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 12 

Abstract  13 

Random phenomena described by non-Gaussian processes are ubiquitous in many scientific fields. 14 

Properly understanding their characteristics is crucial in safety analysis, where the random occurrence 15 

of extreme values is often critical. In practice, the information available for fully characterizing a 16 

stochastic process is often limited by experimental constraints. Thus, prediction based on simulations 17 

comes as a valid alternative. Motivated by applications in structural fatigue assessment, this research 18 

presents a simulation method for non-Gaussian stochastic processes that is able to jointly reproduce a 19 

prescribed power spectral density and a rainflow cycle count. The main idea is to model non-Gaussian 20 

behavior by a frequency-dependent non-linearity in the short-time Fourier transform. As such, the 21 

power spectral density is directly imposed, while the non-linear model is optimized to match the 22 

rainflow cycle count. It is shown that the model is flexible enough to be interpolated between different 23 

operating points, so as to allow the simulation of stochastic processes at non-measured operating 24 

conditions. The full methodology is illustrated for assessing the fatigue assessment of a hydroelectric 25 

turbine runner.  26 

 27 

Keywords: Non-Gaussian simulation; Random behaviour; Nonlinearity, Autoregressive, Kriging, 28 

High Amplitude Cycles. 29 

 30 

Nomenclature 31 ���� �� ��	 
�	, ��	 �	 � �� �� �� � ��	 

J ��	 � ��� �� �� 

Discrete-time signal 
Autocorrelation function 
Short time Fourier Transform of signal � 
Equalized STFT of signal � 
Uncorrelated random process 
Window function 
Window length 
Power Spectral Density of � 
Coefficients of AR model on STFT 
Order of AR model on STFT 
Coefficients of AR model for �	 

Order of AR model for �	 
Energy distribution  
Box-Cox transformation coefficient 
Rainflow cycle count function 
Weighted coefficients for the proposed area metric 
Opening vane level 

AR 
AM 
i.i.d 
NG 
PDF 
PSD 
RCC 
STFT 
STK 
JS 
IS 
 

AutoRegressive 
Area Metric  
Independent, Identical Distribution 
Non-Gaussian 
Probability Density Function 
Power Spectral Density 
Rainflow-Counting Count 
Short Time Fourier Transform 
Spatio-Temporal Kriging 
Jensen-Shannon divergence 
Itakura-Saito distance 

 32 

1. Introduction 33 

Non-Gaussian (NG) random processes often occur in cases with complex loading or in cases with 34 

strong excitations such as gas or fluid flow in wind turbines and hydroelectric turbines and can lead to 35 

accelerated damages. Therefore, the simulation of this NG random process is essential step to explore 36 

the stochastic behaviour of a structure. Such NG simulation has become a concern for many 37 

researchers [1-2] [4-9]. In particular, the simulation of NG processes aims at providing a mean to 38 
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better understand the effect of the excitation on structural fatigue and are for instance used to generate 39 

long-term loading (stress, strain, vibration…) needed for fatigue cycle counting. In general, 40 

simulations are useful substitutes whenever direct measurements are limited or impossible. 41 

The simulation of a NG stochastic process is expected to reproduce some of its critical properties. 42 

As far as fatigue analysis is of concern, the engineering practice has focused on the power spectral 43 

density (PSD). Spectral-based methods were early introduced to simulate stochastic processes [1-3] 44 

with an ascribed PSD, while assuming that the probability density function (PDF) is Gaussian. These 45 

popular methods have been used in numerous applications, such as the fatigue analysis of 46 

hydroelectric turbines [4] and long-span bridges [5]. A more difficult goal is to jointly prescribe a 47 

PSD and a non-Gaussian PDF [6-7]. Although imposing a NG-PDF can be achieved by various 48 

transformations, the latter will also modify the PSD in general. A natural approach is therefore to 49 

iteratively impose the PSD and the PDF until convergence is reached.  Several iterative methods are 50 

based on using the translation field proposed by Grigoriu (1995) [9]. A review of such methods is for 51 

instance given by Masters et al. (2003), Bocchini et al. (2008), Li et al. (2013) [8-10]. However, in 52 

general, reproducing a pair of prescribed PDF and PSD does not guarantee to properly describe every 53 

NG stochastic process. This is because the PDF, as it is meant in the aforementioned works, is the 54 

marginal distribution over time and not the joint PDF over all-time instants. In other words, processes 55 

with different joint PDFs may well have the same marginal PDF. The consequence is that the 56 

simulated stochastic processes may not properly account for the actual fatigue damage engendered to 57 

a structure. In fatigue analysis, one characteristic that critically matters is the distribution of high-58 

amplitude cycles. Some authors have addressed this problem by extrapolating the rainflow cycles 59 

count or by using the extreme value theory [11-13]. The present work follows a different route and 60 

introduces a technique for simulating NG processes with an imposed rainflow cycle count (RCC). The 61 

