
HAL Id: hal-03644498
https://hal.science/hal-03644498v1

Preprint submitted on 19 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Binary Multi Channel Morphological Neural Network
Théodore Aouad, Hugues Talbot

To cite this version:
Théodore Aouad, Hugues Talbot. Binary Multi Channel Morphological Neural Network. 2022. �hal-
03644498�

https://hal.science/hal-03644498v1
https://hal.archives-ouvertes.fr


Binary Multi Channel Morphological Neural
Network

Theodore Aouad1 and Hugues Talbot1

CentraleSupélec, Université Paris-Saclay, Inria. Gif-sur-Yvette, France
{firstname.lastname}@centralesupelec.fr

Abstract. Neural networks and particularly Deep learning have been
comparatively little studied from the theoretical point of view. Con-
versely, Mathematical Morphology is a discipline with solid theoretical
foundations. We combine these domains to propose a new type of neu-
ral architecture that is theoretically more explainable. We introduce a
Binary Morphological Neural Network (BiMoNN) built upon the con-
volutional neural network. We design it for learning morphological net-
works with binary inputs and outputs. We demonstrate an equivalence
between BiMoNNs and morphological operators that we can use to bi-
narize entire networks. These can learn classical morphological operators
and show promising results on a medical imaging application.

Keywords: Binary morphology · deep learning · binarized neural net-
works

1 Introduction

While demonstrating considerable success in applications, there are few theo-
retical results in Deep Learning. Many elements are not well understood, with
networks operating as black boxes, hindering critical applications such as medical
imaging or robotics. Conversely, Mathematical Morphology (MM) is a computer
vision discipline with solid theoretical foundations. In this article, we propose
to combine ideas from the two domains to construct a new type of neural ar-
chitecture that is theoretically more justified and explainable. As argued in [1]
combining the two fields is promising, as MM can se used to construct simpler
and more understandable deep neural networks. Using MM is more natural than
convolutional neural networks (ConvNets) for some specific tasks. For example,
ConvNets are not designed to deal with binary images, while MM is constructed
on set-representation of images. Also, as stated in [9], designing a correct se-
quence of morphological operators can be complicated and time-consuming.

Past researchers have proposed to learn both operators and structuring el-
ements, e.g using the max-plus definition of dilations and erosion [12,4]. Other
approaches introduce differentiable approximations of the max and min opera-
tors, such as the adaptive morphological layer [14], the PConv layer [10], and
the most recent LMorph and SMorph layers [9]. However, these methods deal
with grey-scale morphology and grey-scale images.
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We introduces the Binary Morphological Neural Network (BiMoNN), a learn-
able morphological network with binary inputs and output, inspired by the struc-
ture of ConvNets. We replace the convolution by elementary operations from the
set of erosions, dilations, anti-erosions, and anti-dilations: we can learn the type
of operation and its associated structuring element as well as any intersection/u-
nion of these elementary operations. we show equivalence properties between
our neural network and morphological operators. They can be used both as ex-
plainable results or as a way to binarize the network: once these equivalences are
respected, the morphological operation can replace the neural network. Booleans
weights can replace real-valued weights, improving the inference’s computing effi-
ciency [6,7,15]. We demonstrate how we managed to learn some classical morpho-
logical operators as well as an intermediate step of a challenging medical imaging
problem. A preliminary version of our work is available at [2]. Our code is publicly
available online at https://github.com/TheodoreAouad/Bimonn_DGMM2022.

2 Method

2.1 Notations

Let N˚ be the set of non zero natural integers. Let d P N˚ the dimension of the
image (usually d “ 2 or d “ 3). If a ď b P Z, we denote the discrete interval
as rra, bss “ ra, bs X Z. Let NI P N˚ and ΩI “ rr´NI , NI ssd be the support of
binary images I Ă ΩI . Let ΩS “ rr´NS , NSssd be the support of structuring
elements (short: SE) S Ă ΩS . If X Ă Zd, we denote X̌ “ t´x | x P Xu the
symmetric of X with respect to the origin. For a binary image I Ă ΩI , we
define its complementation IC “ ΩI z I. For a SE S Ă ΩS , if there is no
ambiguity, we define its complementation as SC “ ΩS z S. For a set X Ă Zd,
we denote its indicator function 1X : Zd ÞÑ R such that 1Xpxq “ 1 if x P X,
else 1Xpxq “ 0. If 1I P RΩI and 1S P RΩS we denote the convolutional product
1I f 1S : k P ΩI ÞÑ

ř

iPΩS |k´iPΩI
p1Ipk ´ iq1Spiqqq.

