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In 2014, Sun had conjectured that the following formula involving Catalan's constant G holds, letting

This had been discovered experimentally, in the context of the study of special values of L-functions. In this article, we prove this conjecture, using various identities concerning the dilogarithm function, and using an argument relying on a 3 F 2 1 4 -series for Gieseking's constant. It appears that this conjecture due to Sun has not previously been solved, based on the relevant literature.

Introduction

Sun had conjectured that the equality

∞ k=0 2k k (2k + 1)16 k 3H 2k+1 + 4 2k + 1 = 8G (1) 
holds true in the 2015 article [START_REF] Sun | New series for some special values of L-functions[END_REF], and this same conjecture is given in Sun's 2014 preprint [START_REF] Sun | List of conjectural series for powers of π and other constants[END_REF] listing his conjectures on powers of π, letting G = ∞ k=0 

(-1) k (2k+1)
L(s, χ) = ∞ k=1 χ(k) k 2 , with L (s, χ 4 ) = ∞ k=0 (-1) k (2k + 1) s ,
letting non-principal Dirichlet characters modulo n be denoted as per usual. We are to make use of values associated with

L(2, χ 6 ) = 1 36 ψ (1) 1 6 -ψ (1) 5 6
in our proof introduced in this article that Sun's conjectured formula in [START_REF] Sun | New series for some special values of L-functions[END_REF] holds true.

The formula in (1) is given as Equation (3.18) in [START_REF] Sun | New series for some special values of L-functions[END_REF], which is given as part of part (i) of Conjecture 3.4 in [START_REF] Sun | New series for some special values of L-functions[END_REF]. The formula in (1) is also reproduced as 5

Equation (1.27) in [START_REF] Sun | List of conjectural series for powers of π and other constants[END_REF], with Conjecture 3.4 from [START_REF] Sun | New series for some special values of L-functions[END_REF] being cited. Based on the extant literature citing [START_REF] Sun | New series for some special values of L-functions[END_REF], including [START_REF] Sun | List of conjectural series for powers of π and other constants[END_REF][START_REF] Sun | Supercongruences involving dual sequences[END_REF][START_REF] Sun | Open conjectures on congruences[END_REF][START_REF] Mao | Two congruences involving harmonic numbers with applications[END_REF][START_REF] Chu | Hypergeometric approach to Apéry-like series[END_REF]7,[START_REF] Wang | Alternating multiple zeta values, and explicit formulas of some Euler-Apéry-type series[END_REF]9,[START_REF] Sun | Supercongruences involving Apéry-like numbers and binomial coefficients[END_REF][START_REF] Lupu | Analytic Aspects of the Riemann Zeta and Multiple Zeta Values[END_REF]12,[START_REF] Wang | Explicit formulas of sums involving harmonic numbers and Stirling numbers[END_REF][START_REF] Chu | Alternating series of Apéry-type for the Riemann zeta function, 40[END_REF][START_REF] Chu | Further Apéry-like series for Riemann zeta function[END_REF][START_REF] Lai | Elementary proofs of zagier's formula for multiple zeta values and its odd variant[END_REF][START_REF] Xu | Apéry-type series with summation indices of mixed parities and colored multiple zeta values[END_REF][START_REF] Wang | Proof of some conjectural hypergeometric supercongruences via curious identities[END_REF]19,[START_REF] Wang | Evaluations of some Euler-Apéry-type series[END_REF][START_REF] Xu | Sun's three conjectures on apëry-like sums involving har-55 monic numbers[END_REF], along with [22, §18], it appears that the problem of proving [START_REF] Sun | New series for some special values of L-functions[END_REF] had been open, prior to our proof of (1) introduced in this article.

For the sake of brevity, we assume some basic familiarity with the special

function Li 2 (z) := ∞ k=1 z k k 2 (2) 
known as the dilogarithm. The Euler-Mascheroni constant is such that γ = lim n→∞ H n -ln n , and we recall that the digamma function refers to the special function such that the following equalities are satisfied [START_REF] Rainville | Special functions[END_REF], §9):

ψ(z) = d dz ln Γ(z) = Γ ′ (z) Γ(z) = -γ + ∞ n=0 z -1 (n + 1)(n + z)
.

Writing ψ = ψ (0) , the polygamma function is such that

ψ (n) (z) = d n dz n ψ (0) (z).
Theorem 1. Sun's conjectured equality in (1) holds true.