RCC – which returns the distribution of load cycles [25] – is indeed one of the most relevant 62 

characteristics of a stochastic process in fatigue analysis [4], [26-27]. 63 

The present work focuses on the simulation of a NG stochastic process that contributes to the 64 

fatigue damage of a structure by representing the extreme amplitude fluctuations. The strategy is to 65 

simulate a stochastic process from its inverse Short-Time-Fourier-Transform (STFT), where the STFT 66 

coefficients are generated to match a given RCC. The method consists in first generating independent 67 

and identically random coefficients, then to apply a frequency-dependent nonlinearity, and finally to 68 

correlate them by application of a filter. The parameters of the nonlinearity and of the correlation filter 69 

are first estimated from a preliminary STFT, as obtained from a partial observation of the stochastic 70 

process. The two key elements of the proposed methodology are the use of the STFT, on the one 71 

hand, and the use of a specific nonlinear unit, on the other hand. 72 

In the literature, the STFT is widely used as an analysis tool in domains such as speech analysis, 73 

acoustics, radar/sonar, etc. [14-18]. Its potential for signal synthesis has been early demonstrated, in 74 

particular from partial information of the STFT magnitude [15-16] or ridges [17]. However, as far as 75 

the authors know, the STFT has never been used to simulate NG stochastic processes. The STFT 76 

provides an invertible time-frequency representation of any signal, which by construction is easily 77 

amenable to the imposition of a given PSD. At the same time, the STFT makes it possible to introduce 78 

a nonlinearity in the time-frequency domain, which may be frequency – dependent as well as dynamic 79 

– i.e., involving time derivatives or time lags -- thus resulting in a joint NG PDF.  80 

The choice of the nonlinear unit is crucial to match a given RCC or, more generally, a given joint 81 

PDF. For instance, static nonlinearity is often used due to their simplicity to match a given marginal 82 

PDF. Furthermore, the choice between a pre-nonlinearity model (e.g., Hammerstein model [19]) or a 83 

post-nonlinearity model (e.g., Wiener model [20]) also influences the simulation process. The post-84 

nonlinearity model makes it easier to impose a NG-PDF in the simulation process, but it modifies the 85 

PSD in the output. On the contrary, the pre-nonlinearity model easily allows the imposition of a 86 

prescribed PSD, but it then modifies the PDF. The simulation method proposed in this paper is of the 87 

latter type with a dynamic nonlinearity that proceeds from a generalization of the autoregressive 88 

conditionally heteroskedastic model (ARCH), coined λ-ARCH. The advantage of introducing an λ-89 

ARCH model in the STFT is its ability to represent a large class of NG stochastic processes, with 90 

complex structures in the time-frequency domain. A typical case is a broadband stochastic process 91 

with a nonlinearity localized in a frequency band, or one with different nonlinearities in distinct 92 

frequency bands. 93 



 

 

Furthermore, the key parameters of the model used for simulation can be interpolated over 94 

different operating conditions to simulate signals at non-measured conditions.  95 

The performance of the proposed method is demonstrated using field test measurements from a 96 

hydroelectric turbine runner. The hydroelectric turbine is a typical example where experimental 97 

measures are difficult to set up to obtain and only possible at a limited number of operating conditions 98 

due to experimental constraints; therefore, unmeasured operating conditions can conveniently be 99 

replaced by simulations to properly characterize the whole operating range. 100 

The paper is organized as follows. Section 2 introduces the STFT decomposition of a NG 101 

stochastic process and a method to simulate it based on the principle of λ-ARCH model. Section 3 102 

then briefly explains how to interpolate a simulation model between operating configurations. Finally, 103 

the case study of a hydroelectric turbine runner case study is discussed in section 4. 104 

 105 

2. Simulation Methodology 106 

 107 

2.1 Signal Model 108 

 109 

a) STFT decomposition 110 

As mentioned in the introduction, the aim of the present work is to introduce a method to simulate 111 

realizations of a NG stochastic process, as it would be measured in practice, for instance at the output 112 

of a system. Therefore, it makes sense to consider discrete time from the onset. Let ���� ∈ ℝ denote a 113 

discrete-time, zero-mean stationary NG stochastic process, sampled with frequency ��, with 114 

autocorrelation function 115 

 116 ����� = !"������� − ��$ (1) 
 117 

(! is the expected value operator). Its PSD is ���%� = ℱ"�����$ = ∑ �����()*�+,-//0,∈ℤ . The STFT 118 

of the stochastic process ���� is defined by the random field 119 

 120 

��	��, ∆� = 4 ������� − 5��()*�+6	∆,   ��	 ∈ ℂ,  ��	 = ��,)	∗  �9:;<)=
6>�9  

 
(2) 

or ��	 for short, where 5, ? stand for the time and frequency indices, respectively. In the above 121 

equation, @�	��� = ��� − 5��()*�+6	∆ is a time-frequency kernel rooted on a window function 122 ���� with length �� (assumed even), R is the shift between two consecutive kernels, and ∆= 1/�� 123 

is the frequency resolution. Alternatively, the stochastic process ���� can be expanded from its STFT 124 

as  125 

 126 

���� = 4 4 ��	@�	∗ ���;<)=
	>B = 2 4 4 ℜ"��	@�	∗ ���;</*

	>= $,�∈ℤ�∈ℤ  (3) 

