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Abstract

In 2014, Sun had conjectured that the following formula involving Catalan’s

constant G holds, letting Hn = 1+ 1
2 + · · ·+ 1

n denote the nth harmonic number:

∞∑
k=0

(
2k
k

)
(2k + 1)16k

(
3H2k+1 +

4

2k + 1

)
= 8G.

This had been discovered experimentally, in the context of the study of special

values of L-functions. In this article, we prove this conjecture, using various

identities concerning the dilogarithm function, and using an argument relying

on a 3F2

(
1
4

)
-series for Gieseking’s constant. It appears that this conjecture due

to Sun has not previously been solved, based on the relevant literature.
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1. Introduction

Sun had conjectured that the equality

∞∑
k=0

(
2k
k

)
(2k + 1)16k

(
3H2k+1 +

4

2k + 1

)
= 8G (1)

holds true in the 2015 article [1], and this same conjecture is given in Sun’s 2014

preprint [2] listing his conjectures on powers of π, letting G =
∑∞

k=0
(−1)k

(2k+1)2

denote Catalan’s constant, and letting (Hk : k ∈ N0) denote the sequence
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of harmonic numbers. Catalan’s constant is notable as a special value of the

Dirichlet L-function

L(s, χ) =

∞∑
k=1

χ(k)

k2
,

with

L (s, χ4) =

∞∑
k=0

(−1)k

(2k + 1)s
,

letting non-principal Dirichlet characters modulo n be denoted as per usual. We

are to make use of values associated with

L(2, χ6) =
1

36

(
ψ(1)

(
1

6

)
− ψ(1)

(
5

6

))
in our proof introduced in this article that Sun’s conjectured formula in (1)

holds true.

The formula in (1) is given as Equation (3.18) in [1], which is given as part

of part (i) of Conjecture 3.4 in [1]. The formula in (1) is also reproduced as5

Equation (1.27) in [2], with Conjecture 3.4 from [1] being cited. Based on

the extant literature citing [1], including [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18, 19, 20, 21], along with [22, §18], it appears that the problem of

proving (1) had been open, prior to our proof of (1) introduced in this article.

For the sake of brevity, we assume some basic familiarity with the special

function

Li2(z) :=

∞∑
k=1

zk

k2
(2)

known as the dilogarithm. The Euler–Mascheroni constant is such that γ =

limn→∞
(
Hn − lnn

)
, and we recall that the digamma function refers to the

special function such that the following equalities are satisfied [23], §9):

ψ(z) =
d

dz
ln Γ(z) =

Γ′(z)

Γ(z)
= −γ +

∞∑
n=0

z − 1

(n+ 1)(n+ z)
.

Writing ψ = ψ(0), the polygamma function is such that

ψ(n)(z) =
dn

dzn
ψ(0)(z).
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2. Proof of Sun’s conjecture10

Theorem 1. Sun’s conjectured equality in (1) holds true.

Proof. We are to make use of the moment formula∫ 1

0

(−2k − 1)x2k log(1− x) dx = H2k+1 (3)

together with the dominated convergence theorem, in the following manner. By

replacing the summand factor H2k+1 in the series

∞∑
k=0

(
2k
k

)
(2k + 1)16k

H2k+1

with the definite integral in (3), and then rewriting the resultant summand so

as to obtain
∞∑
k=0

∫ 1

0

(−2k − 1)
(
2k
k

)
x2k log(1− x)

(2k + 1)16k
dx,

we may reverse the order of the operators
∑∞

k=0 · and
∫ 1

0
· dx according to the

dominated convergence theorem. So, by the generalized binomial theorem, we

have that the equality

∞∑
k=0

(
2k
k

)
H2k+1

(2k + 1)16k
=

∫ 1

0

−2 log(1− x)√
4− x2

dx (4)

holds true. We have determined that an antiderivative for − 2 log(1−x)√
4−x2

is as

below, and this is easily seen by differentiating the following expression and

simplifying:

− 2

(
iLi2

(
− 2ei sin

−1( x
2 )

