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Abstract

This paper introduces a fully Bayesian approach to the Force Analysis Technique (FAT), which aims at

identifying sparse vibratory sources from displacement measurements. Being based on the local equation of

motion of a structure, the FAT allows for the estimation of vibratory sources without the need of specifying

boundary conditions. Nevertheless, since it involves the calculation of higher-order spatial derivatives of the

measured displacements, it is highly sensitive to noise perturbations and thus requires careful regulariza-

tion. Besides, although sparse excitations are commonplace in structural vibrations, standard regularization

strategies tend to over-smooth them in the reconstruction process. This paper shows how to reconcile the

two goals of regularization and sparsity enforcement in the FAT by setting up a hierarchical Bayesian model

rooted on a Bernoulli-Gaussian prior. Inference of all the parameters in the model is achieved with a Gibbs

sampler whose convergence is efficiently accelerated with a partial collapsing strategy.

Keywords: vibratory source identification, inverse problem, Bayesian regularization, partially collapsed

Gibbs sampler, sparsity, Bernoulli-Gauss.

1. Introduction

In several applications in structural dynamics, vibratory sources happen to be highly localized [1]. The force

distribution is thus said to be sparse [2]. By sparse it is meant that the force distribution is expected to take

zero values almost everywhere except in a few locations. This is the case for example when subsystems are
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linked by bolts, rivets or welds. The aim of the present paper is the identification of sparse vibratory sources5

from measurements of the displacement responses of the structure under test by using the Force Analysis

Technique (FAT) [3, 4]. Contrary to most other approaches [5, 6, 7, 8] – which typically involve the inversion

of a matrix of impulse responses (time-domain approach), a matrix of transfer functions (frequency domain

approach), or a state matrix (state-space approach) – the FAT offers a solution based on the local equation of

motion of the structure, whose right-hand side member directly returns the excitation at any spatial position.10

The definite advantage of the FAT is to not require the (often intricate) specification of boundary conditions.

The price to pay is an extreme sensitivity to noise perturbations which are amplified in the calculation of

higher-order spatial derivatives (i.e. by means of finite differences of the measured displacements). It should

be realized that this sensitivity reflects the ill-posedness of the inverse problem, just as with other inverse

methods where noise is typically inflated after application of an inverse operator. This requires the resort to15

some sort of regularization. In Ref. [4], it has been proposed to solve the FAT within a Bayesian framework,

which enjoys intrinsic regularization with an automatic inference mechanisms to tune the regularization

parameter, for instance by means of empiricical Bayes or Markov Chain Monte Carlo algorithms. In that

work, a Gaussian prior was introduced as the simplest choice; yet this is not the most relevant one with

sparse sources. Indeed, the Gaussian prior tends to spread out the reconstructed sources all over the spatial20

domain, thus missing their sparsity. Consequently, closely spaced point sources could hardly be resolved. It

is then more appropriate to replace the Gaussian prior by a “sparse” one, which promotes most of the values

of the spatial distribution of the force to be zero or nearly so. Several kinds of such priors exist, such as

the Student-t distribution [9], the Laplace distribution [10] or the generalized Gaussian distribution [11, 12].

From the optimization point of view, the latter is equivalent to the minimization of a cost function induced25

by an `p norm with 0 < p over the source field, with p being the power in the probability density function

(pdf). The Laplace and Gaussian distributions are thus special cases of the generalized Gaussian distribution

with p = 1 and p = 2, respectively. Optimization of cost functions with this kind of constraints can be solved

using iterative algorithms such as the iterated-reweighted-least-squares (IRLS) [13] or numerical Bayesian

approaches [14]. It is also possible to combine the Laplacian and the Gaussian priors to identify both sparse30

and extended parts of the source field [15]. This specific combination is known as the Elastic Net. Also, by

mixing several centered Gaussians with different variances, a pdf is obtained with a significant mass at zero

and heavy tails, which promotes sparsity [16]. A specific case of the latter model is the Bernoulli-Gaussian,

obtained by adding a Dirac distribution at zero (equivalent to a centered Gaussian with nil variance) and

a centered Gaussian with free variance. The Bernoulli distribution corresponds to the minimization of35
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the quasi-norm `0, which counts the number of non-zero elements. It is thus an especially strong sparsity

constraint. The Bernoulli-Gaussian prior has been known for many years [17] and used to model sparse

signals in various applications, such as in bio-medical science [18, 19, 20, 21], astrophysics or geophysics

[22, 23, 24]. Besides, it naturally fits into a hierarchical probabilistic approach, which easily allows for the

construction of other related priors [18, 24], including the Bernoulli-Laplacian [18, 25, 26, 21] or even the40

Bernoulli-Laplace-Gaussian [27]. In this work, the choice of the Bernoulli-Gaussian prior results from a

trade-off between high sparsity, implementation complexity and convergence of the inference algorithm. A

Gibbs sampler is proposed for full inference of the resulting Bayesian model. The Gibbs sampler is a relevant

choice to explore high-dimensional posterior pdfs, as is the case here. In addition, it is ideally suited to

sample hierarchical models. This makes possible the joint inference of the hyperparameters of the problem,45

which play a crucial role for regularization.

The fully Bayesian paradigm adopted here parallels some recent works which have demonstrated its relevance

in inverse problems of structural dynamics, such as system identification [28, 29, 30, 31], model updating

[32, 33, 34, 35, 36] and force reconstruction [37, 38, 39, 40]. In Ref. [37], a fully Bayesian methodology based

on frequency response functions has been developed to reconstruct an input force from output measurements50

in the presence of model uncertainties, yet without imposition of sparsity constraints. In Ref. [41], a Bayesian

hierarchical model has been solved by relevance vector machine approximation in order to enforce the sparsity

of recovered transients in a time formulation based on a matrix of impulse responses. References [38] and [39]

have addressed the sparse case in a frequency domain formulation based on the matrix of transfer functions

by using a generalized Gaussian ”local” prior, which allows the degree of sparsity to change as a function55

of space; the optimization problem has been first solved by maximum aposteriori estimation regularization

tuned with the L-curve ([38]) and next in a fully Bayesian approach where all parameters – including the

shape parameter of the generalized Gaussian – are infered together ([39]). A similar approach has been

resumed in Ref. [40], with a slightly different Markov Chain Monte Carlo (MCMC) algorithm, by using a

state-space formulation of the direct problem. It is noteworthy that the fully Bayesian approach introduced60

in the present paper differs from the latter works in two aspects: first, it is designed for the FAT, a technique

which has its own specificities and advantages as explained in Ref. [4]; second, it uses a Bernoulli-Gaussian

prior which is theoretically able to enforce a much higher degree of sparsity than the generalized Gaussian

used in the aforementioned references.

The paper is organized as follows. Section 2 first resumes the principle of the FAT. Next, section 2.465
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formulates the inverse problem into a fully Bayesian framework with intrinsic regularization and sparsity

enforcement by means of the Bernoulli-Gaussian prior. Two versions of a Gibbs sampler are given in order to

explore the posterior pdf of the source distribution. The second one includes a “partially collapsed” strategy

which turns out decisive in accelerating the convergence of the Markov chains. Finally, sections 4 and 5

validate the proposed methodology on numerical simulations and on experimental data, respectively.70

2. Identification of vibratory sources from transverse displacement

This section resumes the principle of the FAT initially introduced in Ref. [3]. The FAT is in essence a local

method based on the equation of motion of a structure. It consists in calculating the spatial and temporal

derivatives involved in the left-hand side of the partial differential equation and to directly identify them

with the source distribution in the right-hand side of the equation. It is trivially converted to the frequency75

domain after application of the Fourier transform to the equation of motion. In the present work, all the

data collected at different spatial positions are taken into account as a whole, in a matrix formulation, which

actually makes a slight modification as compared to the original formulation of Ref. [3], where a stencil was

used to scan the measurements point by point. Next, a qualitative explanation of the limitations of the FAT

with regards to noise perturbations is given, leading to the next section dedicated to regularization.80

2.1. Equation of motion

The FAT is based on the equation of motion of a known structure. As an example, the method is presented

here on a beam within the Euler-Bernoulli theory. With temporal convention e+jωt defined with radial

frequency ω, the harmonic transverse displacement w(x, ω) ∈ C of the beam satisfies the partial differiential

equation,85

E(1 + jη)I
∂4w(x, ω)

