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We study linear perturbations about non rotating black hole solutions in scalar-tensor
theories, more specifically Horndeski theories. We consider two particular theories that
admit known hairy black hole solutions. The first one, Einstein-scalar-Gauss-Bonnet theory,
contains a Gauss-Bonnet term coupled to a scalar field, and its black hole solution is given
as a perturbative expansion in a small parameter that measures the deviation from general
relativity. The second one, known as 4-dimensional-Einstein-Gauss-Bonnet theory, can be
seen as a compactification of higher-dimensional Lovelock theories and admits an exact black
hole solution. We study both axial and polar perturbations about these solutions and write
their equations of motion as a first-order (radial) system of differential equations, which
enables us to study the asymptotic behaviours of the perturbations at infinity and at the
horizon following an algorithm we developed recently. For the axial perturbations, we also
obtain effective Schrödinger-like equations with explicit expressions for the potentials and
the propagation speeds. We see that while the Einstein-scalar-Gauss-Bonnet solution has
well-behaved perturbations, the solution of the 4-dimensional-Einstein-Gauss-Bonnet theory
exhibits unusual asymptotic behaviour of its perturbations near its horizon and at infinity,
which makes the definition of ingoing and outgoing modes impossible. This indicates that
the dynamics of these perturbations strongly differs from the general relativity case and
seems pathological.
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I. INTRODUCTION

With the advent of gravitational wave (GW) astronomy, it is now possible to explore directly,
via GW signals, the strong gravity regime that characterises the merger of two black holes. So
far, GW observational data are in agreement with the general relativity (GR) predictions, but it is
important to test this further with more precise and more abundant data that will be available in
the near future. In parallel, as a way to guide the analysis of future data, it is useful to anticipate
possible deviations from the GR predictions by exploring alternative theories of gravity. While the
full description of a black hole merger in a model of modified gravity might be a daunting task,
given the complexity that it already represents in GR, the ringdown phase of the merger appears
simpler to consider in a broader range of theories, since it involves the study of perturbations of a
single black hole. It is nevertheless already a challenging task since black hole solutions in modified
gravity theories are much more involved than GR solutions.

In the present work, we restrict our study to the case of non rotating black holes in scalar
tensor theories, corresponding to the case of most known solutions. The most general family of
scalar-tensor theories with a single scalar degree of freedom are known as degenerate higher-order
scalar-tensor (DHOST) theories [1–4] and perturbations of non rotating black holes within this
family or sub-families, such as Horndeski theories [5], have been investigated in several works.
For black hole solutions in Horndeski theories with a purely radially dependent scalar field, the
axial perturbations were investigated in [6] and the polar perturbations in [7], in both cases by
reducing the quadratic action for linear perturbations to extract the physical degrees of freedom.
This analysis was extended in [8, 9] to include a linear time dependence of the background scalar
profile, although the stability issue was subsequently revisited in [10]. Axial modes were further
discussed in [11] and [12] in the context of general DHOST theories. The perturbations of stealth
black holes in DHOST theories were investigated in [13, 14] and more recently in [15]. Note that,
beyond non-rotating black holes, perturbations of the stealth Kerr black hole solutions found in
[16] were analysed in [17].

The approach adopted in [6, 7, 15] relies on the definition of master variables in order to rewrite
the quadratic Lagrangian for perturbations in terms of the physical degrees of freedom. The proce-
dure to identify the master variables can however be quite involved, as illustrated in [15] for stealth
black holes. It is moreover strongly background-dependant and a general procedure might not ex-
ist. In [18] and [19], we introduced another approach which focuses on the asymptotic behaviours
of the perturbations, allowing to identify the physical degrees of freedom in the asymptotic regions,
namely at spatial infinity and near the horizon. Since quasinormal modes are defined by specific
boundary conditions (outgoing at spatial infinity and ingoing at the horizon), this is in principle
sufficient to understand their properties and compute them numerically. Their asymptotic be-
haviour can also be used as a starting point to solve numerically the first-order radial equations
and thus obtain the QNMs complex frequencies and the corresponding radial profiles of the modes.

In the present paper, we study scalar-tensor theories involving a Gauss-Bonnet term and we fo-
cus our attention on two types of models. First, we consider Einstein-scalar-Gauss-Bonnet (EsGB)
theories, which contain a scalar field with a standard kinetic term and is coupled to the Gauss-
Bonnet combination. We also investigate a specific scalar-tensor theory (4dEGB) that can be seen
as a 4d limit of Gauss-Bonnet, in which it is possible to find an exact black hole solution [20] (see
also [21]). Both EsGB and 4dEGB models belong to DHOST theories, and more specifically to the
Horndeski theories (which we prove using the expression of Lovelock invariants as total derivatives
given in [22]). They however involve cubic terms in second derivatives of the scalar field. We
thus need to slightly extend the formalism introduced in [19], which was limited to terms up to
quadratic order, to include these additional terms.

Perturbations of non rotating black holes in EsGB theories have been investigated numerically
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in [23] and [24]. In the present work, we revisit the analysis of these perturbations by applying
our asymptotic formalism to the perturbative description of EsGB black holes recently presented
in [25]. We also give the Schrödinger-like equation for the axial modes.

Concerning the 4dEGB black hole, the present work is, to our knowledge, the first investigation
of its perturbations. For axial perturbations, the system contains a single degree of freedom and
one can reformulate the equations as a Schrödinger-like equation.

The outline of the paper is the following. In the next section, we introduce and extend the for-
malism that describes linear perturbations about static spherically symmetric solutions in scalar-
tensor theories, allowing for second derivatives of the scalar field up to cubic order in the La-
grangian. Section III focusses on Einstein-scalar-Gauss-Bonnet theories. After discussing the
background solution, which is known analytically only in a perturbative expansion, we consider
first the axial modes and then the polar modes. We write their equations of motion and find
their asymptotic behaviours near the horizon and at infinity, which is a necessary requirement
to define and compute quasi-normal modes. We then turn, in section IV, to the 4dEGB black
hole solution which is treated similarly. We can find that while the Einstein-scalar-Gauss-Bonnet
solution has well-behaved perturbations, the solution of the 4-dimensional-Einstein-Gauss-Bonnet
theory exhibits unusual asymptotic behaviour of its perturbations near its horizon and at infinity,
which makes the definition of ingoing and outgoing modes impossible. We discuss these results and
conclude with a summary and some perspectives. Technical details are given in several appendices.

II. FIRST-ORDER SYSTEM FOR HORNDESKI THEORIES

In this work, we study models that belong to Horndeski theories, which are included in the
general family of DHOST theories. Their Lagrangian can be written in the form

S[gµν ] =

∫
d4x
√
−g
(
F (4)R+ P +Q�φ+ 2FX(φµνφ

µν −�φ2) +GEµνφ
µν

+
1

3
GX(�φ3 − 3�φφµνφ

µν + 2φµρφ
ρνφ µ

ν )
)
, (2.1)

where (4)R is the Ricci scalar for the metric gµν , Eµν is the Einstein tensor, and we use the short-
hand notations φµ ≡ ∇µφ and φµν ≡ ∇ν∇µφ for the first and second (covariant) derivatives of φ
(we have also noted �φ ≡ φµµ). The functions F , P , Q and G generically depend on the scalars φ
and X ≡ φµφµ and a subscript X denotes a partial derivative with respect to X. In the following,
we will consider only shift-symmetric theories, where these functions depend only on X.

In a theory of the above type, we consider a non-rotating black hole solution, characterised by
a static and spherically symmetric metric, which can be written as

ds2 = −A(r) dt2 +
1

B(r)
dr2 + Ĉ(r) dΩ2 , Ĉ(r) ≡ C(r)r2 (2.2)

and a scalar field of the form

φ(t, r) = qt+ ψ(r) . (2.3)

We have included here a linear time dependence of the scalar field, which is possible for shift
symmetric theories and was discussed in particular in [26] for 4dEGB black holes, but later we
will assume q = 0. In the rest of this section, we discuss the axial and polar perturbations in
general, before specialising our discussion to the specific cases of EsGB and 4dEGB black holes in
the subsequent sections.
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A. First-order system for axial perturbations

Axial perturbations correspond to the perturbations of the metric that transform like (−1)`

under parity transformation, when decomposed into spherical harmonics, where ` is the usual
multipole integer. Writing the perturbed metric as

gµν = gµν + hµν , (2.4)

where gµν denotes the background metric (2.2) and hµν the metric perturbations, and working in
the traditional Regge-Wheeler gauge and in the frequency domain, the nonzero axial perturbations
depend only on two families of functions h`m0 and h`m1 , namely

htθ =
1

sin θ

∑
`,m

h`m0 (r)∂ϕY`m(θ, ϕ)e−iωt, htϕ = − sin θ
∑
`,m

h`m0 (r)∂θY`m(θ, ϕ)e−iωt,

hrθ =
1

sin θ

∑
`,m

h`m1 (r)∂ϕY`m(θ, ϕ)e−iωt, hrϕ = − sin θ
∑
`,m

h`m1 (r)∂θY`m(θ, ϕ)e−iωt, (2.5)

while the scalar field perturbation is zero by construction for axial modes. In the following, we
drop the (`m) labels to shorten the notation.

