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Abstract

The solar wind is a highly turbulent plasma for which the mean rate of energy transfer ε has been measured for a
long time using the Politano–Pouquet (PP98) exact law. However, this law assumes statistical homogeneity that
can be violated by the presence of discontinuities. Here, we introduce a new method based on the inertial
dissipation sI whose analytical form is derived from incompressible magnetohydrodynamics; it can be considered
as a weak and local (in space) formulation of the PP98 law whose expression is recovered after integration in
space. We used sI to estimate the local energy transfer rate at scale σ from the THEMIS-B and Parker Solar Probe
data taken in the solar wind at different heliospheric distances. Our study reveals that discontinuities near the Sun
lead to a strong energy transfer that affects a wide range of scales σ. We also observe that switchbacks seem to be
characterized by a singular behavior with an energy transfer varying as σ−3/4, which slightly differs from classical
discontinuities characterized by a σ−1 scaling. A comparison between the measurements of ε and sI shows that in
general the latter is significantly larger than the former.

Unified Astronomy Thesaurus concepts: Interplanetary turbulence (830); Space plasmas (1544); Solar wind (1534)

1. Introduction

For several decades, the solar wind—a collisionless plasma
—has been the subject of an apparent paradox. The measure-
ments made by Voyager 1 and 2 revealed that the average
(proton) temperature of the solar wind decreases as∼r−0.5 over
1–20 astronomical units (au), with r, the radial distance from
the Sun (Gazis & Lazarus 1982; Marsch et al. 1982;
Richardson et al. 1995; Matthaeus et al. 1999). However, for
a radially expanding, adiabatically cooling plasma, one would
expect a temperature variation as r−4/3, which is significantly
steeper than the observed law. This paradox can be solved if an
efficient local heating source exists, which must be collisionless
in nature (note, however, that the adiabatic model can be
questioned since it derives from a fluid approximation, which
implicitly assumes the existence of collisions).

In the heliosphere at intermediate radial distances (r 2 au)
turbulence generated by stream shears or large-scale shocks at
the interface between high and low speed streams was quickly
suspected as a major source of heating (Gazis & Lazarus 1982;
Burlaga & Mish 1987; David & Galtier 2021). In the far outer
solar wind (r> 20 au) where the temperature increases slightly
(Matthaeus et al. 1999; Elliott et al. 2019), pickup ions are
considered a main source of heating (Gazis et al. 1994; Pine
et al. 2020a). Originally, these are neutrals from the interstellar
medium that are transformed into ions by charge exchange with
solar wind protons, that are eventually picked up by the
interplanetary magnetic field. In this context, several (phenom-
enological) turbulence transport model equations have been
successfully used to study the solar wind heating (Zank et al.
1996, 2018).

In the inner heliosphere (r 1 au), the wind is generally free
from large-scale structures such as the interplanetary shocks
observed at 5 au, and turbulent fluctuations are dominant.
Therefore, studies focus on the turbulent cascade which is seen
as an efficient mechanism to bring energy from large
magnetohydrodynamic (MHD) scales to small kinetic (sub-
MHD) ones (Sahraoui et al. 2020). In situ measurements of ε,
the mean rate of energy transfer at MHD scales, provide an
estimate of the heating rate by assuming complete conversion
from the former to the latter. While those estimates cannot
inform us about the precise kinetic mechanism responsible for
energy dissipation, recent progress using Landau-fluid simula-
tions showed the ability of the exact laws to estimate the
amount of dissipation, due to Landau damping (Ferrand et al.
2021).
In practice, ε can be estimated from exact laws. First

developed in incompressible hydrodynamics (Kolmogorov
1941; Batchelor 1953; Antonia et al. 1997), the exact laws
have been derived for many physical systems where turbulence
is encountered. This includes isothermal compressible hydro-
dynamics (Galtier & Banerjee 2011), a model often used to
simulate supersonic interstellar turbulence (Kritsuk et al. 2007;
Federrath et al. 2010; Ferrand et al. 2020). For the solar wind,
the simplest exact law is that derived from incompressible
MHD (Politano & Pouquet 1998). Its use led to the first
estimate of turbulent heating in the solar wind (Sorriso-Valvo
et al. 2007; MacBride et al. 2008; Marino et al. 2008; Stawarz
et al. 2009, 2010; Osman et al. 2011). Later, several general-
ized exact laws were derived to account for compressible MHD
(Banerjee & Galtier 2013; Andrés & Sahraoui 2017; Simon &
Sahraoui 2021), Hall-MHD (Galtier 2008; Banerjee &
Galtier 2016; Andrés et al. 2018; Hellinger et al. 2018; Ferrand
et al. 2021), and even gravitoturbulence (Banerjee & Kritsuk
2017, 2018). With these new laws, it was possible to obtain
better estimates of ε in the solar wind and planetary plasma
environments that incorporate density fluctuations and subion
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scale effects (Banerjee et al. 2016; Hadid et al. 2017; Andrés
et al. 2019; Bandyopadhyay et al. 2020; Andrés et al. 2021).