∂x4
− ρSω2w(x, ω) = f(x, ω), (1)

where E is Young’s modulus, j the imaginary number (j2 = 1), η the loss factor, I the second moment of

inertia, ρ the density, S the cross-section area of the beam and f(x, ω) ∈ C the distribution of the vibratory

source or ”force” (in N/m) at location x and angular frequency ω. In the above equation, f(x, ω) stands for

the unknown of the problem. The principle of the FAT is to measure the transverse displacement field at a

number of points {xi; i = 1, ..., N} (hereafter assumed regularly spaced for simplicity), then to estimate its90

spatial derivatives, to evaluate the terms in the left-hand side of Eq. (1) and finally to deduce the vibratory
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source distribution applied on the structure as it is directly given by the right-hand side of Eq. (1). Since

the inverse problem is based on the equation of motion in harmonic regime, different sources operating at

different frequencies can be identified, provided that the displacement field at the corresponding frequencies

is used to evaluate the left-hand side of Eq. (1).95

2.2. Calculation of derivatives

The spatial derivatives needed in the FAT are typically calculated by numerical differentiation, using the

centered finite differences at first order,

∂4w(xi, ω)

∂x4
≈ w(xi+2, ω)− 4w(xi+1, ω) + 6w(xi, ω)− 4w(xi−1, ω) + w(xi−2, ω)

∆4
x

, (2)

where ∆x = xi+1−xi is the spatial sampling step. Substituting Eq. (2) into Eq. (1) allows the identification

of the vibratory source applied at location xi without having to evaluate the boundary conditions over the100

domain, i.e.

E(1 + jη)I
wi+2 − 4wi+1 + 6wi − 4wi−1 + wi−2

∆4
x

− ρSω2wi = fi, (3)

where wi and fi are simplified notations for w(xi, ω) and f(xi, ω).

The excitation can be classified into two categories: it can result either from pointwise sources or distributed

sources. In the first case, an equivalent force amplitude in Newtons is simply obtained by spatially integrating

the source distribution around each point. If the source is distributed with constant phase (for example, a105

transmission through a welding line), spatial integration can again lead to an equivalent force amplitude.

However if the phase is seen to change as a function of space (for example, an acoustic excitation), it might

be more relevant to interpret the results in terms of a source distribution rather than an equivalent pointwise

force – which might integrate destructively. This is indeed an advantage of the FAT over transfer matrix

based methods which usually return equivalent forces at a limited number of specific points.110

2.3. Matrix formulation

Considering a portion of the structure under test with a constant spatial discretization, Eq. (3) can be

expressed in a matrix form,

Dw = f , (4)

where w ∈ CN is the vector of displacements, f ∈ CN−4 the vector of vibratory sources and D ∈ C(N−4)×N

the operator matrix resulting from the discretization of the structural local operator. Due to the fourth order115

5



spatial derivative, D is an (N − 4)-by-N rectangular matrix, N being the number of measurement points.

Since the inverse of this matrix will be required to solve the inverse problem (see section 3), it is proposed

to make it square by adding two rows at each boundary. Different strategies are possible. One is to add two

extra derivatives at each boundary in order to evaluate local boundary conditions based on first physical

principles. The drawback of this strategy is that there is no automatic rule for choosing between imposed120

displacement, slope, bending moment or shear force as boundary conditions, while only two of them at most

are required. More generally, it faces the difficulty of accurately specifying a boundary condition (which is

often only partially unknown in complex systems) and, therefore, missing one of the definite advantages of

the FAT, which is exactly to avoid this requirement as opposed to other inverse methods. Another drawback

that the authors have observed in practice is that the resulting derivatives at boundaries can have much125

higher magnitudes than the sources evaluated inside the domain, thus making the problem ill-conditioned

(see section 3).

Alternatively, another strategy more in the spirit of FAT is to evaluate the source at the boundaries by

using fourth order forward and backward finite difference schemes, with stencils [3;−14; 26;−24; 11;−2] and

[−2; 11;−24; 26;−14; 3], respectively. Therefore the two vectors w and f end up with the same dimension130

and matrix D is square. This is the strategy adopted in the present work. It is noteworthy that it can also

be implemented within a finite element method to estimate sources at boundaries of a sub-domain of the

structure [42, 43], the interpreation of the result then being a combination of internal stresses and external

sources located at the boundaries (on the contrary, the use of a finite difference scheme with forward and

backward stencil at boundaries only depends on external sources applied on the studied domain). Moreover,135

although the bias induced by finite difference is higher than with the finite element method, it can be reduced

drastically by applying an analytic correction as shown in Ref. [44]. Hence, it seems to be an appropriate

model in the present work.

2.4. Additive noise

As each measurement includes noise, the equation of motion is modified as140

y = w + n, (5)

where y ∈ CN is the vector of observed displacement and n ∈ CN the vector of additive noise. White

Gaussian noise has been found to be a reasonable assumption as justified in Refs. [33, 4], especially when
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one works in the frequency domain. A multiplicative noise part may also be present depending on the

experimental setup and the studied physical quantities, but it is often neglected to simplify the approach

and mathematical developments. Applying the principle of the FAT to the observable quantity y then yields145

Dy = f +Dn. (6)

Although the level of noise n is initially much lower than that of displacement w, D is a differential operator

which, when applied to n, may considerably inflate it and thus jeopardize the source identification task.

Thus, a regularization step is needed to overcome this issue.

It must be stressed that the idealized noise model considered in the present methodology represents only150

random errors related to the measurement process. They must be distinguished from modelling errors,

which arise if the operator D used in the inverse problem does not reflect the actual dynamic behavior of the

structure. While random errors are likely to make the inverse problem unstable, modelling errors introduce

a systematic bias in the results of the inverse problem, even when a regularization is applied. The way

modelling errors can lead to such deviations is discussed in Sections 4.3 and 4.4.155

3. Regularization within the Bayesian framework

The Bayesian framework for solving the inverse problem is first presented in this section together with its

inherent regularization. The Gibbs sampler algorithm is then introduced as an MCMC to solve automatically

the inverse problem with a sparse prior on sources. These results are finally compared to those obtained with

a Gibbs sampler using the traditional Gaussian prior. From now on, the latter will be considered as a point160

of reference since it was shown in Ref. [4] to return better results than the classical Tikhonov regularization

[45] tuned with the L-curve [46, 47, 8, 48] or GCV [49, 7]. Sections 3.1 to 3.3 take elements already described

in [4]. Sections 3.4 to 3.8 contain original points, which are specific to the Bernoulli-Gaussian prior.

3.1. Bayes’ theorem

In most inverse problems, some quantities are considered as perfectly known, some as partially known or165

“uncertain” and some as completely unknown. Working with a probabilistic point of view is then a suitable

approach to take into account these different types. The Bayesian framework used in this work allows the

inclusion of prior information in the inverse problem.
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It is based on the following theorem,

[X | Y ] =
[Y | X] [X]

[Y ]
∝ [Y | X] [X] , (7)

where X represents the unknown and Y the observation (measured data). The posterior density, [X | Y ]170

corresponds to the solution of the inverse problem. A regularized point estimate is obtained by finding the

maximum of this pdf, which is known as the Maximum A Posteriori (MAP). [Y | X] is the pdf involved in the

direct problem which expresses the information extracted from the experiment and is called the “likelihood”.

[X] is the prior pdf, delivered from prior knowledge and [Y ] is called the “marginalized likelihood” or the

“evidence”. The evidence acts as a multiplicative constant to ensure that the product of the prior and the175

likelihood is still a pdf (the integral must be equal to 1). As the shape of the posterior is not impacted by the

evidence, the solution maximizing this pdf remains the same. Consequently, the proportional relationship is

preferred in Eq. (7) rather than the absolute equality.

