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1.  Introduction
In orogenic belts, crustal-scale faults are key deformation markers that accommodate various regimes of plate 
tectonics during rock burial, exhumation or strike slip activity (Jones & Wesnousky, 1992; Malusà et al., 2009; 
Norris & Cooper, 2001; Ratschbacher et al., 2003; Viola et al., 2004). When syn-to post-orogenic sedimentary 
record or chronological constraints are lacking for bracketing fault activity within orogens, low-temperature (low-
T) thermochronology is a powerful tool to quantify the timing and magnitude of exhumation along major faults, 
since it provides time constraints on the thermal evolution of rocks during their exhumation toward the Earth's 
surface (Colgan et al., 2006; Ehlers & Farley, 2003; Farley, 2002; Glotzbach et al., 2011; Malusà et al., 2005; 
Reiners & Brandon,  2006; Stockli,  2005). This situation is common within orogens for which the transition 
between syn- and post-orogenic periods, or the transition from contraction to extension, remains difficult to date 
and is often highly debated (Carmignani & Kligfield, 1990; Jolivet, Menant, et al., 2021; Jolivet et al., 2020; 

Abstract  The timing of transition between the contractional and extensional regimes along the Pyrenean 
range remains debated. Compared to its central and western parts, the eastern part of the chain was significantly 
affected by extensional tectonics mostly related to the opening of the Gulf of Lion. The Têt normal fault is 
the best example of this tectonic activity, with topographic reliefs above 2,000 m in its footwall. In this study, 
we synthetized previous thermochronological data and performed new (U-Th)/He and fission track dating in 
the Eastern Pyrenean massifs. Output apparent exhumation rate and thermal modeling in the hanging wall 
of the Têt fault highlight a rapid exhumation (0.48 km/Ma) and cooling (∼30°C/Ma) phase between 38 and 
35 Ma, followed by slower exhumation/cooling afterward. In the footwall, cooling subsequently propagated 
westward along the fault during Priabonian (35–32 Ma), upper Oligocene and lower Miocene (26–19 Ma), and 
Serravallian-Tortonian times (12–9 Ma). These data and modeling outcomes suggest that the exhumation of the 
Têt fault hanging wall related to southward thrusting ended at 35 Ma, and was followed by different extensional 
stages, with a propagation of the deformation toward the West during the upper Miocene. We propose that the 
onset of extension in the Eastern Pyrenees occurred during the late Priabonian period, contemporaneously 
with the large-scale rifting episode recorded in Western Europe. After this event, the Têt fault activity and the 
westward propagation of the deformation appear mainly controlled by the opening of the Gulf of Lion.

Plain Language Summary  The Pyrenees result from the North-South convergence of the Eurasian 
and Iberian plates. The eastern part of the range experienced strong extensional tectonics mostly related to 
the opening of the Gulf of Lion, which timing and influence on the modern topographic relief remain unclear. 
To better characterize the transition timing between contractional and extensional regimes and the tectonic 
evolution in the Eastern Pyrenees, we used low-temperature thermochronology and thermal modeling to 
reconstruct the exhumation/cooling histories of the different massifs along the Têt fault. Our data and modeling 
outcomes show a switch between contractional and extensional tectonics during the Priabonian (ca. 35 Ma), 
followed by different extensional stages recorded in the Têt fault footwall, coeval with a global westward 
propagation of the deformation along the fault until ca. 9 Ma.
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Price & Henry, 1984; Séranne et al., 2021). Low-T thermochronology has been widely used in large-scale exten-
sional domains to date the activity of normal faults, as for example, in the Basin and Range Province (Armstrong 
et al., 2003; Colgan et al., 2008; Foster & John, 1999; Surpless et al., 2002) or the Aegean domain (Brichau 
et al., 2006; Coutand et al., 2014). However, few studies have investigated the onset of post-orogenic extension 
using low-T thermochronology (i.e., Cederbom et al., 2000; Danišík et  al., 2012; Fillon et al., 2021; Martín-
González et  al.,  2012) and even less on the lateral migration of the tectonic activity along normal faults in 
orogenic context (Curry et al., 2016; Deeken et al., 2006; Krugh, 2008).

In the Pyrenees, previous thermochronological studies have focused mainly on the central part of the chain, 
which is composed of a stack of crustal nappes formed during the main Eocene—early Oligocene orogenic build 
up (Bosch et al., 2016; Jolivet et al., 2007; Labaume et al., 2016; Mouthereau et al., 2014; Vacherat et al., 2016, 
Waldner et al., 2021). In the eastern part of the Pyrenees, less studies have been carried out (Gunnell et al., 2009; 
Maurel et  al.,  2002, 2008), which do not provide a detailed view of fault activity through time. This orogen 
segment shows a similar nappe structure as further West (Calvet et al., 2021; Laumonier et al., 2015, 2017) but 
has experienced significant post-orogenic crustal thinning to 25 km of total thickness, as indicated by recent 
geophysical data (Chevrot et al., 2018; Diaz et al., 2018; Lacan & Ortuño, 2012; Nercessian et al., 2001). This 
thinning is assigned to the presence of numerous and widely distributed normal faults onshore and offshore 
(Calvet et al., 2021; Jolivet, Menant, et al., 2021; Jolivet et al., 2020; Romagny et al., 2020; Séranne et al., 2021; 
Taillefer et al., 2021). The geodynamic origin for the onset of the extension has been linked to either the initiation 
of the West European Rifting which formed a large intraplate feature (Angrand & Mouthereau, 2021; Mouthereau 
et al., 2021) or the early onset of back-arc extension leading to the formation of the Gulf of Lion (Séranne, 1999; 
Séranne et al., 2021) The Têt fault is the most prominent normal fault of the Eastern Pyrenees, which localizes 
high-relief massifs in its footwall such as the Canigou and Carança (Figure 1). The development of these high 
topographic reliefs has been attributed to normal faulting during the Oligo-Miocene period (Maurel et al., 2008). 
However, the pre-extensional history of this area, the onset of extension and its polyphase activity along strike 
during the Cenozoic are still poorly understood (e.g., Angrand & Mouthereau, 2021; Huyghe et al., 2020; Jolivet, 
Baudin, et al., 2021; Jolivet, Menant, et al., 2021; Jolivet et al., 2020; Taillefer et al., 2021).

In this study, we present a new low-T thermochronology data set from bedrock samples collected on both sides 
of the Têt fault, including (U-Th)/He on apatite (AHe) and zircon (ZHe), and apatite fission track (AFT). Low-T 
thermochronological data from previous studies (Gunnell et al., 2009; Maurel et al., 2002, 2008; Milesi, Monié, 
Münch, et al., 2020; Milesi, Monié, Soliva, et al., 2020; Milesi et al., 2019) have been also synthesized with the 
new data set, and all data are used for thermal modeling to assess the exhumation history of the footwall and hang-
ing wall massifs along the southwestern segment of the Têt fault. Based on these results, we discuss the onset, 
timing, and spatial evolution of Cenozoic extension in the eastern part of the Pyrenees as well as the potential 
driving mechanisms for this evolution.

2.  Geological Setting
2.1.  Tectonic Evolution of the Eastern Part of the Pyrenees

The Pyrenees result from the North-South convergence of the Eurasian and Iberian plates since the late Creta-
ceous (Beaumont et al., 2000; Choukroune, 1989; Mouthereau et al., 2014; Muñoz, 1992; Roure et al., 1989; 
Teixell et  al., 2016), and form a double-wedged mountain range of around 1,000 km long and 150 km wide 
(Figure 1a). The maximum of shortening occurred during the Eocene in the central part of the range (e.g., Curry 
et al., 2019; Fillon & van der Beek, 2012; Gibson et al., 2007; Metcalf et al., 2009; Mouthereau et al., 2014; 
Sinclair et al., 2005; Teixell et al., 2016; Vergés et al., 1995; Whitchurch et al., 2011). The Pyrenees are divided 
into three main latitudinal tectonostratigraphic domains (Grool et al., 2018; Vergés et al., 2002). To the North, 
three main units are recognized: the Aquitaine foreland basin, the Sub Pyrenean Zone, and the North Pyrenean 
Zone, the last two being separated by the North Pyrenean Frontal Thrust (Figure 1a). Further South, the North 
Pyrenean Fault (NPF) separates the North Pyrenean Zone from the Axial Zone and is interpreted as the suture 
between the Eurasian and Iberian plates. The Axial Zone consists of a stack of south-verging nappes made of 
late Proterozoic and Paleozoic sedimentary, metamorphic, and magmatic rocks involved in the Variscan orogeny. 
The South Pyrenean Zone extends to the South of the Axial Zone and is composed of a sequence of Mesozoic 
to Eocene sediments involved in several thrust sheets transported southward. The Ebro basin forms the southern 
foreland basin of the Pyrenean orogen.

Resources: G. Milesi, P. Monié, R. 
Soliva, P. Münch, P. G. Valla
Software: G. Milesi, P. Münch, P. G. 
Valla
Supervision: G. Milesi, P. Monié, R. 
Soliva
Validation: G. Milesi, P. Monié, R. 
Soliva, P. Münch, P. G. Valla, S. Brichau, 
M. Bonno, C. Martin
Visualization: G. Milesi, P. Monié, R. 
Soliva
Writing – original draft: G. Milesi
Writing – review & editing: G. Milesi, 
P. Monié, R. Soliva, P. Münch, P. G. 
Valla, S. Brichau, M. Bonno, C. Martin, 
M. Bellanger



Tectonics

MILESI ET AL.