Exact laws are based on the zeroth law of turbulence
(unproved in general), which says that in a turbulence
experiment, everything else being fixed, if the energy
dissipation ends to zero, the mean rate of energy dissipation
tends to a nonzero limit, which is ε (Frisch 1995). This law has
led to an interesting mathematical development around the
concept of weak solutions in Euler’s equation, useful when the
velocity becomes nonregular (Leray 1934). In particular, the
nonregularity of the field can lead, in principle, to energy
dissipation without the assistance of viscosity (Onsager 1949).
This new form of dissipation has been called inertial dissipation
(noted hereafter as I) as opposed to viscous dissipation. The
mathematical expression of I for the Euler equation (Duchon
& Robert 2000) has a striking similarity with Kolmogorov’s
law (Antonia et al. 1997). Unlike the exact law, the expression
of I does not involve an ensemble average; therefore, it can
be used at any point in a turbulent fluid to evaluate the local (in
space) dissipation (Saw et al. 2016). This work on incompres-
sible hydrodynamics has recently been generalized to 3D
incompressible Hall-MHD (Galtier 2018) and to a 1.5D MHD
system (Yanase 1997) that has been used to estimate the inertial
dissipation produced by collisionless shocks in the outer
heliosphere (David & Galtier 2021). As with Burgers’ equation
(Dubrulle 2019; Eyink 2019), with the low dimensional MHD
model, the zeroth law of turbulence can be proved with, on
average, eá ñ =I .

The structure of the paper is as follows: Section 2 is devoted
to theoretical frameworks (incompressible MHD, exact law,
inertial dissipation). Section 3 presents the selection of data
(THEMIS-B; Parker Solar Probe, hereafter PSP) and their
processing; various situations are considered (slow and fast
winds, discontinuities). The results of our analysis are
presented in Section 4 with the measurements of ε and I, in
particular. A conclusion is provided in Section 5.

2. MHD Theory

2.1. Four-thirds Exact Law

We briefly recall the four-thirds exact law for incompressible
MHD derived by Politano & Pouquet (1998), which we will
hereafter call the PP98 law. Let u be the fluid velocity,

m rºb B 0 0 the magnetic field normalized to a velocity,
with ρ0 the mean plasma density and μ0 the vacuum
permeability, P* = P+ b2/2 the sum of the thermal and
magnetic pressures, ν the kinematic viscosity, and η the
magnetic diffusivity. Then, the incompressible MHD equations
read (Galtier 2016):

n¶ +  = - +  + *· · ( )u u u b b uP , 1t
2

h¶ +  =  + · · ( )b u b b u b, 2t
2

where u and b are zero-divergence fields. To derive these
equations, the following Ohm’s law is used:

h= - ´ ( )e j u b, 3

where e is the normalized electric field and j=∇× b is the
normalized electric current density. To obtain the PP98 law, we
assume large-scale stationary forcing and asymptotically large
(magnetic and kinetic) Reynolds numbers. After a standard

calculation, one obtains a primitive form of the PP98 exact law:

e d d d d d d- =  á + - ñ· (∣ ∣ ∣ ∣ ) ( · ) ( )u b u u b b4 2 , 4ℓ
2 2

where á ñ· is the ensemble average. For any variable g,
d º + -( ) ( )x xg g ℓ g , with ℓ the vector increment. In this
equation, ε is the mean rate of energy transfer/dissipation/
forcing, the equivalence between the three definitions being
due to the stationarity assumption.
The previous expression can be reduced to the PP98 law

when the statistical isotropy is further assumed:

e d d d d d d- = á + - ñ(∣ ∣ ∣ ∣ ) ( · ) ( )u b u bℓ u b
4

3
2 . 5ℓ ℓ

2 2

Here, the index ℓ refers to a projection along the longitudinal
direction given by the vector ℓ, with ℓ as its norm. The PP98
exact law is valid in the inertial range of incompressible MHD
turbulence. A basic assumption made to use the law (5) is that
the fields are regular. In simple terms, a field is said to be
regular if all the classical tools of analysis (such as derivative
calculations) can be applied. In case of nonregular fields (e.g., a
discontinuity), a weak formulation must be introduced.