3.2. Priors

Considering additive white Gaussian noise, the prior distribution of the noise Fourier coefficient n is expressed180

as a complex Gaussian

[n] ∝ Nc
(
n; 0, τ−1n I

)
. (8)

The scalar precision (the inverse of the variance) of noise, τn, is here preferred to the most usual variance

for simplification induced in sampling (see section (3.5)). I stands for the N ×N identity matrix and Nc for

the N -dimensional multivariate circular complex Gaussian pdf of x (see Ref. [50]), with mean vector µ and

covariance matrix Σ, defined as185

Nc (x;µ,Σ) =
1

πN |Σ|
exp

(
(x− µ)

H
Σ−1 (x− µ)

)
, (9)

where |Σ| stands for the determinant of the covariance matrix and the exponent H for the Hermitian

transposition. The fact that the covariance matrix in Eq. (8) is proportional to the identity matrix reflects

that the noise pdf is the same all over the domain and that there is no spatial dependence. Random

variables with this type of covariance are then independent and identically distributed. It is analogous to

the ”rain-on-the-roof” hypothesis of Statistical Energy Analysis.190
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3.3. Likelihood

From Eqs. (6) and (8), the pdf of the observations y knowing the sources f , the structural operator D and

the measurement noise n (i.e. the pdf corresponding to the direct problem) can be expressed as

[y |H,f , τn] ∝ Nc
(
y;Hf , τ−1n I

)
. (10)

It should be noted here that the likelihood is expressed by means of the “transfer matrix” H = D−1, the

inverse of the dynamic stiffness matrix D.195

Although the original formulation of the FAT has been chosen as a starting point (see Eq. (4)), the present

method requires the use of D−1 to solve the inverse problem. This also occurs in other variants of the FAT,

such as the one using a finite element operator to identify forces [42].

3.4. Bernoulli-Gaussian prior on source distribution

As announced in the introduction, sparsity on the source distribution is enforced by using a prior in the200

form of a Gaussian mixture, of which the Bernoulli-Gaussian (hereafter denoted by BG) is a special case

with high efficiency. The Bernoulli process follows a discrete pdf allowing only two values, 0 or 1. It can

be interpreted as a switch, or a Boolean, for the activation of each node of the source spatial distribution.

The relative weight between these two values is driven by the sparsity parameter λ. The Bernoulli pdf of a

variable x with sparsity parameter λ is defined by205

Bern(x | λ) = λx · (1− λ)1−x · 1{0,1}(x), (11)

where the notation 1{0,1}(x) specifies that variable x can only be 0 or 1. Hence, for x = 0, the associated

probability is (1 − λ) and reciprocally the probability for x = 1 is λ. The lower λ is, the more pronounced

the sparsity is. It should be noted that the value of λ is not only affected by the number of sources applied

to the structure, but also by their spatial extent. As will be shown later, a unique force acting over a finite

small area may result in a higher value of λ than several pointwise forces acting at different locations.210

When a source node of the grid is activated by the Bernoulli process, another prior pdf is then imposed

in order to compel its value. Assuming the latter is totally unknown, with real and imaginary parts either

positive or negative, the prior should be symmetrically distributed around zero. Also, to respect a physical

behavior, the source energy can not be infinite. So extreme values should be less probable than small ones.
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To meet these requirements, it is common to use a complex Gaussian with zero-mean and precision parameter215

τ . Therefore, the complex Bernoulli-Gaussian pdf of x is expressed as

BG(x | λ, τ−1) = (1− λ)Nc(x | 0, 0)︸ ︷︷ ︸
≡δ(x)

+λ Nc(x | 0, τ−1). (12)

In the above formulation, the Dirac distribution is seen (and symbolically noted) as a Gaussian with zero-

mean and nil covariance as a way to remind the reader that the Bernoulli-Gaussian process is a particular

case of the Gaussian mixture model. Thus, with a probability provided by the sparsity parameter λ, a

sample is either drawn from the Dirac distribution δ(x) or from the Gaussian distribution Nc(x | 0, τ−1).220

This prior being univariate, it only refers to a unique node of the source spatial distribution. To generalize

to the whole grid, it is necessary to assume that nodes are independent from each other. Then, the same

sparsity and precision parameters are applied to all nodes of the mesh. The multivariate distribution is thus

the product of all univariate distributions, i.e.

[f | λ, τf ] ∼
N∏
i=1

[fi | λ, τf ] (13)

with [fi | λ, τf ] = BG(fi | λ, τ−1f ).225

At this stage, it is insightful to interpret the source fi at each node into the product of an activation variable

qi and a complex amplitude variable ri,

fi = qiri. (14)

In this way, the Bernoulli process applies only to the variable qi, while the complex Gaussian distribution

applies only to the variable ri. Figure 1 illustrates the pdf of the Bernoulli-Gaussian distribution for different

values of the sparsity parameter.230

3.5. Conjugate priors

Depending on the state of knowledge on the problem, the hyperparameters τn, τf and λ needed in the

aforementioned pdfs can be either imposed or considered completely unknown. Using a hierarchical Bayesian

approach, an unknown hyperparameter can be easily estimated from an appropriate hyperprior, the so-called

conjugate prior [51]. More explanations on conjugate priors and how to use them in the present inverse235

problem can be found in Ref. [4].
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Figure 1: Illustrations of the Bernoulli-Gaussian distribution with zero-mean, precision τx = 1 and sparsity parameter (a)

λ = 0, (b) λ = 1
2

et (c) λ = 1.

3.5.1. Inference of the precision parameters τn and τf

It turns out that the complex Gaussian distribution Nc
(
x | µ, τ−1IN

)
(here expressed with the generic

variables x, µ and τ) appearing in Eqs. (8) and (12) is endowed with an easy-to-sample conjugate prior

for its precision parameter τ , in the form of a Gamma pdf. The gamma density on precision τ with shape240

parameter k and scale parameter θ is expressed as

G (τ ; k, θ) =
τk−1 exp

(
− τθ
)

Γ(k)θk
with k > 0 and θ > 0, (15)

where Γ(k) =
∫∞
0
kt−1 exp (−t) dt is the gamma function.

The conditional pdf of τ given x, µ, k and θ is thus given by the update rule

[τ | x,µ, k, θ] ∝G (τ | k, θ)Nc
(
x | µ, τ−1IN

)
(16)

=
τk−1 exp

(
− τθ
)

Γ(k)θk

exp
(
− (x− µ)

H
τIN (x− µ)

)
πN |τ−1IN |

(17)

∝ τk−1+N exp

(
−τ
(

1

θ
+ ‖x− µ‖22

))
(18)

∝ G

(
τ | k +N,

(
1

θ
+ ‖x− µ‖22

)−1)
, (19)

The two precisions τn and τf can thus be inferred, as illustrated in Fig. 3.

3.5.2. Inference of the sparsity parameter λ245

A popular conjugate prior for a Bernoulli random variable is the Beta distribution, whose support set is the

[0; 1] interval, as for the sparsity parameter λ. The Beta distribution of a random variable λ with parameters

11



(a, b) is given by

B(λ | a, b) =
Γ(a+ b)

Γ(a) Γ(b)
λa−1(1− λ)b−11[0,1](λ). (20)

An illustration of this pdf is displayed in Fig. 2 for different pairs of parameters (a, b). It is symmetric only

when a = b. The mean is a/(a+ b) and the variance is ab/((a+ b)2(a+ b+ 1)). So, the higher a and b250

are, the narrower the pdf is. The mode is a− 1/(a+ b− 2) (with a > 1 and b > 1). Then, when a is lower

than b, the mode is close to 0, and when a is upper than b, the mode is close to 1. The product of a Beta

distribution on λ and a Bernoulli distribution with sparsity parameter λ is another Beta distribution,

B(λ | a, b)Bern(q | λ) =
Γ(a+ b)

Γ(a) Γ(b)
λa−1(1− λ)b−1λq · (1− λ)1−q · 1{0,1}(q) (21)

= B(λ | a+ q, b+ 1− q), (22)

which is proportional to the conditional pdf [λ|q, a, b]. It is observed that when q is nil, the posterior on λ

is shifted towards 0, enhancing also the sparsity.255
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0
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Figure 2: The Beta probability density function for different values of the parameters (a, b).