As discussed in App. D, the system of 10 linearised metric equations for h0 and h1 can be cast
into a two-dimensional system by considering only the (r, θ) and (θ, θ) components of the equations
and using the 2-dimensional vector

tY =
(
h0 , hc

)
, hc ≡

1

ω
(h1 + Ψh0) , (2.6)

where we have introduced the function

Ψ =
2q

F

(
FXψ

′ − A′

4A
XGX

)
, (2.7)

whose denominator F has been defined by

F ≡ −2q2FX +A(F − 2XFX) +
1

2
BA′ψ′XGX . (2.8)

Note that Ψ vanishes when q = 0.
The resulting first-order system is of the form

dY

dr
= M Y , M =

(
Ĉ′

Ĉ
+ iωΨ −iω2 + 2iλΦ

Ĉ
−iΓ ∆ + iωΨ

)
, (2.9)

where the matrix coefficients depend on the theory and on the background solution, according to
the expressions

Φ =
F

F − 2XFX + 1
2B

Ĉ′

Ĉ
XGXψ′

, ∆ = − d

dr

(
ln

(√
B

A
F

))
, (2.10)

Γ =
F

BF
+

2q2FX
ABF

+ Ψ2 +
GXX(X ′ − q2A′

A2 )

2Bψ′F
. (2.11)

We have also introduced the parameter

λ ≡ (`− 1)(`+ 2)/2 , (2.12)

which we will be using instead of `. Notice that the matrix M coincides with the results of [19] in
the cases where G = 0 and Ĉ = r2.
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B. Schrödinger-like equation and potential

As discussed in detail in [19], one can introduce a new coordinate variable r∗ defined from a
function n(r) according to

dr∗
dr

=
1

n(r)
, (2.13)

and find a linear change of functions of the form

Y = P̂ (r)Ŷ , tŶ =
(
Ŷ1, Ŷ2

)
, (2.14)

such that the initial system (2.9) is transformed into an equivalent system in the “canonical” form

dŶ

dr∗
≡ n(r)

dŶ

dr
=

(
iωΨn 1

V − ω2n2Γ iωΨn

)
Ŷ . (2.15)

At this stage n(r) is arbitrary and the function V is given in terms of the functions characterising
the theory and of the background metric by the expression

V =
n2

4

[
8
λΦΓ

Ĉ
+ ∆2 + 2∆′ +

2Γ′

Γ

(
Ĉ ′

Ĉ
−∆

)
− 2∆

C ′

C

+3

(
Γ′

Γ

)2

+

(
n′

n

)2

+ 3

(
Ĉ ′

Ĉ

)2

− 2

(
Γ′′

Γ
+
n′′

n
+
Ĉ ′′

Ĉ

) . (2.16)

This formula generalises the result given in [19] to an arbitrary function Ĉ(r).

When Ψ = 0, which is the case for q = 0, the system (2.15) immediately leads to the Schrödinger-
like second-order equation for the function Ŷ1,

Ŷ ′′1 +

(
ω2

c2
− V

)
Ŷ1 = 0 , (2.17)

which corresponds to a wave equation, written in the frequency domain, with a potential V and a
propagation speed given by

c ≡ 1

n
√

Γ
. (2.18)

As expected, the speed of propagation depends on n, i.e. on the choice of the radial coordinate.

When Ψ 6= 0, one can still get an equation of the form (2.17), but after the change of time
variable

t −→ t−
∫

Ψ(r) dr , (2.19)

or equivalently the redefinition Ŷ −→ eiω
∫

Ψ(r)dr Ŷ . Notice that such a change of variable is defined
only if Ψ is integrable. For instance, in the case where Ψ is singular with a pole of order 1 at some
radius rp, the change of variables (2.19) is only valid for r > rp.
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C. First-order system for polar modes

For the polar (or even-parity) perturbations we choose the same (Zerilli) gauge fixing as usually
adopted in GR. The metric perturbations are now parametrised by four families of functions H`m

0 ,
H`m

1 , H`m
2 and K`m such that the non-vanishing components of the metric are

htt = A(r)
∑
`,m

H`m
0 (t, r)Y`m(θ, ϕ), hrr = B(r)−1

∑
`,m

H`m
2 (t, r)Y`m(θ, ϕ),

htr =
∑
`,m

H`m
1 (t, r)Y`m(θ, ϕ), hab =

∑
`,m

K`m(t, r)gabY`m(θ, ϕ) , (2.20)

where the indices a, b belong to {θ, ϕ}. The scalar field perturbation is parametrised by one more
family of functions δφ`m according to

δφ =
∑
`,m

δφ`m(t, r)Y`m(θ, ϕ) . (2.21)

In the following we will consider only the modes ` ≥ 2 (the monopole ` = 0 and the dipole ` = 1
require different gauge fixing conditions) and we drop (`m) labels to lighten notations.

One can show that the (t, r), (r, r), (t, θ) and (r, θ) components of the perturbed metric equa-
tions, which are first order in radial derivatives, are sufficient to describe the dynamics of the
perturbations [19]. Therefore, the linear equations of motion can be written as a first-order differ-
ential system,

dY

dr
= MY , (2.22)

satisfied by the four-dimensional vector

Y = t
(
K, χ, H1, H0

)
, (2.23)

where χ is proportional to the scalar field perturbation. The precise proportionality factor depends
on the background solution and will be given explicitly later in each of the two cases considered in
this paper. The form of the square matrix M can be read off from the equations of motion.

III. EINSTEIN-SCALAR-GAUSS-BONNET BLACK HOLE

In this section, we specialise our study to the case of Einstein-scalar-Gauss-Bonnet (EsGB)
theories, where one adds to the usual Einstein-Hilbert term for the metric, a non-standard coupling
to a scalar field φ which involves the Gauss-Bonnet term (3.1). Analytical non rotating black hole
solutions were found in the case of specific coupling values in [27–31], and rotating solutions in the
same setups in [32–34]. A solution for any coupling form was obtained in [25], and a solution with an
additional cubic galileon coupling was proposed in [35]. All these solutions are given as expansions
in a small parameter appearing in the coupling function. This small parameter parametrises the
deviation from GR.

A. Action

The Einstein-scalar-Gauss-Bonnet action is given by

S[gµν ] =

∫
d4x
√
−g (R− 2X + f(φ)G) , (3.1)
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where f(φ) is an arbitrary function of φ and

G = RµνρσR
µνρσ − 4RµνR

µν +R2 , (3.2)

is the Gauss-Bonnet term in 4 dimensions.
Although this action is not manifestly of the form (2.1), its equations of motion can be shown

to be second order, which means that the theory can be reformulated as a Horndeski theory
[36, 37]. This is explicitly shown in Appendix A, working directly at the level of the action. The
corresponding Horndeski functions are given by

P (φ,X) = −2X + 2f (4)(φ)X2(3− lnX) , Q(φ,X) = 2f (3)(φ)X(7− 3 lnX)

F (φ,X) = 1− 2f ′′(φ)X(2− lnX) and G(φ,X) = −4f ′(φ) lnX . (3.3)

Here, we are using the notation f (n)(φ) for the n-th derivative of f(φ) with respect to φ.

B. Background solution

To find a static black hole solution, we start with the ansatz

ds2 = −A(r) dt2 +
1

A(r)
dr2 + r2C(r) dΩ2 and φ = ψ(r) , (3.4)

corresponding to the gauge choice B = A and C 6= 1 in (2.2). An alternative choice would have
been to assume C = 1 and B 6= A (see for example [38]).

When the coupling function f is a constant, the term proportional to G in the action becomes
a total derivative and is thus irrelevant for the equations of motion, which are then the same as
in GR with a massless scalar field. One thus immediately obtains as a solution the Schwarzschild
metric with a constant and uniform scalar field,

A(r) = 1− µ

r
, C(r) = 1 and ψ(r) = ψ∞ , (3.5)

where ψ∞ is an arbitrary constant.
When f(φ) is not constant, the above configuration is no longer a solution but can nevertheless

be considered as the zeroth order expression of the full solution written as a series expansion in
terms of the parameter

ε =
f ′(ψ∞)

µ2
, (3.6)

assumed to be small, as it was proposed initially proposed in [27] and recently developed in [25].
Hence, we expand the metric components and scalar field as series in power of ε (up to some order
N) as follows,

A(r) = 1− µ

r
+

N∑
i=1

ai(r)ε
i +O(εN+1) , (3.7)

C(r) = 1 +

N∑
i=1

ci(r)ε
i +O(εN+1) , (3.8)

ψ(r) = ψ∞ +

N∑
i=1

si(r)ε
i +O(εN+1) , (3.9)
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where the functions ai, ci and si can be determined, order by order, by solving the associated
differential equations obtained by substituting the above expressions into the equations of motion.

One can see that the metric equations of motion expanded up to order εN involve aN (r), cN (r)
and s′N−1(r), while the scalar equation of motion at order εN relates aN−1(r), cN−1(r) and s′N (r).
Then, it is possible to use this separation of orders to solve the equations of motion order by order.
We need boundary conditions to integrate these equations and we impose that all these functions
go to zero at spatial infinity.

At first order in ε, one obtains the equations

a1(r) = −τ3 +
1

r
(τ1 + τ2)− µτ2

2r2
, c1(r) = τ3 −

τ2

r
, (3.10)

where the τi are integration constants. The boundary conditions at spatial infinity impose τ3 = 0.
Furthermore, the constant τ1 + τ2, which can be interpreted as a shift of the black hole mass at
first order in ε, can be absorbed by redefining µ as follows:

µnew = µold − ε(τ1 + τ2) . (3.11)

Finally, the remaining terms proportional to τ2 can be absorbed by the coordinate change

rnew = rold + ετ2/2 . (3.12)

As a consequence, at first order in ε, one simply recovers the background solution given in Eq. (3.5),
up to a change of mass and a change of coordinate, which corresponds to taking

a1(r) = 0 and c1(r) = 0 . (3.13)

As for the scalar field, its equation of motion yields, at first order in ε,

s1(r) =
µ

r
+
µ2

2r
+
µ3

3r3
+ ν1 +

(
1 +

ν2

µ

)
ln
(

1− µ

r

)
, (3.14)

with ν1 and ν2 constants. One can obviously absorb the constant ν1 into a redefinition of ψ∞ while
one chooses ν2 so that s1(r) remains regular at the horizon.