2.2. Weak Formulation

The weak formalism is based on smoothing of a field with
some kernel j Î ¥ with compact support on 3, even
nonnegative, and with integral 1. To formalize the notion of
scale, we define a family of test functions3 jσ such that
jσ(ξ)≡ σ−3j(ξ/σ). The regularized fields at scale σ are
defined by taking the convolution product of the fields with j σ

(for simplicity, the time dependence is omitted):

ò x x xj jº * = +s s s


( ) ( ) ( ) ( )u x u u x d , 6

3

which tends to u(x) when σ→ 0. The other regularized
quantities are defined in the same way. Note that this filtering
process consists of smoothing the fields in a space defined by a
sphere of radius σ centered at the point ξ (see Figure 1). Under
these considerations, the kinetic energy reads

ò x x xjº = +s s s


( ) ( ) ( ) ( ) ( )x x xE u u u u

1

2

1

2
d , 7u i i i i3

where the Einstein summation convention is used (the
generalization to the magnetic energy is straightforward). The
previous equation can also be interpreted as the local equivalent
of a correlation function where the ensemble average is
replaced by a local average over scale.
With the above definitions and using a point-splitting

regularization, one can derive the following weak formulation
(valid for individual realizations) of the local energy conserva-
tion at position x (Galtier 2018):

P¶ +  = - -s s
n h
s s( ) · ( ) ( ) ( ) ( ) x x x xE , 8t , I

with = +s s sE E Eu b the total energy. Πσ is the spatial flux
whose heavy form is not given explicitly here; this is a purely
local term that describes how energy is transported across the

3 There is no unique solution for the test function. However, with this
definition, the inertial dissipation does not depend on the test function in the
limit σ→ 0 because in this case the test function tends to a Dirac (Duchon &
Robert 2000).
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flow, and it vanishes after integration over space with the
appropriate boundary conditions. We also have the energy
dissipation by viscous and resistive effects (that includes the
vorticity ω=∇× u),

w wn h= +n h
s s s( ) · · ( ) x j j , 9,

and the inertial (also called anomalous or defect; Eyink 2003)
dissipation,

ò x x xj= s s


( ) ( ) · ( ) ( ) x Y x

1

4
, d , 10I 3

where the third-order mixed structure function reads

x d d d d d d= + -( ) (∣ ∣ ∣ ∣ ) ( · ) ( )Y x u b u u b b, 2 , 112 2

with xd º + -( ) ( )x xg g g . Equation (8) must be seen as a
generalization of the PP98 law (or more precisely of the
Kármán-Howarth MHD equation; Politano & Pouquet 1998)
that we can recover for regular fields and homogeneous
turbulence (see below). Note that in the limit σ→ 0, the two
dissipative terms are mutually exclusive; the presence of any
viscosity/resistivity should prevent the formation of singula-
rities. Thus, in this limit, only one of them can appear in the
equation. Another physical relevance of the weak formulation
is revealed when performing an integration over space. The
absence of an energy source at the boundary is formally
equivalent to assuming periodicity (or homogeneity); therefore,
the notation 〈 · 〉 will be used for integration in space. We find

¶ á ñ = -á ñ - á ñs
n h
s s ( ) E , 12t , I

with

ò x x xjá ñ =  á ñs s


( ) · ( ) ( ) Y x

1

4
, d . 13I 3

In the small-scale limit, we find for a viscous/resistive flow

s
e


á ñ º á ñ =n h

s
n h ( ) lim

0
. 14, ,

Therefore, n h
s , can be used to trace, locally and across scales,

the rate of viscous/resistive energy dissipation (Kuzzay et al.
2019). On the other hand, Equation (13) has a strong similarity

with the right-hand side term of the exact law (4), especially if
one performs an integration by part, assuming the fields to be
regular, and takes the small-scale limit

ò x x x

s

s
j

º


= -




s

s


( ) ( )

( ) · ( ) ( )

 x x

Y x

lim
0

lim
0

1

4
, d . 15

I I

3

This relation directly connects I to the PP98 law, which leads
to the remarkable equality eá ñ =I (see Appendix A).
Therefore, sI can be used to trace, locally and across scales,
the rate of energy transfer.
Other interpretations can be made based on Equation (15). In

the presence of finite viscosity and resistivity, the fields are
regular (because the Laplacian operator smooths the fields at
small scales) and thus satisfy d d= =x x + +u blim lim 00 0 ,
which leads to = 0;I this is the classical situation. On the
contrary, if ν= η= 0, nonregular fields can be produced and
I can have a contribution. This contribution, however, is not
systematic because the fields must satisfy the Hölder condition
(Onsager 1949; Dubrulle 2019). Using a scaling analysis (at a
fixed position x), we can make three theoretical predictions of
practical importance:

1. In the inertial range where the fields correspond to turbulent
fluctuations that obey the PP98 law in the inertial range, we
have4 δu3∼ δb3∼ σ and thus s~s( ) xI

0.
2. At small scales where viscous/resistive effects dominate, a

Taylor expansion gives δu∼ δb∼ σ and thus s~s( ) xI
2.