3.6. Hierarchical graph

Hierarchical graphs are a way to represent relationships between the various variables of a problem, either of

random or deterministic natures, into a multi-level tree structure. For a specific variable in the graph, also

called a node, links to other upper-level variables, or parent nodes, act as its priors while links to lower-level

variables, or children nodes, represent its likelihood. The other parents of children nodes are called co-parent260

nodes. As a result of Bayes theorem, the pdf of a variable θj conditionnally to all the others, denoted

hereafter as ∞−θj , will only depend on its parents, children and co-parents of its children as follows [52],[
θj | ∞−θj

]
∝ [θj | Parents of θj ]×

∏
θk children of θj

[θk | Parents of θk] . (23)
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Based on the probabilities introduced in the previous section, the hierarchical graph of the inverse problem

under study is as displayed in Fig. 3.

aλ

λ

bλ kf

τf

θf kn

τn

θn

f H

yN

BG

G GB

Figure 3: Hierarchical graph with Bernoulli-Gaussian prior on sources. Distributions are denoted by N for the Gaussian, G for

the Gamma, BG for the Bernoulli-Gaussian and B for the Beta. Red circles stand for unknown stochastic variables to infer and

blue squares stand for known deterministic variables.

For each random variable in the hierarchical graph, its conditional pdf is obtained from Eq. (23). The four265

conditional pdfs to sample from are thus (mathematical developments are detailed in appendix A):

[τn | kn, θn,y,H,f ] ∝ [τn | kn, θn] [y |H,f , τn] (24)

∝ G(τn | kn, θn)Nc(y |Hf , τ−1n IN ) (25)

∝ G
(
τn | kn +N,

(
θ−1n + ‖y −Hf‖22

)−1)
, (26)

[τf | kf , θf , λ,f ] ∝ [τf | kf , θf ] [f | λτf ] (27)

∝ G(τf | kf , θf )

N∏
i=1

{
BG(fi | λ, τ−1f )

}
(28)

∝ G(τf | kf +M,
(
θ−1f + ‖f‖22

)−1
), (29)

[λ | aλ, bλ,f , τf ] ∝ [λ | aλ, bλ] [f | λ, τf ] (30)

∝ B(λ | aλ, bλ)

N∏
i=1

{
BG(fi | λ, τ−1f )

}
(31)

∝ B(λ | aλ +M, bλ +N −M), (32)
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[f | λ, τf ,y,H, τn] ∝ [f | λ, τf ] [y |H,f , τn] (33)

∝
N∏
i=1

{
BG(fi | λ, τ−1f )

}
Nc(y |Hf , τ−1n IN ), (34)

with M the number of non-zero elements in f .

By contrast to the first three probabilities, the posterior of the force distribution f given in the last equation

is too difficult to be sampled directly in its multivariate version. Therefore, the posteriors of the elements

fi, i = 1, ..., N will be assessed one by one and in two steps by introducing a local sparsity variable λi and270

an activation variable for the Bernoulli process (qi from Eq. (14)), similar to a power switch for each index

of the spatial mesh.
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3.7. Partially collapsed Gibbs sampler

For every node of the spatial mesh, the local sparsity variable (and thereafter, the value that the activation

variable qi is likely to take) is mainly driven by activation values at the other locations. So, fi strongly275

depends on its neighbors. However, the mixing of the Gibbs sampler is especially low when the variables

involved are strongly correlated because the conditional probabilities are then too narrow. Moreover, this

trend is amplified when the dimensions of the target distribution increases (e.g. when the number of mesh

nodes increases). Consequently, the Gibbs sampler with Bernoulli-Gaussian prior on the force distribution

has extremely slow convergence. An acceleration strategy is proposed in Ref. [23] for the particular case280

where, instead of identifying a single pointwise source at xi, the signal is spread out on the nearby nodes

xi−1 and xi+1. More broadly, Ref. [19] presents two methods to improve the convergence. The first one

consists in a block Gibbs sampler to take into account locally the correlations of the target distribution. The

second one is based on Refs. [53, 54] and proposes a partial marginalization of the Gibbs sampler, also called

Partially Collapsed Gibbs sampler. The choice between the two strategies depends on dimensions of the data285

to work with. Globally, up to a thousand elements, the marginalization strategy is more efficient according

to Ref. [19]. This approach is thus adopted in the present study. The concept is illustrated in Fig. 4 with

a bi-dimensional distribution on two variables X and Y strongly correlated. While the standard algorithm

samples successively from [X | Y ] and from [Y | X], the marginalized one samples successively from [Y | X]

and from the marginal [X] =
∫

[X | Y ][Y ]dY . The marginal distribution can be seen as the projection of the290

joint distribution [X,Y ] on the axis of X. This step makes the Markov chains moving faster towards area

of higher probability. The partial property of the marginalization is primordial to maintain the correlation.

Indeed, marginalizing all conditional pdfs would be equivalent to considering totally independent variables.

This partial marginalization procedure is then applied to the previous Gibbs sampler with a Bernoulli-

Gaussian prior on sources. The strategy is developed in appendix (B) and the algorithm 3 of appendix (C)295

sums up the procedure.

15



(a) (b)

X

Y

[X,Y]

X

Y

[X,Y]

[X]

Figure 4: Illustration of the inference of an highly correlated two dimensional probability density function using the traditional

Gibbs sampler (a) and the Partially Collapsed Gibbs sampler (b).

3.8. Whole sampling procedure

All the posteriors have now been set up and can be used in the Gibbs sampler for the identification of sparse

vibratory sources. As in Ref. [4], the initialization of the algorithm is a key to ensure a good convergence

towards the target multivariate probability. The different stochastic variables are thus initialized from results300

of the standard Gibbs sampler with a Gaussian prior [4]. In particular, the two precisions τn and τf are

initialized with the modes of their Gamma distribution as estimated from the chain histograms. The force

field f is initialized from the median of the converged chains. These preliminary results being obtained

with a Gaussian prior on sources, the sparsity parameter is implicitly set to 1. The same value is then used

to initialize λ in the sparse approach. To monitor the convergence of the chains, one could implement the305

FREP indicator of Ref. [55] based on the comparison of several parallel Gibbs samplers. If this is deemed

too expensive, the chains can be simply stopped after a large number of iterations Nt. Algorithm 1 sums up

the whole sampling process.

4. Numerical validations

This section illustrates the performance of the proposed Bernoulli-Gaussian Gibbs sampler through numerical310

simulations. The displacement field of an Euler beam is synthesized with added white noise to mimic
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Algorithm 1 Global (partially collapsed) Gibbs sampler with Bernoulli-Gaussian prior on sources used for

the identification of sparse vibration forces.

1: {Initialization :}

2: τn ← mode of Gibbs sampler with Gaussian priors [4]

3: τf ← mode of Gibbs sampler with Gaussian priors [4]

4: f ← median of Gibbs sampler with Gaussian priors [4]

5: λ← 1 {Initializations of τf , τn,f are obtained with Gaussian prior, thus λ = 1 at first step}

6: Nt ← {iterations number of the sampler}

7: it ← 0 {iterations count}

8: {Sampling:}

9: while it < Nt do

10: τn ← from Eq. (26)

11: τf ← from Eq. (29)

12: λ← from Eq. (32)

13: f ← from algorithm (2) of section A.4 (without collapsing) or from algorithm 3 of section C (partial

collapsing)

14: it ← it + 1

15: end while

measured data. Several sequences of the Gibbs sampler are run with the aim to investigate the benefit of

partial marginalization and the effect of the possible presence of model bias.

4.1. System under study

The simulated structure is an aluminum Euler beam whose structural and geometrical properties are listed315

in Tab. (1a). A harmonic excitation is applied at multiple points on the structure, with different amplitudes.

Table (1b) resumes its properties.

4.2. Synthesis of displacement field and inverse crime

The displacement field of a simply supported beam excited by a pointwise harmonic vibratory source can

be synthesized analytically, from the partial differential equations, or numerically, from the Finite Element320
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Length Width Thickness

L [m] b [m] h [m]

1 2× 10−2 2× 10−3

Second moment of inertia Section Spatial sampling

I [m4] S [m2] ∆x [m]

4
3 × 10−11 4× 10−5 1× 10−2

Young’s modulus Loss factor Density

E [N/m2] ηE ρ [kg/m3]

70× 109 1× 10−3 2700

(a)

Location Amplitude Frequency

x0 [m] A [N] ν [Hz]

0.18 0.75 330

0.4 1 330

0.42 −1.5 330

0.66 −1 330

(b)

Table 1: (a) Structural and geometrical properties of the simulated beam. (b) Properties of the pointwise sources.