 127 

provided that the window satisfies the condition ∑ ��� − 5���∈ℤ = 1 (assumption H1). The latter 128 

condition is for instance satisfied with a Hann window and � = ��/4, or can be forced in general by 129 

setting ���� = F���/ ∑ F�� − 5���∈ℤ  based on any positive and smooth function F���, provided that 130 � is small enough. It is noteworthy that the second equality in Eq. (3) holds for any zero-mean real 131 

stochastic process, with zero Nyquist frequency. 132 

 133 

The idea is to simulate a stochastic process from its expansion given by Eq. (3), where ��	 is directly 134 

sampled in a random field with properties yet to be defined. As explained in the introduction, this is 135 

likely to offer flexibility for generating NG processes. Indeed, under assumption H1, the STFT is a 136 

highly redundant transform – there are about ��/� as many STFT coefficients as time samples in the 137 

original signal which provides a high number of degrees of freedom for simulating a stochastic 138 

process.   139 



 

 

 140 

From now on, the issue then reduces to generating the random field ��	, such as to reproduce a joint 141 

PDF as similar as possible to those of ����. The approach is to model  ��	 as a correlated random field 142 

at the output of a nonlinearity. 143 

 144 

b) Intrinsic correlation 145 

The first constraint when simulating  ��	 is to match the PSD of ����. This is equivalent to 146 

imposing a correlation structure to  ��	. From Eqs. (1) and (2), the STFT coefficients should verify  147 

 148 !G��	��)�,	)H∗ I = 4 �����()*�+,�	)H�∆����, 5, J, K�,∈ℤ  (4) 

 149 

where 150 

 151       ����, 5, J, K� = 4 ��� − 5����� − � − �5 − J���6∈ℤ ()*�+6H∆. (5) 

 152 

Now, applying the change of variable M = � − 5�, the latter becomes 153 

 154     ����, 5, J, K� = ()*�+�H∆9 4 ��M���M − � N J��O∈ℤ ()*�+OH∆ = ()*�+�H∆9P���, J, K�, (6) 

 155 

Finally,  156 

 157 !G��	��)�,	)H∗ I = ()*�+�H∆9 4 �����()*�+,�	)H�∆P���, J, K�,,∈ℤ  (7) 

 158 

which shows that the correlation of the STFT coefficients is a periodic function of i with period 159 1/�K∆��, yet independent of k. Reproducing this correlation structure is necessary in simulations for 160 

properly matching the PSD of ����. When the frequency resolution is set such that 1/∆ is larger than 161 

the effective duration1 of ����� (assumption H2), the following approximation actually holds, 162 

 163 !G��	��)�,	)H∗ I Q RHBP���, J, 0� 4 �����()*�+,	∆ = RHBP���, J, 0����%	�,,∈ℤ  (8) 

 164 

with R the Kronecker symbol, which indicates that the correlation between frequency components can 165 

be ignored as compared to correlation between time instants. Under assumption H2, the correlation of 166 

the STFT coefficients is now a function of frequency k only. Eq. (8) draws a direct connection 167 

between the variance of the STFT coefficients and the PSD ���%	� at frequency %	 = ?∆��. This 168 

suggests the normalisation  169 ��	 = T���%	�
�	 (9) 
 170 

where ���%	� = !"|��	|*$, such that the variance of the coefficients 
�	 is now independent of k. 171 

Based on these results, the correlation structure given by Eq. (8) may be conveniently forced in 172 

simulations by using the autoregressive (AR) model 173 

 174 

                                                                        
1 The effective duration is defined as the shortest time V such that |�����| W X���0� for all |�| Y V, with 0 W X W 1 a given small value. This means that magnitude of ����� is considered insignificant for time-lags greater 
than V  



 

 

Z[\
[] ��	 = T���%	�
�	


�	 = 4 
�)�,	��
^

�>= N �	
!G�	�)�,	)H∗ I = R�,BRH,B_*̀

, (10) 

 175 

with orders �, �	 an uncorrelated and stationary sequence with variance _*̀, and "��; J = 1, … , �$ a 176 

set of AR coefficients. Indeed, substituting the above equation for 
�	 in the autocorrelation 177 !G
�	
�)�,	)H∗ I verifies Eq. (8) by construction. The free parameters of the above model are ���%	� 178 

and ��. How to properly set their values to match the target PSD will be explained in subsection 2.2. 179 

 180 

c) Nonlinear Unit 181 

Forcing the particular correlation structure (4) by means of the AR model (6) makes it possible to 182 

impose a given PSD. The aim is now to impose a given NG PDF by application of a nonlinear unit to 183 

the random coefficients �	. Introducing a nonlinearity at this stage offers the possibility to generate a 184 

large family of joint NG PDFs, since different nonlinear units can be used depending on the frequency 185 

index k. The nonlinearity unit used in this paper is inspired by the autoregressive conditional 186 

heteroscedasticity (ARCH) model. ARCH is often used to describe leptokurtic stochastic processes 187 

(whose PDF has higher tails than the Gaussian) with high fluctuations [21], i.e. with a variance that is 188 

conditionally time-varying. In the present context, a generalization is proposed, coined λ-ARCH. It 189 

reads 190 

 191 �	|"�)=,	, … , �)c,	$~e�0, _�	* � (11) 

