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Abstract

Before any publication, data analysis of high-energy physics experiments must
be validated. This validation is granted only if a perfect understanding of the
data and the analysis process is demonstrated. Therefore, physicists prefer using
transparent machine learning algorithms whose performances highly rely on the
suitability of the provided input features. To transform the feature space, feature
construction aims at automatically generating new relevant features. Whereas most
of previous works in this area perform the feature construction prior to the model
training, we propose here a general framework to embed a feature construction
technique adapted to the constraints of high-energy physics in the induction of
tree-based models. Experiments on two high-energy physics datasets confirm that
a significant gain is obtained on the classification scores, while limiting the number
of built features. Since the features are built to be interpretable, the whole model is
transparent and readable.

1 Introduction

The entire universe is made of elementary particles such as leptons and quarks as explained by the
standard model. To test this model, particle physicists try to recover properties of composite particles
from these of elementary particles. The Higgs mechanism [1] and the strong interaction [2] are
actively studied in particle collisions to understand the origin of mass.

The principle of a data analysis is always the same: detect and combine particles from collisions and
use energy/momentum conservation to isolate the signals of interest. These signals are usually rare
with several sources of background. Machine learning techniques can make a major contribution to
such an analysis as long as they pass the mandatory interpretability requirement, sometimes at the
expense of performances: any detail of an analysis must be explainable and understood.

Decision trees are very good candidates to meet this transparency requirement [3]. However it is
also well known that the choice of features can greatly affect their performances [4]. Generally,
a preprocessing step of feature engineering is performed manually based on domain expertise. In
particle physics, quantities related to energy/mass/momentum balances and highly dependent on
the process of interest are derived from base variables. Although understandable and analyzable by
construction, nothing guarantees that these quantities are optimized for the analysis of the process of
interest.

The field of feature construction (FC) aims at automating the feature engineering step. In particular,
embedded FC permits to better adjust the built features to a local data discrimination problem during
the model induction. In this work, we aim at developing techniques of embedded FC with a special
attention to the readability of the final model. The global transparency of a model also requires the
interpretability of the built features themselves, which is the second focus of our work.
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We first review related work in the field, before presenting our method and conducting experiments
on two HEP datasets from two different physics studies: the Higgs mechanism at CERN on one hand
and the strong interaction at Jefferson Laboratory on the other hand.

2 Related work

Most of the automatic feature generation algorithms are actually preprocessing methods: new features
are built from mathematical functions of the original ones and the training is performed in a subsequent
step with the new features.

The literature in automatic FC is very abundant and a survey can be found in [5]. Genetic programming
(GP) algorithm is a popular method in the FC field [6, 7, 8, 9]. It consists in evolving a population of
N -tree-like individuals through mutations and crossovers while selecting good individuals for the
next generation.

In [10], the authors propose a method to adapt a GP algorithm to handle the constraints of HEP.
Indeed, in HEP, a feature is interpretable if it resembles some of the physics laws ruling our universe.
These physics laws connect variables carrying compatible units: for instance, no physics formula
exhibits the raw sum of an angle and an energy. Therefore, to enforce the combination of compatible
features, Cherrier et al. [10] constrain the GP algorithm with a grammar and a transition matrix.
The resulting features are interpretable to physics experts and the classification score is improved
compared to the unconstrained version of the algorithm.

On the other hand, the field of embedded FC has not been so much explored yet. Ekárt and Márkus
[11] are the first to use a GP algorithm to find the best splitting feature at each node in the induction
of a decision tree. Maes et al. [12] embed a Monte Carlo search of features in several tree-based
ensemble methods, building one feature at each node of the tree.

3 Embedded constrained feature construction method during tree induction

Cherrier et al. [10] mainly use a machine learning algorithm to evaluate the candidate features during
the evolution. In this work, we propose to use the split criterion in the decision trees or ensemble
methods as the fitness function in the constrained GP algorithm of Cherrier et al. [10], thus improving
the speed of the algorithm. Computing a single information gain is indeed faster than training a whole
decision tree.