Method or finite differences. The latter method is followed in the present work, by means of the transfer

matrix H ∈ C101×101 equal to the inverse of the discrete operator matrix D (see Eq. (4)). On the one hand,

the analytic approach gives the best accuracy if it correctly describes the system under study, yet this applies

only to a few trivial cases. On the other hand, the numerical approach is more flexible as it can address

more complex situations (arbitrary geometry, heterogeneity, etc.), yet it may suffer from ”numerical errors”325

such as those induced by discretization of spatial derivatives in Eq (2). In general, care should be taken in

simulations to avoid committing an inverse crime [56]; this happens when the same operator is used both

in the forward problem to synthesize data and in the construction of the inverse operator that is applied
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on these same data. This process does not account for possible modeling errors – hereafter referred to as

”model bias” – between the physical system and its representation by a model. Therefore, it is important330

in practice to check the robustness of an inverse approach to the presence of such errors. This is especially

critical in the present work since the imposition of sparsity constraints may reduce the space of solutions to

a region not included in the image of a biased inverse operator.

In order to the avoid an inverse crime, it is proposed to synthesize the displacement field by using the

analytic model of the Euler beam and then to use the numerical operator H to solve the inverse problem.335

This approach will be compared to the inverse crime which consists in using the numerical operator H in

both the direct and the inverse problems.

In the analytic model, the displacement field w(x, ω) of a simply supported Euler beam is given by [57]

w(x, ω) =


A

2k3E(1+jηE)I

(
sin(kx) sin(k(L−x0))

sin(kL) − sinh(kx) sinh(k(L−x0))
sinh(kL)

)
, for x ∈ [0;x0]

A
2k3E(1+jηE)I

(
sin(k(L− x)) sin(kx0)

sin(kL) − sinh(k(L− x)) sinh(kx0)
sinh(kL)

)
, for x ∈ [x0;L]

, (35)

with L the beam length and k = 4

√
ρSω2

E(1+jηE)I the flexural wavenumber controlled by the driving angular

frequency of the source and structural and geometrical properties of the beam. Parameters A ∈ C and x0340

stand for the amplitude and the location of the pointwise source, respectively, whose values are reported in

Tab. 1b. The displacement field is thus synthesized on a regular mesh in order to obtain the displacement

vector w ∈ C101×1, as defined in Eq. (4).

4.3. Investigation of model bias

Figure 5(a) compares the displacement fields obtained from the analytic and the numerical models. Although345

trends are similar to a certain extent, the two displacement fields are clearly different; this is perfectly con-

sistent with the fact that the transfer matrix H used in the numerical model has been designed with virtual

boundary conditions (completion of four missing rows in D to make it square before inversion) different

from the real ones; in addition, approximation errors come with the discretization of spatial derivatives.

However, for an inverse method to be robust, it is expected that these differences do not interfere too much350

in the inversion. This is verified in Fig. 5(b) which displays the source fields recovered by applying the

inverse operator based on H on both the analytically and numerically synthesized data of Fig. 5(a) (with-

out noise). It is seen that the two results are almost equal, even though the propagation of model bias in

the inverse problem tends to slightly spread the reconstructed force distribution as compared to the ideal
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Dirac impulses used in the simulation. This behavior is inherent to the finite difference scheme, which uses355

neighboring points to estimate the spatial derivatives (note that this effect also occurs if corrected finite

difference schemes are considered, as proposed in [44]). The net force obtained after spatial integration in

the neighborhood of each peak yet returns the correct magnitude in Newtons. This evidences that a slight

loss in sparsity might be expected in practice due the unavoidable presence of modeling errors. A possible

inability to distinguish very close sources is also anticipated, as observed near x = 0.4 m where the force360

distribution identified from the displacement field synthesized analytically shows a seemingly single source.

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0.5

1
·10−4
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<
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]

Analytical solution Inverse crime

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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−
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Figure 5: (a) Displacement field synthesized with the analytic model (partial differential equations – red curve) and the numerical

model (transfer matrix H – green curve). (b) Reconstruction of the force distribution by applying the inverse numeric operator

on the displacement fields synthesized analytically (red dots) and numerically (inverse crime – green diamonds). SNR = ∞.

20



4.4. Additive noise synthesis

Following Eq. (5), additive white noise

n =
(ε′ + jε′′)√

2
10−

SNR
20 (36)

is next added to the simulated measured displacement, with ε′ and ε′′ two independent random vectors with

the same size as w sampled from the standard normal distribution and SNR the signal-to-noise ratio in365

decibels (dB). The latter is set to 30 dB in the following simulations.

4.5. Effect of partial marginalization

Force identification is then undertaken by following the steps described in Algorithm 1. The Markov chains

are initialized with the Gibbs sampler rooted on Gaussian priors of Ref. [4]. Hyperpriors are then tuned

to be the least informative possible, so as to allow the likelihoods to bring most of the information. The370

hyperparameters of the Gamma priors on precisions are as follows: kn and kf tend towards 0 while θn and

θf tend towards +∞. The hyperparameters aλ and bλ of the Beta prior on the sparsity parameter are both

set to 1, so that the probability is uniform on the [0; 1] interval.

First, the traditional Gibbs sampler is performed on the displacement field with inverse crime (i.e. where H

is used both in the direct and the inverse problems) and without partial marginalization. Figure 6 displays375

the Markov chains of the sparsity parameter λ (Fig. 6(a)), the noise precision τn (Fig. 6(b)), the source

precision τf (Fig. 6(c)) and the source field f (Fig. 6(d)). The converged source field is estimated from

the median of the second half of the chains. Estimations from the Gaussian (G) and the Bernoulli-Gaussian

(BG) cases are presented in Fig. 6(e). It worth noting that the number of iterations is quite high (20000),

yet the chains do not evolve so much. Due to the high correlation between variables in the sparse case, the380

algorithm is stuck in the initialization configuration. As a consequence, the sparsity parameter does not

decrease under 0.6 and the Bernoulli-Gaussian prior does not seem to do better than the Gaussian prior.

Second, the Partially Collapsed Gibbs sampler is performed on the same displacement field, still with inverse

crime (Fig. 7). A few tens of iterations are sufficient to make the chains converge to a sparse solution, the

sparsity parameter being now below 0.1 and the source field being perfectly recovered in localization and in385

amplitude.

To give an indication of time consumption, the number of iterations has been approximately divided by

100 and the duration by 10 after adopting the partially collapsed strategy. The fast convergence (only 200
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samples have been drawn) clearly compensates the higher cost induced by partial marginalization. It is

therefore advocated to use the Partially Collapsed Gibbs sampler whenever highly sparse priors are imposed390

to the source reconstruction.
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Figure 6: Results of the traditional Gibbs sampler with inverse crime synthesis under Gaussian (red dots) and Bernoulli-

Gaussian (green diamonds) priors. Markov chains of sparsity parameter (a) λ, (b) noise precision τn, (c) source precision τf ,

(d) source spatial distribution f and (e) median values of the converged Markov chain of the source spatial distribution. SNR

= 30 dB.
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Figure 7: Results of the Partially Collapsed Gibbs sampler with inverse crime synthesis under Gaussian (red dots) and Bernoulli-

Gaussian (green diamonds) priors. Markov chains of (a) sparsity parameter λ, (b) noise precision τn, (c) source precision τf ,

(d) source spatial distribution f and (e) median values of the converged Markov chain of the source spatial distribution. SNR

= 30 dB.

4.6. Influence of model bias

As discussed before, committing an inverse crime is forbidden in the real world. In practice, the model used

in the inversion is always biased in many ways (e.g. uncertainties on material and geometrical parameters,

nonlinearities, spatial discretization, material fatigue, effect of temperature, etc.). It is therefore compulsory395
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to investigate the identification of sparse sources with a slightly erroneous model. For the direct problem,

the displacement field is now calculated analytically from Eq. (35), while the transfer matrix H obtained

from the inverse of the discrete structural operator of Eq. (3) is used in the inverse problem. The results

of the Partially Collapsed Gibbs sampler are shown in Fig. 8. In this case, the Markov chains are much

more volatile than before, especially the one corresponding to the noise precision τn (Fig. 8(b)). These400

losses of precision are probably linked to the high amplitude peaks seen on the boundaries of the beam on

Fig. 8(d), to be interpreted as the search of cohesion forces at boundaries (see [42, 43]). A sparse solution

is yet still recovered with accurate localization. It should be noted that the Bernoulli-Gaussian prior tends

to counteract the spreading effect of the finite difference scheme. As a consequence, it reveals the existence

of the two closely spaced pointwise sources near x = 0.4 m, in contrast to the sole application of the inverse405

operator to the exact displacement field synthesized analytically. It is noteworthy that the point source at

x0 = 0.4 m is largely underestimated (f̂(x0) ' 20 instead of 100 N/m), which implies an overestimation of

the amplitude of the neighboring source at x0 = 0.42 (f̂(x0) ' −80 instead of −150 N/m); therefore, the

total force in Newton obtained after integration in the sub-domain [0.4; 0.42] remains almost equal to its

theoretical value of −0.5 N.410

5. Experimental validation

This section reports a validation of the proposed method on experimental data, using the same test structure

and measurement procedure as in [4]. It should be noted on the onset that, in this case, the model bias can

not be assessed (since the ground truth is unknown) and might be higher than in the previous section.