−i+
√
3

)
+ iLi2

(
2ei sin

−1( x
2 )

i+
√
3

)
+

1

2
i sin−1

(x
2

)2
−

sin−1
(x
2

)
log

(
1− ei sin

−1( x
2 )

−
√
3
2 + i

2

)
− sin−1

(x
2

)
log

(
1− ei sin

−1( x
2 )

√
3
2 + i

2

)
+

log(1− x) sin−1
(x
2

))
.
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Taking limits as x→ 0 and x→ 1, this gives us that the definite integral in (4)

is equal to:

2

(
iLi2

(
− 2

−i+
√
3

)
+ iLi2

(
2

i+
√
3

))
− 2iLi2

(
− 2e

iπ
6

−i+
√
3

)
− 13iπ2

36
+

1

3
π log

(
i√
3

)
+

1

3
π log

(
1− e

iπ
6

−
√
3
2 + i

2

)
.

Rewriting the argument of the first dilogarithmic expression shown above as

Li2

(
e−

5iπ
6

)
and then applying a series multisection to (2) according to the residue classes

of the indices modulo 6, and similarly for the other dilogarithmic expressions in

our evaluation of (4), this can be used to show that (4) is also equal to

8G

3
− 4iπ2

27
+

1

9

(
−
√
3 + i

)
ψ(1)

(
1

3

)
+

1

9

(√
3 + i

)
ψ(1)

(
2

3

)
,

and this may be confirmed with Mathematica’s FunctionExpand applied to our

dilogarithmic form for (4). So, we have that Sun’s series in (1) is expressible as

8G− 4iπ2

9
+

1

3
iψ(1)

(
1

3

)
−
ψ(1)

(
1
3

)
√
3

+
1

3
iψ(1)

(
2

3

)
+
ψ(1)

(
2
3

)
√
3

+

4

∞∑
k=0

(
2k
k

)
(2k + 1)216k

.

As it turns out, it is actually known1 that the series

∞∑
k=0

16−k
(
2k
k

)
(1 + 2k)2

= 1.0149416064... (5)

is equal to a well-known mathematical constant known as Gieseking’s constant

[24], with reference to the OEIS entry A143298 and the references therein, and

it is known that Gieseking’s constant is equal to

9− ψ(1)
(
2
3

)
+ ψ(1)

(
4
3

)
4
√
3

.

1See https://math.stackexchange.com/questions/3162014, for example.
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To show that the series in (5) is equal to Gieseking’s constant, we may start

with the Maclaurin series for the inverse since, so as to write

∞∑
k=0

(
2k
k

)
zky2k

2k + 1
=

sin−1 (2y
√
z)

2y
√
z

,

and by indefinitely integrating with respect to y, we obtain

1

2
√
z

(
sin−1

(
2y

√
z
)
log
(
1− e2i sin

−1(2y
√
z)
)
−

1

2
i
(
sin−1

(
2y

√
z
)2

+ Li2

(
e2i sin

−1(2y
√
z)
)))

,

and this leads us to an expression equivalent to Gieseking’s constant, using

previously known dilogarithmic expressions for this constant. So, we have shown

that Sun’s series in (1) is equal to the following:

8G− 4iπ2

9
+

1

3
iψ(1)

(
1

3

)
−
ψ(1)

(
1
3

)
√
3

+
1

3
iψ(1)

(
2

3

)
+
ψ(1)

(
2
3

)
√
3

+

9− ψ(1)
(
2
3

)
+ ψ(1)

(
4
3

)
√
3

.

Since Sun’s series is real-valued, we may omit the complex terms in the above

expansion, giving us that Sun’s series equals

8G+ 3
√
3−

ψ(1)
(
1
3

)
√
3

+
ψ(1)

(
4
3

)
√
3

.

Applying an index shift to rewrite ψ(1)
(
4
3

)
in terms of ψ(1)

(
1
3

)
, this gives us

that Sun’s series in (1) is reducible to 8G, as desired.
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