Besides, we experimentally limit the number of built features per tree to support overall intelligibility
of the model and also to prevent overfitting. When the number of allowed constructions is restrained,
the features are built from the root and level by level, going down as the tree is formed.

We propose hereafter a generic framework for embedding FC into classical tree induction algorithms.
The induction of the most commonly used tree classifiers (e.g. C4.5 [13] and CART [14]) is made
by sequentially constructing their nodes. For each node, the problem is to separate the data into
two subsets while optimizing a criterion which depends on the particular induction algorithm. Most
algorithms perform a search among the existing features to find the best split according to this criterion.
We modify this feature search step by the function findBestSplit described in Algorithm 1.

At each node during the induction of a decision tree, if the constructionCondition in Equation (1)
below is met with depth d and number of built features so far nf , with a maximal allowed number
Nmax of feature constructions, we replace the classical search among existing features by a FC
method.

d ≤ log2(1 +Nmax) and nf < Nmax. (1)

This condition is designed to ensure that the feature constructions will be performed in the first layers
of the tree. The final feature obtained by the FC algorithm is used as the feature to split the data at the
current node.

We use the C4.5 [13], adaptive boosting [15] and gradient boosting [16] algorithms in our experiments.
The induction of a C4.5 decision tree is made by maximizing the information gain at each node.
Adaptive boosting with decision trees only changes the weights of training examples. However, the
gradient boosting classifier uses the mean squared error (MSE) as the splitting criterion since the
global classification problem becomes a regression problem in the weak tree classifiers. Feature
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Algorithm 1: Generic induction of a node of a decision tree with embedded FC
Input :data in the current node

nf the number of built features so far in the tree
depth the depth of the current node
Nmax the maximum number of features to build in the tree

Result: the inducted node
Function findBestSplit(data, depth, nf)

if constructionCondition (nf , depth) then
build splittingFeature with splittingCriterion as fitness function
nf ← nf + 1

else
foreach feature in data do

compute splittingCriterion on feature
splittingFeature← feature obtaining the best criterion

if splittingFeature does not satisfy specific requirements then return null
splitted← split data along splittingFeature
return splitted

construction is done by replacing the fitness function by the splitting criterion of the induction
algorithm, computed using the considered candidate feature.

4 Experiments

We consider two HEP classification problems in this study.

DVCS dataset At Jefferson Laboratory, an electron beam scatters off protons at rest in the lab
frame. The objective is to discriminate between the DVCS interaction whose final state is composed
of an electron, a proton, and a photon, and the π0 production event which has a similar final state,
except that the photon is replaced by a π0. The later immediately decays into two photons and one of
them may not be detected, mimicking a DVCS event. The available features are the three-dimensional
momentum for each identified particle.

Higgs dataset [17] At CERN, two protons collide head-on with each other and Higgs particles
are notably produced out of the collisions. The objective of this dataset is to detect Higgs bosons
decaying into two τ -particles. The simulated data is publicly available on the Open Data platform of
CERN. 17 primitive features per event are available, including notably several geometrical features
for each detected particle.

For both datasets, we use 100000 instances: 80% of the them are dedicated to training and 20%
to performance evaluation. One should note that both datasets come from simulated data since
the truth information is needed for training. Features already present in the datasets include the
three-dimensional momenta of the particles as well as their θ and φ angles. For the GP algorithm,
we evolve a population of 500 individuals during 70 generations. For ensemble methods, we use a
downgraded version of GP called “GP down” performing only 6 generations.

4.1 Performance evaluation

In this paragraph, we evaluate the performances of C4.5, AdaBoost and GradientBoosting classifiers
with the embedded GP algorithm described above.