A freely suspended aluminum beam, with dimensions 72.25 cm × 2.96 cm × 2.9 mm, Young’s modulus415

E = 70× 109 N/m2, mass density ρ = 2700 kg/m3 and structural damping η = 10−4, is excited by a shaker

located at x0 = 0.37 m. An impedance head is placed at the interface to acquire a reference signal. The

excitation signal is a linear chirp in the frequency range [100; 4000] Hz and the displacement measurement

is performed by a scanning laser vibrometer with a mesh of 105 nodes and a constant spatial discretization

of ∆x = 5.7 mm. Pictures in Fig. 9 show the experimental setup.420

The partially collapsed Gibb’s sampler is then performed at an arbitrary frequency of 1505 Hz with both

Gaussian (see [4]) and Bernoulli-Gaussian priors. Here again, prior parameters are set to be as non-

informative as possible. Figure 10(a) shows the measured displacement field y while Fig. 10(b) displays the
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Figure 8: Results of the Partially Collapsed Gibbs sampler with analytic synthesis under Gaussian (red dots) and Bernoulli-

Gaussian priors (green diamonds). Markov chains of (a) sparsity parameter λ, (b) noise precision τn, (c) source precision τf ,

(d) source spatial distribution f and (e) median values of the converged Markov chain of the source spatial distribution. SNR

= 30 dB.

corresponding reconstructed source field from the Gibbs sampler with Gaussian (G) and sparse (BG) priors.

The Bernoulli-Gaussian solution shows a sparse solution with non-zero sources only between 0.34 and 0.37425

cm, whereas the Gaussian solution is non-zero almost everywhere in the domain. It is noteworthy that a

perfectly pointwise source is not expected in this case due to the non-negligible surface of the impedance

head that transmits the excitation force from the shaker to the beam. This, plus the fact that the presence
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(a)

(b)

Figure 9: Experimental setup of the free beam excited by a shaker with a linear chirp signal in frequency range [100; 4000] Hz.

An impedance head is placed at the interface between the beam and the shaker to acquire a reference signal.

of model bias is likely to spread the reconstructed force distribution as evidenced in the previous section,

indicate fairly good results. The presence of two source coefficients with reversed signs at the border of the430

support set at x ' 0.37 cm may be due to a slight torque applied by the impedance head resulting from an

imperfect excitation apparatus.

The evolution of sparsity parameter λ over the considered frequency range is shown in Figure 11(a). It has

a mean value of about 0.3, which is higher than the value obtained from simulations involving several point

forces (see Fig 8 (a)). This is an indication that the source applied here does not behave like an ideal point435

source, for the reasons explained above. Besides, the increase in λ between 2500 and 3000 Hz is associated

with the presence of residual forces in the unexcited regions of the beam. It should be noted that the beam

model used in the inverse problem does not take into account torsional motion, which exists in practice and

can lead to errors in the force identification in some frequency ranges.

Finally, the reconstructed source field is spatially integrated to obtain the force in Newton injected into the440

structure to allow its comparison with the reference signal of the impedance head. Figure 11(b) compares
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the force spectrum obtained with Gaussian and Bernoulli-Gaussian priors to the reference force spectrum

provided by the sensor. Overall, the results obtained from the two priors are in agreement, except at low

frequencies (below 300 Hz) where the identification with Bernoulli-Gaussian prior leads to wrong values.

Regarding the agreement with the reference spectrum, the identification with Gaussian prior is slightly445

more advantageous. These differences can be explained by the the greater complexity of the sampling

algorithm required to perform the identification with Bernoulli-Gaussian prior, which allows a more accurate

localization of the source than the Gaussian prior, at the cost of a less accurate estimation of its amplitude.
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Figure 10: (a) Experimental displacement field at 1505 Hz of a freely suspended beam excited by a pointwise vibratory source.

(b) Corresponding experimental source identification with Gaussian priors (G) and Bernoulli-Gaussian priors (BG).

6. Conclusion

This paper has shown how sparsity can be enforced in the recovery of a vibratory source field by following450

a fully Bayesian approach rooted on an appropriate prior such as the Bernoulli-Gaussian. This has for
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Figure 11: (a) Sparsity parameter λ as a function of frequency. (b) Source level identified with Gaussian priors (G) and

Bernoulli-Gaussian priors (BG), compared to the reference signal provided by the force sensor.

consequence to return an almost nil field, except where pointwise sources are actually applied to the vibrating

structure, contrary to the usual Gaussian prior which tends to spread non-zero values over the full domain

with significant magnitude even away from the excitation points. A much finer spatial resolution is thus

achieved, which allows for the separation of closely spaced pointwise sources. Torque excitation can eventually455

be identified and quantified as it is interpreted by the FAT as two opposite forces placed side by side.

However, the price to pay is that the mathematical developments are more complex with the Bernoulli-

Gaussian prior than with the traditional Gaussian prior. The numerical cost is also more expensive despite

the fact the Bernoulli-Gaussian prior fits into the conjugate prior strategy. A Partially Collapsed Gibbs
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sampler has been proposed to improve the exploration of the posterior probabilities and therefore reduce the460

numerical cost. Other priors, maybe less sparse but easier to implement, could also be used, such as other

Gaussian mixture models. At the same time, a promising prospect concerns the coupling of optimization

strategies and Bayesian inference. The numerical cost could thus be significantly reduced while keeping the

probabilistic point of view [58, 59].

At last, an important observation made in this work is that the the presence of model bias is likely to465

deteriorate the identification of sparse sources. Consequently, it would be useful to exploit the assumption

of sparsity to jointly update the model and reconstruct the sources [26].
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Appendices

A. Conditional probabilities

Expressions (24) to (34) relating to conditional probabilities are detailed in this section.
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A.1. Conditional distribution on τn

The noise precision τn is the only one stochastic variable which does not depend on the prior of f . Its625

posterior is given by

[τn | kn, θn,y,H,f ] ∝ G(τn | kn, θn) Nc(y |Hf , τ−1n IN ) (37)

∝ G
(
τn | kn +N,

(
θ−1n + ‖y −Hf‖22

)−1)
, (38)

with N the number of elements in vector y.

A.2. Conditional distribution on τf

A change of probability on the force distribution modifies the update of the posterior parameters on τf .

Here, Bayes’ theorem yields630

[τf | kf , θf , λ,f ] ∝ G(τf | kf , θf )

N∏
i=1

{
BG(fi | λ, τ−1f )

}
(39)

∝
τ
kf−1
f exp

(
− τfθf

)
θ
kf
f Γ(kf )

N∏
i=1

{
(1− λ)δ(fi) + λ

exp
(
−τf‖fi‖22

)
πτ−1f

}
(40)

∝ G(τf | k′f , θ′f ). (41)

The Dirac distribution at 0 is independent of τf , so the nil elements of the source vector f multiplied by the

Gamma distribution do not modify the parameters (kf , θf ). They simply act as multiplicative constant and

can then be neglected in the proportional relation.

However, when an element of f is non-zero, the Gaussian prior on f (acting as the likelihood here for the

inference on τf ) depends on τf and the product with the Gamma distribution updates its parameters. The635

posterior parameters are then updated using the following rule,

k′f = kf +M, (42)

θ′f =

 1

θf
+
∑
fi 6=0

fHi fi

−1 =
(
θ−1f + ‖f‖22

)−1
, (43)

with M the quasi-norm `0 of f (in other words, the number of non-zero elements of the vector). Thus,

precision on sources in this context is only affected by non-zero elements of the force distribution. Then,

the precision τf might be completely different from the one obtained with a classical Gaussian prior on f
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taking into account the whole force distribution. Therefore, the regularization parameter does not simply640

correspond to the ratio between noise and source precisions, as is the case with Gaussian priors on both

noise and sources.