10.1029/2021TC007172

3 of 27

In the eastern Axial Zone, it is accepted that the mountain building occurred through the emplacement of 
south-verging nappes rooted in the northern part of the Axial Zone, south of the NPF (Laumonier et al., 2015; 
Sibuet et al., 2004; Vergés et al., 1995; Teixell et al., 2016). In the studied area, the balanced cross-sections of 
Ternois et al. (2019) suggest an Eocene thrusting of the Aspres-Mont-Louis massifs onto the Canigou massif, in 
agreement with available thermochronological data (Maurel et al., 2008). The reactivation of Variscan structures 
during the Pyrenean orogeny has been proposed, the most significant example being the Merens fault to the North 
of our study area (Burbank et al., 1992; Cochelin et al., 2017; Guitard et al., 1998; Laumonier et al., 2017; McCaig 
& Miller, 1986). The particularity of the Eastern Pyrenees is the reactivation of compressional structures during 
extensional tectonic regime (Calvet et al., 2021; Jolivet et al., 2020; Séranne, 1999; Séranne et al., 1995, 2021). 
This regional scale extension is witnessed by geophysical data that show a progressive crustal thinning, with crus-
tal thickness varying between 45 km in the eastern part of the Axial Zone (∼1°E) to 25 km at the margin of the 
Gulf of Lion (Chevrot et al., 2018; Diaz et al., 2018). This regional extensional episode led to the (re-)activation 

Figure 1.  (a) Structural map of the Pyrenees showing the main structural domains delimited by faults (modified after Taillefer et al., 2017). The major Neogene normal 
faults of the Eastern Pyrenees are reported in red. The study area is outlined with an open purple-dashed box. (b) Structural sketch map of the study area showing 
the different massifs (in bold italics) and basins (in italics) along the Southwestern (SW) and Northeastern (NE) segments of the Têt fault (modified from Taillefer 
et al., 2021). Secondary faults are indicated by red numbers (see legend for details).
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of major structures as normal faults with different orientations (NE-SW, NW-SE, and N-S, Figure 1b), from 
the end of the Oligocene to the Quaternary (Taillefer et al., 2021). Some of these faults have been considered 
as inherited ductile Variscan faults (Autran et al., 2005; Bouchez & Gleizes, 1995; Guitard et al., 1992, 1998; 
Laumonier et al., 2015, 2017). Two main NE-SW trending normal faults are recognized in the studied area: the 
Têt and the Tech faults (Figure 1b). The Têt fault represents the southern margin of the Cerdagne and Conflent 
basins, while the Tech fault is the southern bounding fault of the Roussillon basin. Noteworthy is the impor-
tance of an NW-SE trending fault network that affects particularly the Mont-Louis and Carança massifs (e.g., 
Fontpédrouse and Nuria faults, Figure 1b) and cuts the North Catalan Coastal Range further South (Figure 1a). 
Some of these faults have nearly E-W directions probably recording spatial and/or temporal changes of stress 
orientation and/or stress regime. Major N-S faults in the eastern part of the Pyrenees are rare, among which the 
Capçir fault is described as a Quaternary normal fault (Briais et al., 1990). In the study area, the kinematics and 
amount of exhumation associated to these different faults are still debated. In Figure 1b, major crustal blocks have 
been differentiated and delimited by the Têt fault, namely the Mont-Louis block to the North (hanging wall) and 
Canigou-Costabonne and Carança blocks (footwall, delimited by the Py secondary fault) to the South.

Previous multi-thermochronological studies (Gunnell et  al.,  2009; Maurel et  al.,  2002,  2008) in the Canigou 
(footwall of the Têt fault) and Mont-Louis (hanging wall of the Têt fault) provided insights and results guiding 
our study. Maurel et al. (2002, 2008) proposed that the Canigou massif was exhumed during two periods, the 
first one at a rate of ∼0.30 km/Ma between 27 and 21 Ma, followed by a significant slowdown of exhumation 
(∼0.10 km/Ma) until present-day. In the Mont-Louis massif, thermochronological data suggest an earlier exhu-
mation between 50 and 35 Ma (∼0.30 km/Ma) accompanied by a rapid cooling. Since 35 Ma, the Mont Louis 
exhumation has been relatively slow, estimated at 0.04–0.06 km/Ma (Maurel et al., 2008). These different exhu-
mation and cooling histories between the two massifs since 35 Ma were interpreted to be related to the normal 
motion of the Têt fault, without erasing the thermochronological record of Eocene tectonic activity in the hanging 
wall. In the Carança massif, thermal modeling based on AHe data (Milesi, Monié, Münch, et al., 2020; Milesi 
et al., 2019) suggests two main cooling events that occurred in the Oligo-Miocene, a major one between 30 and 
24 Ma (at a rate of 25°C/Ma) followed by a second episode between 12 and 9 Ma (at a rate of 15°C/Ma). Despite 
these previous thermochrological studies, the spatio-temporal evolution of the main tectonic structures in the 
eastern part of the Axial Zone of the Pyrenees since the Priabonian remains still poorly constrained (see Taillefer 
et al., 2021).

2.2.  Tectonic Evolution and Sedimentary Record Along the Têt Fault

The southern segment of the Têt normal fault is a NE-SW north-dipping and 100 km long crustal-scale fault 
(Chevrot et al., 2018; Diaz et al., 2018; Maurel et al., 2002, 2008; Figure 1a). It crosscuts Palaeozoic magmatic 
and metamorphic rocks of the Mont Louis, Canigou, and Carança massifs along which Neogene sedimentary 
basins developed (Figure 1b). In the Canigou massif, the main period of fault activity during the Oligo-Miocene 
has been well constrained using low-T thermochronology (Maurel et al., 2002, 2008). A second stage of normal 
motion along the entire Têt fault has been recorded between the Middle-Miocene and the late Pliocene, with asso-
ciated vertical displacements in the range of 150–500 m (Agustí et al., 2006; Cabrera et al., 1988; Calvet, 1999; 
Carozza & Baize, 2004; Clauzon et al., 2015; Delcaillau et al., 2004; Pous et al., 1986; Réhault et al., 1987; Roca 
& Desegaulx, 1992; Tassone et al., 1994) to kilometric (Calvet, 1996). However, thermochronological data in 
the Canigou massif (Maurel et al., 2008) are apparently not consistent with a hypothesis of km-scale vertical 
displacements. Since the end of Miocene, a main difference is recorded along the Têt fault between the western 
(Cerdagne basin) and eastern (Conflent and Roussillon basins) segments. Indeed, only the western segment of 
the Têt fault has been active (Calvet, 1999) which led to the opening of the Cerdagne pull-apart basin accommo-
dated by normal (Agustí et al., 2006; Pous et al., 1986) and right-lateral displacement along the Têt fault (Cabrera 
et al., 1988). Based on geomorphological observations, a westward propagation of the deformation along the Têt 
fault has also been proposed to occur during the Plio-Pleistocene (Carozza & Baize, 2004; Carozza & Delcail-
lau, 1999). The amplitude of Pliocene to Quaternary normal activity on the eastern segment of the Têt fault is still 
debated. For some authors, the presence of triangular facet. along the Têt fault scarp documents a recent normal 
fault activity (Briais et al., 1990; Calvet, 1999). However, Petit and Mouthereau (2012) suggested these are only 
the morphological expression of the differential erosion within Variscan mylonites. It is important to note that 
facets are also observed on scarps with no apparent mylonite nor favorably oriented Variscan foliation (western 
segment of the Têt fault, Py, and Capcir faults, Delmas et al., 2018). Finally, over the last 6 Ma, low incision rates 
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of maximum 25 m/Ma in the Têt valley indicate weak vertical uplift in the study area (Sartégou et al., 2018), 
bringing further evidence to the ongoing discussion on late-Miocene potential uplift from paleoelevation studies 
(Huyghe et al., 2020; Suc & Fauquette, 2012).

The sedimentary record is not continuous along the Têt fault system, and three main depositional areas can be 
distinguished from East to West: (a) the Roussillon basin bounded to the North by the northern segment of the 
Têt fault that is antithetic to the southern segment, (b) the Conflent basin that connects to the Roussillon basin 
to the East and (c) the Cerdagne basin along the southwestern segment of the Têt fault (Figure 1b). The Roussil-
lon basin is a large graben belonging to the West European Rift system and was highly subsident during the 
Oligocene-Aquitanian interval that corresponds to the rifting phase preluding the Liguro-Provencal Sea opening. 
Post-rift deposits within the Roussillon basin were deposited in a passive margin geotectonic setting with low 
tectonic subsidence, and were deeply incised during the Messinian salinity crisis after which the passive margin 
sedimentation resumed during the Pliocene (Calvet et al., 2015, 2021; Clauzon, 1990; Clauzon et al., 1987). The 
Conflent basin is an intramontane half-graben lying along the southwestern segment of the Têt fault, at an eleva-
tion ranging from 250 to 1,000 m. Its sedimentary infill is composed of up to ∼1,000 m thick continental depos-
its, thought to be related to the main tectonic activity of the Têt fault (Calvet et al., 2014; Guitard et al., 1998). 
However, the stratigraphy of this basin is debated and the main sedimentary units, peculiarly an olistostrome with 
km-scale olistoliths originated from the Canigou massif, may be either early Burdigalian (Calvet et al., 2014; 
Guitard et al., 1998) or Pliocene (Clauzon et al., 2015). Toward the southwest, the Cerdagne basin, at an eleva-
tion of 1,100 m, is interpreted as a pull-apart basin formed by dextral-strike slip along the Têt fault (Cabrera 
et al., 1988). It has been infilled by 400–1,000 m of Neogene sediments divided into two depositional units from 
early Miocene and late Miocene, separated by an unconformity (Agustí & Roca, 1987; Cabrera et al., 1988; Pous 
et al., 1986; Roca, 1996). The source area of clastic sediments switched from the North to the South between 
these two units, with tectonic activity strongly decreasing during the late Miocene (Cabrera et al., 1988; Roca & 
Santanach, 1986).