 192 

where �	|"�)=,	 , … , �)c,	$ stands for the random variable �	 at time 5 conditioned on the random 193 

variables "�)=,	, … , �)c,	$ at previous time instants, and _�	*  is a time-varying and frequency-194 

dependent variance that follows the AR equation 195 

 196 

_�	*fg = �B	 N 4 ��	h�)�,	h*fgc
�>= , �	 i 0 , �B	 Y 0, 4 ��	

c
�>= W 1  (12) 

 197 

The intuition beyond the λ-ARCH model is that there exists a parameter � and a set of coefficients 198 "��	; j = 0, … , k, ? = 1, … , ��/2$ such that h�,	h*fg − �B	 − ∑ ��	h�)�,	h*fgc�>=  is a Gaussian 199 

stochastic process uncorrelated with respect to time 5. It can be shown that the �	 defined by Eqs. 200 

(11) and (12) is a stationary NG process with λ-moment 201 

 202 !"h�,	h*fg$ = �B	1 − ∑ ��	c�>= . (13) 

 203 

As a particular case when � = 1, one obtains an ARCH model with variance _`,	*  returned by Eq. 204 

(13). The particular case with � = 0 reads _�	* = exp ��B	 N � ∑ ��	 lnh�)�,	h*c�>= �.  205 

 206 

The exact class of NG distribution that can be generated by the proposed model is an interesting 207 

but difficult question to answer. It can be easily implied by Eqs. (11-13) that such distributions are 208 

characterized by a finite variance and a finite moment of order 2λ. In particular, this implies 209 

leptokurtic distributions when � = 2. More generally, it should be noted that the large set of free 210 

parameters in the λ-ARCH model will provide high flexibility to approximate a diversity of NG joint 211 

PDFs. An important particular case is when the ARCH parameters are independent of frequency k, or 212 

piece-wise constant with respect to large frequency bands, which results in a substantial reduction of 213 



 

 

the number of free parameters (assumption H3). 214 

 215 

The simulation of the stochastic process ���� then proceeds as described in Algorithm 1. 216 

 217 

Algorithm 1: Simulation of a NG stochastic process from the STFT 
Inputs: �	, "��; J = 1, … , �$, "��; j = 0, … , k$, �	 
Loop on k 

Initialize i.i.d sequence "c)=,	, … , B,	$ 
Loop on i 

Evaluate _�	*fg from Eq. (12) 

Draw �	 in e�0, _�	* � 

Evaluate 
�	 from Eq. (10) 

Set ��	 = T�	
�	 

Evaluate ���� from Eq. (3) 

 218 

2.2 Model identification 219 

The signal model introduced in the previous section involves several parameters to identify 220 

experimentally, from a given experimental measurement.   221 

 222 

a) Identification of the correlation structure 223 

Let the finite length signal "q���; � = 0, … , r − 1$ denote the partial observation of one 224 

realization of the stochastic process ����. The first step is to compute the STFT coefficients s�	 of 225 q��� from Eq. (1). Note that index i will range from 0 to t = u�r − ��/�v N 1. Under assumption 226 

H2, the variance of the STFT coefficients can then be estimated as 227 

 228 

�w��%	� = ∑ |s�	|*x)=�>Bt .  
(14) 

 229 

Once the spectral signature of the process is captured, the STFT coefficients are equalized: 230 

 231 

��	 = s�	��, ∆�T�w��%	� . (15) 

 232 

The coefficients in the AR model of Eq. (10) can now be estimated by least squares. Let y	 =233 ��̂ ,	  �̂ :=,	  … �x)=,	�z, { = ��= �*  …  �^�z and |	 the matrix with elements }�� = ��)=:^)�,	. 234 

Therefore, the least-square estimator of { is returned by 235 

 236 

{~ = �rg min{ ||y	 − |	{|| = � 4 |	z|	
;</*
	>= �)= 4 |	zy	

;</*
	>= .  

(16) 

 237 

The next step is to use the estimated autocorrelation coefficients to whiten the random field ��	 , such 238 

as to produce the uncorrelated sequence 239 

 240 

��	 = ��	 − 4 �~���)�,	
^

�>= , (17) 

 241 

from which the λ-ARCH model can now be identified. 242 

 243 

 244 



 

 

b) Identification of the nonlinear unit 245 

Let ℬ denote a set of frequency indices where the nonlinear unit applies uniformly (i.e., where the 246 

coefficients of the λ-ARCH model are constant). Then, for a given value of �, apply the Box-Cox 247 

transformation [22]  248 

 249 

��	�f� = �h��	h*f,     ��ℎ(��5�(lnh��	h*,            � = 0 (18) 

 250 

for ? ∈  ℬ. From Eq. (12), it can be shown that ��	�f� follows the autoregressive equation  251 

 252 

��	�f� = �B N 4 ����)�,	�f�c
�>= N ��	 , ? ∈  ℬ (19) 

where ��	 stands for a zero-mean residual error uncorrelated with ��	�f�. This offers a direct means to 253 

identify the coefficients "��; j = 0, … , k$. Taking the average 〈��	�f�〉 = ∑ ��	�f�/tx)=�>B , one has the set of 254 

equations 255 

 256 

Z[[
\
[[] �B = 〈��	�f�〉 �1 − 4 ��

c
�>= �

��	�f� − 〈��	�f�〉 = 4 �����)�,	�f� − 〈��	�f�〉�c
�>= N ��	

 (20) 