Definition 1. Let S Ă ΩS be a SE. Let I Ă ΩI be a binary image. We define
the following morphological operators.

the dilation by S δSpIq “ I ‘ S “
ď

sPS

pI ` sq (1)

the erosion by S εSpIq “ I a Š “
č

sPS

pI ´ sq (2)

the anti-dilation by S δSpIqC (3)

the anti-erosion by S εSpIqC (4)

the opening by S I ˝ S “ pI a Šq ‘ S (5)

the closing by S I ‚ S “ pI ‘ Sq a Š (6)

the black top-hat by S TbpI, Sq “ pI ‚ Sq z I “ pI ‚ Sq X IC (7)

the white top-hat by S TwpI, Sq “ I z pI ˝ Sq “ I X pI ˝ SqC (8)

https://github.com/TheodoreAouad/Bimonn_DGMM2022
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While not exhaustive, this list is representative of many useful morphological
operators. These operators are obtained through composition and intersection
or union of dilations, erosions, anti-dilations, and anti-erosions. Therefore, it is
enough to learn these elementary operations, their SEs, and their aggregation.

2.2 Binary Structuring Element Neuron

First, we design a single neuron that replaces the convolution operation: it can
learn the dilation, erosion, anti-dilation, anti-erosion, and their SEs.

Definition

Proposition 1 shows that we can express a dilation and erosion exactly using a
thresholded convolution.

Proposition 1 (Morphological operators from convolution). Let S Ă ΩS

be a binary SE and X Ă ΩI be a binary image.

X ‘ S “

ˆ

1X f 1S ě 1

˙

“

ˆ

1X f 1S ´ 1 ě 0

˙

(9)

X a S “

ˆ

1X f 1S ě |S|

˙

“

ˆ

1X f 1S ´ |S| ě 0

˙

(10)

We stress that the dilations and erosions only differ by a scalar, 1 for the
dilation and |S| for the erosion. Given S, we can learn the operation using only
this scalar. Taking inspiration from these expressions, we relax S into real weights
W P RΩS . We denote the softplus function by f` : x P R ÞÑ lnp1 ` exppxqq. Let
ξ : R ÞÑ r0, 1s be a smooth increasing function such that ξpxq ÑxÑ´8 0 and
ξpxq ÑxÑ`8 1. In practice, ξpxq “ 1

2 tanhpxq ` 1
2 .

Definition 2 (BiSE neuron). Let W P RΩS be a weight matrix, b P R a
bias and p P R a scaling number. We define a BiSE (Binary Structuring
Element) neuron as follow:

ϵW,b,p : x P r0, 1sZ
d

ÞÑ ξpprx f f`pW q ´ f`pbqsq P r0, 1sZ
d

(11)

This expression approximates the thresholded convolution of proposition 1.
Indeed, we apply the convolution and subtract a bias. If this expression is neg-
ative, we want the result to be 0, else we want the result to be 1. Therefore,
we multiply it by a scaling factor and threshold it. The higher |p| is, the closer
the output is to 0 or 1. We enforce the weights and bias to be positive: we will
explain that later.

The BiSE neuron is a convolution layer with the weights and bias forced to
be positive, with a smooth thresholding function as activation. In practice, all
the operations are differentiable with real inputs and outputs, not binary. Thus,
we define almost binary images, with pixels value either close to 0 or close to 1.

Definition 3 (Almost Binary Image). We say an image I P r0, 1sΩS is al-
most binary if there exists u ă v P r0, 1s such that IpΩSqXsu, vr“ H. We
denote this set Ipu, vq.
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Morphological equivalence

The following Theorem states the conditions ensuring that the BiSE neuron
is equivalent to a morphological operator. We denote ϵW,b,`8 : x P r0, 1sΩI ÞÑ

px f W ą bq P ΩI and ϵW,b,´8 : x P r0, 1sΩI ÞÑ px f W ă bq P ΩI .

