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ABSTRACT

Parity-violating extensions of the standard electromagnetic theory cause in vacuo rotation of the plane of polarization of propagating photons.
This effect, also known as cosmic birefringence, has an impact on the cosmic microwave background (CMB) anisotropy angular power spectra,
producing non-vanishing T–B and E–B correlations that are otherwise null when parity is a symmetry. Here we present new constraints on an
isotropic rotation, parametrized by the angle α, derived from Planck 2015 CMB polarization data. To increase the robustness of our analyses, we
employ two complementary approaches, in harmonic space and in map space, the latter based on a peak stacking technique. The two approaches
provide estimates for α that are in agreement within statistical uncertainties and are very stable against several consistency tests. Considering the
T–B and E–B information jointly, we find α = 0◦.31±0◦.05 (stat.) ±0◦.28 (syst.) from the harmonic analysis and α = 0◦.35±0◦.05 (stat.) ±0◦.28 (syst.)
from the stacking approach. These constraints are compatible with no parity violation and are dominated by the systematic uncertainty in the
orientation of Planck’s polarization-sensitive bolometers.

Key words. cosmology: observations – cosmic background radiation – cosmological parameters – methods: data analysis – methods: statistical

1. Introduction

Measuring the in vacuo rotation of the plane of polarization
of photons is a way to test fundamental physics in the Uni-
verse. Such a rotation is sensitive to parity-violating interac-
tions in the electromagnetic sector that are found in extensions of
the Standard Model of particle physics (Carroll 1998; Lue et al.
1999; Feng et al. 2005; Li et al. 2009). For example, extend-
ing the Maxwell Lagrangian with a coupling (scalar, Chern-
Simons, etc.) to AνF̃µν1, impacts right- and left-handed photons
asymmetrically. Therefore a photon at the last-scattering surface
with linear polarization in one orientation will arrive at our de-
tectors with its plane of polarization rotated due to this cou-
pling term. The amount of rotation, usually denoted α, is of-
ten referred to as the cosmic birefringence angle. This rotation

? Corresponding author: A. Gruppuso gruppuso@iasfbo.inaf.it
1 Here Aν is the photon field, and F̃µν is the dual of the Faraday tensor,
defined to be F̃µν ≡ (1/2)εµνρσFρσ.

naturally mixes E- and B-modes of CMB polarization2 and gen-
erates T–B and E–B correlations that would be zero in the ab-
sence of parity violations. The cosmic microwave background
(CMB) polarization is particularly useful for measuring this ef-
fect because even if the coupling is small, CMB photons have
travelled a large comoving distance from the last-scattering sur-
face almost completely unimpeded and thus the rotation could
accumulate into a measurable signal.

This effect has previously been investigated using data
from many CMB experiments (Feng et al. 2006; Wu et al. 2009;
Brown et al. 2009; Pagano et al. 2009; Komatsu et al. 2011;
Hinshaw et al. 2013; Ade et al. 2014a,b; Kaufman et al. 2014;
Naess et al. 2014; di Serego Alighieri et al. 2014; Zhao et al.
2015; Mei et al. 2015; Gruppuso et al. 2015; Contaldi 2015;
Molinari et al. 2016), and also by looking at radio galaxy

2 We use the customary convention used by the CMB community for
the Q and U Stokes parameters, see, e.g., http://wiki.cosmos.esa.
int/planckpla2015/index.php/Sky_temperature_maps
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data (Carroll et al. 1990; Cimatti et al. 1993, 1994; Wardle et al.
1997; Leahy 1997; Carroll 1998; di Serego Alighieri et al. 2010;
Kamionkowski 2010). Thus far all the constraints are compatible
with no cosmic birefringence (see discussion in Sect. 7).

In this paper we employ Planck3 2015 CMB data to
estimate an isotropic α. The birefringence angle has al-
ready been constrained with Planck data in Gruppuso et al.
(2015), using the publicly available 2015 Planck Likelihood
(Planck Collaboration XI 2016). However, that work did not use
T–B and E–B data, which are essential for determining the sign
of α and for increasing the constraining power. We include here
T–B and E–B cross-correlations by considering two approaches,
one based on harmonic space through the use of the so-called
D-estimators and one based on pixel-space maps that employs
stacked images of the transformed Qr and Ur Stokes parameters.

The paper is organized as follows. In Sect. 2 we describe the
effect that cosmological birefringence has on the angular power
spectra of the CMB. In Sect. 3 we provide details of the data
and simulations that are considered in our analysis, which is de-
scribed in Sect. 4. Results for our two different methodologies
are summarized and compared in Sect. 5. Section 6 contains
a discussion of the systematic effects that are most important
for the observables considered. Finally, conclusions are drawn
in Sect. 7.

2. Impact of birefringence on the CMB polarization
spectra

Birefringence rotates the six CMB angular power spectra in the
following way (see Lue et al. 1999; Feng et al. 2006, for more
details):

C′TT
` = CTT

` ; (1)

C′EE
` = CEE

` cos2 (2α) + CBB
` sin2 (2α); (2)

C′BB
` = CEE

` sin2 (2α) + CBB
` cos2 (2α); (3)

C′T E
` = CT E

` cos (2α); (4)

C′T B
` = CT E

` sin (2α); (5)

C′EB
` =

1
2

(
CEE
` −CBB

`

)
sin (4α). (6)

Here α is assumed to be constant (see Liu et al. 2006;
Finelli & Galaverni 2009; Li & Zhang 2008 for generalizations).
In this paper we will consider only the above parametriza-
tion, where the primed C′` are the observed spectra and the un-
primed C` are the spectra one would measure in the absence of
parity violations. In principle the rotation angle α could depend
on direction (with details dictated by the specific model consid-
ered), and one could measure the anisotropies of α. We do not
employ this type of analysis here, but focus on the simple case of
an isotropic α (or the α monopole; see Gluscevic et al. 2012 and
Ade et al. 2015 for constraints on anisotropic birefringence).

Isotropic birefringence is indistinguishable from a system-
atic, unknown mismatch of the global orientation of the po-
larimeters. This is strictly true if the cosmological birefrin-
gence α is the same regardless of the multipole ` at which
CMB polarization is measured. However, specific birefringence

3 Planck (http://www.esa.int/Planck) is a project of the Euro-
pean Space Agency (ESA) with instruments provided by two scientific
consortia funded by ESA member states and led by Principal Investi-
gators from France and Italy, telescope reflectors provided through a
collaboration between ESA and a scientific consortium led and funded
by Denmark, and additional contributions from NASA (USA).

models may predict some angular dependence in α. Further-
more, large angular scale polarization in α is sourced in the
re-ionization epoch, as opposed to the small scales which are
formed at recombination (Komatsu et al. 2011; Gruppuso et al.
2015). This will inevitably produce some angular dependency in
α (assuming that the birefringence angle is proportional to the
CMB photon path) and this effect could in principle be used to
disentangle instrumental systematic effects (since photons that
scattered at the re-ionization epoch would have traveled less than
the others). However, we focus here on smaller scale data, where
the reionization effects are not important and therefore such a
distinction is not possible. For Planck there is an estimate of the
uncertainty of the possible instrument polarization angle using
measurements performed on the ground (Rosset et al. 2010), as
discussed further in Sect. 6. Unfortunately, in-flight calibration is
complicated by the scarcity of linearly polarized sources that are
bright enough, with the Crab Nebula being a primary calibration
source (Planck Collaboration VIII 2016)4.