 257 

The first equation returns an estimate of �B given the ��’s. The second equation can be solved for the 258 ��’s, for instance by least-square as in the previous paragraph [23]. The complete identification 259 

scheme is resumed in Algorithm 2 under assumption H3. 260 

 261 

Algorithm 2: Identification of model parameters from an observed signal q��� 

Inputs: q���, �, k, � 
(i). Compute the STFT coefficients s�	 from Eq. (2) 
(ii). Evaluate �w��%	� from Eq. (14) 
(iii). Evaluate ��	 from Eq. (15)  
(iv). Compute the AR coefficients �� from Eq. (16)  
(v). Evaluate ��	 from Eq. (17) 

(vi). Get ��	�f� from the Box-Cox transform (18) 
(vii). Estimate the AR coefficients �� from Eq. (20) 
Return "�~�; J = 1, … , �$ and "�~�; j = 0, … , k$ 

 262 

For the input of Algorithm 2, the parameter � of the Box-Cox transformations can be optimized by 263 

maximizing the log-likelihood function, which ensures that Box-Cox transformation distribution is 264 

closest to a Gaussian distribution form. Another simpler strategy is to a priori assign it a given value, 265 

based on the user experience. 266 

Other parameters can be modified to optimize the nonlinearity such as �~B	. Therefore, in the next 267 

section, an additional step will be proposed to improve the capacity of reproducing a prescribed RCC 268 

by optimizing �~B	. 269 

 270 

2.3 Weighted Area Metric for Rainflow Counting  271 

So far, the λ-ARCH identified in section 2.2 might not reproduce exactly a prescribed RCC, since 272 

the latter does not appear as a target in Algorithm 2. There are several reasons why discrepancies 273 



 

 

might exist. First, the selected model orders � and k might not coincide with the true (unknown) 274 

values, a situation that will introduce modeling errors. Second, estimation errors will also alter the 275 

model parameters "��; J = 1, … , �$ and "��; j = 0, … , k$, and will even propagate from the former to 276 

the latter. One solution to mitigate these errors is to use the output of Algorithm 2 as initial values and 277 

then to update these values so as to match a given RCC.  278 

It is noteworthy to know that there exist several metrics dedicated to the comparison of PDFs that 279 

can be used in Eq. (16), such as those based on information theoretic criteria. A distance tailored for 280 

fatigue analysis is proposed next. 281 

Let � denote a set of model parameters to be updated. It may include all the free parameters listed 282 

in section 2.1, or a subset of them, such as typically the parameters of the λ-ARCH. Let also ���∗  283 

denote the target RCC and ������ the RCC of simulated signals, which depends on �. The aim is to 284 

update the values � as initially estimated by Algorithm 2 by further minimizing some distance 285 

between the target RCC and the simulated one, i.e. 286 

 287 �w = �rg min� � ����∗  ; ������� (21) 

 288 

according to distance �. The Area Metric (AM) is a popularly used to measure the distance between 289 

two cumulative distribution functions [24], The AM between two RCC s is expressed as 290 

�����∗  ; ������� = 4 ��|���∗ ����� − �������; ��|���
����
�>=  (22) 

where ��� is the number of cycles corresponding to an amplitude level 5 and �� is a user-defined 291 

weight (see Figure 1). In order to give more importance to high amplitude cycles, which are more 292 

critical in fatigue, it is proposed to set �� = log �1/���, where �� = ∑ �����>=  is the cumulative 293 

number of cycles sorted in descending amplitudes. 294 

 295 

 296 
Figure 1. Weighted area metric applied to two Rainflow Counting Counts 297 

 298 

To reproduce the correct RCC, it is proposed to update the coefficient �~B such that  299 

 300 

_�	*f = �~B N 4 �~�h�)�,	h*f, ? ∈  ℬc
�>=  (23) 

 301 

minimizes �����∗  ; �������. Initially, �~B is first the value returned from Algorithm 2 when no 302 



 

 

updating is required, whereas increasing (or decreasing) this �~B will increase (or decrease) the effect 303 

of the nonlinear unit. Since only one parameter is involved, the minimization in Eq. (21) can easily be 304 

achieved using grid-search method. A shown in section 4, this simple updating rule will turn out 305 

efficient enough in the case study of this work. 306 

Finally, the flowchart of the complete algorithm, including model identification, model updating, 307 

and simulation of the stochastic process is shown in Figure 2. 308 

 309 

 310 
Figure 2. Flowchart of the proposed simulation process 311 

3. Interpolation Methodology 312 

The simulation of a stochastic process is useful when experimental data could not be measured. In 313 

order to deal with this situation, the idea is to interpolate the model parameters (instead of signals) 314 

over different operating conditions where data exist and then to simulate the stochastic process at the 315 



 

 

operating conditions where data is missing. Although all the model parameters introduced in section 316 

2.1 can be jointly interpolated, it is better to keep their number as low as possible in order to guarantee 317 

a robust interpolant as well as to reduce the algorithmic complexity. Under the stationary assumption, 318 

the autocorrelation coefficients �� happen to mainly depend on the chosen window parameters. 319 