Theorem 1 (Dilation / Erosion Equivalence). Let W P RΩS be a set of
weights, b P R a bias and p P R a scaling factor. Let S Ă ΩS be a candidate SE.
Given an almost binary input in Ipu, vq

– ϵW,b,`8 is a dilation by S if and only if ϵW,b,´8 is an anti-dilation by S if
and only if

ÿ

iPSC , wiě0

wi ` u
ÿ

iPS , wiě0

wi ď b ă vmin
iPS

wi `
ÿ

iPΩ , wiď0

wi (12)

– ϵW,b,`8 is an erosion by S if and only if ϵW,b,´8 is an anti-erosion by S if
and only if

ÿ

iPΩ , wiě0

wi ´ p1 ´ uqmin
iPS

wi ď b ă v
ÿ

iPS , wiě0

wi `
ÿ

iPΩ , wiď0

wi (13)

If one of these expressions is fulfilled, we say that the BiSE neuron is acti-
vated. Then we have @i P S , wi ě 0 and b ě 0, and the output of the BiSE
ϵW,b,p is almost binary.

Equations 12 and 13 check if a candidate S Ă ΩS activates the BiSE or not. If
the BiSE is activated, given an almost binary input, the output is almost binary.
Therefore, applying a BiSE on an almost binary image is the same as applying
the morphological operator to the binary image. Finally, we can replace the entire
BiSE neuron with the associated morphological operation in the activation case.
The sign of p determines if complementation is applied or not.

Theorem 1 justifies a posteriori our enforcing of the weights and bias to be
positive in the BiSE definition 2: the goal is to achieve activation, which is only
possible for positive parameters.

The BiSE can only be activated by at most one S Ă ΩS simultaneously. We
can recover this S with proposition 2.

Proposition 2 (Linear Check).
Let us assume the BiSE is activated for almost binary images in Ipu, vq. Let

b P R be the BiSE bias, let W P RΩS be the weights. Then there exists τ P R
such that S “ ti P Ω | W piq ě τu.
– If the BiSE is a dilation / anti-dilation

τ “
1

v

`

b ´
ÿ

iPSC , wiď0

wi

˘

(14)
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– If the BiSE is an erosion / anti-erosion

τ “
1

1 ´ u

`

ÿ

iPΩ , wiě0

wi ´ b
˘

(15)

We can check the two SEs associated with each threshold to recover the
activation operation. If none works, then by contraposition, the BiSE is not
activated. This is done in Op|Ω|q operations.

Binarization

Formalism The purpose of binarization is to replace the real parameters pW, b, pq

with binary parameters to improve inference efficiency [15]. If the activation in-
equalities of Theorem 1 are respected, we saw that we could replace the BiSE
with the morphological operation. That is a form of binarization: floating point
numbers are no longer required. However, these inequalities are not necessar-
ily respected. How to binarize the BiSE neuron in this case? We want to find
the closest morphological operation. Let pW˚, b˚, p˚q P RΩS ˆ R` ˆ R be the
learned parameters. Let A : pS, opq P PpΩSq ˆ tdilation, erosionu ÞÑ ApS, opq “

tpW, bq P R|ΩS |`1 | fop
S pW q ď b ă gopS pW qu, with fop

S and gopS the bounds defined
in Theorem 1. We want to define a dissimilarity function d : pS, opq, pW, bq P

pPpΩSq ˆ tdilation, erosionuq ˆ pR|ΩS | ˆ Rq ÞÑ dpApS, opq, pW, bqq, and we want
to find

argmin
pS,opqPPpΩSqˆtdilation,erosionu

dpApS, opq, pW˚, b˚qq (16)

Choice of dissimilarity A first choice is to use:

dpApS, opq, pW, bqq “ max
´

0, fop
S pW q ´ b, b ´ gopS pW q

¯

(17)

The search for pS, opq P PpΩSq ˆ tdilation, erosionu has exponential complexity
Op2|ΩS |). To simplify this search, we take inspiration from proposition 2: if the
BiSE is activated, we know that S “ ti | wi ě τu for a certain τ . Therefore, we
reduce the search to all S of this thresholded form, with τ P twi | i P ΩSu. This
reduces the complexity to Op|ΩS |q.

