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In digital pathology, various biomarkers (e.g., KI67, HER2, CD3/CD8) are routinely analyzed by pathologists through immuno-histochemistry-stained slides. Identifying these biomarkers on patient biopsies allows for a more informed design of their treatment regimen. The diversity and specificity of these types of images make the availability of annotated databases sparse. Consequently, robust and efficient learningbased diagnostic systems are difficult to develop and apply in a clinical setting. Our study builds on the observation that the overall organization and structure of the observed tissues are similar across different staining protocols. In this paper, we propose to leverage both the wide availability of haematoxylin-eosin stained databases and the invariance of tissue organization and structure in order to perform unsupervised nuclei segmentation on immunohistochemistry images. We implement and evaluate a generative adversarial method that relies on high-level nuclei distribution priors through comparison with largely available haematoxylineosin stained cell nuclei masks. Our approach shows promising results compared to classic unsupervised and supervised methods, as we quantitatively demonstrate on two publicly available datasets. Our code is publicly available to encourage further contributions 1 .

Introduction

Learning nuclei segmentation models is a challenging problem for immunohistochemistry (IHC) stained histological images. In routine pathology, IHC images are used to provide a distinct readout for proteins at the surface of nuclei or cell membranes or in the cytoplasm that would otherwise be invisible to the human eye, using immunostains [START_REF] Duraiyan | Applications of immunohistochemistry[END_REF]. IHC is widely used for diagnostic and for treatment selection, notably in cancer pathology, since it bypasses the need to perform expensive and time-consuming genetic testing. There are over 100 immunostains routinely used by pathologists, highlighting different proteins such as Ki67 and HER2, which can provide clues to tumor characterization. The segmentation of nuclei stained as such provides essential information for distinguishing benign cells from malignant cells or those which express a specific protein from those which do not. The ability to automatically identify and segment nuclei in IHC images is crucial since it could (i) accelerate the diagnosis time of cancers, (ii) reduce misdiagnosis in routine pathology, and (iii) improve the performance of cell-based learning system for therapy response prediction.

The most popular nuclei segmentation approaches currently rely on manually obtained, careful pixel-based annotations of nuclei [START_REF] Mahanta | Ihc-net: A fully convolutional neural network for automated nuclear segmentation and ensemble classification for allred scoring in breast pathology[END_REF][START_REF] Mao | Supervised learning-based cell image segmentation for p53 immunohistochemistry[END_REF][START_REF] Saha | Hscorenet: A deep network for estrogen and progesterone scoring using breast ihc images[END_REF]. However, producing such annotations is time-consuming, cumbersome, tedious and error-prone, which hampers the development of segmentation models for a wide range of immunostains. Some semi-supervised methods such as [START_REF] Koohbanani | Nuclick: a deep learning framework for interactive segmentation of microscopic images[END_REF] have been proposed to alleviate this need, requiring however manual interactions making their use on whole slide level time-consuming. On the other hand, current unsupervised segmentation approaches, such as those based on color clustering, perform inadequately, preventing their application in clinical settings.

This study introduces an approach that revolves around a simple idea: we exploit the fact that the spatial organization and shape characteristics of cells within tissues do not change significantly with the type of coloration technique used to stain histological tissue slides. Specifically, we design and evaluate a powerful and highly versatile adversarial-based approach that leverages already publicly available nuclei annotations for haematoxylin-eosin (H&E) staining to learn segmentation models for potentially many types of immunostains.We show in our experiments that our approach is effective for two of the most prevalent types of nuclei-based and membranous-based immunostains. On these examples, our method obtains results which are close to fully supervised approaches quantitatively evaluated on two publicly available datasets, without requiring any additional annotation.

Related Work

Nuclei segmentation is attracting a lot of attention lately with different challenges focusing on methods that can provide accurate segmentation for the many and diverse nuclei present on histology slides [START_REF] Gamper | Pannuke dataset extension, insights and baselines[END_REF][START_REF] Verma | Monusac2020: A multi-organ nuclei segmentation and classification challenge[END_REF]. These challenges however focus on fully supervised methods, mostly in the domain of H&E stains. Similar approaches relying on manually obtained pixel-based annotations on H&E sometime generalize to some IHC stains e.g., for HER2-stained segmentation [START_REF] Saha | Her2net: A deep framework for semantic segmentation and classification of cell membranes and nuclei in breast cancer evaluation[END_REF] and StarDist [START_REF] Schmidt | Cell detection with starconvex polygons[END_REF]. However, these methods essentially use color augmentation strategies [START_REF] Mi | Predictive models of response to neoadjuvant chemotherapy in muscle-invasive bladder cancer using nuclear morphology and tissue architecture[END_REF][START_REF] Rassamegevanon | Molecular response to combined molecular-and external radiotherapy in head and neck squamous cell carcinoma (hnscc)[END_REF], which would be specific to each new staining. In practice, there is a trade-off between the available amount of annotated tiles and the expressive power of the annotations: a higher number of annotated tiles can improve the generalization performance of segmentation systems due to the higher variability of the training data.