Therefore, they can reasonably be assumed constant over different operating conditions. On the 320 

contrary, the interpolation of ���%	� is important if the PSD is likely to vary over different operating 321 

conditions. In the case study of section 3, it will similarly be assumed that the coefficients �� of the λ-322 

ARCH model are reasonably constant, except for the coefficients �~B, � introduced in Eq. (23). � can 323 

be fixed using a constant,�~B need to be interpolated for the non-linear unit of the model. Since �~B is a 324 

scalar, it is easily interpolated, for instance with cubic spline interpolation [28-29]. The interpolation 325 

of ���%	� is more intricate as it is a function of frequency. For this kind of interpolation, the Spatio-326 

Temporal Kriging (STK) is chosen [30-32]. Let � and % denote the operating condition and frequency 327 

variables, respectively. Then, based on known values of the PSD ����O, %�� at locations ��O, %��, M =328 1, … , �, � = 1, … , r, the STK interpolant reads 329 

 330 

��∗��, %� = 4 4 �O���, %�����O, %��,�
�>=

�
O>=  (24) 

 331 

where superscript ∗ denotes the target value,  �O� is the regression weight, � is the number of known 332 

operating conditions and r is the number of studied frequencies at operating condition �O. With the 333 

preservation of the covariance map (or semivariogram) created and modelled from the input set, the 334 

weights �O�  in Eq. (24) are estimated by minimizing the error variance ��� ����J� , ��  −335 ��∗�J� , �� ¡. For more details of STK method, the reader can consult references [30-32]. Finally, a 336 

conditional simulation based on kriging parameters is applied to obtain a set of possible interpolated 337 

value [33-34]. 338 

 339 

4. Case Studies 340 

Two case studies are used to verify the performance of the proposed method: a numerical 341 

experience and an experimental data (hydroelectric domain). 342 

 343 

4.1 Numerical experience 344 

A signal sample is first generated from the t-distribution with zero mean, unitary variance and 345 

degree of freedom equal to 4. The t-distribution is used because it provides a leptokurtic behaviour 346 

that can highlight the performance of the proposed simulation for the capture of the rainflow count. 347 

Then, a numerical filter is applied to the signal in order to assign it a non-constant PSD. The rational 348 

transfer function of the filter is: 349 

 350 ¢�£� = 0.51 − £)= N 0.45£)*  (25) 

The proposed NG simulation is then applied to regenerate realizations of the underlying stochastic 351 

process based on the observed signal. Table 1 displays the parameter set up for the simulation. By 352 

default, a Hann window can be safely used as it provides a good compromise between the reduction 353 

of frequency leakage and resolution. This comes with 75% overlap (� = ��/4� in order to allow the 354 

inversion of the STFT. A critical parameter is the window size ��, or equivalently the frequency 355 

resolution ∆ = 1/��. The latter should be set fine enough so as to correctly resolve the details of the 356 

PSD, which is equivalent to having �� longer than the effective correlation length of the signal 357 

(assumption H2). In practice, some trials and errors might be necessary in setting this value, as is 358 

commonplace in experimental spectral analysis. Extensive simulation has shown that an order of 10 359 

for the AR model is good enough in most cases, provided that assumption H2 is met. This turned out 360 

almost independent of the types of PSD and PDF. As for any parametric model, a difficult setting is 361 



 

 

the order k in the λ-ARCH model. This value has been set by trials and errors by inspecting the AM 362 

metric, even though more thorough approach may be used [21]. 363 

 364 

 365 
Figure 3 Comparisons of the generation performance of the iterative simulation (left column) and the proposed simulation 366 



 

 

(right column) according to the rainflow cycle counts (a, b), one of generated signal (c, d), their PDF (e, f) and their PSD (g, 367 
h) 368 

 369 

Simulation Parameters Values 

Window function Hann (�� = 2=B) 
 R ��/4 

Orders of AR model for STFT � = 10 � 1 k 3 
Estimated parameters Values �~� (real values) 0.0088, -0.0109, 0.0079, 0.0018, 0.0052, 0.0034, 

0.0117, 0.0097, 0.0154, -0.0137 �~� �j = 1, . . . , k� 0.432, 0.226, 0.059 �~B  0.51 

Table 1 Set of parameters for the numerical experience 370 

 371 

An iterative simulation scheme with convergence condition2, based on the concept of translation 372 

field proposed by Grigoriu (1995) [39], that imposes both a prescribed PSD and a marginal PDF, is 373 

also applied in this numerical experience to compare with the proposed simulation. Figure 3 shows 374 

comparisons between the two simulations (rainflow count, PDF and PSD of one generated signal). 375 

For more detailed comparisons, some distance metrics are calculated in Table 2 to show the 376 

variability (mean ± standard deviation) of simulation set. In general, one observes that the proposed 377 

method performs almost identically to the iterative method in regenerating the PSD and PDF. The 378 

advantage of the proposed method is nevertheless obvious when assessing the regeneration of the 379 

RCCs, with an AM distance smaller than the iterative simulation. Moreover, as observed in Figure 3, 380 

the set of RCCs cover the high amplitude (important for fatigue assessment) better than the iterative 381 

simulation.  382 

 383 

Type of distance (metric) Iterative simulation Proposed simulation 

Area metric of RCC 365.05 ± 23.73 322.35 ± 25.35 
Jensen-Shannon divergence for PDF 0.045 ± 0.004 0.045 ± 0.006 