Equations (1)–(6) include all the secondary anisotropies but
the weak-lensing effect. Due the current precision of data (see
the discussion in Gubitosi et al. 2014) we safely ignore the
weak-lensing effect as it contributes a negligible error.

3. Data and simulations

We use the full-mission Planck (Planck Collaboration I 2016)
component-separated temperature and high-pass-filtered po-
larization maps at HEALPix5 (Górski et al. 2005) resolution
Nside = 1024; i.e., we take the Commander, NILC, SEVEM,
and SMICA solutions for T , Q, U, and E, fully described
in Planck Collaboration IX (2016) and Planck Collaboration X
(2016), and available on the Planck Legacy Archive6. The E-
mode maps are calculated using the method of Bielewicz et al.
(2012; see also Kim 2011). We use the common temperature and
polarization masks at Nside = 1024, namely UT102476 and UPB77,
respectively. For the harmonic analysis we also use half-mission
data provided by the SMICA component-separation pipeline,
in order to build our DEB-estimator from cross-correlations
(Planck Collaboration IX 2016). No further smoothing is ap-
plied to any of the maps (although this version of the data already
includes 10′ smoothing in both temperature and polarization).

We note that there are known systematic effects in the polar-
ization maps released by Planck that have not been fully reme-
died in the 2015 release (see Sect. 6 for a full discussion on
the main systematic effects relevant for this analysis). These
issues include various sources of large angular scale artefacts,
temperature-to-polarization leakage (Planck Collaboration VII
2016; Planck Collaboration VIII 2016; Planck Collaboration XI
2016), and a mismatch in noise properties between the data and
simulations (Planck Collaboration XII 2016). In order to miti-
gate any large-angle artefacts, we use only the high-pass-filtered
version of the polarization data. We note that neglecting the
large scales has little to no impact on our constraining power
for α. We have also checked that temperature-to-polarization
leakage (Planck Collaboration XI 2016) has very little effect on
our analysis (see Sect. 6.2); similar conclusions are reached in
Planck Collaboration XLVI (2016).

4 We do not employ any self-calibration procedure as suggested in
Keating et al. (2012) since it is degenerate with the effect we are look-
ing for.
5 http://healpix.sourceforge.net/
6 http://www.cosmos.esa.int/web/planck/pla
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We pay particular attention to the mis-characterization of
the noise in the polarization data. Given the recommendation in
Planck Collaboration IX (2016) we restrict our analysis to cross-
correlation and stacking methods, which are less sensitive to
such noise issues (Planck Collaboration VIII 2016). For the har-
monic analysis, we estimate the angular power spectra up to mul-
tipoles ` ' 1500 (as suggested by the cosmological analysis tests
carried out in Planck Collaboration IX 2016), using simulations
to create a χ2 statistic. The map-space analysis does not require
the use of simulations7, since we only need a relatively crude
noise estimate on the scales we work at and we use a weight-
ing approach when stacking that is only dependent on the data
(we have also checked that our results are quite insensitive to
the noise level of the data, see Sect. 6.1). Nevertheless it is reas-
suring that the map-space and harmonic-space analyses arrive at
consistent results.

We use realistic full focal plane (FFP8.1) simulations de-
scribed in detail in Planck Collaboration XII (2016). These are
103 simulations processed through the four Planck component-
separation pipelines, namely Commander, NILC, SEVEM, and
SMICA (Planck Collaboration IX 2016), using the same weights
as derived from the Planck full mission data. The CMB output
maps are used to build the harmonic space estimators used in
this work. For our harmonic space EB estimator we use the half-
mission simulations provided by the SMICA pipeline.

The FFP8.1 fiducial cosmology corresponds to the cosmo-
logical parameters ωb = 0.0222, ωc = 0.1203, ων = 0.00064,
ΩΛ = 0.6823, h = 0.6712, ns = 0.96, As = 2.09 × 10−9, and
τ = 0.065 (where ωx ≡ Ωxh2). We note that we perform the anal-
ysis for the birefringence angle by fixing the other cosmological
parameters to the values reported above. This seems to be a safe
assumption, since in Gruppuso et al. (2015) it was shown that α
is quite decoupled from the other parameters, at least as long as
CTT
` , CT E

` , and CEE
` are considered; ΛCDM parameters are not

expected to be constrainted much from CT B
` and CEB

` , contrary
to models that explicitly break parity symmetry.

4. Analysis
4.1. Map-space analysis

We follow the stacking approach first introduced in
Komatsu et al. (2011), where they were able to constrain α
by stacking polarization on temperature extrema. Here we
perform the same analysis, but also stack on E-mode extrema.
Our analysis is performed in map space (although we must
briefly go to harmonic space for stacking on E-modes, as
described in Sect. 6.1) and we show that stacking polarization
on temperature extrema is sensitive to the T–E and T–B
correlations, while stacking on E-mode extrema is sensitive to
the E–E and E–B correlations.

The recommendation on the use of polarization data from
Planck Collaboration IX (2016) is that only results with weak
dependence on noise are to be considered completely reliable.
For the purposes of stacking on temperature peaks only cross-
correlation information is used, and thus understanding the de-
tailed noise properties of polarization is unnecessary. Stacking
on E-mode peaks the results do depend on the noise properties
of the map; this is because the expected angular profiles of the
stacks depend on the full power spectrum of the map. In Sect. 6.1

7 We explicitly checked that using simulations does not change the
results, which is simply a consequence of the fact that the process of
stacking means we are not very sensitive to the noise properties of the
data.

we demonstrate that even a strong miscalculation of the noise
would result in shifts at below the 1σ level (and more reason-
able miscalculations of the noise will bias results at an essen-
tially negligible level).