At order ε2, one can repeat the same method to solve for a2, b2 and s2. One can ignore the
five integration constants that appear since they can be reabsorbed using the boundary conditions,
mass redefinition and coordinate change, as previously. At the end, the metric and scalar functions
read

a2(r) = −
(
µ3

3r3
− 11µ4

6r4
+

µ5

30r5
+

17µ7

15r7

)
, (3.15)

c2(r) = −
(
µ2

r2
+

2µ3

3r3
+

7µ4

6r4
+

4µ5

5r5
+

3µ6

5r6

)
, (3.16)

s2(r) = ρ2

(
73

60

(
µ

r
+
µ2

2r2
+
µ3

3r3
+
µ4

4r4

)
+

7µ5

75r5
+

µ6

36r6

)
, (3.17)

where we have introduced the constant ρ2 defined by

ρ2 =
f ′′(ψ∞)

f ′(ψ∞)
. (3.18)

In principle, it is possible to continue this procedure and find all coefficients up to some arbitrary
order εN in a finite number of steps, but the complexity of the expressions quickly makes the
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computations very cumbersome. Here, we stop at order ε2, but one could proceed similarly for
the next orders, for instance to obtain the numerical precision in the computation of quasinormal
modes reached in [23].

By taking into account the higher order corrections to the metric functions, the black hole
horizon is no longer at r = µ but is slightly shifted to the new value

rh = µ

(
1− ε2

3

)
+O(ε3) . (3.19)

Since rh is known only as a power series of ε, it is more convenient to work with the new radial
coordinate dimensionless variable z,

z =
r

rh
, (3.20)

in terms of which the horizon is exactly located at z = 1, at any order in ε.

C. Axial modes: Schrödinger-like equation

Let us now turn to the study of perturbations about this black hole solution, starting with axial
perturbations (note that perturbations with the specific choice of coupling f(φ) = φ were studied
in the context of a stability analysis in [39]). As we have seen in section II A, the first-order system
for the axial modes can be written in the form (2.9) and depends only on the functions Γ, ∆ and
Φ, since here Ψ = 0 (because q = 0). In terms of the new radial coordinate z, these functions read,
up to order ε2,

Γ =
1

(z − 1)2

[
z2 +

10z5 + 10z4 − 100z3 − 95z2 − 94z + 206

15z4
ε2

]
+O(ε3) ,

Φ = (z − 1)

[
1

z
− 10z5 + 10z4 + 140z3 − 95z2 − 94z − 214

30z7
ε2

]
+O(ε3) , (3.21)

∆ =
1

z − z2
+
−5z5 − 10z4 − 30z3 + 190z2 + 235z + 282

15z7
ε2 +O(ε3) .

When ε goes to zero, one recovers the standard Schwarzschild expressions, as computed in [19].
By substituting the above expressions into (2.18) and (2.16) and choosing n(z) = A(z), one can

then obtain (up to order ε2) the propagation speed from,

c2 = 1 + 4ε2

(
− 4

z6
+

1

z5
+

1

z4
+

2

z3

)
+O(ε3) , (3.22)

and also the potential,

V =

(
1− 1

z

)[
−3 + 2z(1 + λ)

z3
+ ε2

(2542

5

1

z9
+

1

15
(−8009 + 712λ)

1

z8
− 2

15
(−29 + λ)

1

z7

+
2

3
(−47 + λ)

1

z6
+ (70− 24λ)

1

z5
+

4

3
(4 + λ)

1

z4
− 1

3
(5 + 2λ)

1

z3

)]
+O(ε3) . (3.23)

These quantities have been illustrated in Fig.(1) for some values of ε. Note that the potential is
plotted as a function of the “tortoise” coordinate z∗, defined similarly to r∗ in (2.13) with n = A:

dz∗
dz

=
1

n(z)
=

1

A(z)
. (3.24)



10

Substituting the expression of A(z), obtained from (3.7), (3.15) and (3.20),

A(z) =

(
1− 1

z

)
− ε2

(
17

15z7
+

1

30z5
− 11

6z4
+

1

3z3
+

1

3z

)
+O(ε3) , (3.25)

one gets

z∗ = z − ε2

(
17

60z4
+

34

45z3
+

103

60z2
+

83

30z
− 73

30
ln(z)

)
+ ln(z − 1)

(
1− 21

10
ε2

)
+O(ε3) . (3.26)

This implies, in particular, the asymptotic behaviours at spatial infinity

z∗ ' z + ln(z)

(
1 +

ε2

3

)
+O(ε3) , (z → +∞) (3.27)

and at the horizon,

z∗ ' ln(z − 1)

(
1− 21

10
ε2

)
+O(ε3) . (z → 1) (3.28)

Notice that all along the paper, we will be using the symbol ' for an equality up to sub-dominant
terms in the z variable when z � 1 at infinity and z − 1� 1 at the horizon. More precisely, given
two functions f(z) and g(z), we say that f(z) ' g(z) at z0 (which can be here z0 =∞ or z0 = 1)
when

f(z) ' g(z) at z → z0 means lim
z→z0

f(z)− g(z)

f(z)
= 0 . (3.29)
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FIG. 1: Plot of the squared propagation speed c2 as a function of z and the potential V as a function of z∗
for λ = 2. Note that the coordinate z∗ is defined up to a constant which, in this plot, differs from the
choice in (3.26). In the figure, the constant is chosen such that z∗ = 0 when z = 1 +W (e−1), where W is
the Lambert function. This corresponds to the definition z∗ = z + ln(z − 1) in the GR case (ε = 0).

Noting that c tends to 1 and V vanishes both at the horizon and at spatial infinity, the asymp-
totic behaviour of (2.17) is simply given by

d2Ŷ1

dz2
∗

+ Ω2Ŷ1 ' 0 , (3.30)
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where we have rescaled the frequency according to

Ω = ω rh . (3.31)

As a consequence, at spatial infinity, using (3.27), the asymptotic solution is

Ŷ1 ' A∞e+iΩzziΩ(1+ε2/3) + B∞e−iΩzz−iΩ(1+ε2/3) , (3.32)

while the solution near the horizon takes the form,

Ŷ1 ' Ahor(z − 1)+iΩ(1−21ε2/10) + Bhor(z − 1)−iΩ(1−21ε2/10) , (3.33)

where we have used (3.28) when we replace z∗ by its expression in terms of z. Finally, the constants
A∞, B∞, Ahor and Bhor can be fixed or partially fixed by appropriate boundary conditions.

D. Axial modes: first order system and asymptotics

In this subsection, we show that the asymptotic solutions, obtained previously in (3.32) and
(3.33) from the Schrödinger-like equation, can be recovered directly from the first-order system
which corresponds to (2.9) with the definitions (3.21). We will be making use of the algorithm
presented in [18].

1. First order system and asymptotics: brief review and notations

The goal of the algorithm is to find a set of functions so that the original system is reexpressed
in the simpler form

dỸ

dx
= M̃Ỹ , M̃ = xp

N∑
i=0

Dix
i +O(xN+1) , (3.34)

where the matrices Di are diagonal1 and x is a new variable, defined such that the asymptotic
limit considered corresponds to x → +∞. For spatial infinity, we simply use x = z, whereas we
choose x = 1/(z − 1) for the near horizon limit z → 1.

More precisely, we start with the system

dY

dx
= MY , (3.35)

whose matrix M is immediately obtained from (2.9) with (3.21), then we make the change of
variable from z to x if necessary, and finally the algorithm described in [18] provides us with the
transfer matrix P̃ defining the appropriate change of functions

Y = P̃ Ỹ , (3.36)

so that the new matrix M̃ , given by

M̃ = P̃−1MP̃ − P̃−1 dP̃

dx
, (3.37)

takes the diagonal form (3.34). Hence, we obtain immediately the asympotic behaviour of the
solution by integrating the diagonal first-order differential system (3.34). We apply this procedure
in turn to the spatial infinity and near horizon limits, up to order ε2.

1 In some specific cases which are described in [18], one can only reduce the system up to p = −1 without a diagonal
leading order. However, this will not be the case for the system studied in this paper.
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2. Spatial infinity

At spatial infinity, the coordinate variable is z and the first terms of the initial matrix M in an
expansion in power of z read

M =

(
0 −iΩ2

−i 0

)
+

(
2 0

−2i
(
1 + ε2/3

)
0

)
1

z
+O

(
1

z2

)
. (3.38)

Applying the change of functions (3.36) with

P̃ =

(
Ω −Ω
1 1

)
+

1

6Ω

(
3iΩ− (3 + ε2)Ω2 3iΩ + (3 + ε2)Ω2

−3i+ (3 + ε2)Ω 3i+ (3 + ε2)Ω

)
1

z
, (3.39)

provided by the algorithm of [18], one obtains the new matrix

M̃ = diag(−iΩ, iΩ) +
1

z
diag

[
1− iΩ

(
1 +

ε2

3

)
, 1−+iΩ

(
1 +

ε2

3

)]
+O

(
1

z2

)
, (3.40)

which is diagonal up to order 1/z2. Hence, the corresponding system can immediately be integrated
and we find the behaviour of Y and of the metric coefficients (2.6) at infinity:

h0(z) ' Ω
[
−c+e

iΩzz+iΩ(1+ε2/3) + c−e
−iΩzz−iΩ(1+ε2/3)

]
,

hc(z) ' c+e
iΩzz+iΩ(1+ε2/3) + c−e

−iΩzz−iΩ(1+ε2/3) , (3.41)

where c± are the integration constants. As expected, one recovers the same combination of modes
as in (3.32).

3. Near the horizon

To study the asymptotic behaviour near the horizon, it is convenient to use the coordinate x
defined by x = 1/(z − 1). Then, we study the behaviour, when x goes to infinity, of the system
(4.37), reformulated as

dY

dx
= Mx(x)Y , with Mx(x) = − 1

x2
M(1 + 1/x) . (3.42)

The expansion of the matrix Mx in powers of x−1 yields

Mx =

(
0 0

i
(
1− 21/5ε2

)
0

)
+

(
0 0

2i
(
1− 121/15ε2

)
1

)
1

x
(3.43)

+
1

15

(
−30− 244ε2 15iΩ2

15i(1 + 1111ε2) −15− 662ε2

)
1

x2
+O

(
1

x3

)
. (3.44)

The algorithm provides us with the transfer matrix

P̃ =

(
0 0
1 1

)
x+ Ω

(
−1− 21ε2/10 1 + 21ε2/10

0 0

)
+

(
2(i+ Ω) + ε2(10i− 53Ω)/15 2(i− Ω) + ε2(10i+ 53Ω)/15

0 0

)
1

x
+O

(
1

x2

)
, (3.45)
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and one obtains a new differential system with a diagonal matrix M̃x,

M̃x =
1

x
diag

[
−iΩ

(
1− 21

10
ε2

)
, iΩ

(
1− 21

10
ε2

)]
+O

(
1

x2

)
. (3.46)

Integrating the system immediately yields the near-horizon behaviour of the metric components,
expressed in terms of the variable z,

h0(z) ' Ω
(
1 + 21ε2/10

) [
c+(z − 1)−1−iΩ(1−21ε2/10) − c−(z − 1)−1+iΩ(1−21ε2/10)

]
,

hc(z) ' c+(z − 1)−1−iΩ(1−21ε2/10) + c−(z − 1)−1+iΩ(1−21ε2/10) , (3.47)

where c± are integration constants (different from those introduced in (3.41)). As expected, we
recover the combination of modes found in (3.33) from the Schrödinger-like formulation.

