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Abstract. In digital pathology, various biomarkers (e.g., KI67, HER2,
CD3/CD8) are routinely analysed by pathologists through immunohisto-
chemistry-stained slides. Identifying these biomarkers on patient biopsies
allows for a more informed design of their treatment regimen. The di-
versity and specificity of these types of images make the availability of
annotated databases sparse. Consequently, robust and efficient learning-
based diagnostic systems are difficult to develop and apply in a clinical
setting. Our study builds on the observation that the overall organization
and structure of the observed tissues is similar across different staining
protocols. In this paper, we propose to leverage both the wide availabil-
ity of hematoxylin-eosin stained databases and the invariance of tissue
organization and structure in order to perform unsupervised nuclei seg-
mentation on immunohistochemistry images. We implement and evaluate
a generative adversarial method that relies on high-level nuclei distribu-
tion priors through comparison with largely available hematoxylin-eosin
stained cell nuclei masks. Our approach shows promising results com-
pared to classic unsupervised and supervised methods, as we demonstrate
on two publicly available datasets.

Keywords: Precision medicine · Biomedical imaging · Digital pathology
· Generative Adversarial Networks.

1 Introduction

Learning nuclei segmentation models is a challenging problem for immunohisto-
chemistry (IHC) stained histological images. In routine pathology, IHC images
are used to provide a distinct readout for proteins at the surface of nuclei or cell
membranes that would otherwise be invisible to the human eye, using immunos-
tains [3]. IHC is widely used for diagnostic and for treatment selection, notably
in cancer pathology, since it bypasses the need to perform expensive and time-
consuming genetic testing. There are over 100 immunostains routinely used by
pathologists, highlighting different proteins such as Ki67 and HER2, which can
provide clues to tumor proliferation. The segmentation of nuclei stained as such
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provides essential information for distinguishing benign cells from malignant cells
or those which express a specific protein from those which do not. The ability to
automatically identify and segment nuclei in IHC images is crucial since It could
(i) accelerate the diagnosis time of cancers, (ii) reduce misdiagnosis in routine
pathology, and (iii) improve the performance of cell-based learning system for
therapy response prediction.

The most popular nuclei segmentation approaches currently rely on manu-
ally obtained, careful pixel-based annotations of nuclei [16,17,26,30]. However,
producing such annotations is time-consuming, cumbersome, tedious and error-
prone, which hampers the development of segmentation models for a wide range
of immunostains. Some semi-supervised methods such as [11] have been pro-
posed to alleviate this need, requiring however manual interactions making their
use on whole slide level time consuming. On the other hand, current unsuper-
vised segmentation approaches, such as those based on color clustering, perform
inadequately, preventing their application in clinical settings.

This study introduces an approach that revolves around a simple idea: we
exploit the fact that the spatial organization and shape characteristics of cells
in histological tissue do not change significantly with the type of stain used to
color tissue slides. Specifically, we design and evaluate a powerful and highly
versatile adversarial-based approach that leverages already publicly available
nuclei annotations for haematoxylin-eosin (H&E) stainings to learn segmentation
models for potentially many types of immunostains.We show in our experiments
that our approach is effective for two of the most prevalent types of nuclear-
based and membranous-based immunostains. On these examples, our approach
obtains results which are close to fully supervised approaches evaluated on two
publicly available datasets, without requiring any annotation.

2 Related Work

Nuclei segmentation is attracting a lot of attention lately with different chal-
lenges focusing on methods that can provide accurate segmentations for the
many and diverse nuclei present on histology slides [5,32]. These challenges how-
ever focus on fully supervised methods, mostly in the domain of H&E stains.
Similar approaches relying on manually obtained pixel-based annotations on
H&E sometime generalize to some IHC stains e.g., for HER2-stained segmen-
tation [27] and StarDist [29]. However, these methods essentially use color aug-
mentation strategies [18,24], which would be specific to each new staining. In
practice, there is a trade-off between the available amount of annotated tiles
and the expressive power of the annotations: a higher number of annotated tiles
can improve the generalization performance of segmentation systems due to the
higher variability of the training data.