4.1.1. Q r and Ur parameters

We use the transformed Stokes parameters Qr, and Ur, first in-
troduced in Kamionkowski et al. (1997):

Qr(θ) = −Q(θ) cos (2φ) − U(θ) sin (2φ); (7)
Ur(θ) = Q(θ) sin (2φ) − U(θ) cos (2φ). (8)

Here φ is defined as the angle from a local east (where north
always points towards the Galactic north pole) direction in the
coordinate system defined by centring on the hot or cold spot,
and θ is a radial vector. The stacking procedure tends to produce
images with azimuthal symmetry, and hence the predictions will
only depend on θ. The theoretical angular profiles for stacking
on temperature hot spots are derived in Komatsu et al. (2011, see
also Planck Collaboration XVI 2016) and are explicitly given by〈
QT

r

〉
(θ) = −

∫
`d`
2π

WT
` WP

`

(
b̄ν + b̄ζ`2

)
CT E
` J2(`θ), (9)〈

UT
r

〉
(θ) = −

∫
`d`
2π

WT
` WP

`

(
b̄ν + b̄ζ`2

)
CT B
` J2(`θ). (10)

The quantities WT,P
`

are combinations of the beam (10′ smooth-
ing) and pixel window functions (at Nside = 1024) for tempera-
ture and polarization. Below we will use WE

` to denote the same
quantity for E-modes; however, the E-modes are produced at the
same resolution as temperature and so WE

` = WT
` . The brack-

eted term in each of Eqs. (9) and (10) incorporates the scale-
dependent bias when converting the underlying density field to
temperature or E-modes (thus, they will differ if the stacking is
performed on temperature or E-mode extrema). The function J2
is the second-order Bessel function of the first kind. Angular
profiles derived from stacking on E-mode hot spots can easily
be generalized from the above formulae by simply noting that
E-modes share the same statistical properties as temperature and
thus we only need to change the power spectra in the above for-
mulae. Thus the angular profiles for stacking on E-mode hot
spots are given by〈
QE

r

〉
(θ) = −

∫
`d`
2π

WE
` WP

`

(
b̄ν + b̄ζ`2

)
(
CEE
` + NEE

`

)
J2(`θ), (11)〈

UE
r

〉
(θ) = −

∫
`d`
2π

WE
` WP

`

(
b̄ν + b̄ζ`2

)
CEB
` J2(`θ). (12)

The specific forms of bν (the scale-independent part) and bζ
(which is proportional to second derivatives that define the
peak) are given in Desjacques (2008). The ΛCDM prediction
for

〈
UT,E

r

〉
is identically zero and thus we will find that the vast

majority of the constraining power comes from these profiles.
We also show explicitly in Eqs. (9)–(12) that Qr and Ur are sen-
sitive to the T–E and T–B correlation when stacking on temper-
ature extrema or the E–E and E–B correlation when stacking on
E-mode extrema. Determination of the bias parameters depends
on the power spectrum of the map where the extrema are de-
termined (see Komatsu et al. 2011, and Appendix A), thus they
depend on the noise properties of the map, as well as the under-
lying power spectrum. Section 6.1 will examine to what extent
misunderstanding the noise might bias the results.
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For our main results we have selected extrema using a thresh-
old of ν = 0, which mean we consider all positive hot spots (or
negative cold spots); however, we have checked other choices of
threshold and found consistency, provided that we do not choose
such a high a threshold such that the overall signal becomes too
weak. We do not claim that our analysis is optimal, and it may
be that a better weighting exists for different levels of thresh-
old; however, tests have shown that, in terms of minimizing the
uncertainty on α, the choice of ν = 0 and use of averaged bias
parameters is close to optimal.

For the Planck temperature data we calculate the bias
parameters to be b̄ν = 3.829 × 10−3 µK−1 and b̄ζ =

1.049 × 10−7 µK−1. For the Planck E-mode data we calcu-
late b̄ν = (3.622, 3.384, 2.957, 3.332) × 10−2 µK−1 and b̄ζ =

(1.727, 3.036, 1.874, 3.039)×10−7 µK−1 for Commander, NILC,
SEVEM, and SMICA, respectively. The derivation of Eqs. (9)–(10)
and a discussion of how to calculate all relevant quantities are
given in Appendix B of Komatsu et al. (2011), while the deriva-
tion of Eqs. (11)–(12) is given in Appendix A of this paper. The
reader is referred to Komatsu et al. (2011) and also Sect. 8 of of
Planck Collaboration XVI (2016) for a complete description of
the physics behind the features in the predicted stacked profiles.

4.1.2. Procedure

We begin by locating all local extrema8 of the temperature (or
E-mode) data outside the region defined by the mask, i.e., ei-
ther the union of temperature and polarization common masks
for stacking on temperature extrema or simply the polariza-
tion common masks when stacking on E-mode extrema. These
masks remove the Galactic plane, as well as the brighter point
sources. We define a 5◦ × 5◦ grid, with the size of each pixel
being 0◦.1 and the number of pixels being 2500. When adding
Q and U images, we weight each pixel by the number of un-
masked Nside = 1024 pixels that lie in each re-gridded pixel
(which is not uniform, because of the re-gridding and masking;
this weighting is used in the estimation of the covariance matrix
of the stacked images). Therefore the pixels near the centre gen-
erally have somewhat lower noise in the final stacked image. We
then generate QT,E

r and UT,E
r images using Eqs. (7) and (8).

The predictions for Qr and Ur are found by combining
Eqs. (9)–(12) with Eqs. (2)–(6):〈
QT

r

〉
(θ) = − cos (2α)

∫
`d`
2π

WT
` WP

`(
b̄ν + b̄ζ`2

)
CT E
` J2(`θ); (13)〈

UT
r

〉
(θ) = − sin (2α)

∫
`d`
2π

WT
` WP

`(
b̄ν + b̄ζ`2

)
CT E
` J2(`θ). (14)

For stacking on E-modes we have〈
QE

r

〉
(θ) = −

∫
`d`
2π

WE
` WP

`

(
b̄ν + b̄ζ`2

)
(
CEE
` cos2 (2α) + NEE

`

)
J2(`θ), (15)〈

UE
r

〉
(θ) = −

1
2

sin (4α)
∫

`d`
2π

WE
` WP

`(
b̄ν + b̄ζ`2

)
CEE
` J2(`θ), (16)

8 As previously mentioned, we use all positive (negative) local maxima
(minima) for hot (cold) spots. Extrema are defined by comparing each
pixel to its nearest neighbours.

where we have assumed that CBB
` = 0, which is consistent

with our data since Planck does not have a direct detection of
B-modes. We use a uniform prior on α, P(α), when sampling the
likelihood, i.e.,

P(α|d) ∝ P(d|α)P(α), (17)

with

P(d|α) =
1

√
2π|C|

e−
1
2 {d−(Qr,Ur)(α)}TC−1{d−(Qr,Ur)(α)}. (18)

Here d represents the data, consisting of the stacked Qr and
Ur images, and (Qr,Ur)(α) are the predictions as a function of
α (see Eqs. (13)–(16)). The quantity C is the covariance matrix,
which is a combination of the noise in the data and the cosmic
variance due to the limited number of hot (or cold) spots in the
sky. We have estimated the covariance matrix by determining an
rms level from the pixelization scheme chosen and then weight-
ing this with the inverse of the total number of pixels used in
each re-gridded pixel; we have also assumed that the covariance
is diagonal in pixel space.