Itakura-Saito distance for PSD 0.028 ± 0.003 0.021 ± 0.003 

Table 2 Distance metrics calculated from two simulation sets 384 

 385 

4.2 Experimental Case Study 386 

In hydroelectric turbines, the water flow entering the runner creates an extreme environment that 387 

can make high stress/strain fluctuation [38]. Moreover, with the change of electrical network usage, 388 

the turbine must operate more often in operating conditions such as partial load, which increases the 389 

high peak in stress/strain signal and the high risk of fatigue on hydraulic runners. Therefore, the 390 

hydroelectric turbine case study is a good example to verify the performance of the proposed 391 

simulation/interpolation. 392 

The studied data is a set of strain signals obtained from measurements at steady states operating 393 

conditions on a Francis turbine runner (a reaction type turbine) in Quebec, Canada [35]. In this case 394 

study, to focus on the random part of the signal, hence efforts are directed to simulate the residual part 395 

which remains after extracting the synchronous periodic part [4, 36]. Available strain measurements 396 

were obtained at different vane opening levels with a relatively constant head. Therefore, the 397 

operating conditions in this case study are defined using the vane-opening level (noted as ��). For 398 

example, 20�� corresponds to an operating condition that vanes open about 20% of the maximum 399 

opening level (full loading). In the following, the simulation and interpolation based on the proposed 400 

methodology will be performed and discussed. Note that some values normalized to respect the 401 

                                                                        
2 For each iteration, the convergence point is set when the error (e.g., Itakura-Saito distance) of PSD is smaller 
than 5% or when a given high number of iterations is reached.  



 

 

confidentiality of such information. 402 

 403 

 404 

 405 

a. Simulation Results and Discussion 406 

 407 

The first aim is to illustrate and validate the proposed simulation method. Each measurement in 408 

this case study is available in the form of 90-second time series. In particular, the hydroelectric runner 409 

strain measurements by gauges are often available over a limited time window, while some analysis 410 

such as the fatigue assessment, need long-term information. Therefore, to verify the performance of 411 

the proposed simulation, in this case study, only 15 seconds of measurement is used for the training 412 

set to simulate the entire signal of 90 seconds. In this case study, the set ℬ, where the nonlinearity is 413 

applied uniformly, corresponds to the set of frequencies lower than 100%B, with %� the frequency 414 

corresponding to the steady synchronous runner rotation. Based on the author’s experiences on this 415 

studied signal, this frequency set contains most of the non-Gaussian characteristic of the signal. The 416 

stochastic processes to simulate correspond to the random fluctuations of strain at a steady state 417 

regime in which the runner rotates at a constant speed but with no electrical power output (called 418 

Speed No Load). This operating condition produces complicated random behaviours, which can 419 

significantly contribute to fatigue damage [37,38]. 420 

Stochastic simulations are run with the parameters shown in Table 1. The window type, fraction 421 

of overlap, and order of AR model have all been safety set as in the numerical example of the 422 

previous section. The window length has been set large enough so as return an estimated PSD with 423 

high enough frequency resolution, i.e., such that increasing �� would not produce any significant 424 

change in the shape of the PSD but only increase its variance. The order of the λ-ARCH and λ have 425 

similarly been set to the smallest values that didn’t result in significant changes in the AM metric. 426 

Using these parameters can allow for a minimal calculation cost while still preserving most interest 427 

information.  428 

 429 

Simulation Parameters Values 

Window function Hann (�� = 2=*) 
 R ��/4 

Orders of AR model for STFT � = 10 � 1 k 5 
Estimated parameters Values �~� (real values) 0.0033, 0.008, -0.0014, -0.0093, -0.0007, 0.0024, 

0.0003, -0.0030, 0.0031, 0.0019 �~� �j = 1, . . . , k� 0.189, 0.049, 0.028, 0.039, 0.047 �~B  4.95  

Table 3. Set of parameters in the experimental case study 430 

 431 

Figure 4 displays one of generated STFTs. Even if the non-linearity is applied uniformly in a wide 432 

set of frequencies, the simulations properly generated the high amplitude zone of STFT. In order to 433 

verify the performance of the proposed methodology to reproduce RCC for fatigue assessment, the 434 

temporal signal generation is compared to two other types of simulation schemes. The first was used 435 

for temporal signal generation of residual strain signal of runners (same signal type with this case 436 

study) by Poirier et al. (2017). They suppose that the residual strain signal, which is remained after 437 

extracting all periodicities, follows a purely Gaussian distribution and then they applied the spectral-438 

based simulation method (using only a prescribed PSD), as described in [1]. This Gaussian hypothesis 439 

leads to an assumption that certain extreme high peaks are considered as less representative for the 440 

actual deformation of the blade [4]. However, for fatigue analysis, the extreme values cannot be 441 

ignored. In particular, the work of Poirier et al. used a similar type of signal (hydroelectric runner 442 

strain), thus, this comparison can show the improvement in the generation of temporal signal for 443 



 

 

hydroelectric turbines. The second is the iterative simulation as in the previous section.  444 