Conversely, a variety of thresholding-based approaches have been investigated for unsupervised nuclei segmentation, either based on Otsu thresholding [START_REF] Kuok | Automatic segmentation and classification of tendon nuclei from ihc stained images[END_REF][START_REF] Otsu | A threshold selection method from gray-level histograms[END_REF] or constrained local thresholding [START_REF] Di Cataldo | Automated segmentation of tissue images for computerized ihc analysis[END_REF][START_REF] Mouelhi | Fast unsupervised nuclear segmentation and classification scheme for automatic allred cancer scoring in immunohistochemical breast tissue images[END_REF]. In [START_REF] Sahasrabudhe | Self-supervised nuclei segmentation in histopathological images using attention[END_REF], authors train a network to accurately classify the magnification of an input tile using an attention module, and show that the attention maps can be used to produce detection maps of nuclei in H&E staining which can be further converted into nuclei segmentation maps.

Cross-domain learning is a paradigm that consists of the adaptation of a model from one domain to another, for instance from the H&E domain to the IHC domain. In this vein, authors of [START_REF] Lin | Adversarial learning with data selection for crossdomain histopathological breast cancer segmentation[END_REF] tackle H&E-IHC cross-domain learning by matching the distribution of high-level features obtained from both domains, for tissue segmentation. Other recent approaches have leveraged the use of generative adversarial networks (GANs) to train segmentation networks with various approaches. GANs can be used to generate images via style transfer and use annotations provided in one domain into another, which can then be used to train a supervised network like a U-Net or a Mask-RCNN [START_REF] Lin | Adversarial learning with data selection for crossdomain histopathological breast cancer segmentation[END_REF][START_REF] Liu | Unsupervised instance segmentation in microscopy images via panoptic domain adaptation and task re-weighting[END_REF]. Moreover, in [START_REF] Yao | AD-GAN: End-to-end unsupervised nuclei segmentation with aligned disentangling training[END_REF] an auto-encoder like approach for image-to-image translation for style transfer is proposed, learning the segmentation and transfer simultaneously.

Contrary to these approaches, our method exploits the available information at the segmentation level by encoding and identifying the histological tissue characteristics that are independent of the explored staining. To the best of our knowledge, this is the first time that such a scheme has been explored, and shown to provide close to fully supervised performance.

Methodology

In this study, we propose an unsupervised method for nuclei segmentation incorporating priors from publicly available datasets. The intuition for our work is that the underlying spatial organization of cells within tissues is the same irrespective of staining. For a given immunostain, rather than relying on specific pixel-based annotations, our approach exploits generic pixel-based segmentation annotations from classical H&E-stained histological images.

Our architecture is composed of three different components trained jointly, as illustrated in Figure 1. The first is a generator (S) that generates segmentation maps from the IHC inputs. The output of S is then processed by a discriminator (D S ), which predicts if the produced segmentation is plausible or not. Moreover, real, unpaired binary segmentation of nuclei from public datasets are given to the discriminator, in order to guide and encode real tissue characteristics. The last component of our method relies upon a reconstruction generator (R) which is trained to reconstruct IHC-looking nuclei from a segmentation. This way, our framework enforces consistency priors between the generated and the real tiles.

Formally, given an input IHC tile t from a training set T , the segmenter S produces a predicted segmentation map S(t). Given a database DB of segmentation maps from any type of staining (e.g., H&E), a ground-truth segmentation Fig. 1. An overview of our proposed framework. An IHC image t is fed to the generator S, outputting the corresponding segmentation map S(t). This map is compared to a ground truth mask SGT through discriminator DS; and used by the generator R to reproduce the original image R(S(t)). Similarly, the same process is applied to SGT to generate the corresponding IHC image (not represented here for clarity). map S GT is sampled from DB for each IHC tile t. The discriminator D S is then asked to correctly predict that each S GT is real (label 1) and that each predicted IHC segmentation map S(t) is fake (label 0); this is done by minimizing L D :

L D = D(S GT ) -1 2 + D(S(t)) 2 (1) 
Conversely, the segmenter S is optimized by maximizing its ability to fool, i.e. by minimizing the loss function MSE G that is:

L G = D(S(t)) -1 2 (2) 
The two examined losses L D and L G should train S to produce segmentation maps that contain nuclei objects that resemble true nuclei segmentation (shape prior), and that display nuclei distribution similar to the nuclei distribution of DB (organization prior). In fact, with both losses L D and L G combined, the system is optimized when the distributions of DB and {S(t), t ∈ T } are matched.