3. However, when the fields are nonregular and act like
discontinuities, the increments correspond to jumps
δu∼Δu, δb∼Δb and thus s~s -( ) xI

1.

Therefore, depending on the scaling that would be measured
in the solar wind (see below) it will be possible to make a
distinction between turbulence, viscous/resistive damping, and
discontinuities (see Figure 2). Note, however, that other σ
dependences are possible for nonregular fields (Jaffard 2006;
Lashermes et al. 2008; Jaffard et al. 2009).
To conclude, we point out that I is a generalized function

(i.e., a distribution) and its analytic form (if it can be found) can
lead to the appearance of a δ-function (see, e.g., David &

Figure 1. Scheme of the filtering process. The color reflects the intensity of the
smoothing. σ can be seen as the typical scale beyond which the contribution to
the integral (see Equation (6)) is mainly negligible.

Figure 2. Variation (schematic) of the inertial dissipation s( ) xI as a function
of the scale σ for a discontinuity (red line), turbulent fluctuations (green line),
and viscous/resistive damping (blue line). The intersection between the green
and the blue lines defines the dissipative (i.e., Kolmogorov) scale and is noted
σK. Similarly, the intersection between the green and the red line can define the
discontinuity scale below which discontinuities become dominant (see
Figure 4).

4 We do not mean equipartition between kinetic and magnetic energies, but
only the same σ dependence.
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Galtier 2021). This means that when the limit σ→ 0 is taken, one
expects to see the value of s∣ ∣I increase without limit; however,
in practice, the value σ= 0 will never be reached (see below).

3. Methods

3.1. Data Selection

In a first step, we used the THEMIS-B/ARTEMIS P1
spacecraft data during time intervals when it was traveling in
the free-streaming solar wind. The magnetic field data and
plasma moments (proton density and velocity) were measured
respectively by the Fluxgate Magnetometer (MAG) and the
Electrostatic Analyzer. All data are expressed in the Geocentric
Solar Ecliptic (GSE) coordinate system, and have a time
resolution dt= 3 s, which corresponds to the spacecraft spin
period. We analyzed more than 180 hr of data between 2008
and 2011 that cover both fast and slow solar winds. Fast winds
are defined as having an average speed USW> 450 km s−1. The
others are the slow winds.

In a second step, we analyze PSP’s data measured between
2018 and 2020 during the first and fifth approaches of the
spacecraft to the Sun. We selected two subsets with a total
duration of about 115 hr, corresponding roughly to radial
distances of 36 and 30 solar radii (at perihelion) to which we
refer respectively by subsets PSP1 and PSP5. The magnetic
field and plasma moments (proton density and velocity) were
measured respectively by the MAG and the Solar Probe
Analyzer (SPAN). All data are expressed in the Radial
Tangential Normal (RTN) coordinate system, and have a time
resolution dt= 1s.

3.2. Data Processing

For both spacecraft, the selected intervals are divided into
samples of 2 hr, which correspond to a number of data points,
N= 2400 for THEMIS-B and N= 7200 for PSP. The data
selection yielded the following:

1. 51 samples (122,400 data points) in the slow solar wind.
2. 46 samples (110,400 data points) in the fast solar wind.
3. 61 samples (439,200 data points) for PSP1.
4. 55 samples (396,000 data points) for PSP5.

Data gaps (rarely present) were interpolated linearly. For the
selected time intervals, we compute the energy cascade rates ε
estimated by PP98 and the inertial dissipation sI using
Equations (5) and (10), respectively. The structure functions of
u and b are calculated for different time lags t Î [ ]dt1, 100 to
probe the scales of the inertial range. As usual (see, e.g., Hadid
et al. 2017), we use the Taylor hypothesis τ=−ξ/USW, with
USW the mean solar wind speed on the interval, assuming that

= s I I
min , with smin the minimum accessible value, which is

3 s for THEMIS-B and 1 s for PSP data. We note á ñsI the time
average of the inertial dissipation over the 2 hr sample.