For the purposes of evaluating the likelihood, we have
fixed CT E

` and CEE
` to the theoretical power spectra, based on

the best-fit Planck parameters (Planck Collaboration XIII 2016),
and simply evaluate the likelihood in a fine grid of α values. The
choice of fixing the angular power spectra is reasonable because
the usual cosmological parameters are determined by CTT

` ,CT E
` ,

and CEE
` , which are minimally affected by α (no dependence,

quadratic, and still quadratic dependence on α, respectively). See
also comments at the end of Sect. 3.

Finally, we quote the mean of the posterior on α and the
width of the posterior containing 68% of the likelihood as the
best-fit and statistical uncertainty, respectively. The posterior for
α is sufficiently Gaussian that these two values contain all nec-
essary information about the posterior.

4.2. Harmonic-space analysis

The harmonic-based analysis uses the so-called D-estimators
(see for instance Wu et al. 2009; Gruppuso et al. 2012, Zhao
et al. 2015; Gruppuso et al. 2016), which are defined by the fol-
lowing equations:

DT B,obs
`

= C′T B
` cos(2α̂) −C′T E

` sin(2α̂); (19)

DEB,obs
`

= C′EB
` cos(4α̂) −

1
2

(C′EE
` −C′BB

` ) sin(4α̂). (20)

Here α̂ is the estimate for the birefringence angle α. It is possible
to show that on average

〈DT B,obs
`

〉 = 〈CT E
` 〉 sin(2(α − α̂)), (21)

〈DEB,obs
`

〉 =
1
2

(
〈CEE

` 〉 − 〈C
BB
` 〉

)
sin(4(α − α̂)). (22)

Equations (21) and (22) are zero when

α̂ = α. (23)

Equation (23) suggests that we can find α by looking for the α̂
that makes null the expectation values of the D-estimators. From
now on we always consider that Eq. (23) is satisfied.

We estimate the angular power spectra using the MASTER
method (Hivon et al. 2002) extended to polarization (Kogut et al.
2003; Polenta et al. 2005) to correct for masking, and we use
simulations to estimate the noise. We choose a bin size of
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∆` = 20, starting at `min = 51, to avoid correlations between bins
induced by masking. It is then possible to minimize χ2(α) for T B
and EB separately, or jointly to estimate α:

χ2
X(α) =

∑
bb′

DX,obs
b MXX

bb′
−1

DX,obs
b′ , (24)

where X = T B or EB, b denotes the bin and MXX
bb′ = 〈DX

b DX
b′〉,

where the average is taken over the FFP8.1 simulations described
in Sect. 3 and generated with α = 0. We thus are adopting a
simple frequentist approach to test the null hypothesis of no par-
ity violation. This approach also allows for the minimization of
Eq. (24) in subintervals of multipoles, providing the possibility
of searching for a possible angular scale dependence to the bire-
fringence effect, i.e.,

χ2
X(α) =

∑
b

χ2
X,b(α), (25)

where χ2
X,b(α) =

∑
b′ DX,obs

b MXX
bb′
−1DX,obs

b′ . This will be used to test
the stability of the estimates of α against the ranges of multipoles
considered for the CMB spectra.

The DT B-estimator is inherently built from cross-correlations
(see Eq. (19)) and therefore we are able to use the full-mission
data and simulations for all component-separation methods to
generate the corresponding χ2. Moreover, since the SMICA simu-
lations are also delivered in half-mission form, we are addition-
ally able to estimate DT B

` by cross-correlating half-mission 1 and
half-mission 2 data and simulations.

Regarding the DEB-estimator since it contains auto-
correlations (see Eq. (20)), we must estimate it from the half-
mission data along with simulations in order to satisfy the
recommendations on the use of polarization data given in
Planck Collaboration IX (2016), based on the fact that only re-
sults with a weak dependence on noise are to be considered fully
reliable. More specifically, C′EE

` and C′BB
` are estimated from

cross-correlating half-mission 1 with half-mission 2 SMICA data
and using the corresponding SMICA simulations only.

5. Results

In the following subsections we present our constraints on α
for the two methods, described in the previous section. We will
quote our best-fit α values and uncertainties (statistical only,
leaving consideration of systematic effects to Sect. 6). We will
show specifically that the E–B correlation is more constraining
than the T–B correlation. This is expected and can be demon-
strated directly by computing the variance of Eqs. (5) and (6).
For small α, the variance of α based on T–B and E–B informa-
tion alone is

(2` + 1) fsky(σT B
` )2 '

1
4

CTT
` CBB

`

(CT E
`

)2
&

1
4

CBB
`

CEE
`

, (26)

(2` + 1) fsky(σEB
` )2 '

1
4

CEE
` CBB

`

(CEE
`
−CBB

`
)2
'

1
4

CBB
`

CEE
`

, (27)

respectively. This can be derived from the Fisher information
matrix, where the covariance is a simple 1× 1 matrix containing
the variance of T–B or E–B. Thus, as suggested by the above re-
lations, our results based on E–B are generally more constrain-
ing than our T–B results (the presence of noise, however, will
modify these relations).

With respect to statistical uncertainty, we will demonstrate
that our results are robust to all component-separation methods,

Fig. 1. Stacked images of the transformed Stokes parameters Qr (top)
and Ur (bottom) for Commander temperature hot spots. The rotation of
the plane of polarization will act to leak the signal from Qr into Ur.
Note that the bottom plot uses a different colour scale to enhance any
weak features. Finer resolution stacked images can be seen in Fig. 40 of
Planck Collaboration XVI (2016).

and with respect to our two methods. For convenience, we offer
a direct comparison of results obtained by our two approaches in
Fig. 7.

5.1. Map-space results

Firstly we note that as a basic check we have verified that
Fig. 1 closely reproduces the stacked images shown in Planck
Collaboration XVI (2016). We also show the Qr and Ur im-
ages stacked on E-mode extrema in Fig. 2. The visually strik-
ing quadrupole pattern in UE

r appears to be an artefact of
the pixelization scheme and is related to the so-called sub-
pixel effects described in Planck Collaboration XV (2014) and
Planck Collaboration XI (2016). This happens because the pix-
els of the stacked Q image are imperfectly separated near the
centre of the map (the stacked U image does not exhibit this
imperfect mixing because the pixel boundaries align perfectly
with where the profile changes sign). The pixelization errors are
more evident in the UE

r image than the UT
r because the individ-

ual QE and UE images are strongly peaked near the centre of the
image, and thus when generating the Ur stack imperfect subtrac-
tion leads to features in the centre of Fig. 2 (bottom). This effect
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Fig. 2. Stacked images of the transformed Stokes parameters Qr (top)
and Ur (bottom) for SMICA E-mode hot spots. The rotation of the
plane of polarization will act to leak the signal from Qr into Ur. The
quadrupole pattern in the bottom plot is related to subpixel effects
(Planck Collaboration XV 2014; Planck Collaboration XI 2016); fortu-
nately, our results are insensitive to this feature, because it disappears in
an azimuthal average (see Sect. 5.1).

has a non-diagonal influence on the power spectra and thus has a
negligible effect on parameters (Planck Collaboration XV 2014)
and this analysis. Alternatively since constraints on α come only
from the radial part of the stacked images, the pixelization pat-
tern seen in the centre of Fig. 2, which cancels out in the az-
imuthal average, will not bias our α results (though it will con-
tribute to the statistical uncertainty).