E. Polar modes

For polar modes, there is no obvious Schrödinger-like formulation of the equations of motion so
the simplest approach is to work directly with the first-order system. The latter can be written in
the form

dY

dr
= S Y , with Y = t

(
K, δϕ, H1, H0

)
, (3.48)

but the matrix S is singular in the GR limit when ε → 0. This problem can be avoided by using
the functions

χ = ε δϕ and Y = t
(
K, χ, H1, H0

)
, (3.49)

leading to a well-defined system in the GR limit of the form

dY

dz
= M(z)Y , (3.50)

where z is the dimensionless coordinate introduced in (3.20). We now consider in turn the two
asymptotic limits.

1. Spatial infinity

We start by computing the expansion of M in powers of z; we obtain

M = M−2 z
2 +M−1 z +M0 +

M1

z
+O

(
1

z2

)
. (3.51)

The matrices M−2, M−1 and M0 take the simple expressions

M−2 =


0 0 0 0
a 0 0 0
0 0 0 0
0 0 0 0

 , M−1 =


0 0 0 0

a+ ε2Ω2/6 0 a/iΩ 0
0 0 0 0
0 0 0 0

 , (3.52)

M0 =


0 0 0 0

a
(
1− λ/Ω2

)
− ε2Ω2/3 0 0 aλ/Ω2

−iΩ 0 0 −iΩ
0 0 −iΩ 0

 , (3.53)
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which depend on the coefficient a defined by

a = −Ω2

2
+

73

120
ρ2Ω2ε+

Ω2
(
13201ρ2

2 + 62555ρ3 + 209160
)

151200
ε2 and ρ3 =

f ′′′(ψ∞)

f ′(ψ∞)
, (3.54)

while ρ2 has been defined in (3.18). The matrices Mi with i ≥ 1 are more involved than the three
above matrices and we do not give their expressions here. Nonetheless, some of them enter in the
algorithm briefly recalled earlier, in section III D 1, which enables us to diagonalise the differential
system (3.50).

The asymptotical diagonal form at infinity cannot immediately be obtained from equa-
tion (3.50), as the leading order matrix M−2 is nilpotent. As discussed in [18], for this special
subcase of the algorithm, one must first obtain a diagonalisable leading order term, by applying a
change of functions parametrised by the matrix

P (1) = diag(z−2, 1, z−2, z−2) , (3.55)

which gives a new matrix M (1), as in (3.37), whose leading order term is now diagonalisable. The
diagonalisation of the leading term can be performed using the transformation,

P (2) =


0 −1 0 −1
0 −ia/Ω 0 ia/Ω
1 0 −1 0
1 1 1 1

 , (3.56)

which yields a matrix M (2) of the form

M (2) = M
(2)
0 +M

(2)
1 z−1 +O

(
1

z2

)
, M

(2)
0 = diag(−iΩ,+iΩ,−iΩ,+iΩ) . (3.57)

One thus finds four modes propagating at speed c = 1, two ingoing and two outgoing modes. We
expect them to be associated with the scalar and polar gravitational degrees of freedom.

In order to discriminate between the scalar and gravitational modes, it is useful to pursue the
diagonalisation up to the next-to-leading order. This can be done by following, step by step, the
algorithm of [18], which leads us to introduce the successive matrices P (3) and P (4),

P (3) = I4 +
i

2Ωz


0 0 −1 −2
0 0 1 −(1 + 2Ω2)
1 2 0 0
−1 1− 2Ω2 0 0

 , P (4) =


−3a+ b 1 0 0

1 0 0 0
0 0 −3a+ b∗ 1
0 0 1 0

 ,

with the complex coefficient b defined by

b = −1

2
+
ε2

24
iΩ(1− 3Ω2 − 36iΩ) . (3.58)

Hence, we obtain a new vector Y (4) whose corresponding matrix M (4) is given by

M (4) = diag(−iΩ,−iΩ, iΩ, iΩ)

+
1

z
diag

(
−1− iΩ, 3− iΩ

(
1 + ε2/3

)
,−1 + iΩ, 3 + iΩ

(
1 + ε2/3

))
+O

(
1

z2

)
, (3.59)

up to order ε2. As a consequence, we can now easily integrate the equation for Y (4) up to sub-
leading order when z � 1 (up to ε2) and we obtain

tY (4) '
(
c− s

∞
− (z) , d− g

∞
− (z) , c+ s∞+ (z) , d+ g∞+ (z)

)
, (3.60)
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where c± and d± are integration constants while

g∞± (z) ' e±iΩzz3±iΩ(1+ε2/3) = e±iz∗ , s∞± (z) ' e±iΩzz−1±iΩ . (3.61)

The two modes g∞± follow the same behaviour as the axial modes obtained in (3.40): those can be
dubbed gravitational modes, while the other two modes s∞± correspond to scalar modes.

We can then determine the behaviour of the metric perturbations K, χ, H1 and H0 by combining
the matrices P (i), with i = 1, . . . , 4 as

Y = P Y (4) with P = P (1)P (2)P (3)P (4) . (3.62)

with the leading order terms of each coefficient of P given by

P ' 1

z2


−1 − 1

2izΩ
−1

1

2izΩ

− iaz
2

Ω

az

2Ω2
iaz2

Ω

az

2Ω2

−3a+ b 1 3a− b −1
−3a− b 1 −(3a+ b∗) −1

 . (3.63)

Hence, the metric and the scalar perturbations are non-trivial linear combinations of the so-called
gravitational and scalar modes. This shows that the metric and the scalar variables are dynamically
entangled.

2. Near the horizon

The asymptotic behaviour of polar perturbations near the horizon is technically more complex
to analyse than the previous case because we need more steps to “diagonalise” the matrix M
and then to integrate asymptotically the system for the perturbations. However, the procedure
is straightforward following the algorithm presented in [18]. For this reason, we do not give the
details of the calculation but instead present the final result.

After several changes of variables, one obtains a first order differential system satisfied by a
vector Ỹ whose corresponding matrix M̃ is of the form

M̃ =
1

z − 1
M̃−1 +O (1) , (3.64)

where the leading order term M−1 is, up to ε2, given by

M̃−1 = diag

[
−iΩ

(
1− 21

10
ε2

)
,+iΩ

(
1− 21

10
ε2

)
,−iΩ

(
1− 21

10
ε2

)
,+iΩ

(
1− 21

10
ε2

)]
+O(ε3) .

(3.65)
One recognises that the coefficients of M−1 correspond to the leading order term in the asymptotic
expansion of ±iΩz∗ around z = 1, given in (3.28). Indeed, we see that

M̃ = iΩ
dz∗
dz

diag (−1,+1,−1,+1) +O(1) , (3.66)

and then integrating the equation for Ỹ becomes trivial as

dỸ

dz∗
' diag (−iΩ,+iΩ,−iΩ,+iΩ) Ỹ , (3.67)
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which leads to the solution

tỸ = (c−p
1
−(z) , c+p

1
+(z) , d−p

1
−(z) , d+p

1
+(z) ) , (3.68)

where c± and d± are integration constants, and we introduced the polar modes (up to ε2),

p1
±(z) ' e±iΩz∗ = (z − 1)±iΩ(1−21ε2/10) . (3.69)

Several remarks are in order. First, exactly as in the analysis of the asymptotics at infinity, one
cannot discriminate between the gravitational mode and the scalar mode at leading order since
they are equivalent at this order. Going to next-to-leading orders would be needed in order to
further characterise each mode. Then, computing the behaviour of each mode at the horizon in
terms of the metric perturbation functions, in a similar way to what was done at spatial infinity,
is possible but not enlightening since the expressions are very involved. Finally, notice that the
results above (3.61) and (3.69) are consistent with the behaviours found in [23], as one can see in
their equation (17), and [39] as one can see in their equations (6.62) and (6.63).

IV. 4D EINSTEIN-GAUSS-BONNET BLACK HOLE

In this section, we study another modified theory of gravity that involves the Gauss-Bonnet
invariant G defined in (3.2). Its action is given by

S[gµν , φ] =

∫
d4x
√
−g
(
R+ α(φG + 4Eµνφµφν − 4X�φ+ 2X2)

)
, (4.1)

where α is a constant and Eµν the Einstein tensor. This action can be obtained as the 4D limit,
in some specific sense, of the D-dimensional Einstein-Gauss-Bonnet action [20]. As for Einstein-
scalar-Gauss-Bonnet theories, this theory also belongs to degenerate scalar-tensor theories. It can
be recast into a Horndeski theory with the following functions (see Appendix A):

P (X) = 2αX2 , Q(X) = −4αX , F (X) = 1− 2αX and G(X) = −4α lnX . (4.2)

We will also assume that α > 0, otherwise |α| is constrained to be extremely small [26].