Mathematically, the inertial dissipation sI can be interpreted
as a continuous wavelet transform of the third-order structure
function Y with respect to the wavelet j. The link between the
weak formulation and the wavelet transform reveals several
advantages of its application to rough turbulent fields. Indeed, a
wavelet transform can be considered as a “local Fourier
transform” and it is suitable for application to inhomogeneous
fields. Thus, it will genuinely deal with the observed breaking
of the spatial translation symmetry (Dubrulle 2019). Therefore,
we computed sI on the entire time interval for 100 values of σ

as a continuous 1D wavelet transform based on fast Fourier
transform—a MATLAB package provided by the toolbox
YAWTB (Jacques et al. 2010). The test function jσ is a
normalized Gaussian of width σ, which is convenient because
its derivative is exact (more information on the different ways
to implement I is given in Appendix A). Note that in the
implementation of the inertial dissipation, only the terms
depending on ξ are computed because the convolution product
is performed on this variable and, given the properties of jσ, it
is obvious that the smoothing of a field independent of ξ leaves
the result unchanged. To minimize the finite window size
effects due to the nonperiodicity of the data, we artificially
extend each time series to twice its size to apply a Gaussian
windowing prior to computing its Fourier transform. The final
result is obtained in the time domain after an inverse Fourier
transform where only the information from the central part of
the time series (i.e., the original one of interest) is considered.

4. Observational Results

4.1. Inhomogeneous Structures

We begin our data analysis with four examples where
discontinuities are clearly present. In Figure 3 we show (top
left) a THEMIS-B slow wind interval on 2008 August 8 from
02:54:36 to 04:54:36, (top right) a THEMIS-B fast wind
interval on 2011 April 4 from 21:15:23 to 23:15:23, (bottom
left) a PSP1 interval on 2018 November 6 from 09:00:00 to
11:00:00, and (bottom right) a PSP5 interval on 2020 June 3
from 22:00:00 to June 4, 00:00:00. For each case study, the first
two panels (top to bottom) show the three components of the
proton velocity and the magnetic field, respectively. They
highlight the presence of discontinuities, and thus the breaking
of statistical homogeneity, which may jeopardize the use of
exact laws. We find that for the PSP intervals that are closer to
the Sun, the velocity and magnetic field components are
strongly correlated (respectively 91%, 90%, and 91% for the
radial, tangential, and normal components for the PSP1
interval, and 96%, 86%, and 80% for the PSP5 one), which
can be interpreted as the signature of outward propagating
Alfvén waves (Belcher & Davis 1971). The third panel shows
the proton density, which is relatively constant, and the last
panel shows a space-scale diagram of the inertial dissipation (in
modulus); time is on the x-axis, the width σ of the test function
is on the y-axis, and the intensity of s∣ ∣I is in color. These maps
illustrate the local energy transfer between different scales σ (at
a given time t, or using the Taylor hypothesis, at a given
position x=−USWt with USW the solar wind speed). If we
follow the evolution of the plasma from small to large scales,
the dark areas delimit the impact of an event on the energy
transfer; the larger the bright area in scale, the greater the
impact of the event in scale, and the smaller the local energy
transfer would be. Conversely, when a region is mainly dark,
this means that the energy transfer is local and the dynamics is
driven by turbulent fluctuations.
A more precise analysis can be made by observing how s∣ ∣I

evolves according to the scale σ at given times tå and tf. We
respectively chose tå and tf such that =∣ ( )∣ (∣ ∣) t maxI I and

=s∣ ( )∣ (∣ ∣) t minfI I over the 2 hr interval (see Figure 3). The
first and second panels of Figure 4 reveal that, when placed
respectively on a discontinuity (at time tå) and on a turbulent
fluctuation (at time tf), the inertial dissipation does follow the
σ−1 and σ0 power laws, as theoretically expected. The third
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panel shows the evolution of the inertial dissipation á ñs∣ ∣I ,
averaged over the entire intervals of 2 hr, as a function of σ.
The power laws that were found indicate the dominant type of
energy transfer. For those coming from THEMIS-B (in blue),
we observe mainly a flat profile, which means that the
dominant mechanism is a turbulent cascade, due to fluctua-
tions. For PSP1 (light red), a power law in σ−1 appears at small
σ, showing the prevalence of discontinuities at small scales for
this interval. For PSP5 (dark red), an intermediate power law is
observed suggesting that the effect of discontinuities is weaker.
The bottom panel displays the value of |ε| as a function of τ for
the four intervals. We can see that the curves do not exhibit a
clear plateau as theoretically expected; this might be due to the
violation of one (or more) of the assumptions on which the
exact law formalism is grounded. This is particularly the case
for the statistical homogeneity, which is unlikely to be valid

here because of the presence of discontinuities that distort the
estimate of the mean rate of energy cascade (Hadid et al. 2017).
Note that for the PSP intervals close to the Sun, both intervals
give the same order of magnitude of the inertial dissipation, but
are larger than that from THEMIS data at 1 au, which, overall,
remains true for the other intervals. This is consistent with the
the radial increase of the turbulent cascade rate ε as one
approaches the Sun (Bandyopadhyay et al. 2020; Andrés et al.
2021). Also the inertial dissipation is larger for fast than for
slow solar winds in agreement with previous results regarding
the cascade rate ε (Hadid et al. 2017).