Figure 3 shows the binned Ur profiles for the four
component-separation methods. The apparently non-zero α sig-
nal seen in Fig. 3 is not visible in Figs. 1 and 2. This is mainly
due to the fact that any signal in the stacked images must be
shared out over the 2500 pixels and partially due to the fact that
Ur oscillates about zero for α , 0. The binning here is chosen
to pick out ranges with the same sign in the predicted curve for
α , 0◦ (with the ΛCDM prediction being identically zero); this
choice is for visualization purposes only, since the statistical fit
is performed on the original stacked images, i.e., Figs. 1 and 2.

Results are summarized in Tables 1 and 2 for Commander,
NILC, SEVEM, and SMICA. Table 1 contains the constraint on α
based on the high-pass-filtered Q and U maps and their half-
mission half differences (HMHD), which give a useful measure
of the noise in the data. We present results based on stacking
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Fig. 3. Profiles of Ur from stacking on temperature (top) and E-mode
(bottom) extrema for the four component-separation methods. The best-
fit curves for each component-separation method are also shown, with
α values given in the fourth column of Table 1. We have included both
hot and cold spots in this figure, i.e., we have co-added the negative
of the profile from cold spots to the profile of the hot spots. Error bars
correspond to 68% confidence regions.

on temperature and E-mode extrema, both separately and com-
bined. We have estimated that the correlation of the tempera-
ture and E-mode stacks are at the sub-percent level by looking
at the amount of overlap in the positions of the peaks; thus we
can safely neglect correlations in the combined fit. From Table 2
we can see that for most cases α = 0 fits the data reasonably
well; however, the reduction in χ2 from a non-zero α is large
enough, compared to the expectation of adding a single param-
eter, to yield a significant detection (with respect to statistical
uncertainty only). In other words, while a horizontal line go-
ing through 0 µK might seem like an acceptable fit in Fig. 3,
a non-zero α is able to pick out the oscillatory features pro-
viding a significantly better fit. We report 5−7σ detections for
α (with respect to statistical uncertainty only), however, this
can be completely explained by a systematic rotation of our
polarization-sensitive bolometers (PSBs) which we discuss in
Sect. 6. Null-test estimates all give α within 1σ of 0◦, with the
exception of Commander results stacked on temperature, which
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Table 1. Mean values and (1σ) statistical uncertainties for α (in de-
grees) derived from the stacking analysis for all component-separation
methods, coming from hot spots, cold spots, and all extrema.

Method Hot Cold All

T–B
Commander . . . . . 0.36 ± 0.12 0.34 ± 0.11 0.35 ± 0.08
HMHDa . . . . . . . −0.13 ± 0.12 −0.20 ± 0.11 −0.16 ± 0.08
NILCb . . . . . . . . . 0.23 ± 0.10 0.36 ± 0.10 0.30 ± 0.07
HMHDa . . . . . . . −0.08 ± 0.10 0.02 ± 0.10 −0.03 ± 0.07
SEVEM . . . . . . . . . 0.37 ± 0.12 0.18 ± 0.12 0.28 ± 0.08
HMHDa . . . . . . . 0.07 ± 0.12 0.07 ± 0.12 0.07 ± 0.08
SMICAb . . . . . . . . 0.42 ± 0.10 0.36 ± 0.10 0.39 ± 0.07
HMHDa . . . . . . . −0.04 ± 0.10 −0.04 ± 0.10 −0.04 ± 0.07

E–B
Commander . . . . . 0.41 ± 0.11 0.44 ± 0.11 0.43 ± 0.08
HMHDa . . . . . . . 0.03 ± 0.11 −0.07 ± 0.11 −0.02 ± 0.08
NILCb . . . . . . . . . 0.33 ± 0.09 0.38 ± 0.08 0.35 ± 0.06
HMHDa . . . . . . . −0.10 ± 0.09 0.01 ± 0.08 −0.05 ± 0.06
SEVEM . . . . . . . . . 0.28 ± 0.12 0.32 ± 0.12 0.30 ± 0.09
HMHDa . . . . . . . 0.04 ± 0.12 0.04 ± 0.12 0.04 ± 0.09
SMICAb . . . . . . . . 0.25 ± 0.09 0.37 ± 0.09 0.31 ± 0.06
HMHDa . . . . . . . −0.11 ± 0.09 0.01 ± 0.09 −0.05 ± 0.06

Combined
Commander . . . . . 0.38 ± 0.08 0.40 ± 0.08 0.39 ± 0.06
HMHDa . . . . . . . −0.05 ± 0.08 −0.12 ± 0.08 −0.09 ± 0.06
NILCb . . . . . . . . . 0.28 ± 0.06 0.37 ± 0.06 0.33 ± 0.05
HMHDa . . . . . . . −0.10 ± 0.06 0.01 ± 0.06 −0.04 ± 0.05
SEVEM . . . . . . . . . 0.32 ± 0.08 0.25 ± 0.08 0.29 ± 0.06
HMHDa . . . . . . . 0.05 ± 0.09 0.05 ± 0.08 0.05 ± 0.06
SMICAb . . . . . . . . 0.32 ± 0.07 0.37 ± 0.06 0.35 ± 0.05
HMHDa . . . . . . . −0.08 ± 0.07 −0.01 ± 0.06 −0.04 ± 0.05

Notes. (a) We include the fit from each component-separation method’s
half-mission half-difference (HMHD) Q and U maps, as an indication
of the expectation for noise. (b) NILC and SMICA have smaller uncer-
tainties compared with Commander and SEVEM, which follows from the
naive expectation of the rms in the polarization maps (see Table 1 of
Planck Collaboration IX 2016).

are slightly above 1σ (see the second and eighteenth rows of
Table 1). We have also checked that there is very weak depen-
dence on our results coming from the different choices for the
thresholds used to define the peaks.

A stacking analysis similar to ours has been attempted
in Contaldi (2015) also using Planck data. Our results based
on E–B data are consistent with those of Contaldi (2015),
but with smaller statistical uncertainties; however, we disagree
with Contaldi (2015) regarding the constraints coming from T–
B data, which are claimed to be too noisy to be used. We show
here that both T–B and E–B data can be successfully exploited
to constrain the birefringence angle.