A. Background solution

Let us now consider static spherically symmetric solutions of the form

ds2 = −A(r) dt2 +
1

A(r)
dr2 + r2 dΩ2 and φ = φ(r) . (4.3)

By solving the equations of motion for the metric and the scalar field derived from the action (4.1),
one can find a simple analytical solution, as discussed in [20, 21]. The metric function A is given
by

A(r) = 1 +
r2

2α

(
1−

√
1 +

4αµ

r3

)
= 1− 2µ/r

1 +
√

1 + 4αµ
r3

. (4.4)

This reduces to the Schwarzschild metric in the limit α → 0, the parameter µ corresponding to
twice the black hole mass in this limit.
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If µ2 < 4α, the solution is a naked singularity and is therefore of no interest. If µ2 ≥ 4α, the
solution for the metric describes a black hole and its horizons can be found by solving the equation
A(r) = 0 for r. This gives two roots, the largest one corresponding to the outermost horizon,

rh =
1

2

(
µ+

√
µ2 − 4α

)
. (4.5)

The equation for the scalar field gives two different branches:

φ′(r) =
σ +

√
A(r)

r
√
A(r)

with σ = ±1 . (4.6)

Integrating this equation in the limit where r is large (i.e. r � rh), one obtains

φ(r) ' µ

2r
if σ = −1 , φ(r) ' 2 ln

(
r

µ

)
if σ = +1 . (4.7)

Hence, the branch σ = +1 leads to a divergent behaviour of the scalar field at spatial infinity.
In this branch, moreover, φ does not vanish when the black hole mass goes to zero and we will
see later that the perturbations feature also a pathological behaviour. For these reasons, we will
mostly restrict our analysis to the branch σ = −1.

In the following, it will be convenient to use the dimensionless quantities

z =
r

rh
and β =

α

r2
h

. (4.8)

According to these definitions and (4.5), one can replace µ by (1 + β)rh. Note that

0 ≤ β =
µ− rh
rh

≤ 1 , (4.9)

as 0 ≤ rh ≤ µ. One can notice that both bounds can be reached: the case β = 0 is the GR limit,
while the case β = 1 is an extremal black hole, as both horizons merge into one located at rh =

√
α.

The parameter β is therefore similar to the extremality parameter Q/M for a charged black hole,
and it is interesting to use it instead of α when studying the present family of black hole solutions.

Moreover, the outermost horizon is now at z = 1 and the new metric function is

A(z) = 1 +
z2

2β

(
1−

√
1 +

4β(1 + β)

z3

)
= 1− 2(1 + β)

z

(
1 +

√
1 + 4β(1+β)

z3

) . (4.10)

Since φ′ depends on
√
A, as shown in (4.6), it is also convenient to introduce the new function

f(z) =
√
A(z) . (4.11)

B. Axial modes: the first order system

The dynamics of axial modes is described by a canonical system of the form (2.9). Substituting
(4.2), (4.6), (4.10), (4.11) into the definitions (2.8) and (2.10-2.11) and rescaling all dimensionful
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quantities by the appropriate powers of rh to make them dimensionless (or, equivalently, working
in units where rh = 1), one gets the following expressions for F , Γ, Φ and ∆ :

F =
f2

z2

[
z2 + 2β(σ + f)(σ + f − 2zf ′)

]
, (4.12)

Γ =
1

Ff2z2

[
z2 − 2β(1− f2)− 4zβff ′

]
=

z4 − 2β(1 + β)z

Ff2z2[z2 + 2β(1− f2)]
, (4.13)

Φ =
Fz2

z2 + 2β(1− f2)
, ∆ = −F

′

F
, (4.14)

where we have used the explicit definition of f(z) and the expression of its derivative

f ′ =
f2 − 1

zf
+

3(1 + β)

2f [z2 − 2β(f2 − 1)]
(4.15)

to obtain a simplified expression for Γ. Here, we have kept the parameter σ unfixed: as we can
see, it appears in the expression of F which means that it becomes relevant for the perturbations
of the black hole solution.

In the sequel, it will be convenient to express the quantities (4.12)-(4.14) in terms of the following
three functions of z:

γ1 = f
[
z2 + 2β(σ + f)(σ + f − 2zf ′)

]
, (4.16)

γ2 = z4 − 2β(1 + β)z , (4.17)

γ3 = z2 + 2β(1− f2) . (4.18)

A short calculation then leads to

F =
fγ1

z2
, Γ =

γ2

f3γ1γ3
and Φ =

fγ1

γ3
. (4.19)

When we study the perturbations and their asymptotics, it is important to look at the zeros and
the singularities of the expressions (4.19). For this reason, we quickly discuss the zeros of the
functions γi. We note that, for z > 0, the function γ3, explicitly given by

γ3 = z2

√
1 +

4β(1 + β)

z3
, (4.20)

is strictly positive and the function γ2 vanishes at

z2 = [2β(1 + β)]1/3 . (4.21)

This root is only relevant in our analysis if it lies outside the horizon, i.e. when z2 > 1, which is
the case if β ≥ βc with

βc ≡
√

3− 1

2
' 0.366 . (4.22)

Hence, when β < βc, γ2 remains strictly positive outside the horizon. Let us note that at the
special value β = βc, the zeros of f and γ2 coincide. Finally, the position of the zeros of γ1 depends
on the sign of σ. If σ = −1, then σ + f ≤ 0 and, since f ′ ≥ 0, the product (σ + f)(σ + f − 2zf ′)
is always positive, and therefore γ1 > 0 outside the horizon. By contrast, if σ = +1, one finds
numerically that γ1 has a zero z1 > 1. This is another reason (in addition to the behaviour of the
scalar field at infinity discussed below (4.7)) to restrict our analysis to the case σ = −1.
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Let us summarise. When β < βc and σ = −1, the functions γi do not vanish outside the horizon
and then neither of the three functions F , Γ and Φ vanishes or has a pole for z > 1. Near the
horizon, these functions behave as follows:

z → 1 : F ' 6β(1 + β)

1 + 2β
f , Γ ' (1 + 2β)(1− 2β − β2)

6β(1 + β)

1

f3
, Φ ' 6β(1 + β)

1 + 2β
f , (4.23)

with

f(z) =

√
1− β
1 + 2β

√
z − 1 +O((z − 1)3/2) . (4.24)

At infinity, the behaviour is much simpler as the three functions (4.19) are constant and tend to 1.

C. Axial modes: Schrödinger-like formulation

As discussed in II B, the axial perturbations obey the Schrödinger-like equation

d2Ŷ1

dz2
∗

+

(
Ω2

c2(z)
− V (z)

)
Ŷ1 = 0 , (4.25)

where dz/dz∗ = n(z) and c2 = 1/n2Γ, while the potential V (z) is given by (2.16). The condition
β < βc together with the choice σ = −1 ensures that c2 > 0 everywhere outside the horizon.

A natural choice for n is n(z) = A(z) = f2(z), in which case z∗ is the analog of the Schwarzschild
tortoise coordinate. With this choice, one finds, according to (4.19),

c2 =
γ1γ3

fγ2
. (4.26)

The potential is then given by

V (z) =
z2A(κ1 +Aκ2)

γ2
2γ

4
3

, with (4.27)

κ1 = 2(λ+ 1)z12 − 3(β + 1)z11 − 2β(β + 1)(2λ− 7)z9 − 18β(β + 1)2z8

− 24β2(β + 1)2(λ+ 1)z6 + 54β2(β + 1)3z5 + 4β3(β + 1)3(20λ− 7)z3

− 12β3(β + 1)4z2 − 8β4(β + 1)4(8λ− 1) ,

κ2 = 30β(β + 1)z9 + 126β2(β + 1)2z6 + 108β3(β + 1)3z3 + 12β4(β + 1)4 .

The propagation speed and the potential for λ = 2 are represented in Fig. (2) for three different
values of β, satisfying the condition β < βc. We observe that the propagation speed diverges at the
horizon z = 1, while the potential vanishes at this point. The potential can be negative in some
region for sufficiently large values of β. It is difficult to study analytically the sign of the potential
but one can compute its derivative when z∗ → −∞ and one finds that it remains positive up to
some value β∗(λ). We find that β∗(λ = 2) ' 0.162917 numerically and that β∗(λ→∞) = βc.

In terms of the new coordinate z∗, the Schrödinger-like equation is of the form

−d2Ŷ1

dz2
∗

+ V (z)χ = w(z) Ω2Ŷ1 , w = f4Γ . (4.28)

The left-hand side of this equation can be seen as an operator acting on the space of functions that
are square-integrable with respect to the measure w dz∗. It is instructive to study the asymptotic
behaviour of the solutions of (4.28), near the horizon and at spatial infinity.
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FIG. 2: Plot of the squared speed c2 and the potential V for λ = 2. We choose the integration constant in
the computation of z∗ through the same procedure as explained in Fig. (1).

Near the horizon, using dz∗ = dz /f2 and (4.24), one finds

z∗ '
1 + 2β

1− β
ln(z − 1) ⇐⇒ z − 1 ' eηz∗ , η ≡ 1− β

1 + 2β
, (z → 1 or z∗ → −∞) (4.29)

and the asymptotic behaviours for the potential and for w are

V (z) ' C1(z − 1), w(z) ' 1− 2β − 2β2

2β
√

(1− β)(1 + 2β)

√
z − 1 , (4.30)

where C1 is a constant. It is immediate to rewrite these asymptotic expressions in terms of z∗,
using (4.29).

Near the horizon, for z∗ → −∞, the potential decays faster than the right-hand side of (4.28)
so that the differential equation takes the form

−d2Ŷ1

dz2
∗

+ C1e
ηz∗/2Ŷ1 ' 0 , (4.31)

whose solutions are

Ŷ1 ' A1I0

(
2

η
C

1/2
1 eηz∗/4

)
+A2K0

(
2

η
C

1/2
1 eηz∗/4

)
, (z∗ → −∞) (4.32)

where I0 and K0 are the modified Bessel functions of order 0 while A1 and A2 are integration
constants.

Since I0(u) ' 1 and K0(u) ' − lnu when u → 0, the general solution behaves as an affine
function of z∗ when z∗ → −∞ and is therefore square integrable with respect to the measure
w dz∗ ' eηz∗/2dz∗. This means that the endpoint z∗ → −∞ is of limit circle type (according to the
standard terminology, see e.g. [40]). Interestingly, the analysis of the axial modes near the horizon
in our case is very similar to that near a naked singularity as discussed in [41]. In contrast with
the GR case, none of the two axial modes is ingoing or outgoing, which means that the stability
analysis of these perturbations differs from the GR one.