A.3. Conditional distribution on λ

The posterior on the sparsity parameter is obtained by noting that the Bernoulli process is conditionally

dependent on sources only, regardless of the Gaussian process steered by the precision τf . By using the645

activation variables vector q ,

[λ | aλ, bλ,f , τf ] = [λ | aλ, bλ, q]

∝ B(λ | aλ, bλ)
∏
i

{[qi | λ]} (44)

∝ Γ(aλ + bλ)

Γ(aλ) Γ(bλ)
λaλ−1(1− λ)bλ−1

∏
i

{
λqi · (1− λ)1−qi · 1{0,1}(qi)

}
(45)

∝ B(λ | a′λ, b′λ), (46)

with the updated parameters identified by

a′λ = aλ +
∑
i qi = aλ +M, (47)

b′λ = bλ +
∑
i(1− qi) = bλ +N −M. (48)

This proves Eq. (32).

The sum of nil elements updating parameter a is equivalent by construction to the quasi-norm `0 given by

M . Logically, the sum of non-zero elements updating parameter b is N −M . Thus, when qi is equal to 0, b650

is increased by +1 and a remains the same. When qi is equal to 1, a is increased by +1 and b remains the

same. The update of these parameters is then especially simple.

A.4. Conditional distribution on f

First, parameters of the Gaussian process associated to the amplitude are assessed. Then, from them,

parameters of the Bernoulli process on the activation variable are assessed in turn.655

Distinguishing each fi in the same way as in Eq. (13) is equivalent to considering several univariate variables

instead of the single vectorial quantity f . Hence, in the hierarchical model of Fig. 3, the stochastic node on
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f is replaced by N stochastic nodes fi, all connected to variables λ, τf and y. Thus for each node fi, all the

other nodes, merged in a set hereafter denoted f (−i), are co-parent nodes and take place in the identification

of posterior on fi, through the likelihood. This posterior is then written as,660 [
fi | λ, τf ,y,H,f (−i), τn

]
∝ BG(fi | λ, τ−1f )Nc(y |Hf , τ−1n IN ) (49)

∝
{

(1− λ)δ(fi) + λ
exp(−τf‖fi‖22)

πτ−1
f

}
exp(−τn‖y−Hf‖22)

πNτ−N
n

(50)

∝
∑
l=0,1

{
λl

exp(−Ql,i)
π τ−1

l

}
, (51)

wherein

λ0 = 1− λ, (52)

λ1 = λ, (53)

τ0 = +∞ (symbolic notation for δ(x) = lim
τ→∞

Nc(x | 0, τ−1)), (54)

τ1 = τf , (55)

Ql,i = τn‖y −Hf‖22 + τl‖fi‖22, l = 0, 1. (56)

The subscript l refers then to the Dirac distribution when l = 0, and to the Gaussian distribution when l = 1.

The term πN τ−Nn of Eq. (50) is a same constant applied both on the Dirac distribution and the Gaussian

distribution, so it is independent of l and can be extracted from this sum. Thanks to the proportional

relation, it can be removed. In the posterior referring to fi, the argument Ql,i has to be explicitly expressed665

depending on this univariate variable. To this aim, let us introduce

ei = y − (Hf − hifi), (57)

with hi the i-th column of matrix H, that is to say the global impulse response of the system excited at its

i-th spatial node. It can be calculated from the SVD of the operator matrix of the structure D by

hi = V SuH(:,i), (58)

where u(:,i) corresponds to the i-th row of the left singular vectors matrix U (not to be confused with ui,

the i-th column of U) and S to the diagonal matrix of singular values. The vector ei then corresponds to670

residuals without the contribution of th specific source fi. Then, developments give

y −Hf = ei − hifi, (59)

and thus

Ql,i = τn‖ei − hifi‖22 + τl‖fi‖22, l = 0, 1. (60)
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Gaussian process.

Contrary to the latter cases, the normalizing constant coming from the product between the prior and

the likelihood plays in an important role in the sparse model. Indeed, the selection between the Dirac675

distribution and the Gaussian draw depends on it. To recognize the expression of a Gaussian distribution,

Ql,i is expanded in the following form

Ql,i = (fi − µi)Hτp(fi − µi) +R (61)

= fHi τpfi − fHi τpµi − µHi τpfi + µHi τpµi +R, (62)

where µi corresponds to the mean of the equivalent Gaussian distribution, τp is the new precision and R is the

normalizing constant moved into the exponential argument. This latter element is particularly important to

identify the normalizing constant. On another note, by expanding expression (60), the exponential argument680

can also be expressed as

Ql,i = τne
H
i ei + τn (hifi)

H
(hifi)− τneHi (hifi)− τn (hifi)

H
ei + τl(f

H
i fi) (63)

= fHi fi
(
τl + τn‖hi‖22

)
− fHi (hHi ei)τn − fi(h

H
i ei)

Hτn + ‖ei‖22τn. (64)

From identification with Eq. (62), the equivalent precision τp corresponds to

τp = τl + τn‖hi‖22, (65)

the equivalent mean µi corresponds to

µi =

(
hHi ei

)
τn

τp
=

hHi ei
‖hi‖22 + τl

τn

, (66)

and finally, the residuals R equals

R = −µHi τpµi + ‖ei‖22τn =

(
−‖hHi ei‖22
‖hi‖22 + τl

τn

+ ‖ei‖22

)
τn. (67)

Bernoulli process.685

At this stage, the mean µi and the precision τp of the Gaussian posterior have been identified. The relative

weight between the Dirac distribution and the Gaussian distribution still has to be evaluate to determine

whether the specific node is activated or not. Restarting from Eq. (51) and from identified parameters of
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the equivalent Gaussian distribution, the posterior on fi is written as690 [
fi | λ, τf ,y,H,f (−i), τn

]
∝

∑
l=0,1

{
λl exp(+τp‖µi‖22−τn‖ei‖

2
2)

π τ−1
l

exp
(
−τp‖fi − µi‖22

)}
, (68)

∝
∑
l=0,1

{
λ̃l,i
π τ−1

p
exp

(
−τp‖fi − µi‖22

)}
. (69)

In Eq. (67), the norm on ei is independent from l. Indeed, it acts as a multiplicative constant applied

both on the Dirac distribution and the Gaussian distribution. Then, it doesn’t modify the relative weight

and can simply be removed thereafter. The passage to the last expression aims at rewriting the conditional

probability on fi as the general expression of the circular-complex Gaussian distribution with parameters

µi and τp. This step is realized by introducing a new variable λ̃l,i for the ”specific sparsity” at node fi,695

described by the following relation,

λ̃l,i

π τ−1p
=
λl exp

(
+τp‖µi‖22

)
π τ−1l

, l = 0, 1. (70)

By isolating λ̃l,i,

λ̃l,i = λl
τl
τp

exp
(
+τp‖µi‖22

)
, l = 0, 1. (71)

For the activation of each node, the global sparsity parameter λ (and λl as a result, being defined from

the first one) acts as a prior for the whole mesh nodes, while the specific sparsity parameter λ̃l,i acts as a

posterior for each node. All the expressions are now known (Eqs. (52) to (55), (65), (66) and (67)) and the700

sparsity parameter of specific node fi can be calculated. For the Gaussian distribution (l = 1), the specific

sparsity parameter λ̃1,i is given by

λ̃1,i = λ
τf

τn‖hi‖22 + τf
exp

(
+
τn‖hHi ei‖22
‖hi‖22 +

τf
τn

)
. (72)

For the Dirac distribution (l = 0), the parameter λ̃0,i is equal to

λ̃0,i = (1− λ)
τ0

τn‖hi‖22 + τ0
exp

(
+
τn‖hHi ei‖22
‖hi‖22 + τ0

τn

)
. (73)

However, the precision τ0 tends to infinity, hence

lim
τ0→+∞

λ̃0,i = (1− λ). (74)

Since the sum of these two values is not always equal to 1, a last step of normalizing is thus needed,705

λl,i =
λ̃l,i

λ̃l,i + λ̃1−l,i
=

(
1 +

λ̃1−l,i

λ̃l,i

)−1
. (75)
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For the Gaussian distribution, the normalized sparsity parameter equals

λ1,i =

(
1 +

1− λ
λ

τn‖hi‖22 + τf
τf

exp

(
− τn‖h

H
i ei‖22

‖hi‖22 +
τf
τn

))−1
, (76)

and for the Dirac distribution,

λ0,i =

(
1 +

λ

1− λ
τf

τn‖hi‖22 + τf
exp

(
+
τn‖hHi ei‖22
‖hi‖22 +

τf
τn

))−1
. (77)

In practice, only one of these two normalized sparsity parameters has to be calculated; since the exponential

with a positive argument can be badly handled numerically, it is thus better to calculate the parameter λ1,i.