5.2. Harmonic-space results

Following the recommendation given by the Planck collabo-
ration (Planck Collaboration IX 2016), we present results be-
low based only on cross-correlations. Therefore, as described
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Fig. 4. Angular power spectrum estimates for T B (top) and EB
(bottom), with SMICA data in blue and the corresponding simulations
in black. Only statistical uncertainties are shown here.

in Sect. 3, we present results for the DT B-estimator using the
full-mission data from Commander, NILC, SEVEM, and SMICA,
and with half-mission data for SMICA. For the same reasons we
present results with the DEB-estimator using the half-mission
data from SMICA only. Additionally we present a joint anal-
ysis with the half-mission data from SMICA. Of course the
D-estimators are built through the CMB angular power spectra.
As an example, we display in Fig. 4 the T B and EB CMB an-
gular power spectra obtained with the SMICA method using half-
mission data. We also show the FFP8.1 simulations for the same
component-separation method.

5.2.1. T–B

The estimates obtained are displayed in Fig. 5 as a function
of the maximum multipole considered (`max). We note that all
the estimates are stable among the component-separation meth-
ods and against the choice of `max. Moreover, the SMICA results
provide a further test of stability with respect to computing the
CMB angular power spectra from full-mission or half-mission
data and simulations. The estimates of the birefringence angle
for `max ' 1500 are also reported in Table 3 (see first five rows
for DT B

` ).
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Table 2. χ2 values for the model with α = 0, derived from the stacking analysis for all component-separation methods.

Hot Cold

Method χ2a ∆χ2 PTE χ2a ∆χ2 PTE

T–B
Commander . . . . . 2453.7 −9.2 1.2 × 10−3 2769.8 −9.3 1.1 × 10−3

NILC . . . . . . . . . 2525.8 −5.2 1.1 × 10−2 2641.3 −13.3 1.3 × 10−4

SEVEM . . . . . . . . 2552.6 −9.7 9.4 × 10−4 2718.9 −2.3 6.4 × 10−2

SMICA . . . . . . . . 2567.7 −17.2 1.7 × 10−5 2610.1 −13.0 1.5 × 10−4

E–B
Commander . . . . . 2548.8 −12.1 2.5 × 10−4 2542.7 −15.9 3.3 × 10−5

NILC . . . . . . . . . 2554.4 −13.3 1.3 × 10−4 2555.9 −19.3 5.7 × 10−6

SEVEM . . . . . . . . 2551.5 −4.6 1.6 × 10−2 2552.0 −6.7 4.8 × 10−3

SMICA . . . . . . . . 2556.8 −7.9 2.5 × 10−3 2559.1 −17.2 1.7 × 10−5

Notes. The ∆χ2 is the reduction of χ2 given the values of α in the corresponding entry in Table 1. For convenience we have also included the
probability to exceed (PTE) for each value of α. (a) The number of degrees of freedom is 2500 coming from a 5◦ × 5◦ patch with 0◦.1 pixel size.
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Fig. 5. Birefringence angle estimates (in degrees) versus the maximum
multipole considered. Only (1σ) statistical uncertainties are shown
here; with systematic errors discussed later. Commander is shown in
red, NILC in orange, SEVEM in green, SMICA (full-mission data) in blue,
and SMICA (half-mission data) in cyan. Dot symbols refer to the esti-
mates obtained with the DT B

` estimator. Star symbols refer to estimates
coming from DEB

` and squares are obtained through the combination of
DT B
` and DEB

` .

In Fig. 6 we show the dependence of α on angular scale9.
This is built by considering Eq. (25) applied to DT B

` . Compar-
ing the different component-separation methods and the differ-
ent ways of estimating the spectra, we find good stability of the
α estimates for each angular scale. The statistical uncertainties
follow the behavior described in Gruppuso et al. (2016).

5.2.2. E–B

Considering Eq. (24) for the estimator DEB
` , defined in Eq. (20),

we have extracted the birefringence angle α for the half-mission
SMICA data. The estimate obtained for α is given in Table 3 (see

9 This should not be confused with a spectrum of the birefringence
anisotropies. As stated in Sect. 2 in this paper we are only concerned
with a uniform rotation.

Table 3. Minimum χ2 values and statistical uncertainties (1σ) for α,
derived from the D-estimators with `max ' 1500.

Method α [deg] biasa [deg] χ2(α = 0) ∆χ2d

T–B
Commander . . . . . 0.44 ± 0.10 0.01 87.1 −20.9
NILCb . . . . . . . . . 0.43 ± 0.09 −0.01 104.3 −22.5
SEVEM . . . . . . . . . 0.31 ± 0.10 0.02 80.0 −10.3
SMICAb . . . . . . . . 0.40 ± 0.08 0.00 92.7 −23.9
SMICA×b,c . . . . . . 0.39 ± 0.09 −0.01 92.8 −18.8

E–B
SMICA×b,c . . . . . . 0.29 ± 0.05 0.00 135.9 −39.9

Combined
SMICA×b,c . . . . . . 0.31 ± 0.05 0.00 228.7 −57.9

Notes. The χ2 values for α = 0 and the change ∆χ2 for the corre-
sponding value of the birefringence angle are provided in the fourth
and fifth columns respectively. (a) The bias refers to the average value
of α determined using the corresponding FFP8.1 simulations. (b) NILC
and SMICA have smaller uncertainties compared with Commander and
SEVEM, which follows from the naive expectation of the rms in the po-
larization maps (see Table 1 of Planck Collaboration IX 2016). (c) The
× symbol denotes the cross-correlation of half-mission 1 with half-
mission 2 data. (d) The corresponding probability to exceed is always
below 1/1000 except for SEVEM which turns out to be 2/1000.

sixth row) and is compatible with constraints from the other
component-separation methods, as is also clear from Fig. 5.
Figure 6 shows the spectrum of α obtained in this case. We note
that the statistical uncertainty coming from DEB

` is much smaller
than that obtained from DT B

` . This is expected since Eqs. (26)
and (27) suggests that the E–B correlation is able to constrain α
better than the T–B correlation.

5.2.3. T–B and E–B combined

The CMB power spectra from the SMICA cross-correlations al-
low us to build a joint estimate minimizing the total χ2, defined
as χ2(α) = χ2

T B(α) + χ2
EB(α). We have explicitly checked with
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Fig. 6. Spectrum of α in degrees versus multipole. As in Fig. 5 only
(1σ) statistical uncertainties are shown. The colour coding is the same
as in Fig. 5. See also footnote 9.

FFP8.1 simulations that there is no significant cross-correlation
between DT B and DEB

10 and this in turn means that it is possible
to minimize the simple sum of χ2. Not surprisingly, it turns out
that such a combination is dominated by the E–B correlation in-
formation. The obtained constraint is reported again in Table 3
(see last row) and in Fig. 5. As before, in Fig. 6 we provide the
spectrum of α obtained from minimizing χ2 in intervals of `. The
overall consistency of each estimate is always very good.