2.3 Binary Structuring Element Layer

One strength of ConvNets is their ability to learn multiple filters per layer, which
we also want to ensure. In a convolutional layer, each final channel is a sum of
one filter per input channel. In our case, the final result is either a union or
an intersection of the elementary operators (dilation, erosion, anti-dilation, anti-
erosion). Therefore, we want a layer that can learn the union or intersection of
any combination of inputs. Let us consider n binary images x1, ..., xn Ă Ω. Let
C Ă rr1, nss. Then the intersection and union are given as:
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1
Ş

iPC xi
“

´

ÿ

iPC
1xi

ě |C|

¯

(18)

1
Ť

iPC xi
“

´

ÿ

iPC
1xi ě 1

¯

(19)

As with the BiSE, we can use a single scalar to discriminate between the
union or the intersection. To learn the set C, we can use a parameter βi for each
image. The following definition ensues:

Definition 4 (LUI). Let β “ pβ1, ..., βcq P Rc. Let b P R be a bias and p P R
a scaling factor. We define the LUI (Layer Intersection Union) as a thresholded
linear combination:

LUIβ,b,p : x P pZdqc ÞÑ ξ

ˆ

p
´

c
ÿ

i“1

f`pβiqxi ´ f`pbq
¯

˙

P Zd (20)

A LUI layer can learn any intersection or union of any number of almost
binary inputs. It is a particular case of BiSE layer. In this case, the SE support
would be Ωlui “ t0ud ˆrr1, nss. Learning the intersection is equivalent to learning
an erosion, and learning the union is equivalent to learning a dilation. Then, we
can deduce the following Theorem, by using the BiSE Theorem 1. We denote by
I “

Śn
k“1 Ipuk, vkq the set of images with n almost binary channels.

Theorem 2 (LUI intersection / union equivalence).
Let n P N˚ and C Ă rr1, nss. Let b P R. Let pui ă viq P r0, 1s2n. Let β P Rn.

– LUIβ,b,`8 is an intersection by C if and only if

n
ÿ

k“1 , βkě0

βk ´ min
kPC

”

p1 ´ ukqβk

ı

ď b ă
ÿ

kPC , βkě0

βkvk `

n
ÿ

k“1 , βkď0

βk (21)

– LUIβ,b,`8 is a union by C if and only if

ÿ

kPC , βkě0

βkuk `
ÿ

kPrr1,nss z C , βkě0

βk ď b ă min
kPC

pβkvkq `

n
ÿ

k“1 , βkď0

βk (22)

If one of these inequalities is respected, we say that the LUI is activated.
Then, we have @k P C , βk ě 0 and b ě 0 and the output of the LUI is almost
binary.

As for the BiSE, if the LUI is activated, the set C can be found by thresholding
the pβkqk for a specific value. If the LUI is not activated, it is still possible to
binarize with the same method described for the BiSE in section 2.2.

We combine the BiSE neurons and the LUI in order to be able to learn the
morphological operators and aggregate them as unions or intersections.
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Definition 5 (BiSEL). A BiSEL (BiSE Layer) is the combination of multiple
BiSE and multiple LUI. Let pϵn,kq be N ˚K BiSE and pLUIkqk be K LUI. Then
we define a BiSEL as:

ϕ : x P pZdqn ÞÑ

ˆ

LUIk
”

`

ϵn,kpxnq
˘

n

ı

˙

k

P pZdqK (23)

The LUI and BiSE are called the BiSEL’s elements. If every element is
activated, we say that the BiSEL is totally activated.

If the BiSEL is activated, given almost binary inputs, the outputs of the
BiSEL are also almost binary.

The BiSEL follows the same logic as a convolutional layer. In ConvNets, at
each layer, we have k filters. Each filter applies one convolution to each channel,
and then we apply a linear combination to all convoluted channels. In BiSEL,
we have K filters (the number of LUI). For each filter, we apply a morphological
operation to a channel, and then we aggregate by taking the intersection or union
of any channels. A schema of BiSEL can be found in figure 1.

Fig. 1: Schema of BiSEL. Input x with 3 channels. Output ϕpxq with 2 channels.

Binarizing a BiSEL is equivalent to binarizing each of its element. If an
element is activated, it is easy to binarize it. For those who are not, we must
approximate them.

The parameters are the BiSE weights tWn,kun,k Ă RΩS , the BiSE biases
tbn,kun,k Ă R, the LUI parameters tβn,kun,k Ă R and the LUI biases tblkuk Ă R.
There are N ¨ Kp|ΩS | ` 2q ` K parameters.

2.4 BiMoNN

The BiSEL is akin to a complete convolution layer with multiple filters. We
can simply stack multiple BiSELs to create a network similar to a convolutional
neural network.

