Raftery (1995, regions A, B, C and D) and re-
ported in Table 7. As the table indicates, about 18 per cent (1800)
of all galaxies in the UVUDF catalogue exhibit multiple redshift
solutions separated by |�z| > 0.5, for which the Bayes factor does
not allow a highly confident redshift selection. This is when adopt-
ing a high-confidence threshold, corresponding to K = exp (5) ≈
150 (i.e. 2 ln K = 10), as recommended by Kass & Raftery (1995).
Adopting instead a lower threshold, corresponding to K = exp (3)
≈ 20 (i.e. 2 ln K = 6), would lower the fraction of galaxies with
ambiguous redshift solutions to 13 per cent (Table 7).

The distribution of Bayes factors in Fig. 13 and Table 7 may also
be used to gain insight into the origin of the widely different red-
shift solutions found for some objects using different photometric
redshift codes (illustrated by the outliers in Figs 8 and 9). In fact,
as the rightmost columns of Table 7 show, about half of the outliers
in the zBEAGLE versus zBPZ and zBEAGLE versus zEAZY comparisons,
defined as galaxies with |�z|/(1 + z) > 0.25 (Section 4.2 and
Table 4), are objects with multiple, ambiguous redshift solutions
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1438 J. Chevallard and S. Charlot

Figure 13. Distribution of the quantity 2 ln K, where K is the Bayes fac-
tor (equation 31), for the 3243 UVUDF galaxies identified to have multiple
redshift solutions separated by |�z|> 0.5. The vertical lines mark the thresh-
olds proposed by Kass & Raftery (1995) to separate different categories of
‘belief’ (regions A, B, C and D), as specified in Table 7. Note that region D
includes all galaxies with 2 ln K > 10, but for clarity we only show the plot
up to 2 ln K = 20.

(2 ln K ≤ 10; see section 5 of Ilbert et al. 2006 for a similar conclu-
sion based on a comparison between spectroscopic and photometric
redshifts, and the discussion of the ‘reliability parameter’ in section
4.2 of Brammer et al. 2008). Moreover, for about 75 per cent of the
outliers with ambiguous redshift solutions, the second redshift so-
lution identified with the BEAGLE tool matches the redshift estimated
by Rafelski et al. (2015) with the BPZ or EAZY codes.

It is important to stress that insights of the kind provided by
Fig. 13 and Table 7, and the associated ability with the BEAGLE tool
to reduce by over an order of magnitude (from 12 to 1) the number
of outliers in the zBEAGLE versus zspec comparison through the ex-
clusion of objects identified to have ambiguous redshifts (modulo
a reduction of the sample size; see Section 4.3), represent a new,
promising way to study the origin of photometric redshift outliers,
from which future large photometric surveys, such as those planned
with Euclid and the Large Synoptic Survey Telescope (LSST), can
greatly benefit.

6 R ELATION TO EXISTING SED FITTING
C O D E S

The interpretation of galaxy SEDs at ultraviolet, optical and infrared
wavelengths in terms of physical parameters has been the subject of
many studies, leading to the development of several public codes.
In practice, most codes designed to fit galaxy spectra (e.g. PPXF,
Cappellari & Emsellem 2004; STARLIGHT, Cid Fernandes et al. 2005;
STECKMAP, Ocvirk et al. 2006; ULYSS, Koleva et al. 2009) suffer from
intrinsic limitations. For example, to select the best-fitting models,
most codes rely on simple χ2 minimization techniques, which do
not allow the computation of realistic uncertainties in the derived
physical parameters. Classical codes also tend to be programmed
in ‘interpreted’ (e.g. IDL, Yorick, MATLAB) rather than ‘compiled’
(e.g. FORTRAN, C, C++) languages, at the expense of performance.20

In addition, standard SED interpretation tools are usually tied to

20 An exception is the public software STARLIGHT (Cid Fernandes et al. 2005)
which is written in FORTRAN, but the code is not open-source.

specific choices of built-in physical ingredients (e.g. stellar evo-
lution and dust attenuation prescriptions), which cannot easily be
changed, nor tested (e.g. by means of posterior predictive checks;
see Section 5.1), nor extended to include new physical ingredients
(e.g. emission from an AGN, neutral ISM absorption). An addi-
tional specificity of most current tools focused on the interpretation
of photometric (rather than spectroscopic) galaxy SEDs is that these
tend to be optimized for either redshift estimation (e.g. HYPERZ: Bol-
zonella et al. 2000; LEPHARE: Arnouts et al. 1999; Ilbert et al. 2006;
KCORRECT: Blanton & Roweis 2007; EAZY: Brammer et al. 2008) or
the determination of galaxy physical parameters (e.g. CIGALE: Bur-
garella et al. 2005; Noll et al. 2009; MAGPHYS: da Cunha et al. 2008,
2015; FAST: Kriek et al. 2009), but not both simultaneously.