However, we found that the segmentation model S tended to produce false negatives by failing to segment some nuclei. The reconstructor R is intended to circumvent this by reconstructing the input IHC tile t from its predicted segmentation S(t); nuclei that would be missed by S would then induce errors in the reconstruction R(S(t)), therefore inducing S to minimize the number of false negatives. R is trained by minimizing the reconstruction L R , where an ℓ 1 norm is used for sparsity:

L R = R(S(t)) -t 1 (3) 
Following CycleGAN [START_REF] Zhu | Unpaired image-to-image translation using cycle-consistent adversarial networks[END_REF], we add another discriminator D R on the IHC and reconstructed IHC domains, in order to train R (and therefore S through backpropagation) with an additional loss more complex than pixel-based. For simplicity, we merge this discriminator loss within L D , and the corresponding adversarial loss of R within L R and L G . Furthermore, we introduce an additional consistency loss for robustness and to ensure that the segmentation network does not solely focus on color. For an IHC tile t, we consider a color augmentations c 1 (e.g. color jitter) and an augmented view c 1 (t) of t. The consistency loss is defined as the ℓ 1 norm between the predicted segmentation maps from both the original tile and the augmented view:

L C = S(t) -S(c 1 (t)) 1 (4) 
Finally, we sharpen the predicted segmentation maps S(t) by multiplying the predicted logits of S using a sharpening factor r=60, similarly to [START_REF] Hou | Sparse autoencoder for unsupervised nucleus detection and representation in histopathology images[END_REF]. This result in saturated values of 0 or 1 rather than float values in [0, 1], which can be used by the discriminator D S to easily identify fake segmentations.

The system is trained end-to-end, by optimizing both modules through minimization of the following loss function:

L system = L D + L G + L R + L C (5)
4 Experimental Configuration

Databases

We performed extensive experiments on 3 immunohistochemistry datasets to measure the performance of all benchmarked approaches. In detail, we utilize the DeepLIIF dataset [START_REF] Ghahremani | Deep learning-inferred multiplex immunofluorescence for ihc image quantification[END_REF] with 1667 Ki67-stained fields of view of size 512 × 512 pixels at 40× magnification. Our experiments are based on the publicly available splitting of the dataset [START_REF] Ghahremani | Deep learning-inferred multiplex immunofluorescence for ihc image quantification[END_REF], excluding the immunofluorescence data. Each image is supplied with ground-truth annotations, which were used for testing purposes but never for our training except for the fully supervised benchmark comparisons. We also employ the BCDataset [START_REF] Huang | Bcdata: A large-scale dataset and benchmark for cell detection and counting[END_REF] which consists of 1338 Ki67-stained 640 pixel-width 40x fields of view. Each nucleus is annotated with a single point highlighting its center. These were never used for our training except for testing purposes. Lastly, we also use the Warwick HER2 dataset [START_REF] Qaiser | Her2 challenge contest: a detailed assessment of automated her2 scoring algorithms in whole slide images of breast cancer tissues[END_REF][START_REF] Qaiser | Learning where to see: A novel attention model for automated immunohistochemical scoring[END_REF] which contains 84 HER2-stained whole slide images (WSI) split into 50 training and 34 testing slides. We extracted 512 × 512 patches and 256 × 256 patches from each slide for each set respectively after performing contours detection and filtering based on texture and lightness criteria [START_REF] Lu | Data-efficient and weakly supervised computational pathology on whole-slide images[END_REF]. To get a good representation of each tissue, we performed K-Means clustering on the Resnet18 features of each patch and selected for each one the closest to centroids [START_REF] Kalra | Yottixel -an image search engine for large archives of histopathology whole slide images[END_REF]. As KMeans is sensitive to outliers, we applied an isolation forest algorithm to remove the few artifacts that may remain after our pre-processing steps. For the testing set, we divided the patch sets into 2 folds leading to 68 patches. Similarly, for the training set, we divided the patch sets into 14 folds leading to 700 patches. The testing tiles were finally annotated by an experienced anatomopathologist. Compared to Ki67, HER2-stained images are more challenging since HER2 marks the membranes of cells (and not their nuclei).