Definition 6 (BiMoNN). Let ϕ1, ..., ϕL be L BiSEL. We define the Binary
Morphological Neural Network (BiMoNN) as:

BiMoNN “ ϕL ˝ ... ˝ ϕ1 (24)
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We say that the BiMoNN is totally activated if all the composing BiSELs are
totally activated.

The BiMoNN can learn the composition of any intersection or union of dila-
tion, erosion, anti-dilation, and anti-erosion. That includes but is not limited to
opening, closing, black top-hat, and white top-hat.

There are two drawbacks to our current formulation. First, the input has the
same dimension as the output. ConvNets can be combined in multi-scale archi-
tectures, which compresses the data. Currently, we cannot solve classification
tasks with our method. Second, we can only learn predeternined composition
of operators. However, some morphological operators like skeletonization or re-
construction need an undetermined number of iterations before convergence.
Incorporating these features is left for further work.

Learning phase The BiMoNN is fully differentiable, and we learn its parameters
with classical deep learning techniques. Let L : Ω2

I Ñ R be a differentiable
loss function. Depending on our interpretation of the outside domain Zd z ΩI ,
the effects on the border can vary. Thus, the loss is computed by avoiding the
borders, whose size is half of the kernel size ΩS in each direction. We try classical
segmentation losses: the dice loss [11], the binary cross-entropy (BCE), and the
mean squared error (MSE).

Then, given a dataset of N labeled images pX,Y q, we minimize the error
1
N

řN
i“1 LpBiMoNNpxiq, yiq using Adam [8]. We compute the loss gradient with

the backpropagation algorithm [13]. In practice, we replace f`pbq by f`pbq `0.5
to help with training for all BiSE and LUI operators. The convolution weights W
follow the kaiming uniform initialization [5], and the biases begin at f`p2q`0.5 “

0.63. We initialize The BiSE and LUI scaling factors p at 0. That may not be
optimal, as it could bias the BiSE towards some operations and Sels. Could we
find other unbiased methods toward a particular operation or Sel ? This is left
for further research.

Binarization Once the training is done, we can binarize each element indepen-
dently to binarize the whole BiMoNN. Theorems 1 and 2 give activation condi-
tions regarding a specific set of almost binary images Ipu, vq. Given a layer l,
the range rul, vls depends on the activation of the layer l´1 and only exists if all
the layers ϕ1, ..., ϕl´1 are totally activated. This ideal situation does not occur
in most cases. In practice, we binarize the network sequentially layer by layer,
from the first to the last, and compute the almost binary range rul, vls along the
way. If a layer ϕl is not totally activated, we use the approximation described in
2.2: then, the next range becomes rul`1, vl`1s “ r0, 1s.

3 Experiments

3.1 Classical morphological operators

We will be using the three datasets described in [2]: Diskorect, a set of custom-
generated images composed of ellipses and rectangles that create as many dif-
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ferent situations as possible; thresholded MNIST upsized to 50 ˆ 50, and its
complementation that we call inverted MNIST. Examples are shown in figure 3.

Experiment description We learn the following operators: dilation, erosion, open-
ing, closing, black top-hat, and white top-hat. The 3 SEs used can be seen on
table 2. For erosion and dilation on MNIST, we use smaller SEs of size 5 ˆ 5.
Else for all other operations, SEs are of size 7 ˆ 7. The experimental protocol
is as follows: let γ be one of these morphological operators. The input-output
couples are tpxi, γpxiqq | xi P datasetu. The hyperparameters are the loss used,
the learning rate, and the batch size. For each result, see the code for the hyper-
parameters used. We measure the DICE score [3] between the predictions and
targets.

Fig. 2: Target SEs

3.2 A real example: defining regions of interest

Axial Spondyloarthritis (axSpA) is the most common auto-immune rheumatic
disease. It is painful and debilitating if untreated or incorrectly diagnosed. The
disease can be detected using MRIs: the inflammation is located on the sacroiliac
joint. Given the sacrum and the iliac shapes, the task is to detect this joint region.
We call this task axSpA.

The dataset is composed of around 1100 images with categorical images of
size about 512ˆ512 with two values: one for the iliac and one for the sacrum. We
transform them into binary images by separating each categorical value into one
channel: final images have 2 channels. The target is defined as the joint region.
Let Sa “ rr´20, 20ss ˆ t0u. The target operation is γa : X P t0, 1u512ˆ512ˆ2 “

pX1‘SaqXpX2‘Saq, with Xi the i´channel. The resulting input-output couples
are tpxi, γapxiqq | xi P axSpA datasetu (see figure 3d).