In this context, and given the large number of existing SED fitting
codes, we restrict our discussion in this section to the comparison
of the BEAGLE tool with publicly available codes relying on an anal-
ogous Bayesian approach: CIGALE, MAGPHYS, GALMC and BAYESED, of
which we report the main characteristics (and references) in Table 8.
As indicated, none of these codes is designed to interpret spectro-
scopic galaxy observations. Also, among them, only the CIGALE code
includes at the same time nebular, dust and AGN emission, although
in an approximate way. In this code, for example, nebular emission
is incorporated using only two fixed emission-line templates to rep-
resent the emission from gas heated by young stars, ignoring the
contributions by recombination continuum radiation and any AGN
component. The MAGPHYS code has been designed to consistently
interpret ultraviolet to far-infrared SEDs, by adopting an ‘energy
budget’ approach to account for dust emission (da Cunha et al.
2008). This code does not include a full model of nebular emis-
sion, accounting for only Hα and Hβ emission, and it is based on
a wide (albeit predefined) library of galaxy star formation histo-
ries. Finally, the BAYESED code does not include models for nebular
and AGN emission, and it is based on a rigid model (exponentially
declining function) to describe a galaxy star formation history.

The limitations of existing SED fitting codes mentioned above
and in Table 8 are the main motivation for our development of
the BEAGLE tool presented in this paper. This tool incorporates the
most recent prescriptions for stellar and nebular emission (and the
dependence of these components on chemical composition), atten-
uation by dust, IGM absorption, etc., in a physically consistent and
highly flexible way (Section 2): the modular design of the BEA-
GLE tool allows any of these prescriptions to be easily replaced by
an alternative one. It also enables the straightforward implementa-
tion of additional physical ingredients, such as described in Section
7 for the BEAGLE 2.0 version. The Bayesian approach adopted in
the tool allows the user to rigorously quantify the uncertainties
and degeneracies affecting model parameters. Finally, the use of
MCMC techniques (implemented in the MULTINEST algorithm; see
Appendix A) and a compiled language (FORTRAN 2003) makes the
exploration of complex, multidimensional parameter spaces much
more efficient, and much less memory-demanding, than in conven-
tional, grid-based approaches.

7 SU M M A RY A N D F U T U R E D E V E L O P M E N T S

We have introduced a novel tool, named BEAGLE, to model and in-
terpret any combination of photometric and spectroscopic galaxy
observation at ultraviolet to infrared wavelengths. Currently, the
BEAGLE tool allows one to model the emission from stellar pop-
ulations, over wide ranges of age, metallicity and α-element to
iron abundance ratio, the emission from gas photoionized by young
stars and the absorption of the light by interstellar dust and the
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Modelling galaxy SEDs with BEAGLE 1439

Table 7. Fractional distribution of the quantity 2 ln K, where K is the Bayes factor (equation 31), among the four
‘belief’ categories defined by Kass & Raftery (1995, regions A, B, C and D), of the total sample of 9927 UVUDF
galaxies. The two rightmost columns indicate the fractional distribution among the same categories (with actual
numbers in parentheses) of the outliers in the zBEAGLE versus zBPZ and zBEAGLE versus zEAZY comparisons (from
Table 4).

Label 2 ln K Kass and Raftery Total sample BPZ outliers EAZY outliers

A [0, 2] ‘Barely worth mentioning’ 0.040 0.19 (160) 0.21 (155)
B (2, 6] ‘Positive’ 0.093 0.19 (159) 0.29 (210)
C (6, 10] ‘Strong’ 0.049 0.043 (35) 0.053 (38)
A, B, C ≤10 Not ‘very strong’ 0.18 0.43 (354) 0.56 (403)
D >10 ‘Very strong’ 0.15 0.089 (73) 0.13 (92)

Table 8. Main characteristics of different publicly available Bayesian SED fitting codes. In the case of photometric SED fitting, the
ability to estimate photometric redshifts is indicated in parentheses.