We vary the number of features built in total for C4.5 or per tree for ensemble methods. We use the
Cohen’s kappa metric to evaluate the performances, with at least 10 independent runs per displayed
value. Figure 1 displays the evolution of the Cohen’s kappa score of these three tree-based models
depending on the number of built features. For ensemble methods, we reserve the possibility to build
less than one feature per tree in the ensemble: in the x-axis on the top of the graph, a value p below 1
means that each tree in the ensemble has probability p to build one feature. Above 1, the value p can
only be an integer and is the number of features built per tree. The expectation for the total number
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Figure 1: Impact of the number of features on the classification score. The scale on the y-axis is
different from one graph to the next.

Table 1: Performance comparison (Cohen’s kappa metric).
* For DVCS, two hidden layers with respectively 100 and 50 neurons. For Higgs, one hidden layer
with 150 neurons. This is the configuration leading to the best score after a grid search on up to three
hidden layers and from 50 to 150 neurons per layer.

DVCS Higgs

C4.5 0.223 0.373
AdaBoost 0.223 0.341
GradientBoosting 0.336± 0.011 0.4216± 0.0016
Neural network* 0.333± 0.036 0.337± 0.062
Linear SVM 0.343 0.169

FC C4.5 best 0.3446± 0.0080 0.450± 0.013
FC AdaBoost best 0.424± 0.014 0.4787± 0.0062
FC GradientBoosting best 0.461± 0.016 0.5325± 0.0025

of built features in the whole algorithm is then the product of this value p with the number of trees in
the ensemble.

The results show that the score increases with the number of built features per tree for ensemble
methods. However, it stagnates for C4.5 algorithm after around 10-15 built features. This shows
that embedded FC with constrained GP brings a significant gain to the classification score compared
to using the same tree-based algorithm without FC (score corresponding to zero built feature on
Figure 1. Moreover, a reduction of the number of built features in C4.5 can be performed without
impairing the score.

Table 1 provides a few baselines, including the three tree-based algorithms without FC, a neural
network and a SVM. These baselines are compared to the best scores (i.e. the highest point on
Figure 1) obtained with the three tree-based algorithms with embedded FC. Even compared to
black-box models which are supposed to have an internal complex representation of the feature space,
the three presented algorithms with embedded FC perform better.

4.2 Model readability

Model conciseness is supported by the smaller number of built features required by C4.5 to get an
optimal classification score, and by the small size of weak tree classifiers which are limited in depth
in the used implementations of the two presented ensemble methods (depth 1 for AdaBoost and 3 for
GradientBoosting). The final feature space obtained with embedded FC is hence of reduced size.

Equations (2) and (3) display two features built for the Higgs dataset that are either recurrent in their
simple form or recurrent as a pattern in more complex features (they appear in respectively 61% and
74% of runs):

cos
(
θlep − θτ

)
(2) cos

(
φlep − φτ

)
(3)
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These features visibly compares the geometrical angles of a lepton and a τ , two particles which are
indeed expected to be the products of the decay of the same particle. The mass of that particle can be
computed from the features displayed above.

Equation (4) shows a recurrent feature built for the DVCS dataset (it appears in 79% of runs):

pez + pγ1z + ppz (4)

This feature is a momentum conservation check along the beam direction, absolutely relevant
considering the detector and event geometries of a fixed-target experiment. A π0 event would
obviously miss a second photon momentum in the pz sum so this feature would not take the same
value.

5 Conclusion

In the machine learning field, there is generally a need to strike a balance between the interpretability
and the performances of a model. In this work, without loss of generality, we improved three
tree-based models by embedding a constrained FC technique adapted to physics problems during
the induction. In any case, embedded FC permitted to improve the classification score while
experimenting on two datasets of HEP. The constrained versions of the FC methods enables to build
features that are interpretable at least to the experts of the field.

With the proposed method, the final model is more performant while remaining readable for further
interpretation. Finally, instead of choosing between performance and interpretability, we increased
performance while focusing on keeping the readability of the final model.
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