(a) Diskorect (b) MNIST (c) Inverted
MNIST

(d) axSpA input (left) and
target (right)

Fig. 3: Datasets example
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4 Discussion

Results on all operations are depicted in table 1.

Table 1: DICE Results on morphological operations. R means real weights, B
means after binarization (or approximate). Bold means DICE ą 0.8.

Dataset Diskorect MNIST Inverted MNIST
Operation z Sel Disk Stick Cross Disk Stick Cross Disk Stick Cross

Dilation ‘
R 1.00
B 1.00

R 1.00
B 1.00

R 1.00
B 1.00

R 1.00
B 1.00

R 1.00
B 1.00

R 1.00
B 1.00

R 1.00
B 1.00

R 1.00
B 1.00

R 1.00
B 1.00

Erosion a
R 1.00
B 1.00

R 1.00
B 1.00

R 1.00
B 1.00

R 1.00
B 1.00

R 1.00
B 1.00

R 1.00
B 1.00

R 1.00
B 1.00

R 1.00
B 1.00

R 1.00
B 1.00

Opening Twp, q
R 1.00
B 1.00

R 1.00
B 1.00

R 1.00
B 1.00

R 1.00
B 1.00

R 1.00
B 0.99

R 1.00
B 0.99

R 0.99
B 0.93

R 1.00
B 0.98

R 0.99
B 0.90

Closing Twp, q
R 1.00
B 1.00

R 0.92
B 0.87

R 1.00
B 1.00

R 1.00
B 1.00

R 1.00
B 0.66

R 1.00
B 1.00

R 1.00
B 1.00

R 1.00
B 0.91

R 1.00
B 1.00

White tophat Twp, q
R 0.82
B 0.28

R 0.97
B 0.33

R 0.81
B 0.80

R 0.00
B 0.40

R 0.06
B 0.32

R 0.78
B 0.65

R 0.00
B 0.12

R 0.13
B 0.14

R 0.22
B 0.21

Black tophat Tbp, q
R 1.00
B 0.31

R 1.00
B 0.82

R 1.00
B 1.00

R 0.00
B 0.00

R 0.38
B 0.00

R 0.00
B 0.00

R 0.98
B 0.76

R 1.00
B 0.29

R 1.00
B 0.26

4.1 Sequential operations

For dilation and erosion, the SEs are perfectly learned. The perfect DICE (=1)
is reached in almost all cases. Even when the BiSEs are not activated, the ap-
proximate binarizations yield good results. Performance can decrease (see disk
erosion on inverted MNIST), or increase (see disk erosion on MNIST).

On opening and closing, we reach perfect dice for most cases. All SEs can
be seen on the code repository. We manage to recover the target SEs for most
operations except on the opening on the inverted MNIST. We want to test
the following hypothesis H: dual operators learn similarly on dual datasets. On
Diskorect, for any image X in this dataset, then XC is also in it. Therefore
H implies that opening and closing should have similar results. Already the
hypothesis is rejected if we look at the stick opening vs. the stick closing: one
succeeds and the other fails. On MNIST, H implies that the closing on MNIST
should behave the same as the opening on inverted MNIST and vice versa. That
is not observed and refutes further the hypothesis. Note that the model learns
two anti-dilations for the closing, which is equivalent to learning dilation followed
by erosion.

We compare our results to LMorph and SMorph [9]. They reach almost
perfect DICE for erosion and dilation, but recovering the SEs from the learned
weights is not straightforward. Moreover, on the opening and closing, the LMorph
presents stability issues, and the SMorph fails to converge correctly to the proper
operations. Those results are not surprising as these networks were designed for
grey-scale morphology.
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4.2 Parallel operations

In this section, we study the model’s ability to learn the complementation and
intersection with top-hat transform. We manage to learn the black top-hat for
the Diskorect and inverted MNIST. For the cross, the binarization is perfect (see
figure 4). The upper branch learns the complementation of the identity, and the
bottom branch learns the closing with two sequential anti-dilations. The white
top-hat only worked on Diskorect. The binarization decreases performance.