Baselines

We compare the performance of our proposed method with five competing methods, including two fully supervised approaches. Specifically: a fully supervised model based on Unet [START_REF] Isola | Image-to-image translation with conditional adversarial networks[END_REF] was utilized. Moreover, NuClick [START_REF] Koohbanani | Nuclick: a deep learning framework for interactive segmentation of microscopic images[END_REF] was also employed, a weakly supervised approach specifically designed to compute nuclei masks from point annotations at the center of each cell. To provide this supervision, an experienced pathologist manually annotated all nuclei centers in HER2 test images, and such centers were obtained by computing the centroid of each nuclei ground-truth mask for both DeepLIIF and BCDataset test sets. Furthermore, StarDist [START_REF] Schmidt | Cell detection with starconvex polygons[END_REF] is a supervised method originally trained on H&E images. For our problem, this approach can be considered unsupervised since it does not rely on extra annotations. StarDist was used as a plugin within QuPath [START_REF] Bankhead | Qupath: Open source software for digital pathology image analysis[END_REF]. Thresholding was performed by applying Otsu thresholding on the Gaussian filtered luminance image. For Warwick HER2 dataset, we applied the same protocol to the deconvolved haematoxylin images obtained through stain deconvolution [START_REF] Ruifrok | Quantification of histochemical staining by color deconvolution[END_REF]. The proposed approach was implemented with Unetstyle architectures for S and R, and PatchGAN-based discrimators for D R and D S [START_REF] Isola | Image-to-image translation with conditional adversarial networks[END_REF]. At each iteration, a segmentation map S(t) is produced by S for an input IHC tile t. S(t) is forwarded into D S , along with a randomly sampled segmentation map S GT from the Pannuke dataset [START_REF] Gamper | Pannuke: an open pan-cancer histology dataset for nuclei instance segmentation and classification[END_REF][START_REF] Gamper | Pannuke dataset extension, insights and baselines[END_REF] which contains nuclei instance masks of H&E tiles extracted at either 20× or 40× magnification. Similarly, R outputs from these masks simulated IHC images that are compared to the real ones through D R . As we found that the reconstruction represents a key factor in the training of our method, we leveraged HER2 membranous nature to train our approach reconstructing only the deconvolved haematoxylin images as nucleus are only highlighted by this marker in this setting [START_REF] Ruifrok | Quantification of histochemical staining by color deconvolution[END_REF].

Implementation Details

We trained S and R using 64 filters in the last convolutional layer and a dropout of 0.5 and Adam optimizer with a learning rate of 0.0002 and β 1 = 0.5 and β 2 = 0.999. For the discriminators, we used 64 filters and 3 layers in total, with the same parameters for the optimizer. We exploited nuclei invariance to rotation and flipping to perform data augmentation. Moreover, as our datasets are all extracted from slides scanned at 40× magnifications, we performed random resizing to simulate 20× magnifications images and reproduce Pannuke distribution.

The fully supervised Unet based architecture was tuned using a Gaussian process algorithm during 50 iterations maximising the F1 score on the validation set after 10 training epochs. The parameters include the number of filters ∈ {64, 128}, the dropout value ∈ [0.3, 0.5], the learning rate ∈ [10 -5 , 10 -2 ], the decay rate ∈ [10 -10 , 10 -3 ] and the batch size ∈ {10, 30, 60, 120, 140}.

Both fully supervised Unet and the unsupervised proposed approach were then trained on a single A100 GPU for up to 600 epochs with PyTorch v1.10 [START_REF] Paszke | Pytorch: An imperative style, highperformance deep learning library[END_REF]. For Unet, the model with the highest validation score was inferred on the Fig. 2. Examples of predictions of our approach on the different datasets.

(shared) testing set of the DeepLIIF dataset (and was not trained on both other datasets because of missing ground-truth training data). For proposed, the final model was selected by finding the minimum of the loss: L G + L R + L C after 250 epochs to discard early training instabilities. To improve our nuclei masks, we first applied a median filter with a window size of 5 to remove the noise that may remain on our final predictions. For HER2 images, we applied in addition an erosion operation with a radius of 5 to remove remaining artifacts. To obtain nuclei instance segmentation, we lastly applied opening and closing operations and a watershed transform with labeling [START_REF] Sahasrabudhe | Self-supervised nuclei segmentation in histopathological images using attention[END_REF]. To ensure a fair comparison, the same post-processing was applied to the Unet and Thresholding outputs.