6. Systematic effects

The main systematic effect that is completely degenerate with
the signal from isotropic cosmological birefringence is un-
certainty in the orientation of the PSBs used for mapmaking
(Pagano et al. 2009). The nature of this error is characterized in
the PCCS2 paper (Planck Collaboration XXVI 2016), as well as
HFI (Planck Collaboration VII 2016; Planck Collaboration VIII
2016) and LFI (Leahy et al. 2010; Planck Collaboration III
2014; Planck Collaboration IV 2014) systematics papers, and
also described in Planck Collaboration XLVI (2016). The
present upper limit in any global rotation of the HFI detectors is
estimated to be better than 0◦.3; however, the relative upper limit
between separate PSBs is 0◦.9 (Rosset et al. 2010). After convert-
ing the above numbers into standard deviations (assuming they
are approximately uniform distributions, and noting that the rel-
ative uncertainty can be averaged over the eight PSBs used by
Planck) we conservatively quote the total (global and relative)
1σ uncertainty as 0◦.28. This final error is not exactly Gaussian,
although it is close (68% and 95% CLs are 0◦.28 and 0◦.55, re-
spectively). Given that we detect a rotation of around 0◦.3, we
are, therefore, unable to disentangle the signal found in the data
from the possible presence of this systematic effect. It remains to
be seen whether or not this can be improved in a future Planck
release.

It might be expected that Commander would perform best in
polarization in terms of noise and handling of systematics (based
on the angular scales probed here, see Planck Collaboration IX
2016, for details). However, given that Commander uses a
slightly different set of data than the other component-separation

10 The impact of taking such a cross-correlation into account is at most
at the level of half of the statistical standard deviation.
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Fig. 7. Comparison between harmonic and pixel-based analysis. Dot
(star) symbols show the estimates coming from D-estimators built with
CMB spectra obtained from full-mission (half-mission) data. Square
symbols represent the estimates coming from the stacking analysis.

methods and given that they all use different algorithms, we can-
not make any definitive claims as to which gives the most ac-
curate constraint. We are also unable to account for the appar-
ent discrepancy at the roughly 2σ level (given the large number
of comparisons performed here, this could simply be a statisti-
cal fluke) that the Commander noise estimate yields for α when
stacking on temperature (see Table 1). That being said, it is
reassuring that all component-separation methods agree at the
'1σ level in their constraints on α.

In the following subsections we mention some other possi-
ble systematic effects that might be present, but that we believe
contribute negligibly to the polarization rotation signal.

6.1. Noise properties of polarization

The recommendation from the Planck collaboration is that any
analysis performed on polarization data should not be very sen-
sitive to mis-characterization of the noise. To this end cross-
spectra, cross-correlation, and stacking analyses are examples of
such approaches. Our harmonic space and map space temper-
ature tests fulfil this criterion explicitly. It is less obvious that
stacking on E-mode extrema should only weakly depend on the
noise properties; however, we find this to be the case. This is be-
cause the statistics of the E-mode map are encoded in the bias
parameters (b̄ν, b̄ζ), which depend on the total power in the map
(see Appendix A for details). Therefore the bias parameters will
be accurate to the level that the statistics of the polarization data
can be determined by its two-point function. Nevertheless we
will now describe to what extent a miscalculation of the bias pa-
rameters will affect our results.

We use the MASTER method (to correct for masking,
Hivon et al. 2002) to estimate the total power spectrum of the
E-mode map in order to calculate the bias parameters (b̄ν, b̄ζ).
The noise term in Eq. (11) is then given by subtracting the theo-
retical power spectrum (CEE

` ) from the total power spectrum. The
main effect of noise, however, comes from the determination of
the bias terms only since most of the discriminatory power on α
comes from the Ur stacks (Eqs. (12) and (16) do not explicitly
depend on the noise term).

A110, page 9 of 13

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629018&pdf_id=6
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629018&pdf_id=7


A&A 596, A110 (2016)

The largest difference in our noise estimation when com-
paring between different component-separation methods comes
from SEVEM and SMICA. For these maps b̄µ differs by approx-
imately 20%, and b̄ζ by 40%. Using the SEVEM bias parame-
ter values on the SMICA data (for example) leads to a roughly
1σ shift in the posterior of α (from E-modes). Such a dis-
crepancy estimate is overly conservative, however, because each
component-separation technique will generally produce maps
with different noise levels. If instead we scale our noise esti-
mate by as much as 10% (for any of the individual component-
separation methods) we find that α shifts by less than 0.25σ. We
therefore conclude that for our analysis, mis-characterization of
the noise in polarization has little to no effect.

6.2. Beam effects

Because of the differential nature of polarization measurements,
any beam mismatch or uncertainties can induce temperature-to-
polarization leakage (Hu et al. 2003; Leahy et al. 2010). Here we
are interested in beam uncertainties that can potentially lead to
T–B and E–B correlations that might mimic a non-zero α sig-
nal. Due to circular symmetry, effects from differential beam
sizes or differential relative gains will not tend to produce T–
B or E–B correlations, whereas effects from differential pointing
and differential ellipticity will. Differences in the noise level will
also in general cause temperature-to-polarization leakage.

We check for these effects following the approach described
in Planck Collaboration XI (2016) and Planck Collaboration
XIII (2016). It should be noted that temperature-to-polarization
leakage estimates due to bandpass mismatches between detec-
tors have been removed from the component-separated maps
(see Planck Collaboration IV 2016; Planck Collaboration VI
2016; Planck Collaboration VIII 2016; Planck Collaboration IX
2016, for details); we perform a crude scan of the parame-
ter space in the following temperature-to-polarization leakage
model (see also Appendix A.6 of Planck Collaboration XLVI
2016):

CT E
` → CT E

` + εCTT
` ; (28)

CT B
` → βCTT

` ; (29)

CEE
` → CEE

` + ε2CTT
` + 2εCT E

` ; (30)

CEB
` → εβ`CTT

` + βCT E
` . (31)

The ε and β terms are expected to be dominated by m = 2 and
m = 4 modes (assuming the mismatch comes from differential
ellipticity) and can be written as

ε = ε2`
2 + ε4`

4, (32)

β = β2`
2 + β4`

4. (33)

Varying (ε2, β2), and (ε4, β4) in the range given by σ2 = 1.25 ×
10−8, and σ4 = 2.7 × 10−15 (Planck Collaboration XI 2016), we
find that α is stable to <0.1σ (this is the case for both temperature
and E-mode stacks).

We must stress, however, that the above temperature-to-
polarization leakage model is not completely satisfactory (see
Sect. 3.4.3 and Appendix C.3.5 in Planck Collaboration XI
2016, for full details). Nevertheless it is adequate for our pur-
poses since we only wish to demonstrate that our results remain
stable to most forms of beam mismatch.