 445 

 446 
Figure 4. (Left) Experimental STFT and (rignt) STFT of a simulated signal  447 

 448 

 449 

 450 
Figure 5. Comparisons of the generation performance of the spectral-based simulation (left column), the iterative simulation 451 

(middle column) and the proposed simulation (right column) according to the rainflow cycle counts (a, b, c), one of 452 
generated signal (d, e, f), their PDF (g, h, i) and their PSD (j, k, l) 453 

 454 



 

 

 455 

 456 

 Area metric of 
RCC 

Jensen-Shannon 
divergence for PDF 

Itakura-Saito distance 
for PSD 

Spectral-based simulation 116.14 ± 15.64 0.040 ± 0.008 0.017+0.004 
Iterative simulation 90.52 ± 10.89 0.014 ± 0.002 0.024 ± 0.001 
Proposed simulation 66.52 ± 9.02 0.034 ± 0.003 0.013 ± 0.001 

Table 4. Distance metrics calculated from three simulation sets for the experimental case study 457 

 458 

Figure 5 and Table 4 shows comparisons between three simulations. In this case study, the 459 

proposed method has the smallest value of Itakura-Saito distance, which can highlight the advantage 460 

of using pre-non-linear model where the PSD is easily imposed. The Jensen-Shannon divergence (JS) 461 

of the spectral-based simulation is the highest as the latter is not able to reproduce the NG behaviour 462 

of the studied data with presence of extreme values (see distribution tails – Figure 5). The JS 463 

variability of the proposed simulation is smaller than the spectral-based simulation and is higher than 464 

the iterative simulation. Such value is normal because the PDF is not the target input of the proposed 465 

simulation. On the other side, Figure 5 and Table 4 show that, even though the reference methods are 466 

based on the reproduction of the target PSD and marginal PDF, none of them cover the high 467 

amplitude cycles in the RCC. The proposed method does quite well in this respect with a small error 468 

(set mean error < 1% compared to the median of the simulation set, see the boxplot in Figure 5). 469 

Moreover, the smallest AM value in the proposed simulation also illustrates the advantage of the 470 

optimization using RCC.   471 

 472 

b. Interpolation Results and Discussion 473 

 474 

 475 
Figure 6. Interpolation sets of PSD at 20�� (a), 45�� (b), 70�� (c), and interpolation of  �~B (d) 476 

 477 

A second objective is to illustrate the capability of the proposed method to simulate strain signals 478 

at non-measured operating conditions by interpolating between models. Here, one aims to interpolate 479 

the model at �B = 20, 45, 70 by using the identified parameters at �B = 11, 30, 40, 50, 55, 60, 65, 80, 480 



 

 

100. Since there is no information for the fatigue assessment at frequencies higher than 100%�, the 481 

signal is downsampled by a factor 7 to reduce the calculation time. The value of � is fixed as 1 for all 482 

the �B. 483 

Figure 6 displays set of interpolations of PSD at three targets operating conditions. The variability 484 

for the lower load condition is higher. The reason is that the 70�� is close to the best efficiency point 485 

of the turbine operation, thus, the fluctuation at this condition is more stable than at 20�� or 45��.  486 

Notice that the interpolation quality depends on the number of inputs, while in the case of 487 

experimental measurement, this number is often limited. The quality of the interpolation is assessed 488 

hereafter by means of the RCC s of 200 simulations run with the interpolated model, as shown in 489 

Figure 7. The RCCs show errors at low amplitude while the higher amplitude is properly covered by 490 

the simulation set. There are some outliers, which might have been generated because of the error of 491 

interpolation phase. However, the number of the outliers is minor compared to the whole simulation 492 

set.  493 

 494 
Figure 7. RCC and relative error for maximum range of simulations set using interpolated parameters at 20�� (a, b), 45�� 495 

(c, d) and 70�� (e, f) 496 

5. Conclusion 497 

This paper has introduced a method for simulating non-Gaussian stochastic processes with a 498 

prescribed RCC, as typically required in reliability and fatigue analysis. The main idea is to generate 499 

the STFT coefficients of the stochastic process after the application of a non-linearity in the form of a 500 

so-called λ-ARCH model. In order to properly reproduce high amplitude cycles, which are important 501 

for fatigue assessment, the simulation parameters are tuned by minimizing the weighted area metric 502 

between the theoretical and the simulated RCCs. Besides, it has been shown that the model used in 503 

simulations can be interpolated between unobserved operating conditions, thus offering the possibility 504 

to predict signals where measurements are missing. The proposed methodology has been applied to 505 



 

 

analyze a numerical data and an experimental data from hydroelectric turbine runner. These two 506 

case studies allow good observations of the proposed simulation performance. In particular. 507 

The experimental case study represents a typical type of data measured from a complex structure 508 

where the extreme peaks are sensible for the fatigue assessment. This can show the capacity of this 509 

proposed method for application in practice. Future work is needed to theoretically delineate the 510 

classes of non-Gaussian processes that can be simulated with the proposed method.  511 

Obviously, the application of the proposed method can find applications in other domains, since it 512 

is flexible enough way to model a large variety of non-Gaussian processes. In particular, the principle 513 

used to reproduce a prescribed RCC can be applied to other types of distributions rooted on the joint 514 

PDF of a stochastic process. 515 

 516 
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