3.  Methodology
3.1.  Low-Temperature Thermochronology

3.1.1.  Sampling Strategy

Our main objective is to quantify the exhumation and thermal evolution of the different crustal blocks separated 
by main regional faults, and to provide new data on the kinematic history of these faults. In the hanging wall of 
the Têt fault, two main blocks, separated by the Mérens fault, have been studied: respectively the North and South 
Mérens blocks. The North Mérens block is composed of the Millas and Querigut granitic massifs, and the South 
Mérens block is formed by Mont-Louis, Campcardos and Carlit massifs (Figure 1b). In the footwall of the Têt 
fault, two main blocks, separated by the NE-SW trending Py fault, have been sampled: the Canigou-Costabonne 
block (eastern segment of the Têt fault, Canigou and Costabonne sub-blocks separated by the NW-SE Llipodère 
fault) and the Carança block (western segment). New AHe, AFT, and ZHe ages have been obtained mainly in 
the footwall of the Têt fault (Carança and Canigou-Costabonne blocks), which represents a total of 44 AHe 
ages, 3 AFT ages, and 25 ZHe ages (Tables 1 and 2). Thermochronological data from previous studies (Gunnell 
et al., 2009; Maurel et al., 2008) have been synthetized and supplemented by AHe ages from our previous studies 
(Milesi, Monié, Münch, et al., 2020; Milesi et al., 2019). Note that we have excluded samples affected by hydro-
thermalism and Rare Earth Element mobility, therefore not relevant to define regional exhumation and thermal 
evolution of the studied area (Milesi, Monié, Münch, et al., 2020; Milesi et al., 2019, Figure 2). Sample localities 
and corresponding thermochronological data from literature are summarized in Table S1 in Supporting Informa-
tion S1 and shown in Figure 2.

In the hanging wall of the Têt fault, six samples at an elevation between 730  and 2,380 m were analyzed in the 
North Mérens block (DON, MAD, and MTB). The South Mérens block (i.e., Mont-Louis massif) provided 17 
samples (CAR, CMPC, GAL, LPCH, ML, ST) with an elevation difference of ∼1,800 m between the lowest 
sample in the Têt Valley (1,081 m) and that of the summit of Campcardos (2,900 m). In the footwall of the 
Têt fault, the Costabonne massif includes four samples (GUIL and POMA) from Gunnell et  al.  (2009) and 
two samples (VER) dated in this study. In the Canigou massif, Maurel et  al.  (2008) reported thermochron-
ological data on seven samples (CAN) collected along a profile from the base of the massif (970  m) to the 
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Block

Sample/ Rs U Th eU

Th/U

4He ± s

Ft

Corrected age Error

grain µm ppm Ppm ppm ncc/g ncc/g Ma ±1ơ (Ma)

Apatite

South Mérens 
block

ST13 (42.50727N 2.15867E 1,289m) Augen gneiss

ST13a 81.8 12.4 18.6 16.9 1.5 29023.1 1160.9 0.84 17.0 0.8

ST13b 81.3 14.1 16.0 17.9 1.1 28315.3 849.5 0.85 15.5 0.6

ST13c 67.0 24.2 24.4 30.0 1.0 49313.1 986.3 0.82 16.7 0.7

ST13d 59.9 14.3 14.6 17.8 1.0 30276.5 1211.1 0.82 17.2 0.7

ST13e 61.3 77.2 73.7 94.9 1.0 143789.9 1437.9 0.82 15.4 0.7

ST13f 45.5 48.5 59.8 62.9 1.2 102885.4 2057.7 0.7 18.1 0.8

ST13g* 53.3 130.3 158.8 168.4 1.2 356975.6 3569.8 0.8 22.9 1.0

ST13h* 43.9 94.3 102.8 119.0 1.1 227047.7 2951.6 0.7 21.9 1.1

Mean 16.7 1.0

Carança block GAL5 (42.51287N 2.20037E 1,147m) Granite

GAL5a 57.3 20.6 5.1 21.8 0.2 19915.4 597.5 0.77 9.8 0.6

GAL5b 62.7 11.2 5.6 12.5 0.5 15730.0 471.9 0.81 12.9 0.8

GAL5c 60.8 7.8 2.1 8.4 0.3 10375.3 415.0 0.79 13.0 0.8

Mean 11.9 1.8

ST10 (42.4949N 2.17104E 1,383m) Augen gneiss

ST10a 61.3 50.1 28.0 56.8 0.6 109832.3 2196.6 0.77 20.9 1.2

ST10b 56.3 62.3 27.3 68.8 0.4 94741.0 1136.9 0.75 15.3 0.8

ST10c 75.1 56.1 26.4 62.4 0.5 103165.4 1547.5 0.81 17.0 0.9

ST10d 67.0 29.1 7.4 30.8 0.3 76314.5 1526.3 0.81 25.2 1.3

Mean 19.6 4.4

ST9 (42.49203N 2.17351E 1,421m) Fractured augen gneiss

ST9a 60.4 46.6 17.7 50.8 0.4 119148.9 1191.5 0.79 24.7 1.2

ST9b 68.1 38.6 10.2 41.0 0.3 83334.3 1666.7 0.83 20.4 1.0

ST9c 68.0 59.8 25.8 66.0 0.4 158824.9 1588.2 0.81 24.5 1.3

ST9d 63.2 54.0 19.8 58.8 0.4 164830.2 1648.3 0.84 27.8 1.7

Mean 24.3 3.0

ST7 (42.48421N 2.17433E 1,494m) Augen gneiss

ST7a 61.0 11.3 3.2 12.1 0.3 18475.0 923.8 0.79 16.1 0.8

ST7b 64.6 16.1 4.6 17.2 0.3 31125.3 1245.0 0.80 18.7 0.9

ST7c 70.5 24.1 5.9 25.5 0.2 40022.5 800.4 0.82 15.8 0.7

ST7d 63.5 14.2 3.7 15.1 0.3 26010.2 1040.4 0.80 17.9 0.9

Mean 17.1 1.4

ST6 (42.48116N 2.17433E 1,533m) Augen gneiss

ST6a 82.1 7.4 2.6 8.1 0.4 27252.5 817.6 0.85 33.1 1.8

ST6b 62.3 13.1 3.3 13.9 0.3 28447.2 1137.9 0.78 21.7 1.1

ST6c 67.9 7.2 3.3 8.0 0.5 17354.2 867.7 0.82 21.9 1.0

Mean 25.5 6.5

Table 1 
(U-Th)/He Data on Apatite and Zircon
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Table 1 
Continued

Block

Sample/ Rs U Th eU

Th/U

4He ± s

Ft

Corrected age Error

grain µm ppm Ppm ppm ncc/g ncc/g Ma ±1ơ (Ma)

Canigou block CAN12 (42.56647N 2.48237E 970m) Augen gneiss

CAN12a 77.8 32.7 17.4 36.9 0.5 67808.4 678.1 0.84 18.1 0.9

CAN12b 61.3 32.4 10.6 35.0 0.3 54050.7 540.5 0.83 15.5 0.7

CAN12c 102.6 8.3 24.1 14.1 2.9 25356.0 253.6 0.90 16.6 0.8

Mean 16.7 1.3

CAN8 (42.53956N 2.46652E 2,050m) Augen gneiss

CAN8a 80 33.5 2.4 34.1 0.1 67878.1 678.8 0.84 19.6 1.0

CAN4 (42.51892N 2.45676E 2,784m) Augen gneiss

CAN4a 42.6 8.1 17.9 12.4 2.2 25850.1 258.5 0.71 24.3 1.5

CAN4b 45.1 16.5 43.7 27.0 2.6 62074.6 620.7 0.74 26.0 1.4

CAN4c 61.7 11.6 35.4 20.1 3.0 64660.9 646.6 0.80 33.5 1.9

Mean 27.9 4.8

Costabonne 
block

VER11 (42.477943N 2.305973E 1,560m) Highly fractured augen gneiss with chlorite

VER11a 50.0 237.6 17.0 241.7 0.1 639343.3 6393.4 0.75 29.2 1.4

VER11b 47.9 228.1 19.4 232.7 0.1 684958.3 6849.6 0.74 32.7 1.6

VER11c 49.9 153.7 13.2 156.9 0.1 429612.5 4296.1 0.76 29.9 1.5

Mean 30.6 1.8

VER13 (42.471203N 2.343885E 1,935m) Augen gneiss

VER13a* 61.9 377.9 156.1 415.3 0.4 969933.9 9699.3 0.81 24.0 1.3

VER13b 52.9 275.0 61.6 289.8 0.2 920151.0 9201.5 0.77 34.3 1.8

VER13c 57.7 237.9 65.3 253.6 0.3 860128.9 8601.3 0.79 35.4 1.8

Mean 34.9 1.8

Olistolithes OL2 (42.55702N 2.39468E 780m) Fractured augen gneiss

OL2a 81.2 15.2 9.2 17.4 0.6 76552.5 765.5 0.85 43.1 2.0

OL2b 38.6 41.7 49.8 53.7 1.2 100135.0 1001.4 0.71 21.7 1.1

OL2c 82.5 13.0 16.3 16.9 1.3 87438.1 874.4 0.87 49.5 2.2

OL1 (42.53754N 2.3375E 930m) Fractured augen gneiss

OL1a 48.4 17.2 10.7 19.7 0.6 72121.3 721.2 0.71 42.9 2.4

OL1b 56.7 20.9 9.7 23.2 0.5 88868.5 888.7 0.78 40.8 2.3

Zircon

Carança block TET1.1 (42.52611N 2.24305555E 900 m) Granite with chlorite

TET1.1a 47.9 1185.3 530.6 1312.6 0.4 2188733.2 43774.7 0.70 19.7 1.6

TET1.1b 71.0 632.9 201.8 681.3 0.3 1577103.0 41004.7 0.80 23.9 1.9

TET1.1c 53.5 525.5 215.5 577.2 0.4 1158414.3 20851.5 0.77 21.6 1.7

TET1.1d 54.7 581.0 338.7 662.3 0.6 1397788.4 29353.6 0.77 22.7 1.8

Mean 22.0 1.7
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summit (2,784 m). Three apatite samples (CAN4, CAN9, and CAN12), initially dated with the AHe population 
method, have been redated with AHe single grain method (see Section 3.1.2). Two augen gneiss blocks (OL1 and 
OL2) from the olistostrome formation deposited in the Conflent basin and originating from the Canigou massif 
(Clauzon et al., 2015) have been also dated with the AHe single-grain method. In the Carança block, five new 
samples have been dated with the AHe method (GAL5, ST6, ST7, ST9, and ST10) to complete the AHe data set 
from Milesi, Monié, Münch, et al. (2020) and Milesi et al. (2019). AFT ages have been obtained on three samples 
from different sampling profiles (ST2, GAL4, and TET4). Finally, a ZHe age-elevation profile (900–1,900 m) has 
been realized with six samples from the Carança block (TET1.1, TET4, TET5, GAL7, GAL3, PLA3, and ST3).