Proof. We are to make use of the moment formula

1 0 (-2k -1)x 2k log(1 -x) dx = H 2k+1 (3) 
together with the dominated convergence theorem, in the following manner. By replacing the summand factor H 2k+1 in the series

∞ k=0 2k k (2k + 1)16 k H 2k+1
with the definite integral in (3), and then rewriting the resultant summand so as to obtain

∞ k=0 1 0 (-2k -1) 2k k x 2k log(1 -x) (2k + 1)16 k dx,
we may reverse the order of the operators ∞ k=0 • and 1 0 • dx according to the dominated convergence theorem. So, by the generalized binomial theorem, we have that the equality

∞ k=0 2k k H 2k+1 (2k + 1)16 k = 1 0 - 2 log(1 -x) √ 4 -x 2 dx ( 4 
)
holds true. We have determined that an antiderivative for

-2 log(1-x) √ 4-x 2
is as below, and this is easily seen by differentiating the following expression and simplifying:

-

2 iLi 2 - 2e i sin -1 ( x 2 ) -i + √ 3 + iLi 2 2e i sin -1 ( x 2 ) i + √ 3 + 1 2 i sin -1 x 2 2 - sin -1 x 2 log 1 - e i sin -1 ( x 2 ) - √ 3 2 + i 2 -sin -1 x 2 log 1 - e i sin -1 ( x 2 ) √ 3 2 + i 2 + log(1 -x) sin -1 x 2 .
Taking limits as x → 0 and x → 1, this gives us that the definite integral in ( 4) is equal to:

2 iLi 2 - 2 -i + √ 3 + iLi 2 2 i + √ 3 -2iLi 2 - 2e iπ 6 -i + √ 3 - 13iπ 2 36 + 1 3 π log i √ 3 + 1 3 π log 1 - e iπ 6 - √ 3 2 + i 2 .
Rewriting the argument of the first dilogarithmic expression shown above as

Li 2 e -5iπ 6 and then applying a series multisection to (2) according to the residue classes of the indices modulo 6, and similarly for the other dilogarithmic expressions in our evaluation of ( 4), this can be used to show that ( 4) is also equal to

8G 3 - 4iπ 2 27 + 1 9 - √ 3 + i ψ (1) 1 3 + 1 9 √ 3 + i ψ (1) 2 3 , 
and this may be confirmed with Mathematica's FunctionExpand applied to our dilogarithmic form for (4). So, we have that Sun's series in (1) is expressible as

8G - 4iπ 2 9 + 1 3 iψ (1) 1 3 - ψ (1) 1 3 √ 3 + 1 3 iψ (1) 2 3 + ψ (1) 2 3 √ 3 + 4 ∞ k=0 2k k (2k + 1) 2 16 k .
As it turns out, it is actually known1 that the series

∞ k=0 16 -k 2k k (1 + 2k) 2 = 1.0149416064... (5) 
is equal to a well-known mathematical constant known as Gieseking's constant [START_REF] Adams | The newest inductee in the number hall of fame[END_REF], with reference to the OEIS entry A143298 and the references therein, and it is known that Gieseking's constant is equal to

9 -ψ (1) 2 3 + ψ (1) 4 3 4 √ 3 .
To show that the series in ( 5) is equal to Gieseking's constant, we may start with the Maclaurin series for the inverse since, so as to write

∞ k=0 2k k z k y 2k 2k + 1 = sin -1 (2y √ z) 2y √ z ,
and by indefinitely integrating with respect to y, we obtain

1 2 √ z sin -1 2y √ z log 1 -e 2i sin -1 (2y √ z) - 1 2 i sin -1 2y √ z 2 + Li 2 e 2i sin -1 (2y √ z)
, and this leads us to an expression equivalent to Gieseking's constant, using previously known dilogarithmic expressions for this constant. So, we have shown that Sun's series in ( 1) is equal to the following: Applying an index shift to rewrite ψ (1) 4 3 in terms of ψ (1) 1 3 , this gives us that Sun's series in (1) is reducible to 8G, as desired.

8G - 4iπ 2 9 + 1 3 iψ (1) 1 3 - ψ (1) 1 3 

3 .

 3 Since Sun's series is real-valued, we may omit the complex terms in the above expansion, giving us that Sun'

See https://math.stackexchange.com/questions/3162014, for example.
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