Name and reference Non-stellar emission component Type of SED to be interpreted
Nebular Dust AGN Photometry Spectroscopy Mix

yes partial
CIGALEa (approximate) yes (accretion disc, dust torus) yes no no
MAGPHYSb Hα and Hβ only yes no yes no no

yes
GALMCc (approximate) no no yes (+ photo-z) no no
BAYESEDd no no partial (dust torus) yes (+ photo-z) no no
BEAGLE (this work) yes no no yes (+ photo-z) yes yes
BEAGLE 2.0 (in preparation) yes yes yes yes (+ photo-z) yes yes

Notes. a(Burgarella et al. 2005; Noll et al. 2009; Ciesla et al. 2015).
b(da Cunha et al. 2008, 2015).
c(Acquaviva et al. 2011, 2015).
d(Han & Han 2012, 2014).

intergalactic medium. The tool also includes a flexible parametriza-
tion of galaxy star formation and chemical enrichment histories,
which can be drawn from analytic functions or from different
flavours of galaxy formation models, such as phenomenological
and semi-analytic models and hydro-dynamic simulations. A main
strength of the BEAGLE tool with respect to other existing spectral
analysis tools is the flexible, modular implementation of sophis-
ticated prescriptions for the production of light and its transfer
through the interstellar and the intergalactic media, in a physically
consistent way. This enables one to adapt model complexity (i.e.
the number of adjustable parameters let to vary freely; Section 3.2)
to the available observational constraints, without having to sacri-
fice the physical coherence of the model. Statistical inference on
galaxy physical parameters from observations is achieved by means
of a Bayesian approach. Unlike widely used statistical techniques
focusing on simple point-wise estimates of best-fitting model pa-
rameters (e.g. minimum χ2) and confidence intervals (e.g. �χ2 <

1), this approach allows the rigorous propagation of observational
uncertainties into the output statistical constraints on model param-
eters. It can also reveal correlations (i.e. degeneracies) among model
parameters, at the origin of multimodal solutions, and provides a
well-defined framework to account for parameter interdependency,
to explore the properties of galaxy populations beyond those of
single galaxies (through hierarchical modelling; Section 3.1) and to
incorporate instrumental effects (Section 2.9).

We presented a first application of the BEAGLE tool to interpret
the photometric SEDs of 9927 galaxies in the redshift range 0.1 �
z � 8 from the UVUDF sample of Rafelski et al. (2015). Adopt-
ing a relatively simple model with seven free parameters (stellar
mass, star formation time-scale, metallicity, specific star formation
rate, attenuation by dust, redshift of observation and formation red-
shift of the oldest stars; see Table 3), we find that the photometric

redshifts derived using the BEAGLE tool are globally consistent
with the spectroscopic redshifts available for a small sub-sample
of UVUDF galaxies and with the redshifts derived by Rafelski
et al. (2015) for the full sample using two standard, dedicated
photometric-redshift codes, BPZ and EAZY. The statistical sophis-
tication of the BEAGLE tool allows us to gain unique quantitative
insight into the origin of occasional discrepancies between photo-
metric and spectroscopic redshifts, and between photometric red-
shifts estimated using different codes. Such outliers appear to arise
mainly from the presence of multiple modes of comparable proba-
bility in the posterior probability distribution of model parameters,
corresponding to different redshifts. In fact, the accurate Bayesian
characterization of the posterior probability distribution of model
parameters with the BEAGLE tool allows a rigorous study of multi-
ple solutions and degeneracies between model parameters (Section
4.4). We have illustrated the strength of posterior predictive checks
in the framework of the BEAGLE tool to identify and interpret system-
atic offsets between models and data, pointing either to limitations
in the data or necessary improvements of the models (Section 5.1).
In the case of the UVUDF sample, a global (Bayesian) goodness-
of-fit test indicates that the simplified model mentioned above re-
produces well the photometric SEDs of 93 per cent of all galaxies
in the catalogue. A complementary, graphical posterior predictive
check further shows the potential of this approach to characterize
systematic errors in the data, and limitations in the adopted physical
model (Section 5.1).