Table 1 
Continued

Block

Sample/ Rs U Th eU

Th/U

4He ± s

Ft

Corrected age Error

grain µm ppm Ppm ppm ncc/g ncc/g Ma ±1ơ (Ma)

TET4 (42.51175N 2.25487E 1,390m) Augen gneiss

TET4a 73.7 460.9 175.7 503.0 0.4 1449839.5 21747.6 0.83 28.7 2.3

TET4b 60.8 548.1 770.2 733.0 1.4 2244859.4 24693.5 0.76 33.5 2.7

TET4c 56.1 869.6 320.0 946.4 0.4 3000148.0 48002.4 0.75 35.2 2.8

Mean 32.5 3.3

TET5 (42.49078N 2.23036E 1,900m) Augen Gneiss

TET5a 63.7 564.0 149.9 600.0 0.3 2172324.1 39101.8 0.77 38.9 3.1

TET5b 67.8 933.1 423.6 1034.8 0.5 3586410.1 71728.2 0.79 36.3 2.9

TET5c 68.5 1192.0 315.4 1267.7 0.3 4567608.3 68514.1 0.82 36.4 2.9

TET5d 58.9 968.6 452.4 1077.1 0.5 3262406.1 48936.1 0.76 33.2 2.7

Mean 36.2 2.9

GAL7 (42.51505N 2.19904E 1,025m) Fractured fine grained gneiss with quartz and calcite veins and locally oxides

GAL7a 62.4 1090.8 483.6 1206.8 0.4 2620687.7 39310.3 0.80 22.4 1.8

GAL7b 54.7 950.0 407.1 1047.7 0.4 2191714.2 39450.9 0.74 23.5 1.9

GAL7c 52.3 1264.8 556.2 1398.3 0.4 3105604.0 52795.3 0.77 24.0 1.9

Mean 23.3 1.9

GAL3 (42.51018N 2.20525E 1,363m) Fine grained gneiss

GAL3a 55.4 1678.1 328.7 1757.0 0.2 4976741.5 59720.9 0.74 31.6 2.5

GAL3b 59.8 685.1 436.9 789.9 0.6 2120801.6 31812.0 0.78 28.6 2.3

GAL3c 67.4 685.6 477.6 800.3 0.7 2144053.6 40737.0 0.81 27.5 2.2

GAL3d 66.0 881.9 207.1 931.6 0.2 2581295.1 41300.7 0.78 29.4 2.3

Mean 29.3 2.3

ST3 (42.50001N 2.16697E 1,174m) Unaltered gneiss with biotite

ST3a 59.9 1316.3 557.5 1450.2 0.4 3801126.6 49414.6 0.76 28.6 2.3

ST3b 63.4 1802.8 314.4 1878.2 0.2 4910004.5 68740.1 0.77 28.0 2.2

ST3c 61.3 1121.4 661.1 1280.0 0.6 2993707.8 47899.3 0.77 25.3 2.0

Mean 27.3 2.2

PLA3 (42.49343N 2.15462E 1,622 m) Fractured leucocratic gneiss and locally oxidized

PLA3a 49.5 2958.1 226.3 3012.4 0.1 9898474.3 89086.3 0.75 36.2 2.9

PLA3b 50.4 3478.6 417.7 3578.8 0.1 11888683.1 106998.1 0.75 36.8 2.9

PLA3c 61.3 1678.8 277.0 1745.2 0.2 6282251.9 50258.0 0.77 38.9 3.1

Mean 37.3 3.0

Note. Ft: Alpha ejection correction (Farley et al., 1996)
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Track density (x106 tr.cm-2) Age dispersion

Sample 
(elevation)

No. of 
crystals ρd[Nd] ρs[Ns] ρi[Ni] RE (%) Pχ 2 (%) U(ppm)

Central age 
(Ma ± 1σ)

Mean track 
length (µm) StD (µm)

No. of tracks 
measured

TET4 10 1.183 0.400 4.546 0.1 67.37 48.0 17.4 ± 1,7 12.84 ± 0.5 1.81 35

1,390 m [10,391] [119] [1,377]

GAL4 16 1.189 0.333 4.659 14.7 17.14 49.0 15.20 ± 1.4 12.81 ± 0.7 2.53 40

1,221 m [10,391] [163] [2,203]

ST2 20 1.177 0.307 3.601 17.6 28.01 38.3 17.4 ± 1.7 12.39 ± 0.5 2.46 57

1,217 m [10,391] [150] [1741]

Note. Analyses were determined by the external detector method using 0.5 for the 4π/2π geometry correction factor. Apatite fission track ages were calculated using 
dosimeter glass (CN-5; Analyst Stephanie Brichau, ξ = 341.8 ± 7.8) calibrated by multiple analyses of IUGS apatite age standards (Hurford, 1990). Pχ 2 is probability of 
obtaining χ 2 value for v degrees of freedom, where v is the amount of crystals. Central age is a modal age, weighted for different precisions of individual crystals. In track 
density, ρd is the fission track density of the standard U-glass (CN-5); Ns (spontaneous), Ni (induced) and Nd (dosemeter) are the fission track numbers corresponding 
to ρs, ρi, and ρd, respectively.

Table 2 
Fission Track Data for the Carança Massif

Figure 2.  Location of samples projected on DEM under GMT (Wessel et al., 2019) using SRTM1s. Different crustal blocks are delimited by regional major faults. 
From the North to the South, the sample names are for ST profile: ST2, ST3, ST4, ST10, ST9, ST8, ST7, ST6 and for GAL profile: GAL7, GAL6, GAL5, GAL4, 
GAL3, and GAL1. Samples ST2, ST6, ST7, ST9, ST10, GAL4, and GAL5 were dated in this study.
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3.1.2.  Apatite and Zircon (U-Th)/He Dating

Apatite and zircon (U-Th)/He analyses were conducted at the Noble Gas Laboratory of Géosciences Montpellier 
(France). All samples were crushed and sieved, and apatite and zircon concentrates were obtained by heavy liquid 
methods. Inclusion-free crystals with no evidence of fracture were hand-picked under a binocular microscope. 
Each single grain was packed in Pt tubes for apatite or Nb tube for zircon, placed under vacuum, and heated 
with a 1,090 nm fiber laser operating at 4.0 W (900°C) for apatite and 6.2 W (1,100°C) for zircon. We applied a 
duration of heating of 5 min for apatite and 15 min for zircon. After  3He spiking, gas purification was achieved 
by a cryogenic trap and two SAES AP-10-N getters, and helium content was measured on a quadrupole Prisma-
Plus QMG 220. The  4He content was determined by the peak height method and was 10–10,000 times above 
typical blank levels. A second heating run using the same analytical procedure was systematically conducted 
to verify that more than 99% of  4He was extracted during the first run. After helium extraction, Pt or Nb tubes 
were retrieved from the sample chamber and transferred in a 2 ml polypropylene conical tube. Samples were 
doubly spiked ( 230Th and  233U) and dissolved using procedures previously described by Wu et  al.  (2016) for 
apatite and Gautheron et al. (2021) for zircon. The resulting solutions were diluted, and U ( 233U and  238U) and Th 
( 230Th and  232Th) were measured by using isotope dilution ICPMS. For age calculation, alpha ejection correction 
(Farley et al., 1996) was calculated using the Ft software (Gautheron & Tassan-Got, 2010; Ketcham et al., 2011). 
Durango apatite and Fish Canyon Tuff (FCT) zircon replicates were analyzed between four unknown grains and 
yielded a mean age of 31.24 ± 2.18 and 29.19 ± 1.19 Ma, respectively, during the different analyses of this study. 
These results are consistent with the Durango reference age of 31.02 ± 1.01 Ma given by McDowell et al. (2005) 
and FCT reference age of 28.30 ± 2.8 Ma (Reiners & Nicolescu, 2006). Conservatively, the He partial retention 
zone for the zircon system is assumed to be between 140°C and 220°C (Guenthner et al., 2013) and in the range 
of 40°C–80°C for apatite (Stockli et al., 2000). It is important to note that the helium retention is sensitive to the 
crystal chemistry (eU values, chlorine content) and cooling history of samples (see Ault et al., 2019), and also 
that the PRZ can spread over a larger range of temperature (see Ault et al., 2019).

3.1.3.  Apatite Fission Tracks

Apatite grains were mounted and polished for etching to reveal the natural spontaneous fission tracks. Apatites 
were etched using 5.5N HNO3 at 20°C for 20 s. Etched grain mounts were packed with mica external detectors 
and corning glass (CN5) dosimeters and irradiated in the Chilean CCHEN nuclear reactor. Following irradiation, 
the external detectors were etched using 40% HF at 20°C for 40 min. Analyses were carried out on an Olym-
pus BX61 microscope at a magnification of ×1,250, using a dry (×100) objective in the Dating laboratory of 
Géosciences Environnement Toulouse (France). Confined track-length measurements were performed using a 
drawing tube and digitizing tablet, calibrated against a stage micrometer. Single-grain AFT ages were calculated 
using the external detector method and the zeta calibration approach, as recommended by the I.U.G.S. Subcom-
mission on Geochronology (Hurford, 1990). Track-length measurements were restricted to confined tracks paral-
lel to the c-crystallographic axis. Fission tracks in apatite shorten or anneal with increased temperature and dura-
tion of heating. For apatite of typical Durango composition (0.4 wt% Cl), experimental and borehole data (Green 
et al., 1989; Ketcham et al., 1999) show that over geologic time fission tracks begin to anneal at a sufficient rate 
to be measurable above ∼60°C, with complete annealing and total resetting of the AFT age occurring between 
100°C and 120°C. This range of temperatures is usually labeled the apatite fission track partial annealing zone 
(PAZ).