(a) Weights (b) Binarization

Fig. 4: Learned model for black top-hat with cross

(a) Architecture 1 (b) Architecture 2

(c) Architecture 3

Fig. 5: Architectures used for axSpA

4.3 AxSpA regions of interest

We attempt to learn the joint region. We want to learn the intersection of two
dilations of size 41ˆ41. We try three different architectures that can theoretically
learn this operation (see figure 5). They go from wide and shallow to deeper and
narrower. Architectures 1 and 2 learn the operation well, reaching an excellent
DICE (1 and 0.9). Architecture 1’s weights are close to the target, and the
binarization yields good results (DICE=0.98). On the other hand, architecture
2 learns wider dilations, and its binarization is quite bad (DICE=0.7). Note
that there are multiple ways for this architecture to learn the target. Finally, the
deeper network failed to learn anything. That may be due to the initialization:
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the output is constant and stuck in a zero-grad zone, which is a case of vanishing
gradient. This application is hopeful in the study of axSpA. This model could
be used with classical convolutional neural networks to improve MRI analysis
by exploiting the ROI’s detection using segmentation results.

5 Conclusion

We create a neural network designed to work on binary elements. It comes with
explainable results that can be used to binarize the network, improving its em-
bedded applicability for inference. We manage to learn the erosion, dilation,
opening, and closing of small structuring elements. We can learn sequential op-
erations and more complex ones that need the intersection of multiple opera-
tors. Even with bigger structuring elements, we learn appropriate behaviors for
concrete applications in medical imaging. However, there are still unanswered
questions. Why does the training differ for dual operations? How can we avoid
vanishing gradient in deeper networks? How can we reduce the dimension to
create a classification model? Can we redesign the model to take into account
undetermined number of iterations? How can we binarize more efficiently to
preserve the performance, especially if there are multiple channels?
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Table 2: Results on erosion and dilation. DICE error (1 ´ DICE) is presented
for each case: R before binarization, B after binarization. ✓ indicates that the
neuron is activated.

Dataset Diskorect MNIST Inverted MNIST
Operation Disk Stick Cross Disk Stick Cross Disk Stick Cross

Target

Dilation ‘

✓

R 0.000
B 0.000

✓

R 0.000
B 0.000

✓

R 0.000
B 0.000

✓

R 0.000
B 0.000

✓

R 0.000
B 0.000

ˆ

R 0.000
B 0.000

✓

R 0.000
B 0.000

✓

R 0.000
B 0.000

ˆ

R 0.000
B 0.000

Erosion a

ˆ

R 0.000
B 0.000

✓

R 0.000
B 0.000

✓

R 0.000
B 0.000

✓

R 0.001
B 0.000

✓

R 0.000
B 0.000

ˆ

R 0.000
B 0.000

ˆ

R 0.000
B 0.004

✓

R 0.001
B 0.001

✓

R 0.000
B 0.000
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Table 3: Results on opening and closing. DICE error (1 ´ DICE) is presented
for each case: R before binarization, B after binarization. ✓ indicates that the
neuron is activated.

Dataset Diskorect MNIST Inverted MNIST
Operation Disk Stick Cross Disk Stick Cross Disk Stick Cross

Target

Opening ˝

ˆ

✓

R 0.000
B 0.000

✓

✓

R 0.000
B 0.000

ˆ

✓

R 0.000
B 0.000

ˆ

✓

R 0.000
B 0.000

ˆ

✓

R 0.000
B 0.007

ˆ

✓

R 0.000
B 0.012

ˆ

ˆ

R 0.006
B 0.066

ˆ

ˆ

R 0.001
B 0.018

ˆ

ˆ

R 0.014
B 0.096

Closing ‚

✓

✓

R 0.000
B 0.000

✓

ˆ

R 0.077
B 0.128

ˆ

✓

R 0.000
B 0.000

✓

✓

R 0.000
B 0.000

ˆ

✓

R 0.000
B 0.336

ˆ

✓

R 0.000
B 0.000

✓

✓

R 0.000
B 0.000

✓

ˆ

R 0.000
B 0.092

ˆ

ˆ

R 0.000
B 0.001
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(a) Elementary operators

(b) Corresponding architecture

Fig. 6: Bernoulli Denoising Set Up
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Fig. 7: Bernoulli Denoising Results, weights learned
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Fig. 8: Bernoulli Denoising Results, binarization
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(a) Weights for architecture 1 (b) Binarization for architecture 1

(c) Weights for architecture 2

(d) Binarization for architecture 2

Fig. 9: Resulting Sels on axSpA results
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