For the other endpoint (at spatial infinity), z∗ ' z → +∞, the asymptotic behaviours of the
potential V and the functions w, according to (4.27) and (4.26), are given by

V (z) ' 2(λ+ 1)

z2
, w(z) ' 1 , (4.33)
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which coincides with the GR behaviour at spatial infinity. In particular, V goes to zero and w goes
to one, so that one recovers the usual combination of ingoing and outgoing modes

Ŷ1 ' B1e
iΩz∗ +B2e

−iΩz∗ , (z∗ → +∞) , (4.34)

where B1 and B2 are constant. If Ω contains a nonzero imaginary part, then one of the modes is
normalisable and then this endpoint is now of limit-point type.

As we have already said previously, the analysis of axial perturbations in this theory is very
different from the analysis in GR. The main reason is that we no longer have a distinction between
ingoing and outgoing modes at the horizon. The choice of the right behaviour to consider might
be guided by regularity properties of the mode. Indeed, if we require the perturbation2 Ŷ1 to be
regular when z∗ → −∞, then we have to impose A2 = 0. The problem turns into a Sturm-Liouville
problem, which implies that Ω2 is real. A very similar problem has been studied in another context
in [41] where the authors showed that Ω2 > 0 when V > 0, which implies that the perturbations
are stable. Here we can make the same analysis as in [41], and we expect the stability result to
be true at least in the case where V > 0, i.e. when β is sufficiently small, as explained in the
discussion below (4.27).

Let us close this subsection with a final remark. It is always possible to use, instead of the tor-
toise coordinate, a different coordinate z∗, for example by choosing n(z) such that c = 1 everywhere.
This corresponds to the choice

n(z) =
1√
Γ
. (4.35)

In this new frame, the potential is changed and can be written in the form

Vc=1 =
Q(f)

16z2fγ1γ3
2γ

5
3

, (4.36)

where Q is a polynomial of order 28 of nonzero constant term whose coefficients depend on z. This
potential is represented on Fig.(3) for different values of β.
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FIG. 3: Plot of the potential Vc=1 for λ = 2.

2 The regularity concerns the metric components themselves and not directly the function Ŷ1. The asymptotic
behaviour of the metric components will be given in (4.46).
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D. Axial modes: first-order asymptotic approach

In this section, we compute the asymptotic behaviours of h0 and hc using the first-order system3

for axial perturbations given in (2.9) following the algorithm we developped in [18]. Using (2.9),
with (4.12)-(4.14), we start by writing this first order system in the z variable:

dY

dz
= M(z)Y , with Y =

(
h0

hc

)
. (4.37)

At spatial infinity, the matrix M can be expanded as

M(z) =

(
0 −iΩ2

−i 0

)
+O

(
1

z

)
. (4.38)

Therefore, the two components of Y at infinity are immediately found to be a linear combination
of the following two modes:

a∞± (z) ' e±iΩz = e±iωr . (4.39)

Hence, the asymptotic behaviour of the original metric variables h0 and hc are given by

h0(z) ' zΩ
[
−c+e

iΩzziΩ(1+β) + c−e
−iΩzz−iΩ(1+β)

]
,

hc(z) ' z
[
c+e

iΩzziΩ(1+β) + c−e
−iΩzz−iΩ(1+β)

]
, (4.40)

where c± are constants.
Near the horizon, we change variables by setting x = 1/

√
z − 1, and study the behaviour, when

x goes to infinity, of the system (4.37), rewritten as

dY

dx
= Mx(x)Y , with Mx(x) = − 2

x3
M(1 + 1/x2) . (4.41)

The algorithm then enables us to simplify the original system, here up to order x−1, using the
transfer matrix P such that

P =
1

xp3

(
p1 + xp2 p2

0 x2p3

)
, (4.42)

with the functions pi defined by

p1 = (1− β)2
(
1 + 2β + 6β2

)
, p2 = 2(1− β)2β

√
1 + β − 2β2 ,

p3 = 2i(1 + 2β)2(1− 2β(1 + β)) . (4.43)

The new system is then

dỸ

dx
= M̃x Ỹ , with M̃x =

(
0 0

1/x 0

)
+O

(
1

x2

)
. (4.44)

Therefore, the solution near the horizon (written in terms of the original variable z) is a linear
combination of two “modes”,

ah
1(z) ' 1 and ah

2(z) ' −1

2
ln(z − 1) . (4.45)

3 The change of variables leading from ω to Ω requires to rescale hc by a factor rh.
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Going back to the original variables h0 and hc, we get

h0(z) ' p2

p3
c1 +

√
z − 1

(
p1

p3
c1 +

p2

p3
c2 −

p2

2p3
c1 ln(z − 1)

)
,

hc(z) '
1√
z − 1

(
c2 −

1

2
c1 ln(z − 1)

)
, (4.46)

with c1 and c2 two constants4. This result is consistent with the asymptotic solution we found
from the Schrödinger-like equation (4.32) when we expand the Bessel functions in power series.

E. Polar modes

In order to compute the asymptotical behaviour of the polar modes, we proceed similarly to
section IV D. We start by writing the system as dY /dz = M(z)Y , with Y = t

(
K, δϕ, H1, H0

)
and M is now a 4-dimensional matrix. We then compute the series expansion of the matrix M at
the horizon and at infinity, and apply the algorithm in order to diagonalise the system up to order
x−1 in each case using a change of vector Y = P̃ Ỹ . The matrix P̃ being much more involved than
in the axial case, we do not give it explicitly here.

1. Spatial infinity

At spatial infinity, the diagonalized matrix M̃ is found to be

M̃(z) = diag(0, 0,−iΩ, iΩ)

+
1

z
diag

[
−5− i

√
λ,−5 + i

√
λ, 1− iΩ(1 + β), 1 + iΩ(1 + β)

]
+O

(
1

z2

)
. (4.47)

This leads to an asymptotic solution where Y is a combination of 4 modes, where we recognise two
polar gravitational modes,

g∞± (z) ' e±iΩzz1±iΩ(1+β) , (4.48)

and identify the other two as scalar modes,

s∞± (z) ' z−5±i
√
λ . (4.49)

We can recover the behaviour of the metric perturbations K, δϕ, H1 and H0 which are the com-
ponents of Y by using the explicit expression of the matrix P̃ . After a direct calculation, we find
the following behaviour for Y when z goes to infinity:

Y '



−i
Ωz

i

Ωz

2− i
√
λ− λ

Ω2
z

2 + i
√
λ− λ

Ω2
z

ξ ξ∗
z6

24β(1 + β)

z6

24β(1 + β)

−1 1
2− i

√
λ

iΩ
z2 2 + i

√
λ

iΩ
z2

1 1
2

3
z3 2

3
z3





c+g
∞
+

c−g
∞
−

d+s
∞
+

d−s
∞
−


, (4.50)

4 We do not call them c+ and c− as usual here since it is not possible to identify ingoing and outgoing modes.
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where

ξ =
i(53λ− 4)

48β(β + 1)Ω3
+

57λ+ 466

576βΩ2
+

26327i(β + 1)

2304βΩ
− 175β2 − 1954β + 175

36864β
. (4.51)

and c± and d± are constants.
This result calls for a few comments. First, we can see from (4.49) that the scalar modes are not

propagating at infinity: even though it is possible to identify two branches corresponding to two
sign choices, the corresponding modes do not contain exponentials, and the leading order depends
on λ. This implies that there is no choice of z∗ such that s∞± (z∗) ' e±iz∗/c0 , with c0 a constant
speed independant of λ. Such a behaviour for scalar modes leads to the conclusion that defining
quasinormal modes of the scalar sector in the usual way (through outgoing boundary conditions
at infinity) for this solution is not possible.

Second, one can compare the asymptotic behaviour of the scalar modes with what is obtained
by considering only scalar perturbations onto a fixed background; this is done in Appendix C and
we see that the two behaviours are very similar, even though they slightly differ. Third, one can
observe that the 4-dimensional matrix above (4.50) is ill-defined in the GR limit where β → 0. In
fact, the second line of the matrix tends to infinity in this limit. This could be expected, since in
that limit there is no degree of freedom associated with the scalar perturbation, which is obtained
precisely from the second line of the matrix. One could solve this problem by setting χ = β δϕ
and considering the vector t

(
K, χ, H1, H0

)
, similarly to what was done for the EsGB solution in

(3.49).

2. Near the horizon

Near the horizon, we use the variable x = 1/
√
z − 1, as for axial modes. Using the algorithm,

we find a change of vector Y = P̃ Ỹ such that the associated matrix, that we denote M̃x exactly
as in (4.41), is diagonal and is explicitly given by

M̃x =
1

x
diag(−1, 0, 0, 2) +O

(
1

x2

)
. (4.52)

Solving the first order system is then immediate and the asymptotic expressions of the components
of the 4-dimensional vector Ỹ (written as functions of z) are combinations of the four modes

gh
1(z) ' 1 , gh

2(z) ' 1

z − 1
, sh

1(z) ' 1 and sh
2(z) '

√
z − 1 . (4.53)

We have named two of these modes si (for “scalar”) because they contain a nonzero δϕ contribution,
as can be seen by expressing these modes in terms of the original perturbative quantities, using
the explicit expression for the matrix P̃ provided by the algorithm5. Indeed, the relation between
each of the above modes and the initial perturbations is given by

Y '



ζ1√
z − 1

ζ2

√
z − 1 ζ4

√
z − 1 ζ6

√
z − 1

0 0 1
√
z − 1

1

z − 1
1 0 ζ7

√
z − 1

0
ζ3√
z − 1

ζ5√
z − 1

ζ8



c1 g

h
1

c2 g
h
2

d1 s
h
1

d2 s
h
2

 , (4.54)

5 One can also see from (4.54) that δϕ is a combination of only these two modes at the horizon, which strengthens
this denomination.
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where ci and di are integration constants while ζi are constants whose expressions are given explic-
itly in Appendix B.

This behaviour is similar to what we have obtained for the axial perturbations. One cannot
exhibit ingoing and outgoing modes: instead, the perturbations have non-oscillating behaviours at
the horizon.