The flexible BEAGLE tool is designed to evolved as more modules
are incorporated to account for new physical ingredients (Fig. 2).
The next version of the tool, currently in development (BEAGLE 2.0),
will include several novelties: (i) an enlarged grid of photoioniza-
tion models describing the emission from gas in wider ranges of
C/N/O abundance ratios, gas densities and IMF upper mass cutoffs
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1440 J. Chevallard and S. Charlot

than considered here (Gutkin et al. 2016). This is important to repro-
duce and interpret the emission from chemically pristine galaxies
(e.g. Erb et al. 2010; Stark et al. 2014); (ii) a model to describe
the emission from AGN narrow-line regions, fully consistent with
the models of nebular emission from stellar populations (Feltre,
Charlot & Gutkin 2016, see in particular their section 2). This will
allow the reliable exploitation of emission-line diagnostic diagrams
at rest-frame ultraviolet and optical wavelengths to interpret the
emission from active and inactive galaxies (e.g. Baldwin, Phillips
& Terlevich 1981; Feltre, Charlot & Gutkin 2016), hence opening
a new window on studies of the co-evolution of black holes and
galaxies; and (iii) a model to describe the ultraviolet and optical
absorption features from stars and the neutral ISM in and around
galaxies (Vidal-Garcı́a et al., in preparation). Finally, to extend
the capabilities of the BEAGLE tool at mid- and far-infrared wave-
lengths, we also plan to include models to describe the emission
from dust heated by stars (da Cunha et al. 2008) and an AGN (Fritz,
Franceschini & Hatziminaoglou 2006; Feltre et al. 2012).

With the addition of these and other future modules, the BEAGLE

tool will incorporate a panchromatic, physically consistent descrip-
tion of galaxy SEDs. Together with the highly flexible implementa-
tion of star formation and chemical enrichment histories of galaxies,
dust attenuation and IGM absorption, this will allow the coherent
modelling and interpretation of any combination of photometric
and spectroscopic galaxy observation, such as those gathered by
modern ground-based (e.g. Atacama Large Millimeter Array, Ex-
tremely Large Telescopes) and space-based (e.g. James Webb Space
Telescope) observatories, in terms of powerful constraints on galaxy
formation models.
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APPENDIX A : N ESTED SAMPLING
WITH MULTINEST

The MULTINEST package (Feroz & Hobson 2008; Feroz et al. 2009)
allows one to explore complex, multidimensional posterior proba-
bility distributions by appealing to the nested sampling algorithm
of Skilling et al. (2006). This algorithm was initially developed
to calculate the Bayesian evidence (see equations 24 and A1), a
quantity which requires long computational times when appealing
to ‘standard’ MCMC-based methods. The nested sampling algo-
rithm transforms the problem of computing the multidimensional
evidence integral

Z =
∫

π (�)L(�) d�, (A1)

where π (�) and L(�) refer to, respectively, the prior distribution
and likelihood function for a model described by the parameters � ,
into the computation of a one-dimensional integral. This is based
on the property that Bayesian evidence can be expressed as

Z =
∫ 1

0
L(X) dX, (A2)

where the function L(X) = F−1 [X(l)] is the inverse of the prior
hyper-volume X over iso-likelihood hyper-surfaces L(�) = l, ex-
pressed by

X(l) =
∫
L(� )>l

π (�) d�. (A3)

The domain of this integral is the volume enclosed by the iso-
likelihood surface defined by the parameter l. Using the above
transformation, the evidence can be computed in a straightforward
way by numerically integrating equation (A2) after calculating the
function X(l) for increasing likelihood thresholds l.

The difficulty of applying equation (A2) to compute the evi-
dence Z lies in the evaluation of the function X(l) for increasing
values of l, which correspond to iso-likelihood surfaces encom-
passing smaller and smaller regions of the prior volume. For this,
MULTINEST employs the ‘simultaneous ellipsoidal nested sampling
method’: at iteration i = 1, the algorithm starts by computing the
likelihood function L(�k) for N sets of parameters �k (called
‘active points’), with 1 ≤ k ≤ N, drawn randomly from the prior

probability distribution. The point with lowest likelihood limin is
removed, and a new point � ′ is drawn from the prior with the
requirement that L(� ′) > limin. This is achieved by decomposing
the prior volume into ellipsoids bounded by iso-likelihood surfaces
corresponding to L(�) = limin, whose number and shapes are opti-
mized via an ‘expectation-maximization’ method. At each iteration,
the algorithm enables in this way the computation of X(limin) using
equation (A3), while the prior volume shrinks to regions of higher
likelihood. The algorithm stops when the product of the shrunk
prior volume X(limin) and the likelihood L(�̂), where �̂ is the ac-
tive point with largest likelihood, falls below an adopted ‘evidence
tolerance factor’, i.e. L(�̂) X(limin) < Ztol.