3.2.  Thermochronological Data Interpretation

3.2.1.  Age-Elevation Relationships (AER)

For each crustal block (Figure 2), the AERs between the different thermochronological data have been used to 
estimate first-order apparent exhumation rates and also to get information on timing for potential changes in 
exhumation (i.e., break-in-slope in AERs). This approach is independent from the thermal structure of the block 
under consideration (e.g., Braun, 2002; Fitzgerald & Malusà, 2019; Fitzgerald et al., 1995; Wagner et al., 1977), 
but it relies on several assumptions and simplifications. First, it only considers the measured thermochronologi-
cal ages without taking into account potential sample-specific kinetics from parent element content for instance 
(e.g., Ault et al., 2019). The AER approach also considers a vertical distribution of investigated samples (Stüwe 
et al., 1994), which is rarely the case in the field, and may also be influenced by potential changes in topography 
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(Braun, 2002) or the presence of secondary faults. A major potential problem concerning the interpretation of 
AERs is the complexity of the exhumation scenario (i.e., number of segments which can be defined in an age-ele-
vation data set), we thus used a Bayesian Information Criterion (BIC) to select the appropriate model complexity 
(Schwarz, 1978). In this study, we followed the approach developed by Glotzbach et al. (2011) to determine the 
best-fitting AER estimates for AHe, AFT, and ZHe data with minimization of the BIC.

3.2.2.  Inverse Thermal Modeling Under QTQt

In order to reconstruct the thermal history of the different crustal blocks (Figure 2), time-temperature paths were 
modeled with QTQt 5.7.0 software (Gallagher, 2012; Gallagher et al., 2009) using AHe and ZHe single-grain 
ages and parameters (eU, Rs) together with AFT single-grain ages with length distribution data. QTQt software 
uses a Bayesian Markov chain Monte Carlo sampling method to infer sample time-temperature histories (Charvin 
et al., 2009; Sambridge, 1999). This software is particularly efficient to model together several samples from 
the same elevation profile. We parametrized modeling to allow all samples of a given elevation profile to evolve 
under a common thermal path with a typical geothermal gradient of 30°C ± 10°C in order to take full advantage 
of the multi-sample inversion approach (Vermeesch & Tian, 2014). The radiation-damage model of Gautheron 
et al. (2009) has been chosen for the AHe, the kinetic models of Ketcham et al. (2007) for AFT and Guenthner 
et al. (2013) diffusion model for ZHe. For each model, 100,000 iterations have been performed and the predicted 
vs. observed ages graph is systematically presented with output time-temperature histories. ZHe data are modeled 
only for the Carança block (where we obtained a ZHe elevation profile), and are used as first-order time-temper-
ature constraints to define the thermal histories of the other crustal blocks (no available ZHe profile, only scarce 
individual data obtained with the population method).

4.  Results
4.1.  New Thermochronological Ages

4.1.1.  Apatite and Zircon (U-Th)/He

All AHe and ZHe single-grain ages obtained in this study are reported in Table 1. We also present different graphs 
of ages vs. Rs, eU, and Th/U in the Supporting Information (Figure S1 in Supporting Information S1). For the 
South Mérens block, an augen gneiss (sample ST13) was collected in the footwall of the Fontpédrouse fault and 
provides a mean AHe age of 16.7 ± 1.0 Ma. Two apatite grains have not been considered to calculate the mean 
AHe age due to their anomalous high eU content compared to the other grains, possibly due to U-rich inclusions 
in these apatite grains (Table 2 and Figure S1 in Supporting Information S1). Note that ST13 has an AHe age 
younger than all AHe ages (all >25 Ma) previously obtained in the South Mérens block (Maurel et al., 2008; 
Milesi, Monié, Münch, et al., 2020). This cannot be explained by different Rs or eU values of the dated apatite 
grains (Table 1, Figure S1 in Supporting Information S1) and therefore sample ST13 will be considered inde-
pendently of other samples from the South Mérens block due to its particular structural position in the footwall 
of the Fontpédrouse fault (Figure 3).

In the footwall of the Têt fault, three samples from the Canigou massif, previously analyzed using multigrain AHe 
approach, were re-processed using a single-grain approach. Sample CAN12 from the base of the profile (970 m) 
shows a mean AHe age of 16.7 ± 1.3 Ma that agrees with the multigrain AHe age of 18.8 ± 1.0 Ma (Maurel 
et al., 2008). On top of the massif (2,784 m), sample CAN4 displays larger single-grain AHe age dispersion 
between 24.3 and 33.5 Ma, without any clear relationship with the apatite chemical composition (Table 1 and 
Figure S1 in Supporting Information S1). The mean single-grain AHe age of CAN4 (27.9 ± 4.8 Ma), despite 
high uncertainty, is younger than the multigrain AHe age of 34.7 ± 1.7 Ma obtained on three aliquots by Maurel 
et al. (2008). At an intermediate elevation (2,050 m), a single apatite grain provides an AHe age of 19.6 ± 1.0 Ma 
for sample CAN8. In the southern Costabonne massif, two samples VER11 (1,560 m) and VER13 (1,935 m) 
show low intra-sample age dispersion, except one apatite grain excluded for the mean age calculation due to its 
important eU content and young AHe age (Table 1 and Figure S1 in Supporting Information S1). AHe ages are 
respectively of 30.6 ± 1.8 Ma for VER11 and 34.9 ± 1.8 Ma for VER13. In the olistostrome of the Conflent 
basin, two augen gneisses (OL1 and OL2, Figure 2) provide five AHe ages with four of them between 40.8 ± 2.3  
and 49.5 ± 2.2 Ma, and one at 21.7 ± 1.1 Ma. In the Carança massif, a new AHe mean age of 11.9 ± 0.9 Ma 
has been obtained for a granite sample (GAL5), thus confirming the previous single-grain AHe ages between 
10.0 ± 0.4  and 14.1 ± 1.1 Ma obtained for the GAL profile (Milesi, Monié, Münch, et al., 2020). In the western 
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part of Carança block, samples ST6, ST7, ST9, and ST10 collected at a similar elevation provide mean AHe ages 
of 25.5 ± 6.5, 17.1 ± 1.4, 24.3 ± 3.0, and 19.6 ± 4.4 Ma, respectively (Table 1 and Figure 3). ST samples provide 
quite large intra-sample variability in AHe ages, which cannot be explained by the chemical characteristics (eU, 
Th/U) or the grain size (Rs).

In the Carança massif, seven samples collected at different elevations (from 900 to 1,900 m) have been dated 
using the single-grain ZHe method. These zircon grains have an eU content mostly ranging between 500 and 
1,900 ppm, except sample PLA2 (1,900 m) that contains two zircons with eU values above 3,000 ppm. These 
samples do not display important intra-sample age variation and show mean ZHe ages increasing regularly with 
elevation from 22.0 ± 1.7  to 32.5 ± 3.3 Ma. The two samples PLA3 (1,622 m) and TET5 (1,900 m) from the 
top of the profile display similar ZHe ages of 36.2 ± 2.9  and 37.3 ± 3.0 Ma, respectively (Table 1 and Figure 3).

4.1.2.  Apatite Fission Tracks (AFT)

In the Carança massif, three new AFT ages have been obtained for samples TET4 (1,390 m) and GAL4 (1,221 m) 
and ST2 (1,217 m; Figure 4). They are respectively of 17.4 ± 1.7, 15.2 ± 1.4, and 17.4 ± 1.7 Ma, with related 
mean track lengths of 12.84 ± 0.50, 12.81 ± 0.70, and 12.39 ± 0.50 μm. AFT data and mean track lengths are 
summarized in Table 2 and shown with literature data in Figure 4.

4.2.  AERs and Apparent Exhumation Rates

4.2.1.  Hanging Wall of the Têt Fault

In the hanging wall of the Têt fault, AERs are presented only for the South Mérens block (Figure 5a). AERs based 
on AFT and AHe data suggest a three-stage exhumation scenario defined by the lowest BIC (Figure 5a). Samples 
between 1,400  and 2,400 m provide AFT central ages between 32.3 ± 3.4  and 38.6 ± 2.4 Ma, corresponding 
to a mean apparent exhumation rate of 0.48 km/Ma. The uncertainty on this exhumation rate is relatively large  

Figure 3.  Synthesis of AHe and ZHe ages in the study area. Samples with green labels are new samples from this study, those with black labels are from previous 
literature studies (Gunnell et al., 2009; Maurel et al., 2008; Milesi, Monié, Münch, et al., 2020; Milesi, Monié, Soliva, et al., 2020; Milesi et al., 2019). Along altitudinal 
profiles, samples from North to South are: ST profile - ST3, ST4, ST10, ST9, ST8, ST7, ST6; GAL profile—GAL7, GAL6, GAL5, and GAL3. Samples ST6, ST7, ST9, 
ST10, and GAL5 were dated in this study.
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(from 0.22 to 1.90 km/Ma) because most samples lie on an apparent vertical straight line. Samples CMPC1 and 
CMPC2 from the top of the profile (2,900 m), with AFT central ages ∼50 Ma, indicate a lower apparent exhu-
mation rate (0.04 km/Ma) that prevailed between ∼35 and 50 Ma (Figure 5a, upper graph); although the two ZHe 
ages in this block suggest potential variability in the exhumation rate during this period. CMPC1 and CMPC2 
are the westernmost samples, it may also be possible that they have experienced different exhumations than other 
samples further East. However, these are the only thermochronological data available above 2,400 m for the 
South Mérens block, so we cannot assess further this potential difference.