Results & Discussion

Table 1 reports semantic and object-level results on the DeepLIIF dataset for Ki67-stained images. The proposed approach obtained the highest Dice score of 69.81 and the highest balanced accuracy of 79.65 among all unsupervised approaches, i.e. approaches that do not necessitate additional annotations. While StarDist [START_REF] Schmidt | Cell detection with starconvex polygons[END_REF] obtained a higher precision, the proposed obtained the best recall of unsupervised approaches with 66.30; trading recall for precision is better for clinical considerations as false negative could aggravate the course of the patient care, while false positive can be more easily corrected. The proposed approach obtained competitive results with the fully supervised Unet and the weakly supervised NuClick, which obtained no more than 5% of improvement on the balanced accuracy without requiring any further annotations. [START_REF] Qaiser | Her2 challenge contest: a detailed assessment of automated her2 scoring algorithms in whole slide images of breast cancer tissues[END_REF][START_REF] Qaiser | Learning where to see: A novel attention model for automated immunohistochemical scoring[END_REF]. Accuracy is balanced. Bold indicates the top performing method for each metric for unsupervised group. Unet results are not available (NA) since ground-truth segmentation maps were unavailable. AJI corresponds to the Mean Aggregated Jaccard Index.

The Table 2 outlines the results on the testing set extracted from the Warwick dataset. Our approach outperforms the other unsupervised methods on almost all metrics, showing great improvements in semantic metrics with a Dice score of 58.46 and a recall of 64.34 while the classic methods top at 51.95 and 42.71 respectively. Once again, our approach proved to be better tailored to clinical use with a higher recall and better object metrics. It is also advocating for a great adaptability of our method to the diversity of IHC staining. Indeed, providing minor changes in the training and post-processing, we successfully applied our method to two different staining conditions, thus underlying that our method can better leverage H&E information than directly applying pre-trained stateof-the-art algorithms.

Finally, we qualitatively assessed the generalization of the proposed approach trained on DeepLIIF to BCDataset dataset. As highlighted in Fig. 2, our approach managed to provide a segmentation matching many ground truth annotations without adding any additional knowledge.

We performed an ablation study that can be found in the supplementary material (Table 1. supplementary) by successively removing some key components of our method and computing the performances on both DeepLIIF (Ki67 staining) and Warwick (HER2 staining). On both datasets, removing the reconstruction loss decreased the performances significantly on almost all the metrics and produced masks uncorrelated to the input, thus underlying the key role of the proposed cycling architecture. For the consistency loss and the sharpening factor, we noticed that these two elements balanced each other, with a stronger precision but a lower recall when decreasing the sharpening factor, and inversely when removing the consistency loss.

Conclusion

In this paper, we introduced a simple yet effective and unsupervised framework for nuclei segmentation integrating spatial organization priors. Extensive experiments on 3 highly heterogeneous datasets highlight the potential of this approach. In particular, we found that our approach outperformed all other benchmarked unsupervised methods, closing the gap with supervised approaches.

There are several axes of improvement for this work. First, besides the nuclei segmentation and detection information, the type of nuclei is also an important information in routine pathology. The current formulation could integrate such information by outputting one segmentation mask per stain and counterstain of IHC images (e.g. HER2 and haematoxylin). Another very interesting direction includes the integration of additional datasets or segmentation masks, which would unravel further shape and organization priors for the nuclei.

Table 1 .

 1 Results on the DeepLIIF dataset[START_REF] Ghahremani | Deep learning-inferred multiplex immunofluorescence for ihc image quantification[END_REF]. Accuracy is balanced. Bold indicates the top performing method for each metric, for both supervised and unsupervised groups. AJI corresponds to the Mean Aggregated Jaccard Index.

				Semantic			Object	
	Method Unsupervised Dice Accuracy Precision Recall AJI	Dice Hausdorff
	Unet	✗	77.28 84.30	81.42 73.67 51.01 72.52	12.81
	Nuclick	✗	76.14	82.65	85.85 68.62 61.09 75.81	9.46
	Threshold	✓	64.21	75.65	76.86	56.42 37.08 58.85	17.30
	StarDist	✓	61.92	73.04	87.89 48.00 40.80 60.38	14.79
	Proposed	✓	69.81 79.65	74.54 66.30 41.91 63.47	16.18
				Semantic			Object	
	Method Unsupervised Dice Accuracy Precision Recall AJI	Dice Hausdorff
	Unet	✗	NA	NA	NA	NA	NA	NA	NA
	Nuclick	✗	70.63	89.08	64.10	82.79 56.61 70.88	7.39
	Threshold	✓	43.03	67.46	75.71 34.65 25.49 44.56	9.87
	StarDist	✓	51.95	71.32	72.41	42.71 35.44 54.95	6.12
	Proposed	✓	58.46 81.64	64.01 64.34 39.07 58.65	8.71

Table 2 .

 2 Results on the Warwick dataset

https://github.com/loic-lb/Unsupervised-Nuclei-Segmentation-using-Spat ial-Organization-Priors
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