V. CONCLUSION

In this work, we have studied the linear perturbations about black hole solutions in the context
of two families of gravity theories involving a Gauss-Bonnet term in the action. In order to do so
we have extended our previous work to the case of Horndeski theories with a cubic dependence on
second derivatives of the scalar field, since the Gauss-Bonnet models studied here can be recast
in the form of scalar-tensor theories (we show explicitly, in Appendix A, the equivalence between
the Lagrangians with the Gauss-Bonnet term and the corresponding scalar-tensor Lagrangians
following what has been done in [22]).

For a general shift-symmetric Horndeski theory, we have written the expression for the equations
of motion of the axial perturbations about any static spherically symmetric background in a simple
and compact form. The axial perturbations represent a single degree of freedom and their dynamics
can be described either by a two-dimensional first-order (in radial derivatives) system or by a
Schrödinger-like second-order equation, associated with a potential and a propagation speed. By
contrast, the polar modes, which describe the coupled even-parity gravitational degree of freedom
and the scalar field degree of freedom, are characterized by a four-dimensional first-order system.
We then apply this general formalism to the two models considered here.

For Einstein-scalar-Gauss-Bonnet theories, one difficulty is that there is no exact background
black hole solution. The solution can be computed numerically or analytically in a perturbative
expansion. We have followed the second approach here, following [25] and providing some details
about the calculation of the lowest order metric terms. We have then studied the perturbations,
up to second order in the small expansion parameter (related to the coupling of the Gauss-Bonnet
term). We have tackled the axial modes using both the Schrödinger reformulation and the first-
order system approach, thus cross-checking our results. As for polar modes, we have applied our
algorithm to determine their asymptotic behaviours. We have found that both axial and polar
modes have a rather standard behaviour. In particular, one can immediately see the existence
of ingoing and outgoing modes at both boundaries and one can easily distinguish in most cases
gravitational and scalar degrees of freedom at the boundaries.

In the last part of this work, we have considered the perturbations of the 4dGB black hole
solution of [20], for the first time to our knowledge. The Schrödinger reformulation of the equations
of motion for the axial modes is characterised by the unusual property that the propagation speed
diverges at the horizon (using the tortoise coordinate as radial coordinate), even if the potential
vanishes in this limit. We also find a critical value βc for the coupling beyond which the square
of the propagation speed becomes negative. Studying the case β < βc, we have found that the
asymptotic behaviour at spatial infinity is very similar to that of Schwarzschild but the modes are
very peculiar near the horizon. These results are confirmed by our first-order approach.

Moreover, concerning both polar and axial perturbations, it is not possible to apply the usual
classification of modes into ingoing/outgoing categories near the horizon. Furthermore, we prove
that the scalar modes have a leading order behaviour at infinity that strongly depends on the
angular momentum, which seems to imply that no scalar waves propagate at infinity.

In summary, we have illustrated in this work how our formalism can be used in a straightforward
and systematic way to study the asymptotic behaviours of the perturbations about a black hole
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solution in a large family of scalar-tensor theories. When the perturbations are well-behaved, this is
a useful starting point for the numerical computation of the quasi-normal modes. By contrast, if the
perturbations are ill-behaved, it indicates that the solution or even the underlying gravitational
theory might be pathological. In this sense, our general formalism can be used as an efficient
diagnostic of the healthiness of some modified gravity theory, or at least the viability of some
associated black hole solutions.
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for very instructive discussions, and especially Christos Charmousis for suggesting to consider the
4dGB black hole. We also thank Leo Stein for technical advice concerning Mathematica.

Appendix A: Scalar Einstein-Gauss-Bonnet theory as cubic Horndeski

In this Appendix, we show that a coupling between a scalar field and the Gauss-Bonnet term
gives, in 4-dimensional spacetimes, a cubic Horndeski theory. We use the expression of the Gauss-
Bonnet term as a total derivative given in [22] and we reproduce the proof of this reference in a
simpler case here. Our result was already proven in [37], but was obtained in that case only from
the equations of motion. The computation we present here is made at the level of the action.

Let us study the action

SGB[gµν , φ] =

∫
d4x
√
−gf(φ)G , (A1)

with G the Gauss-Bonnet invariant defined by

G = RµνρσR
µνρσ − 4RµνRµν +R2 . (A2)

In 4 dimensions, the Lagrangian density
√
−g G is a total derivative: therefore integration by parts

should allow us to recover a scalar-tensor action from (A1). It is proven in [42] that the Einstein-
Gauss-Bonnet action completed with a kinetic term for the scalar field contains only one scalar
degree of freedom. It is therefore expected that the action (A1) can be written as a specific case
of (2.1).

We use the expression of G as a total derivative given in [22]: introducing an arbitrary field φ,
one has

G = −2δµναβσρλδ ∇
δ

[
φ λ
α φβ
X

(
R σρ
µν +

4

3

φ σ
µ φ ρ

ν

X

)]
, (A3)

where we introduced the tensor

δµναβσρλδ = −εµναβεσρλδ . (A4)

The idea of the proof done in [22] is to generate Riemann terms by using the commutation of
covariant derivatives acting on φµ, using the formula

[∇µ,∇ν ]φρ = Rρλµνφ
λ . (A5)

In order to obtain the squared Riemann terms present in G, one searches an expression of G in
the schematic form ∇µ(φνρφσRλδαβ). The action of the covariant derivative on φνρ will lead to a
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squared Riemann term as expected. Recovering the Gauss-Bonnet will require antisymmetrization,
since one has

G =
1

4
δµναβσρλδ R

σρ
µν R λδ

αβ . (A6)

We will therefore contract the expression with the fully antisymmetric tensor. However, several
new terms will be created when the covariant derivative acts on the other parts of the expression:
specific tuning of prefactors in front of these terms will be required to make sure only the Gauss-
Bonnet invariant is left in the end.

We reproduce the proof in [22] in the specific case of 4-dimensional spacetime. We start from
the generic Lagrangian

L = δµναβσρλδ ∇
δ

[
a0
φ λ
α φβ
X

R σρ
µν + a1

φ λ
α φβ
X2

φ σ
µ φ ρ

ν

]
, (A7)

where a0 and a1 are constants. By expanding the covariant derivative ∇δ in L, one obtains

L = a0δ
µναβ
σρλδ

[
∇δφ λ

α

X
φβR

σρ
µν +

φ λ
α φ δ

β

X
R σρ
µν − 2

X2
φ λ
α φ δ

κ φ
κφβR

σρ
µν

]

+ a1δ
µναβ
σρλδ

[
3

X2

(
∇δφ λ

α

)
φβφ

σ
µ φ ρ

ν +
φ λ
α φ δ

β φ
σ
µ φ ρ

ν

X2
− 4

X3
φκφβφ

δ
κ φ

λ
α φ σ

µ φ ρ
ν

]
, (A8)

by regrouping terms that are equal under contraction with the totally antisymmetric tensor. One
notices that the covariant derivatives of the Riemann tensors disappear by application of the second
Bianchi identities. By using the first Bianchi identities and eq. (A5), one obtains

2δµναβσρλδ ∇
δφ λ
α = −δµναβσρλδ R

λδ
ακφ

κ , (A9)

which allows us to write

L = a0

[
− 1

2X
Ω2,0 −

2

X2
Ω3,1 +

1

X
Ω1,1

]
+ a1

[
− 3

2X2
Ω2,1 +

1

X2
Ω1,2 −

4

X3
Ω3,2

]
, (A10)

where the functions Ωi,j are defined in [22] as

Ω1,0 = δµναβσρλδ R
σρ

µν R λδ
αβ , Ω1,2 = δµναβσρλδ φ

σ
µ φ ρ

ν φ
λ
α φ δ

β ,

Ω1,1 = δµναβσρλδ R
σρ

µν φ λ
α φ δ

β , Ω3,1 = δµναβσρλδ φκφ
λφ κ

α R σρ
µν φ δ

β ,

Ω2,0 = δµναβσρλδ φκφ
ρR σκ

µν R λδ
αβ , Ω3,2 = δµναβσρλδ φκφ

σφ κ
µ φ ρ

ν φ
λ
α φ δ

β ,

Ω2,1 = δµναβσρλδ φκφ
ρR σκ

µν φ λ
α φ δ

β . (A11)

One can then prove the following identities relating the functions Ωi,j :

XΩ1,0 − 4Ω2,0 = δµναβγσρλδκ φµφ
σR ρλ

να Rδκβγ = 0 ,

XΩ1,1 − 2Ω2,1 − 2Ω3,1 = δµναβγσρλδκ φµφ
σφ ρ

ν φ
λ
α Rδκβγ = 0 ,

XΩ1,2 − 4Ω3,2 = δµναβγσρλδκ φµφ
σφ ρ

ν φ
λ
α φ δ

β φ
κ
γ = 0 , (A12)

since in 4 dimensions the fully antisymmetric tensor δµναβγσρλδκ is zero (there are more indices than
dimensions so two indices have to be repeated). Eq. (A10) then becomes

L = −a0

8
Ω1,0 +

Ω2,1

X2

(
2a0 −

3

2
a1

)
. (A13)
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One can see from (A11) and (A6) that Ω1,0 = 4G. Therefore, by choosing a0 = −2 and a1 =
4a0/3 = −8/3, one obtains (A3).

We can now use the expression of G as a total derivative to express the action (A1) as a Horndeski
theory. Injecting this relation into Eq. (A1) and integrating by parts gives

SGB[gµν , φ] =

∫
d4x
√
−g 2

X

df

dφ
δµναβσρλδ φ

λ
α φβφ

δ

(
R σρ
µν +

4

3

φ σ
µ φ ρ

ν

X

)
. (A14)

After expanding the products, one finds that the Lagrangian density LG of (A14) is

LG = −df

dφ

[
8Rµνφµν +

4

X
φµφµνφ

ν − 4R2φ− 16

X
R ν
µ φµφρφνρ −

16

3X
φ ν
µ φµρφρν

+
8

X
2φφµνφ

µν +
16

X2
φµφνφ ρ

µ φ
σ
ν φρσ +

8

X
Rµνφ

µφν2φ

− 8

3X
(2φ)3 − 8

X
Rµνρσφ

µφνφρσ − 8

X2
φµφµνφ

νφρσφ
ρσ

− 16

X2
φµφνφ ρ

µ φρν2φ+
8

X2
φµφµνφ

ν(2φ)2
]
.