7. Conclusions

We have estimated the rotation, α, of the plane of polariza-
tion of CMB photons by using Planck 2015 data. Employing
harmonic-space cross-correlations and a map-space stacking ap-
proach we find values of 0◦.31 and 0◦.35, respectively, for the
angle α (using SMICA data). Both methods yield the same sta-
tistical uncertainty, i.e., 0◦.05 (68% CL), and are subject to the
same systematic error of 0◦.28 (68% CL) due to the uncertainty
in the global and relative orientations of the PSBs. Our results
are compatible with no rotation, i.e., no parity violation, within
the total error budget. We have demonstrated that our findings
are robust against two independent analysis approaches, differ-
ent component-separation methods, harmonic scales, choices in
peak thresholds, and temperature-to-polarization leakage, at bet-
ter than the 1σ statistical level. We have also carefully chosen
our analyses to be insensitive to detailed knowledge of the noise
properties of the polarization data. It should be noted that the sta-
tistical and systematic error bars represent our best knowledge
of the Planck data at the time of publication11. Several addi-
tional effects have the potential to enlarge the error estimates.
Among the possible source of extra systematics are residuals
from the processing, which are only partially captured by the
FFP8.1 simulations since these simulations do not yet include all
the details of the instruments. In Planck Collaboration XI (2016)
we analysed a few end-to-end simulations from HFI, which in-
clude more systematic effects than those contained in FFP8.1,
and found no evidence for significant influence on the results
of the TT likelihood. Planck Collaboration XLVI (2016) shows
that the FFP8 simulations fail to capture most of the very low ell
(` < 30) polarization systematics. Our measurement here, based
on multipoles larger than ` = 50 should be immune to these sorts
of issues, but there are not enough end-to-end simulations avail-
able at this time to definitively prove this. Similarly, we relied on
the efficiency of component-separated maps to treat the Galactic
residuals. This assumes that the FFP8 Galactic model correctly
describes T B and EB induced correlation. Comparing the es-
timates obtained from different component-separation methods,
we expect that the latter uncertainty is at most of the order of
1σ statistical error.

In Fig. 8 we show a comparison of our estimate with the
birefringence angle estimates provided by analysis on other
CMB data in which, where possible, the total error budget is
decomposed in these two parts, i.e., statistical (left point of a
pair) and systematic (right). The total error budget of our es-
timate is dominated by the systematic uncertainty, which is a
factor of 6 larger than the statistical one. It is clear, therefore,
that future CMB polarization experiments (or a future Planck
release) will require a much better understanding of their po-
larimeter orientations since this is the current limiting factor of
this investigation. With a coordination of careful ground-based
measurements and improved in-flight calibration on polarized
sources (see Kaufman et al. 2014, for an example of a possible
effort) we may be able to further probe possible parity violations
in the Universe.

11 We do not recommend the use of any T B, and EB information (either
in form of spectra, stacking or any other estimator that depends on the
cross-correlation between T and B modes or E and B modes) without
including in the analysis the uncertainty coming from the instrumental
polarization angle (and other systematic effects that might dominate the
error budget).
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Fig. 8. Constraints on α coming from published analyses of several
sets of CMB experimental data sets (shown in grey) as reviewed in
Kaufman et al. (2016) compared with what is found in the present pa-
per (in blue). For each experiment the left error bars are for statistical
uncertainties at 68% CL, while right error bars (when displayed) are
obtained by summing linearly the statistical and systematic uncertain-
ties. The error bar of BOOM03 already contains a contribution from
systematic effects.
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Appendix A: Stacking on E-mode peaks

Here we will discuss the new procedure of stacking on E-mode
extrema. We remind readers that the full implementation and
derivation of all relevant parameters are discussed in great detail
in Appendix B of Komatsu et al. (2011), and a similar derivation
is given in Contaldi (2015) for stacking on Q and U extrema.
Here we simply explain the few details required to extend the
formalism for stacking on E-modes.

Selecting the peaks of an underlying Gaussian field (like T
or E) leads to a biased selection of that field. Such a bias is scale-
dependent and has the form

δpk(n̂) =
[
bν − bζ∇2

]
E(n̂). (A.1)

The scale-dependent term (bζ) arises because peaks are defined
by a vanishing first derivative and the sign of the second deriva-
tive (Desjacques 2008).

The bias parameters depend entirely on rms values of deriva-
tives of the Gaussian field, σ0, σ1, and σ2 (they also depend
on special functions involved in translating a three-dimensional
Gaussian random field to the two-dimensional case, as discussed
in Bond & Efstathiou 1987). These are defined as

σ2
j ≡

1
4π

∫
dn̂

(
∇2

) j
E2(n̂) (A.2)

=
1

4π

∑
`

(2` + 1)[`(` + 1)] j(CEE
` + NEE

` )(WE
` )2. (A.3)

This is the only expression that contains the noise term NEE
` ,

which is why understanding the noise properties of the E-mode
map is potentially considered to be a relevant systematic effect
(see Sect. 6.1).

When we stack Qr or Ur on the location of E-mode peaks we
are explicitly computing the cross-correlation 〈δpk(n̂)Qr(n̂ + θ)〉
or 〈δpk(n̂)Ur(n̂+θ)〉. Recalling that both Qr and Ur can be written
in terms of E and B-mode contributions (Zaldarriaga & Seljak
1997; Kamionkowski et al. 1997) and rewriting Eq. (A.1) in the
flat-sky approximation we arrive at12

〈δpk(n̂)Qr(n̂ + θ)〉 =

∫
d2`

(2π)2 WE
` WP

` (b̄ν + b̄ζ`2){
CEE
` cos [2(φ − ψ)] + CEB

` sin [2(φ − ψ)]
}

ei`·θ, (A.4)

〈δpk(n̂)Ur(n̂ + θ)〉 =

∫
d2`

(2π)2 WE
` WP

` (b̄ν + b̄ζ`2){
CEB
` cos [2(φ − ψ)] −CEE

` sin [2(φ − ψ)]
}

ei`·θ. (A.5)

Here we have used the coordinate convention of Komatsu et al.
(2011), thus ` = (` cosψ, ` sinψ), and θ = (θ cos φ, θ sin φ). We
can perform the internal integration over ψ using properties of
Bessel functions to finally arrive at Eqs. (11)–(12), i.e.,

〈δpk(n̂)Qr(n̂ + θ)〉 = −

∫
`d`
2π

WT
` WP

`

(
b̄ν + b̄ζ`2

)
CEE
` J2(`θ), (A.6)

〈δpk(n̂)Ur(n̂ + θ)〉 = −

∫
`d`
2π

WT
` WP

`

(
b̄ν + b̄ζ`2

)
CEB
` J2(`θ). (A.7)

These angular profiles could have been derived in a more heuris-
tic way by realizing that an E-mode map has the same statistical
properties as a temperature map, differing only in its power spec-
trum. Thus we could have gone from Eqs. (9)–(10) to Eqs. (11)–
(12) by simply making the replacement T → E.

12 For brevity we henceforth drop the noise term in the expression
for CEE

` .
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