AHe ages from samples above 1,700 m indicate an apparent negative exhumation rate between 35 and 40 Ma. 
Sample ML3 (2,030 m), which presents an AHe mean age older than its AFT central age has not been consid-
ered. This age inversion can find several explanations: an excess helium in the apatite grains (Green et al., 2006), 
the presence of inclusion inside or rich U-Th grain boundary phases (Murray et al., 2014). Sample ST13 is not 
presented in Figure 5, its mean AHe age (16.7 ± 1.0 Ma) is younger than that of other samples and cannot be 
explained by the regional AER trend. The particular structural location of this sample in the footwall of the 
Fontpédrouse fault, close to the fault corner between Fontpédrouse (NW-SE) and the Têt fault (NE-SW) can 
explain the specific exhumation history due to the NW-SE fault activity (see Section 2.1). The negative appar-
ent exhumation rate obtained can be due to: (a) the small number of samples (4 in total) above 1,700 m used 
to precisely define an exhumation rate in this block; (b) a change in AHe kinetics due to the rapid exhumation 
(e.g., Ault et al., 2019); (c) a major decrease of relief during this period (Braun, 2002; McDannell et al., 2018; 

Figure 4.  Apatite fission track (AFT) central ages for the study area. Samples ST2, GAL4, and TET4 (in green) are from this study, AFT ages in black have been 
extracted from Maurel et al. (2008) and Gunnell et al. (2009) (See Table S1 in Supporting Information S1 for details and locations).
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Reiners, 2007). This AER above 1,700 m is strongly influenced by AHe mean ages from CMPC1/2 samples at 
the top of the profile (Figure 5a, lower graph), and can be explained only by rapid exhumation rates, consist-
ently with the exhumation rates derived from the AFT central ages during this period (Figure 5a, upper graph). 
Samples between 1,000  and 1,700 m (Figure 5a, lower graph) provide AHe mean ages between 24.2 ± 4.0  and 
40.0 ± 2.0 Ma, suggesting an important decrease in the apparent exhumation rate (0.05 km/Ma). For comparison, 
AFT ages in the North Mérens block support a mean apparent exhumation rate of 0.46 km/Ma between ∼52 and 
48 Ma, with high uncertainty due to the low number of AFT central ages obtained for this block (see Figure S2 
in Supporting Information S1).

4.2.2.  Footwall of the Têt Fault

In the footwall of the Têt fault, the Canigou-Costabonne (Figure 5b) and Carança blocks (Figure 5c) are separated 
by the Py fault and therefore their AERs have been considered individually. In Figure 5b (upper graph), the AER 
deduced from AFT data in the Canigou sub-block (between 970  and 2,784 m), suggests a single exhumation 
phase between ca. 22 and 27 Ma, with an apparent exhumation rate of 0.33 km/Ma. AHe mean ages from the 
same block (Figure 5b, lower graph) are between 16.7 ± 1.8  and 34.7 ± 2.5 Ma, suggesting an apparent exhuma-
tion rate of 0.16 km/Ma from the Priabonian to the end of the Burdigalian. South of the Canigou massif, samples 

Figure 5.  Age-Elevation Relationships (AERs) for AFT and ZHe (first raw) and AHe data (second raw) for (a) the South Mérens block (the AHe mean age of sample 
ML3 at elevation of 2,050 m, with AHe mean age older than AFT central age has not been considered), (b) the Canigou-Costabonne massif and (c) the Carança massif.
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from the Costabonne massif do not show enough elevation difference to provide a reliable exhumation rate from 
AERs. However, it can be noted that for samples taken at similar elevations in these two massifs, the AFT and 
AHe ages are 1–10 Ma older in the Costabonne massif than in the Canigou massif (Figure 5b).

In the Carança massif (Figure 5c), both ZHe and AHe data have been used to constrain apparent exhumation rates 
from AERs. Three AFT central ages cannot be used given the limited elevation distribution (Figure 5c, upper 
graph). ZHe data obtained on 7 samples show a quasi-ideal AER with an apparent exhumation rate of 0.06 km/
Ma between ca. 37 and 22 Ma. AHe data suggest a similar apparent exhumation rate (0.07 km/Ma), between ca. 
22 and 10 Ma, with some age variability for samples between 1,250 and 1,550 m on the ST profile, probably due 
to the proximity of secondary NW-SE faults that locally fragmented the massif in many sub-blocks (Figure 5c, 
lower graph). We can also note that the AER slope defined between 17 and 15 Ma by the three AFT central ages 
of the Carança block is in agreement with that derived from AHe mean ages from 20 to 10 Ma (Figure 5c).

4.3.  Thermal Evolution

4.3.1.  Hanging-Wall of the Têt Fault

The thermal history of the South Mérens block has been derived for all AHe (30) and AFT (12) data from 16 
samples used to define AERs (Figure 5a). For this block, the two ZHe ages of samples ML1 and ML6 (Figure 3) 
have been used as time-temperature constraints for numerical modeling. Another model set-up, including AHe 
ages of ST13 and ML3 samples and without any ZHe constraint, has been considered and is presented in the 
Supporting Information (Figure S3 in Supporting Information S1). The output thermal evolution, depicted in 
Figure 6a, shows that between 50 and 38 Ma, the South Mérens block experienced a cooling rate of around 
5°C/Ma, followed by an abrupt acceleration in cooling (∼30°C/Ma) between 38 and 35 Ma. Then, since 35 Ma, 
this block was experiencing slow and continuous cooling (<1°C/Ma). Similar results have been observed in 
the alternative model (Figure S3 in Supporting Information S1), while AHe ages of ST13 and ML3 samples 
cannot be correctly reproduced (Figure S3 in Supporting Information S1). With the exception of two AHe ages, 
all predicted AHe, AFT ages and track lengths are consistent with the observed data implemented for inverse 
modeling (Figure 6a).

4.3.2.  Footwall of the Têt Fault

For the Têt footwall, QTQt thermal modeling was conducted successively on the Canigou and Carança blocks, 
which are separated by the Py fault. In the Canigou block, data available in the Costabonne sub-block were not 
considered due to the presence of the Llipodère fault between the Canigou and Costabonne sub-blocks (Figure 1b) 
and the lack of data under 2,200 m (only two samples with AHe method, VER11 and VER13). An alternative 
modeling set-up with data from Costabonne sub-block is available in the Supporting Information (Figure S3 in 
Supporting Information S1). The Canigou thermal modeling (Figure 6b) was designed with all the AHe (12), 
AFT (6) and track-length data from 7 samples available from the bottom to the top of the massif (thermal mode-
ling output without ZHe constraint is available in Figure S3 in Supporting Information S1). The output thermal 
history suggests an important cooling event until ca. 33 Ma (onset timing not precisely constrained) at around 
30°C/Ma, followed by slow cooling (<1°C/Ma) until ca. 26 Ma. A second cooling phase at ∼10°C/Ma can be 
observed between 26 and 19 Ma, followed by slow cooling until present-day. The thermal history reproduces well 
AHe, AFT ages and mean track lengths, except the AHe age of sample CAN9 (2,100 m) and mean track lengths 
measured on samples from the Canigou summit (CAN4 and CAN5). Thermal modeling based on data from the 
Costabonne sub-block (Figure S3 in Supporting Information S1) also suggests rapid cooling (30°C/Ma) for this 
block between 32 and 29 Ma, followed by slow cooling (<1°C/Ma); however, this model output should be consid-
ered with caution due to the small amount of data (4 AFT and 2 AHe). This rapid cooling would be consistent 
with an early Oligocene cooling phase, before the Oligo-Miocene phase recorded between 26 and 19 Ma for the 
Canigou massif (Figure 6b).

The modeled thermal history of the Carança block (Figure 6c) is based on AHe (59), AFT (3) and ZHe (24) data 
from 20 samples. Output thermal history reveals slow cooling (<1°C/Ma) of the massif between 40 and 25 Ma. 
The main cooling phase at ∼20°C/Ma occurred between 25 and 21 Ma, followed by slow cooling (<1°C/Ma) 
until 12 Ma. A second cooling pulse, of relatively minor magnitude, can be observed between 12 and 9 Ma with a 
predicted cooling rate of 10°C/Ma, and is followed by slow cooling (<1°C/Ma) since 9 Ma. Despite the important 
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Figure 6.  Thermal history of (a) South Mérens block from the hanging wall of the Têt fault, (b) Canigou massif and (c) Carança block from the footwall of the Têt 
fault. Thermal models were computed using QTQt software (Gallagher, 2012). T-t paths for the uppermost (blue) and the lowermost (red) samples are presented 
(dashed lines correspond to 95% confidence interval). Black boxes are constraints based on ZHe data from South Mérens block and Canigou massif, ZHe data are 
modeled for the Carança block. To the right, age-elevation profiles using predicted vs. observed ages for each block are presented as well as observed and predicted 
track lengths. AHe ages represented with orange error bars in the South Mérens block are not used to construct the thermal evolution model. Sample names for which 
several thermochronometers were used are indicated in bold. Note that mean predicted/observed data are presented for clarity, but that thermal modeling has been using/
predicting single-grain AHe/ZHe data and (U-Th)/He ages (uncorrected for alpha ejection; Farley et al., 1996).
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amount of data and an apparent dispersion of AHe ages (see Figure 6c), the modeled thermal history reproduces 
well the AHe ages (except for samples GAL6, GAL3, ST6, and ST9), AFT ages and ZHe ages (except for sample 
GAL7). However, we can note that the predicted mean track lengths are not well reproduced and are generally 
longer than the observed ones (Figure 6c).

5.  Discussion
5.1.  The Têt Fault Hanging Wall: Contractional Stage

In the hanging wall of the Têt fault, North and South Mérens blocks were distinguished in the present study. In the 
North Mérens block, AHe mean ages are between 30 and 40 Ma (Figure 3), while AFT central ages are between 
45 and 54 Ma (Figure 4 and Figure S3 in Supporting Information S1). These ages are older than those obtained 
at similar elevations in the South Mérens block. This difference in low-T thermochronological data suggests 
an early exhumation of the North Mérens block during the Early Eocene, which is in agreement with McCaig 
and Miller (1986), who proposed on the basis of of  40Ar/ 39Ar mica dating that the Mérens fault was reactivated 
southward around 50–60 Ma. The scarcity of data in the North Mérens block has not allowed to perform thermal 
modeling.