4.2. Switchbacks

Switchbacks are defined as sudden reversals of the radial
magnetic field component associated with sharp variations in the

Figure 3. Top panels display the slow (left) and fast (right) winds measured with THEMIS-B. Bottom panels display PSP1 (left) and PSP5 (right). In each panel, from
top to bottom, we find the fluctuations of the velocity components, fluctuations of the magnetic field components, proton density, and space-scale diagram (in
modulus) of the inertial dissipation. The red, blue, and green curves correspond respectively to the x, y, z components (GSE coordinates) for THEMIS-B and to the R,
T, N components (RTN coordinates) for PSP. The vertical gray lines locate the instant for which ∣ ∣I is extremal on the sample.
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radial plasma flow (Neugebauer & Goldstein 2013; Horbury et al.
2018, 2020). Although they are actively studied, their origin
remains an open question (Bale et al. 2019; Squire et al. 2020;
Zank et al. 2020). We propose here to estimate the inertial
dissipation produced by these peculiar structures in order to
quantify their relative importance in the energy cascade.

We focus on a PSP1 interval on 2018 November 6 from
01:30 to 02:30, where switchbacks are numerous. The first two
panels of Figure 5 again highlight a clear correlation between
the velocity and the magnetic field (respectively 97%, 86%,
and 90% for the radial, tangential, and normal components),
which testifies to the presence of outward Alfvén waves. By
following the evolution of s∣ ∣I as a function of σ on
switchbacks located at times tå, a power law close to σ−3/4

seems to emerge. This does not correspond to any scaling laws
presented in Section 2. Note that there is a zoology of
nonregular fields and the fact that we find empirically a

σ−3/4 dependence could mean that a switchback is not strictly
speaking a simple jump. However, as far as we know, the
precise mathematical structure that could reproduce this σ
dependence is not known. The fifth panel shows mainly a flat
curve for both the mean rate of energy cascade and the inertial
dissipation. We also see that the values coincide relatively well
in the limit of small-scale σ. The fact that ε is relatively smooth
and constant may come from the fact that the discontinuities are
so large that they impose at all scales their jump (or amplitude)
on the increments δu and δb, which would then lead to a higher
value of ε (compared to Figure 4). Although both estimates
( á ñs∣ ∣I and |ε|) give a similar result, rigorously speaking, the
exact law should not be applicable in this type of data. The last
panel is a 3D space-scale diagram of inertial dissipation, which
highlights that switchbacks make the main contribution to the
energy cascade. Indeed, one can observe that the large-scale
contribution of the inertial dissipation comes from the locations
where switchbacks occur, and we observe the same behavior as
in Section 4.1: the dark areas mark the limit of the impact of a
discontinuity on its vicinity. Overall, we observe that the values
of s∣ ∣I for switchbacks—particularly in the limit of small σ—
are significantly higher than the values found for the other
types of singularities (characterized by other power laws—see
also the end of Section 2.2), which suggests that switchbacks
can contribute to a stronger heating.

4.3. Statistical Results

We conclude our data analysis with a statistical comparison
between the mean inertial dissipation and the mean rate of
energy transfer as a function of the solar wind speed and the
level of the magnetic field fluctuations. Note that the latter is
estimated by the ratio between the root mean square BRMS and
the mean value B0 of the magnetic field.
In Figure 6, we show á ñ∣ ∣I as a function of |ε| for each

processed interval. The upper panels correspond to THEMIS-B
intervals (triangles for slow wind and squares for fast wind) and
the lower panels to PSP intervals (triangles for PSP1 and squares
for PSP5). The dashed (diagonal) line obeys the equation