Therefore,710 [
fi | λ, τf ,y,H,f (−i), τn

]
= (1− λ1,i)δ(fi) + λ1,iNc(fi | µi, τ−1p ) (78)

with

µi =
hHi ei

‖hi‖22 +
τf
τn

(79)

and

τp = τf + τn‖hi‖22. (80)

Sampling in the above distribution is done as follows. A random draw u is made in the the uniform

distribution U[0;1]. If u ≥ λ1,i, then the amplitude of fi is set to 0. Otherwise, it is sampled from the

Gaussian distribution with mean µi and precision τp. This is resumed in algorithm 2.715

Algorithm 2 Sampling of force distribution using “standard” Gibbs sampler.

1: for i = 1 to N do

2: Sample u ∼ U([0; 1])

3: if u < λ1,i then {from Eq. (76)}

4: fi ∼ Nc
(
fi | µi, τ−1p

)
{from Eqs. (79) and (80)}

5: else

6: fi = 0

7: end if

8: end for
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B. Posterior on binaries with marginalization over amplitudes

The posterior on binary qi after marginalization over amplitudes r is obtained by

[qi | q(−i),H,y, τf , τn, λ] ∝ [y | q,H, τf , τn][qi | λ] (81)

∝ Nc (y | 0,B) Bern (qi | λ) (82)

∝ exp(−yHB−1y)
πN |B| λqi(1− λ)1−qi (83)

∝ 1− λ
πN︸ ︷︷ ︸
C1

|B|−1 exp
(
−yHB−1y

) (
λ

1−λ

)qi
(84)

∝ C1 exp

−yHB−1y − ln(|B|)− qi ln

(
1

λ
− 1

)
︸ ︷︷ ︸

−g(qi)

 . (85)

In Eq. (82), the Bernoulli distribution results directly from the prior on activation variables while the

Gaussian likelihood is obtained from a development similar to the one of Eq. (22) in Ref. [4]. The constant

C1 remains the same whatever the state of the binaries sequence q. The covariance matrix associated to this720

marginalized Gaussian likelihood on sources is defined by

B = τ−1f HdqcHH + τ−1n IN , (86)

with dqc the diagonal matrix composed with elements of vector q. In Eq. (85), a change on qi modifies the

probability by two ways, through the term qi ln
(
1
λ − 1

)
, but also through the matrix B. The covariance

matrix Binit associated to an initial sequence of binaries qinit can be resumed as

B̃init = Binitτn = η2HdqinitcH
H + IN , (87)

with η2 = τn
τf

the signal-to-noise ratio, allowing the isolation of the identity matrix and the simplification of725

developments in the following. The modification of the i-th binary qi leads to a perturbation on the reduced

matrix B̃init,

B̃mod = B̃init + δiη
2hih

H
i , (88)

where δi = ±1 whether the binary qi is activating (+1) or is deactivating (−1). Thus, when a node is

activated, the amplitude of the covariance matrix is increased according to the signal-to-noise ratio η2, but

also according to the system response to this node, hi. Therefore, the binary either remains to its initial730
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state qiinit , or it is modified to qimod . In the case of the activation of a binary, qiinit = 0 and qimod = +1,

then qiinit − qimod = −1 and δi = +1. From a symmetrical reasoning, the deactivation of a binary leads to

qiinit = +1 and qimod = 0, then qiinit − qimod = +1 and δi = −1. As a result,

qiinit − qimod = −δi. (89)

The conditional probabilities of qiinit and qimod are

[qiinit | q(−i),H,y, τf , τn, λ] ∝ C1 exp

−yHB−1inity − ln(|Binit|)− qiinit ln

(
1

λ
− 1

)
︸ ︷︷ ︸

−g(qiinit )

 , (90)

and735

[qimod | q(−i),H,y, τf , τn, λ] ∝ C1 exp

−yHB−1imody − ln(|Bimod |)− qimod ln

(
1

λ
− 1

)
︸ ︷︷ ︸

−g(qimod )

 . (91)

As for the standard Gibbs sampler, sampling from the Bernoulli distribution requires a normalization of

probabilities depending on the different values potentially taken by the variable qi. Considering only the

modified state, the probability on qi is expressed as

[qimod | q(−i),H,y, τf , τn, λ] =
exp(−g(qimod ))

exp(−g(qimod ))+exp(−g(qiinit ))
, (92)

= (1 + exp (−(g(qiinit)− g(qimod)))
−1

(93)

so that the sum of the two probabilities is equal to 1. The difference in the exponential argument is then

g(qiinit)− g(qimod) = +yHB−1inity + ln(|Binit|) + qiinit ln

(
1

λ
− 1

)
−yHB−1mody − ln(|Bmod|)− qimod ln

(
1

λ
− 1

)
.

(94)

To further simplify this expression, the matrix B̃
−1
mod can be expressed in terms of B̃

−1
init by means of740

expression (88) and of the Woodbury matrix identity [60],

B̃
−1
mod = B̃

−1
init − B̃

−1
initη

2hi(δi + hHi B̃
−1
initη

2hi︸ ︷︷ ︸
ρ̃i

)−1hHi B̃
−1
init (95)

= B̃
−1
init − η2ρ̃−1i B̃

−1
inithih

H
i B̃

−1
init. (96)
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In addition, in comparison with Eq. (88), it can be noted that

|B̃mod| = |B̃init|δiρ̃i, (97)

and then,

ln (|Bmod|) = ln (|Binit|) + ln (δiρ̃i) . (98)

Injecting expressions (96) and (98) into Eq. (94) and taking into account the division by τn done in Eq. (87)

on covariance matrices, the difference in the exponential argument is equal to745

f(qiinit)− g(qimod) = +τny
H
(
η2ρ̃−1i B̃

−1
inithih

H
i B̃

−1
init

)
y − ln (δiρ̃i) + (qiinit − qimod) ln

(
1

λ
− 1

)
. (99)

Finally, the probability associated to the change of state of a binary is

[qimod | q(−i),H,y, τf , τn, λ] =
(

1 + exp
(
−
(

+τny
H
(
η2ρ̃−1i B̃

−1
inithih

H
i B̃

−1
init

)
y

− ln (δiρ̃i)− δi ln

(
1

λ
− 1

))))−1
.

(100)

This is easily implemented as follows: for each iteration and for each binary, a sample u ∼ U([0; 1]) is

compared to the value of Eq. (100). If it is lower than [qimod | q(−i),H,y, τf , τn, λ], thus the binary state

changes. If the change corresponds to an activation, then the associated amplitude is drawn from the complex

Gaussian with mean and precision parameters defined in Eqs. (65) and (66). A strategy for the fast update750

of the covariance matrix B̃mod from B̃init is proposed by [61].

Finally, the force distribution sampling with partial marginalization over amplitudes is detailed in algorithm

3.

C. Source sampling step of the Partially Collapsed Gibbs sampler algorithm
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Algorithm 3 Sampling of force distribution using partially collapsed Gibbs sampler.

1: for i = 1 to N do

2: δi ← (−1)qiinit {add or remove binary depending on its initial state}

3: g(qiinit)− g(qimod)← Eq. (100)

4: Sample u ∼ U([0; 1])

5: if u < (1 + exp−(g(qiinit)− g(qimod)))
−1

then

6: qimod ← qiinit + δi {binary state change accepted}

7: end if

8: if qi = +1 then {sample of corresponding pointwise source amplitude}

9: ri ∼ Nc
(
ri | µri , τ−1p

)
{from Eqs. (65) and (66)}

10: else if qi = 0 then

11: ri = 0

12: end if

13: fi = qiri

14: end for
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