The thermal history of the South Mérens block (Figure 6a), obtained using AHe and AFT data, highlights a first 
stage of cooling between 50 and 38 Ma (>5°C/Ma), that is coeval with a period of maximum shortening in the 
Eastern Pyrenees that has been evidenced in the Agly-Salvezines massifs to the North of our study area (Ternois 
et al., 2019). This cooling stage became more rapid between 38 and 35 Ma (∼30°C/Ma, Figure 6a). The fast 
exhumation rate that prevailed during this last cooling stage (0.45 km/Ma from AER, Figure 5a) can be associated 
with the activity of the Cadi-Canigou thrust fault that emerges further South (Ternois et al., 2019). This thrust 
is one of the major fault accommodating the convergence between the Iberian and European plates during the 
Eocene (also see Bosch et al., 2016; Cruset el al., 2020; Fitzgerald et al., 1999; Labaume et al., 2016; Mouthereau 
et al., 2014; Rushlow et al., 2013; Whitchurch et al., 2011). This interpretation is also consistent with the general 
propagation and stacking of the nappes from the North to the South in the Pyrenees (Cruset et al., 2020; Fillon & 
van der Beek, 2012; Jolivet et al., 2007).

At around 35 Ma, our thermal model output suggests that nearly all the samples collected from 1,100  to 2,900 m 
were above their respective PAZ and PRZ. After 35  Ma, low cooling rates are consistent with an important 
decrease in exhumation toward present-day in the Têt-fault hanging wall (Figure 5a). This is in agreement with 
the recent exhumation model for the Axial Zone proposed by Curry et al.  (2021). On the basis of a regional 
thermochronological data compilation and thermo-kinematic modeling (for details see Curry et al., 2021), this 
exhumation model suggests that rock uplift rates peak at 30–40 Ma in the Eastern Pyrenees, about 10 Ma earlier 
than in the western Pyrenees (see also Fillon & van der Beek, 2012 for a similar conclusion).

5.2.  The Têt Fault Footwall: Extensional Stage

In the different crustal blocks from the southern Têt fault footwall, we used a large number of ZHe, AFT, and 
AHe data to constrain output thermal histories that emphasize multiple cooling phases since the end of the 
Eocene (Figure 7). A first fast cooling (∼25°C/Ma), that started at an unconstrained period but ended at ca. 
33 Ma, is recorded essentially by samples from the top of the Canigou massif (CAN4 and CAN5). Within these 
two samples, the differences between modeled and observed mean track lengths (Figure 6b) can be explained by 
the small amount of measured tracks (n = 30 and 69, respectively, see Figure 4). We can note that zircon fission 
track ages of Maurel et al. (2008) from the top and bottom of the Canigou massif are very similar (30.9 ± 2.5  and 
33.8 ± 2.1 Ma respectively, see Table S1 in Supporting Information S1). This suggests an important exhumation 
step of at least 2,000 m during the Priabonian-Rupelian period, which is not recorded further West in the Carança 
block by the ZHe data (Figure 5c). Thermochronological data from the Costabonne masssif are also consistent 
with an early Rupelian cooling phase in the Py fault footwall (Figure S3 in Supporting Information S1). The Py 
normal fault is a NW dipping master fault between the Canigou and Costabonne massifs (with numerous field 
evidence of substantial displacement: triangular facets, metric fault core with gouges) that branches out on the 
Têt fault to the North (Figures 1 and 2).
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This important exhumation signal in the Canigou and Costabonne massifs is better explained by normal fault-
ing rather than south-verging thrusting at the regional scale, such as described further South of the study area 
(e.g., Cruset et al., 2020). We propose that this interpretation of exhumation before 33 Ma is only relevant to the 
Canigou and Costabonne massifs (Figures 1 and 6) and not to the whole Canigou-Carança range in agreement 
with Ternois et al. (2019). The Têt and Py faults had probably both accommodated the main exhumation of the 
Canigou and Costabonne blocks, the normal activity of the Py fault (or both faults) resulting in maintaining the 
Carança block at depth to the West. Normal activity of the western part of the Têt fault (Carança block) cannot be 
excluded due to the connection between the Py and the Têt faults (Figure 1). The normal activity of the Py fault 
thus explains why the low-T thermochronometers used in our study do not record any cooling below PRZ nor 
PAZ during this period in the Carança block. In a contractional context, the diachronism between the Canigou 
and Carança blocks would require the presence of a master reverse back-thrust between these two blocks, which 
is not supported by field observations along the Py fault. Because the South Mérens block was already at shallow 
crustal level and thus has not recorded any significant cooling/exhumation since 35 Ma, both the Py fault and the 
southeasternmost segment of the Têt fault were probably active during the Priabonian-Rupelian period to allow 
for the exhumation of the Canigou-Costabonne massifs only.

The second major cooling event from our output thermal histories occurred between the upper Oligocene and the 
lower Miocene (i.e., ca. 26–19 Ma), and was recorded by both the Canigou and the Carança massifs (Figure 7). 
During this period, the Canigou massif experienced relatively fast exhumation (0.33  km/Ma from AER, 
Figure 5b). This cooling/exhumation signal can be thus associated to normal faulting all along the Têt fault. In 
the Canigou massif, low-T thermochronology data do not document any major cooling/exhumation since 19 Ma, 
suggesting that the southeastern segment of the Têt fault remained partly inactive since the Burdigalian. This is 
in agreement with the sedimentary record in the Conflent basin, showing that the main subsidence, associated 
with normal activity of the eastern segment of the Têt fault, was concentrated from the Aquitanian to the Early 
Burdigalian (Calvet et al., 2014). In addition, the AHe mean ages (mostly older than 40 Ma) obtained on gneiss 
samples from the olistotrome formation in the Conflent basin suggest that the olistolithes collapsed during this 
upper Oligocene-lower Miocene phase of significant exhumation. Indeed, AHe mean ages from the olistotrome 
formation are older than for modern bedrock samples at the top of the Canigou profile (AHe mean ages about 
30 Ma, Figure 5b). These old ages also show that the olistolithes were not buried enough to reset the AHe signal.

Figure 7.  Output thermal histories for the study area: the South Mérens block (blue), the Canigou massif (red, with the 
associated box for ZHe constraint) and the Carança block (green). Thermal models were computed using QTQt software 
(Gallagher, 2012). Main cooling events are indicated by purple (hanging wall of the Têt fault) and gray (footwall of the Têt 
fault) bars.
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In the Carança block, our AHe data allow to differentiate two sub-blocks separated by the NW-SE Fontpédrouse 
fault (Figures  1 and  3). AHe mean ages from the eastern sub-block (TET and GAL samples) are younger 
(10–15 Ma) than for the western sub-block (ST and PLA samples) collected at similar elevations (15–25 Ma, 
Figure 3). This AHe age difference is obvious for samples between 1,250 and 1,550 m (Figure 5c). In addition, 
the Fontpédrouse normal fault propagates in the South Mérens block, and it seems likely that the AHe mean age 
of 16.7 ± 1.0 Ma obtained close to this fault (sample ST13) recorded the fault activity during the Burdigalian 
(see also alternative thermal modeling in Figure S3 in Supporting Information S1). Note that despite the prox-
imity of a huge gouge zone and evidence for fluid alteration, the Rare Earth Element distribution of this sample 
remains unaffected by hydrothermalism (see Figure S4 in Supporting Information S1) compared to our previous 
observations along the Têt fault itself (Milesi, Monié, Münch, et al., 2020). NW-SE trending faults are frequent 
in this western segment of the Têt fault (see Milesi, 2020; Taillefer et al., 2021) and their activity can account for 
an important segmentation of the Carança massif with therefore a spatial variability in AHe data due to slightly 
different cooling histories within the different sub-blocks. In spite of these local perturbations by NW-SE faults in 
the Carança block, AHe and ZHe data are well reproduced by the QTQt model (Figure 6c), and only mean track 
lengths show important differences between observed and modeled data, which can be explained by the small 
amount of tracks measured on the three samples (see Table 2 for details).

A third cooling event has been recorded between 12 and 9 Ma (Serravallian-Tortonian) but only for the Carança 
block (Figure 7). The lack of record in the Canigou-Costabonne and South Mérens crustal blocks suggests a 
tectonic activity limited to the southwestern segment of the Têt fault, rather than a general exhumation of the 
eastern part of the Pyrenees (Calvet et al., 2021; Huyghe et al., 2020). This relatively recent activity can explain 
the preservation of triangular facet. along the Têt fault (Delmas et al., 2018; Petit & Mouthereau, 2012) and is 
also consistent with the syntectonic sedimentation of late-Miocene age recorded by the lower unit in the Cerdagne 
basin (Agustí & Roca, 1987; Pous et al., 1986; Roca, 1996). The opening of the Cerdagne pull-apart sedimentary 
basins appears essentially controlled by the development of the NW-SE normal faults, facilitated by pre-existing 
NW-SE segments along the Têt fault (Cabrera et al., 1988).