eá ñ =∣ ∣ ∣ ∣I . The colors in the left column reflect the mean solar
wind velocity, while those in the right column correspond to the
amplitude of the magnetic field fluctuations of each of the
intervals. First, we notice that near the Sun (bottom panels), the
values of á ñ∣ ∣I and of e∣ ∣ are higher than near the Earth (top
panels). This property can be attributed primarily to the strength of
magnetic field, which intensifies as one approaches the Sun, but
also to the omnipresence of discontinuities near the Sun. Note that
the decrease of the cascade rate with the heliocentric radial
distance has already been measured from exact laws or turbulence
transport models (Bandyopadhyay et al. 2020; Andrés et al.
2021), but the new observation regarding á ñ∣ ∣I was achieved
thanks to our inertial model that applies in the presence of
discontinuities. Second, a clear correlation with the wind speed is
found at 1 au with the two methods: the faster the wind, the higher
the mean rate of energy transfer. This property was also shown by
Hadid et al. (2017) using exact (compressible and incompressible)
laws. Note that only THEMIS-B data include fast winds (PSP
orbits near the Sun remain mainly in the equatorial plane where
the wind is generally slow). Third, in the right column, no clear
behavior emerges in the magnetic field fluctuations at 1 au, while
for the PSP intervals, even if these events are few and thus
statistically meaningless, large values of BRMS/B0 tend to reduce
the mean rate of energy transfer (see also Figure 9 in

Figure 4. From top to bottom: modulus of the inertial dissipation at time tå as a
function of scale σ, modulus of the inertial dissipation at time tf as a function of
scale σ, estimates of the mean inertial dissipation as a function of σ, and
modulus of the mean rate of energy cascade as a function of τ. Here, σ and τ
vary approximately on the same interval.
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Appendix B). Last, the majority of the values lies above the
diagonal, meaning that on average eá ñ >∣ ∣ ∣ ∣I . This observation
can be seen as a signature of inhomogeneities (discontinuities) that
are not well captured by the method using the exact law. These
inhomogeneities lead mainly to a nonlocal contribution visible at
large σ (see Figures 3 and 5).

5. Discussion and Conclusion

In this paper, we have used two different methods (or exact
laws) to measure the rate of turbulent energy transfer at MHD

scales. The first is the PP98 exact law, applicable to homogeneous
turbulence, and the second is the local inertial dissipation sI .
Both laws have a similar form with the same combination of
structure functions, but in the latter case, the homogeneity
assumption is not necessary for its derivation. Therefore, sI can
be considered as more general than the PP98 law since it is a local
(exact) law allowing us to measure the energy transfer rate at each
point of the turbulent flow even when discontinuities are present.
Note that the weak formulation of the PP98 law provides a
theoretical justification of the observational work of Sorriso-Valvo
et al. (2018, 2019a, 2019b).
Theoretically, several scaling behaviors are expected for sI

depending on the type of signals. For pure turbulent fluctuations
for which the PP98 applies effectively, a flat signal is expected for

sI and is reported in our study. In the presence of discontinuities,
a scaling in σ−1 is expected and is indeed well observed over the
whole available range of scales. However, no signature of a
dissipation range in σ2 is detected. These properties can be
explained by the fact that the present study is limited to MHD

Figure 5. 1 hr interval of PSP1 with switchbacks. From top to bottom: velocity
components, magnetic field components, proton density, modulus of inertial
dissipation (at different times (see also the vertical gray lines in the first three
panels and dotted white lines in the last one) tå = {01:41:13, 02:11:47,
02:19:53} in gray, black, and light gray, respectively) as a function of σ,
modulus of 1 hr-averaged inertial dissipation as a function of σ (red) and
modulus of mean rate of energy cascade as a function of τ (blue), and finally
the 3D map of the modulus of inertial dissipation where the color is related to
the intensity and thus to the height of s∣ ∣I . Velocity and magnetic fields are
expressed in RTN coordinates.

Figure 6. Inertial dissipation as a function of the mean rate of energy transfer
measured via the PP98 law. The color scales correspond to the solar wind
velocity (left) and to the magnetic field fluctuations (right). The triangle and
square markers respectively refer to the slow and fast winds (THEMIS-B) in
the upper panels, and to PSP1 and PSP5 in the lower panels. The dashed
(diagonal) lines correspond to eá ñ =∣ ∣ ∣ ∣I , and black markers are the intervals
studied in Figure 3.

Figure 7. Overview of the observed predominant mechanisms that are
responsible for the heliospheric turbulence’s mean energy transfer rate. TF and
PUIs stand for turbulent fluctuations and pickup ions, respectively. Note that
this classification is made in terms of variations in the basic fields that enter the
MHD equations. Therefore, this view is more rooted in the physics of
turbulence than in the sources of turbulence of the solar wind.
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scales. Therefore, a natural extension of this work would be to
study sub-MHD scales using data that have the required high time
resolution, such as those of the Magnetospheric Multiscale
mission, to see if a σ2 dissipation can be detected. Unlike the
viscous dissipation discussed in Section 2, in collisionless plasma,
the dissipation involves complex physics at kinetic scales, and a
variation different from σ2 (but still with a positive slope) is likely.
The method based on inertial dissipation can offer an original
diagnosis to characterize this dissipation.