(A15)

One can recognise several total derivatives:

∇µ
(

1

X

)
= − 2

X2
φνφµν and ∇µ(ln(X)) =

2

X
φνφµν . (A16)

integrating by parts the terms containing these total derivatives and writing contractions of the
Riemann tensors as commutators of derivatives, one obtains

LG =
df

dφ

[
−Eµνφµν(8 + 4 ln(X))− 4

3X
(L

(3)
1 − 3L

(3)
2 + 2L

(3)
3 )

]
+

d2f

dφ2

[
2X ln(X)R+ 4 ln(X)L

(2)
1 + 4(L

(2)
1 − L

(2)
2 )
]

+ 2
d3f

dφ3
X(1− 3 ln(X))2φ− 2

d4f

dφ4
X2 ln(X) ,

(A17)

where the L
(j)
i are the DHOST Lagrangians introduced in [4]:

L
(2)
1 = φµνφ

µν , L
(2)
2 = (2φ)2 ,

L
(3)
1 = (2φ)3 , L

(3)
2 = (2φ)φµνφ

µν , L
(3)
3 = φµνφ

νρφµρ . (A18)

Finally, one can rewrite the term Eµνφ
µν using ∇µEµν = 0 and writing contractions of the Ricci

as commutators of derivatives, yielding∫
d4x
√
−gEµνφµν

df

dφ
=

∫
d4x
√
−g
[1

2
R

d2f

dφ2
+ 2(L

(2)
1 − L

(2)
2 )

d2f

dφ2

− 3X2φ
d3f

dφ3
− 4X2 d4f

dφ4

]
. (A19)

Putting Eq. (A19) into Eq. (A17), one finally concludes that the action (A1) is equivalent to a
cubic Horndeski theory with

G(φ,X) = −4
df

dφ
ln(X) , F (φ,X) = −2X(2− ln(X))

d2f

dφ2
,

Q(φ,X) = 2X(7− 3 ln(X))
d3f

dφ3
, P (φ,X) = 2X2(3− ln(X))

d4f

dφ4
. (A20)

This direct proof, which does not exist in the literature to the best of our knowledge, complements
the indirect proof given in [37] based on the equivalence of the equations of motion.
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Appendix B: Asymptotic behaviour near the horizon for the 4dEGB black hole

In this Appendix, we give the explicit value of the coefficients ζ1 up to ζ8 appearing in (4.54):

ζ1 = −4i(2β + 1)
√
−2β2 + β + 1Ω

4(2βΩ + Ω)2 + (β − 1)2
,

ζ2 = − 4i
√

1− β
(2β + 1)3/2Ων

[
(β − 1)2

(
6β2 − 2β − 1

)
(2β + 1)3Ω2

+ (β − 1)4β(β(2β(8λ− 1) + 8λ− 5) + 1)

+ 4(2β(β + 1)− 1)(2β + 1)5Ω4
]
,

ζ3 = − 2i(1− β)3/2β√
2β + 1(2β(β + 1)− 1)Ω

,

ζ4 =
4(1− β)3/2

√
2β + 1ν

[
(β − 1)2(2β(4β(β(3λ− 1) + λ− 2) + 2λ+ 1) + 1)

− 4(2β(4β(βλ+ λ+ 1)− 2λ+ 1)− 1)(2βΩ + Ω)2
]
,

ζ5 =
4
√

1− ββ
√

2β + 1

2β(β + 1)− 1
,

ζ6 =
8(β − 1)2β

4(2β + 1)3Ω2 + (β − 1)2(6β + 1)
,

ζ7 =
8iβΩ

(
12(β + 1)(2β + 1)3Ω2 + (β − 1)2(β(10β + 13) + 7)

)
12(β − 1)(2β + 1)4Ω2 + 3(β − 1)3(6β + 1)(2β + 1)

,

ζ8 =
4(β − 1)β

(
4(2βΩ + Ω)2 + (β − 1)2

)√
−2β2 + β + 1 (4(2β + 1)3Ω2 + (β − 1)2(6β + 1))

, (B1)

with

ν = (2β(β + 1)− 1)
(
4(2βΩ + Ω)2 + (β − 1)2

)2
. (B2)

Appendix C: Asymptotical behaviour for the scalar field

In this Appendix, we study the linear perturbations of the scalar field about a fixed background.
This corresponds to a “decoupling limit”, in which metric perturbations are zero and only the scalar
field perturbations stay dynamical.

1. Effective potential

Let us consider the equation for the scalar field perturbation of the form

c2(r)δϕ′′(r) + c1(r)δϕ′(r) + c0(r)δϕ(r) = 0 . (C1)

We aim to obtain the asymptotical behaviour of δϕ near some value r0 of r, for example r0 = +∞.
It is not possible to take directly the limit r −→ r0 for each coefficient ci, since one does not know
in general how the first and second derivative of δϕ scale with respect to each other.

One therefore changes variables in order to obtain a simpler equation. Let us write

δϕ(r) = κ(r)χ(r) , (C2)
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and we have

c2κ
d2χ

dr2
+
(
2κ′c2 + κc1

)dχ

dr
+
(
κ′′c2 + κ′c1 + κc0

)
= 0 . (C3)

One can then get rid of the first derivative by imposing

κ′

κ
= − c1

2c2
. (C4)

The equation becomes

d2χ

dr2
+

(
κ′′

κ
+
c1

c2

κ′

κ
+
c0

c2

)
χ = 0 . (C5)

Using (C4) allows us to find the relation

κ′′

κ
=
c′2c1 − c2c

′
1

2c2
2

− c1

2c2

κ′

κ
=
c′2c1 − c2c

′
1

2c2
2

+

(
c1

2c2

)2

, (C6)

which finally leads to the equation,

−d2χ

dr2
+ Vχ(r)χ = 0 with Vχ(r) =

c2c
′
1 − c′2c1

2c2
2

+

(
c1

2c2

)2

− c0

c2
. (C7)

In order to obtain the behaviour near r0, one can then decompose Vχ(r) around r0 and solve
directly for χ. The solution will be the expansion of χ around r0. One must then come back to δϕ
by using Eqs. (C4) and (C2).

2. Application to the 4D Einstein-Gauss-Bonnet black hole

The equation of motion for a scalar perturbation δϕ(t, r) with the metric perturbation fixed to
zero is

c2(r)
∂2δϕ

∂r2
+ c1(r)

∂δϕ

∂r
+ c0(r)δϕ = 0 , (C8)

with

c0(r) =
8α`(`+ 1)

r2

(
4σA+ 2

√
AA− 2rσA′ +

√
A(2− 2rA′ + r2A′′)

)
, (C9)

c1(r) = 8α
(

4
√
AA′ − rσA′2 + σA(4A′ − 2rA′′)

)
, (C10)

c2(r) = −16α
√
A
(

2A+ 2σA
√
A− rσ

√
AA′

)
. (C11)

We observe that time does not appear in the equations and δϕ satisfies an elliptic equation rather
than the expected hyperbolic equation. The fact that δϕ does not propagate could be related a
strong coupling problem.

Applying the reasoning presented in the previous section, one finds that the asymptotical be-
haviour of δϕ is

δϕ = Ar−i
√

1+λ +Br+i
√

1+λ . (C12)

We do not recover exactly the asymptotical behaviour found in (4.49) where both metric and
scalar perturbations have been considered. However, the behaviours are very similar. This result
differs from the solutions studied in [19], for which the behaviour of the decoupled scalar pertur-
bations and the scalar mode found from the full system agreed at both the horizon and infinity.
It can be seen as the effect of a more important backreaction of the scalar field onto the metric.
One can note that the behaviours still agree in the λ −→ +∞ limit, implying that the coupling
between the metric and the scalar perturbations becomes subdominant in that case.



31

Appendix D: Equations of motion for the background and for axial perturbations

The variation of the shift-symmetric Horndeski action (2.1) yields the equations of motion

Bµν ≡
δS

δgµν
= 0 , Bφ ≡

δS

δφ
= 0 . (D1)

Due to Bianchi identities, the equation for the scalar field is not independent from the metric
equations and therefore can be ignored. For a metric of the form (2.2) and a scalar field profile
(2.3), one finds that there are only four non-trivial equations which are given in a supplementary
Mathematica notebook.

Given any background metric gµν solution to the above equations, one can introduce the per-
turbed metric

gµν = gµν + hµν , (D2)

where the hµν denotes the linear perturbations of the metric. In order to derive the linear equations
of motion that govern the evolution of hµν , one expands the action (2.1) up to second order in
hµν . The Euler-Lagrange equations associated with the quadratic part Squad of this expansion then
provide the linearised equations of motion for hµν . In the following, they will be written under the
form Eµν = 0, where Eµν is defined by

Eµν =
δSquad

δhµν
. (D3)

In the Regge-Wheeler gauge, all the components of hµν for ` ≥ 2 are expressed in terms of the
independent functions h0 and h1, as given in (2.5). In this gauge, one can show that the equations
of motion reduce to the three equations Etθ = 0, Erθ = 0 and Eθθ = 0. These three equations
depend only on F and G, since the terms proportional to P and Q and their derivatives vanish
when the above background equations are imposed. They are given in the supplementary notebook
as well.

As there are only two independent functions, h0 and h1, one expects one of the above equations
to be redundant. This is indeed verified by noting the following relation between the equations
and their derivatives:

dErθ
dr
− iω

AB
Etθ +

B′

B
Erθ +

λ

r2B
Eθθ = 0 . (D4)

This shows that the two equations Erθ = 0 and Eθθ = 0 are sufficient to fully describe the dynamics
of axial perturbations. Finally, these two equations can be formulated as a simple first order
system, given in (2.9).
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