5.3.  Fault System Evolution Model and Geodynamic Implications

In the eastern part of the Pyrenees, North-South shortening has been recorded until ca. 35 Ma by our low-T 
thermochronological data. This is consistent with the timing for late contractional episode on the North Pyrenean 
Thrust Front (Grool et al., 2018) and the last main peak of Pyrenean activity (Bartonian-Priabonian) recorded 
in Provence (Lacombe & Jolivet, 2005). On another side, new U-Pb on calcite studies suggest that shortening in 
the external units of the Pyrenees proceeded until the middle Miocene (Cruset et al., 2020; Hoareau et al., 2021; 
Parizot et al., 2021), which could be a consequence of the far-field stress imposed by Africa-Europe convergence 
(Jolivet, Baudin, et al., 2021; Mouthereau et al., 2021). Based on the sedimentary record, a recent study in the 
Gulf of Lion margin revealed that the shift between the Pyrenean contractional and extensional tectonics occurred 
during the late Rupelian (∼30 Ma, Séranne et al., 2021), with evidence for a rapid change in the tectonic regime. 
Although the timing of this shift in tectonic regime is globally consistent (see Section 5.2), our results suggest 
a slightly earlier onset of normal faulting along the Py and Têt faults, that is, during the Priabonian, and an end 
of extensional tectonics at ca. 33 Ma (Figure 7). We should also note that previous thermochronological studies 
proposed a large-scale episode of exhumation recorded in the Eastern Pyrenees between 35  and 30 Ma (Morris 
et al., 1998) that could be regarded as a consequence of normal faulting, rather than thrusting. This first exten-
sional event preceded a ∼7 Ma long period of exhumation quiescence between 33 and 26 Ma (Figure 7), which is 
synchronous to the development of back-arc extension in the Mediterranean domain (onset at 32–30 Ma, Jolivet 
& Faccenna, 2000). Thus the first exhumation and coeval extensional tectonic phase does not appear to be related 
to the rifting phase leading to the opening of the Liguro-Provençal domain, especially with regard to the specific 
configuration of the Py fault (Figure 8a, i.e., oriented N030°E compared to the N060°E main trend of the Gulf 
of Lion faults). This event may rather correspond to the West European Rifting from strain geometry and age 
of exhumation (Angrand & Mouthereau, 2021; Jolivet, Baudin, et al., 2021; Mouthereau et al., 2021; Romagny 
et al., 2020; Séranne et al., 2021; Ziegler, 1992). The West European Rifting is considered geodynamically inde-
pendent and can lead or be immediately followed by the Gulf of Lion opening (Jolivet et al., 2015, 2020; Réhault 
et al., 1987; Séranne, 1999; Vignaroli et al., 2008).
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A second extensional event has been recorded between the upper Oligocene and Burdigalian for the whole Canig-
ou-Carança range, associated to a main normal faulting phase along the Têt fault (Figures 7 and 8b). This event 
corresponds to the main cooling event recorded by Maurel et al. (2008), and it appears to be related to the opening 
of the Gulf of Lion, consistently with sedimentary records on the Catalan margin (Bartrina et al., 1992). In terms 
of the direction of extension (NW-SE), this event clearly corresponds to the NE-SW trend of the faults observed 
in the Languedoc, Roussillon, Catalan and Valencia troughs, as well as offshore faults observed at the margin 
of the Gulf of Lion (e.g., Jolivet, Menant, et al., 2021; Maillard et al., 2020; Mauffret et al., 2001; Romagny 
et al., 2020; Séranne, 1999). In terms of timing, this second extensional event appears slightly younger than the 
onset of rifting in Languedoc (late Rupelian, Séranne, 1999), and earlier than the second stage of normal faulting 
on the Catalan margin (Roca & Desegaulx, 1992), probably reflecting the rift propagation toward the Southwest 
(Séranne, 1999).

A third extensional event (Figure  8c) has been recorded by AHe data in the Carança and the South Mérens 
blocks, not in the Canigou-Costabonne block (Figure 3). In the Carança massif, AHe data suggest a change in 
the direction of extension from NW-SE to NE-SW during the Lower-Miocene times (ca. 18 Ma), with normal-
sense mouvement on the NW-SE Fontpédrouse fault. This stage evolved afterward between 12 and 9 Ma on 
the southwestern segment of the Têt fault, commonly associated to a reactivation stage with moderate normal 

Figure 8.  Reconstitution of the extensional tectonic evolution since the Priabonian in the eastern part of the Pyrenees. (a) Priabonian-Rupelian period (35–32 Ma) is 
marked by the exhumation of the Canigou-Costabonne massif, linked to the Py fault normal motion. A WNW-ESE direction of extension is proposed. (b) Aquitanian-
Burdigalian period (26–19 Ma) is characterized by the opening of the Gulf of Lion and normal motion of the Têt fault, more pronounced on the eastern segment of 
the fault. This observation is in agreement with the early formation of the Conflent basin at 23 Ma. During this period, the Têt fault normal activity is associated to a 
change toward the North of extensional direction (c) Burdigalian to Tortonian period (19–9 Ma) reveals a propagation further West of the exhumation along the Têt 
fault with late cooling event recorded for the Carança massif. Local (re-)activation of the NW-SE faults can be involved in AHe dispersion for this block. To the West, 
the formation of the Cerdagne basin during the Seravallian (13 Ma) is consistent with a spatial migration of the tectonic activity. Normal activity of the NW-SE faults 
and NE-SW Têt fault is possible under NNE-SSW extension. (d) Plio-Quaternary period (5–0 Ma) is marked by a N-S fault activation (Capçir f.) and E-W direction of 
extension (Calvet, 1999; Rigo et al., 2015).
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displacements between 150 and 500 m (Agustí et  al.,  2006; Calvet,  1999; Carozza & Baize,  2004; Clauzon 
et al., 1987, 2015; Delcaillau et al., 2004; Pous et al., 1986; Réhault et al., 1987; Roca & Desegaulx, 1992; Tassone 
et al., 1994). AHe data along the Têt fault reveal that the exhumation was probably more pronounced along the 
southwestern segment (>500 m). This stage, that is not recorded by low-T thermochronology data in the Canigou 
massif (Maurel et al., 2008, this study), marks differential exhumation along the Têt fault, more pronounced at 
this stage in the southwestern part, consistently with sediment infills of the Cerdagne basin (Agustí et al., 2006; 
Pous et al., 1986). This late activity on the southwestern segment of the Têt fault confirms the southwestward 
propagation of the exhumation along the Têt fault (Carozza & Baize, 2004; Carozza & Delcaillau, 1999). The 
direction of extension is also consistent with Middle-Miocene to Pliocene normal faulting in the Emporda basin 
and the North-Catalan Ranges that trends globally NW-SE (Lewis et al., 2000; Medialdea et al., 1994; Saula 
et al., 1994; Taillefer et al., 2021; Tassone et al., 1994). Moreover, the pull-apart opening of the Cerdagne basin, 
accommodated by normal activity of NW-SE to E-W faults (Agustí et al., 2006; Pous et al., 1986) and right-lat-
eral displacements on NE-SW faults (Cabrera et al., 1988), suggests that the main direction of extension was 
NNE-SSW, allowing the NE-SW Têt fault to be reactivated in right-lateral strike slip mouvement (Figure 8, 
Cabrera et al., 1988; Carozza & Baize, 2004; Delcaillau et al., 2004; Goula et al., 1999). We should also note 
that this trend of extension is also compatible with the stress tensors obtained in the Cerdagne area by Cruset 
et al. (2020). NW-SE faults could therefore have contributed to the uplift of the Cerdagne basin during Middle 
Miocene (Calvet et al., 2021; Huyghe et al., 2020; Tosal et al., 2021).

This Lower-Miocene change in direction of extension could be related to geodynamic processes implying stress 
changes at the Mediterranean domain scale. Romagny et al. (2020) proposed a global change in the main direction 
of slab retreat at about 20 Ma, with a change in the direction of retreat from NNW-SSE to mostly E-W toward the 
Appenines. Although at far distance from our study area and not clearly kinematically consistent, such process 
involving mantle flux perturbations may have implied stress changes at far distances in the Pyrenean lithosphere. 
Another potential source of stress perturbation could be the mechanical interaction and linkage (e.g., Crider & 
Pollard, 1998; Kattenhorn et al., 2000) between the Cevennes and the Catalan lithospheric normal faults, through 
a very large-scale relay zone located in the Eastern Pyrenees. Such large-scale mechanical interaction could have 
favored stress changes and strain distribution along multiple faults in this eastern part of the Pyrenees. Linkage 
had to develop with new NW-SE relay faults after the growth of the two NE-SW Cevennes and Penedes master 
faults in the Oligocene—Lower Miocene (e.g., Séranne et al., 1999), consistently with the timing and direction 
of the Upper Miocene NW-SE faults observed in the study area. Also note that both master fault segmentation at 
the place of the pre-existing Pyrenees and the timing of linkage are consistent with the margin development in the 
Roussillon and its specific orientation (NNW-SSE) in the Gulf of Lion (Mauffret et al., 2001). Finally, another 
hypothesis to consider is the presence of a new extensional phase due to a not well known geodynamic process 
in the area (e.g., stresses due to wedge collapse, erosion, or new mantle dynamic, etc.) in a larger domain since a 
similar cooling event has been recorded in the western Axial Zone (Fillon et al., 2021).

During the Plio-quaternary period (Figure 8d), seismic data inversion highlight a global N-S contraction in the 
area, while we can note E-W extension in the Cerdagne basin (Rigo et al., 2015). This E-W extension can be 
responsible for the Capçir N-S normal faulting (Baize et al., 2002; Calvet, 1999), kinematically consistent with a 
recent return to N-S Pyrenean contraction in the study area.

6.  Conclusions
Low-temperature thermochronology and inverse thermal modeling reveal successive cooling periods associated 
to the differential exhumation of crustal blocks along the southern Têt fault. In the hanging wall of the Têt fault, 
low-T thermochronological data indicate a significant exhumation/cooling period (∼30°C/Ma) between 38 and 
35 Ma, followed by an important decrease in exhumation/cooling (<1°C/Ma). This slowdown is interpreted as 
the result of the last Pyrenean contractional stage during the Priabonian. In the Têt fault footwall, we propose that 
an early exhumation stage of the Canigou-Costabonne block is recorded until 33 Ma (∼30°C/Ma) but not in the 
Carança block (further West), in association to the normal activity of both the Têt and Py faults. These results 
suggest a rapid switch between contractional and extensional regime in the Eastern Pyrénées during the Priabo-
nian. A second major cooling event (∼20°C/Ma) between the Upper Oligocene and Lower Miocene (26–19 Ma) 
is recorded both in the Canigou and Carança massifs, associated to the major period of activity of the Têt fault 
linked to the opening of the Gulf of Lion. During the upper Miocene, low-T thermochronological data from solely 
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the Carança massif suggest a third cooling event (∼10°C/Ma) during the Serravallian-Tortonian (12–9 Ma) and 
its segmentation in different sub-blocks separated by NW-SE faults. Our results reveal a progressive propagation 
of the deformation toward the Southwest along the Têt fault, and also account for major changes in the direction 
of extension in the Eastern Pyrenees since the Priabonian.
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