Inertial dissipation has many advantages over the exact law
but its implementation on real data calls for some caution. This
is because the dissipation formula is derived in the theoretical
limit σ→ 0, which is unattainable in real data. The smallest
scale that can be used in spacecraft (or simulation) data is set by
the available time (or grid) resolution. To what extent the
inertial dissipation estimated at this smallest accessible scale is
representative of dissipation at the actual smallest scale of the
system thus remains subject to caution.

The other limitation of the present study is that it is based on
the MHD model. However, this limitation can (partly) be
overcome by using the incompressible Hall-MHD model already
derived by Galtier (2018), which would allow probing of finer
scales and would possibly highlight a correlation between the
inertial dissipation with temperature, or to estimate the importance
of the Hall effect in the energy cascade. A further potential
improvement is to account for density fluctuations and see how
they would impact the inertial dissipation estimates in the solar
wind. Such a model remains yet to be derived. However, even
with such general models, there will always be a limitation
imposed by the temporal resolution of the data that will prevent
the strict application of σ→ 0.

A final caveat that should be kept in mind when estimating
both the inertial dissipation and the cascade rate from the exact
law, which is inherent to the use of single spacecraft data, is the
validity of the Taylor hypothesis, and even when it is valid, how
its use would impact the measured quantities. In the case of the
inertial dissipation, the use of the Taylor hypothesis implies that
I only depends on a one-dimensional space variable. One can
assume isotropy (as done in exact law studies) but this assumption
is poorly verified in the solar wind.

Several heating mechanisms exist in the solar wind (see
Figure 7) and their predominance seems to depend on the
heliospheric radial distance as shown by the proton temperature

measurements (with a slow decrease of the temperature up to
20 au, then an increase beyond 20 au; Matthaeus et al. 1999;
Elliott et al. 2019). It is well known that around 1 au turbulent
fluctuations are dominant, but closer to the Sun both disconti-
nuities and strong turbulent fluctuations are important as now
evidenced in PSP observations, while beyond 2 au we observe
large-scale inhomogeneous structures such as interplanetary
shocks, with relatively weak turbulent fluctuations. Beyond 20 au,
the dominant heating mechanism is mainly pickup ions (Zank
et al. 2018; Pine et al. 2020b). Faced with such a variety of
processes, it is interesting to have a tool that allows us to quantify
the turbulent energy cascade rate at fluid scales, regardless of the
dominant heating mechanism at work. The inertial dissipation
seems to be a good candidate for this purpose.

V.D. acknowledges B. Dubrulle for helpful discussion.

Appendix A
Comparison of Algorithms for Computation of Inertial

Dissipation

To compute Equation (10), different possibilities are available.
The first one, and the one chosen for this work, is to apply the
gradient on the test function jσ. The latter being known
analytically, its implementation does not introduce any numer-
ical error and respects the hypothesis of nonregularity of the
fields at the origin of the derivation ofI. A second possibility is
to perform an integration by part so that the gradient acts on the
structure function Y. The form obtained is almost identical to the
PP98 law before integration, assuming isotropy, but on the one
hand, this is in contradiction with the assumption of non-
regularity of the fields, and on the other hand, it introduces
numerical errors when computing its gradient.
To verify in practice the difference between these two

computations, we compared the estimation of the inertial
dissipation with and without integration by parts (hereafter
named I and IbP, respectively) as well as PP98 without the
isotropy assumption, named ε1D. In Figure 8 we show the
comparison between these three methods for the interval
studied in Section 4.2. The effect of the integration by part is
only slightly felt at small scale because the black curve is equal
to one for all of the values of σ except for the minimal one, and
the gray curve confirms that when s s min, we find the
equality eá ñ =IbP 1D predicted theoretically.

Figure 8. Evolution of á ñ á ñs s∣ ∣ ∣ ∣ I IbP and e á ñs∣ ∣ ∣ ∣1D IbP as a function of σ. For a consistent comparison, the time lag τ involved in the computation of ε1D takes the
same values as σ.
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Appendix B
Radial Evolution of the Magnetic Field

To verify that the lack of correlation underlined in the
description of Figure 6 is not a curiosity, it is interesting to look
at the evolution of the magnetic field as PSP approaches the

Sun. Figure 9 shows that as the radial distance decreases, the
average magnetic field strength B0 increases and the ratio
BRMS/B0 decreases. This is consistent with the results of
Section 4.

Figure 9. Radial evolution of PSP1 and PSP5 during the first (top) and fifth (bottom) approaches. The color shows the relative intensity of the average value of the
magnetic field (left), and its normalized fluctuations (right).
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