As a side product of the evidence calculation, the MULTINEST al-
gorithm computes the posterior probability P (� | D , H ) of any
set of parameters � ever drawn during an iteration, providing an
ensemble of Ntot

out sets of parameters weighted by the posterior prob-
ability distribution. This ensemble can be used to perform inference
on model parameters, such as the computation of posterior means
and marginal and joint distributions.

The interest of MULTINEST relative to other algorithms (such as
MCMC) in the context of the current study is the possibility to
identify multiple modes in the posterior distribution of model pa-
rameters, and to evaluate the ‘local’ evidence in each mode (see
Section 5.2). In practice, to analyse the SEDs of UVUDF galaxies
with the model described in Section 4.2 using MULTINEST, we must
specify three parameters: the number of active points, the evidence
tolerance factor and the ‘sampling efficiency’. The number of ac-
tive points must be large enough to probe all potential modes of
the posterior probability distribution, which we expect to be around
2–3 at most, mainly caused by degeneracies between redshift, mass
and dust attenuation. We fix N = 300, similar to the value adopted
by Feroz et al. (2009) to estimate cosmological parameters. We also
fix Ztol = 0.1, lower than the value of 0.5 suggested by Feroz et al.
(2009). This is to accurately evaluate the evidence when comput-
ing the relative probabilities of different modes, for those galaxies
exhibiting multimodal solutions. The sampling efficiency is an ad-
ditional factor introduced to account for the potentially inaccurate
characterization of the iso-likelihood surfaces by the ellipsoidal de-
composition mentioned above. This parameter is the inverse of the
factor by which the ellipsoids are ‘inflated’ at each iteration, before
a new candidate active point is drawn from these ellipsoids. A low
sampling efficiency guarantees a more accurate evidence evalua-
tion, but with a higher chance of drawing candidate active points
that do not satisfy the criterion L(� ′) > limin, and hence must be
rejected and redrawn. We adopt a sampling efficiency of 0.3, as
recommended by Feroz et al. (2009) for an accurate estimate of
the evidence. Finally, another adjustment of MULTINEST pertains to
the ‘clustering algorithm’ employed to search for different modes
in the multidimensional posterior probability distribution of model
parameters. Since this type of algorithm looses accuracy with in-
creasing dimensionality, we restrict the clustering analysis here to
those three parameters most correlated with one another, namely
redshift, stellar mass and attenuation optical depth.

APPENDI X B: W EI GHTED SAMPLI NG
WI TH REPLAC EMENT

We outline here the procedure used to produce ‘replicated ob-
servations’ to perform posterior predictive checks (Section 5.1).
For each observed galaxy analysed with the BEAGLE tool, MULTI-
NEST outputs an ensemble of Ntot

out sets of parameters weighted by

MNRAS 462, 1415–1443 (2016)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/462/2/1415/2589828 by C
N

R
S - ISTO

 user on 10 M
ay 2022



Modelling galaxy SEDs with BEAGLE 1443

the posterior probability distribution (Appendix A). We consider
the subset Nout of these corresponding to posterior probabilities
greater than 10−4 times that of the parameter set with largest pos-
terior probability, noted �̃ , i.e. the Nout sets of parameters with
P (� | D , H ) > 10−4P (�̃ | D , H ). From this ensemble of typi-
cally Nout ∼ 103 sets of model parameters, we draw Nrep replicated
parameter sets �k , with 1 ≤ k ≤ Nrep, by appealing to a ‘weighted
sampling with replacement algorithm. This means that the probabil-
ity of drawing the parameter set � i (with 1 ≤ i ≤ Nout) is equal to

the posterior probability P (� i | D , H ) (the ‘weight’). The drawn
sets of parameters �k are not removed from the ensemble of Nout

points (hence the term ‘with replacement’), implying that any � i

can be drawn multiple times (in practice, this is the case only for
those sets of parameters � i with the largest weights).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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