Conversely, a variety of thresholding-based approaches have been investigated
for unsupervised nuclei segmentation, either based on Otsu thresholding [12,20]
or constrained local thresholding [2,19,31]. Self-supervised learning has also been
investigated for nuclei segmentation. In [28], authors train a network to accu-
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Fig. 1. An overview of our proposed framework.

rately classify the magnification of an input tile using an attention module, and
show that the attention maps can be used to produce detection maps of nuclei
in H&E staining which can be further converted into nuclei segmentation maps.

Cross-domain learning is a paradigm that consists of the adaptation of a
model from one domain to another; for instance from the H&E domain to the
IHC domain. In this vein, authors of [13] tackle H&E-IHC cross-domain learning
by matching the distribution of high-level features obtained from both domains,
for tissue segmentation. Other recent approaches have leveraged the use of gen-
erative adversarial networks (GANs) to train segmentation network with various
approaches. GANs can be used to generate images via style transfer and use an-
notations provided in a domain into another, which can then be used to train
a supervised network like a U-Net of a Mask-RCNN [13,14]. Moreover, in [33]
an auto-encoder like approach for image-to-image translation for style transfer
is proposed, learning the segmentation and transfer simultaneously.

Contrary to these approaches, our method exploits the available information
at the segmentation level, by encoding and identifying the histological tissue
characteristics that are independent of the explored staining. To the best of our
knowledge this is the first time that such a scheme is explored, and shown to
provide close to fully supervised performance.

3 Methodology

In this study, we propose an unsupervised method for nuclei segmentation in-
corporating priors from public available datasets. The intuition for our work is
that the underlying spatial organization of cells within tissues is the same ir-
respective of staining. For a given immunostain, rather than relying on specific
pixel-based annotations, our approach exploits generic pixel-based segmentation
annotations from classical H&E-stained histological images.

Our architecture is composed of three different components trained jointly, as
illustrated in Figure 2. The first is a generator (S) which generate segmentation
maps from the IHC inputs. The output of S is then processed by a discriminator
(DS) which predicts if the produced segmentation is plausible or not. Moreover,
real, unpaired segmentation from public datasets are given to the discriminator,
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in order to guide and encode real tissue characteristics. The last component of
our method relies in a reconstruction generator (R) which trained to reconstructs
IHC-looking nuclei from a segmentation. This way our framework enforces con-
sistency priors between the generated and the real tiles.

Formally, given an input IHC tile t from a training of T , the segmentator S
produces a predicted segmentation map S(t). Given a database DB of segmen-
tation maps from any type of staining (e.g., H&E), a ground-truth segmentation
map SGT is sampled from DB for each IHC tile t. The discriminator D is then
asked to correctly predict that each SGT is real (label 1) and that each predicted
IHC segmentation map SGT is fake (label 0); this is done by minimizing LD:

LD =
(
D(SGT )− 1

)2
+
(
D(S(t))

)2 (1)

Conversely, the segmentator S is optimized by maximizing its ability to fool, i.e.
by minimizing the loss function MSEG that is:

LG =
(
D(S(t))− 1

)2 (2)

The two examined losses LD and LG should train S to produce segmentation
maps that contain nuclei object that resembles true nuclei segmentation (shape
prior), and that display nuclei distribution similar to the nuclei distribution
of DB (organization prior). In fact, with both losses LD and LG combined, the
system is optimized when the distributions of DB and {S(t), t ∈ T} are matched.

However, we found that the segmentation model S tended to produce false
negatives by failing to segment some nuclei. The reconstructor R is intended
to circumvent this, by reconstructing the input IHC tile t from its predicted
segmentation S(t); nuclei that would be missed by S would then induce errors
in the reconstruction R(S(t)), therefore inducing S to minimize the number of
false negatives. R is trained by minimizing the reconstruction LR, where an ℓ1
norm is used for sparsity:

LR =
∥∥R(S(t))− t

∥∥
1

(3)

Following CycleGAN [34], we add another discriminator on the IHC and recon-
structed IHC domains, in order to train R (and therefore S through backpropa-
gation) with an additional loss beyond pixel-based. For simplicity, we merge this
discriminator loss within LD, and the corresponding adversarial loss of R within
LR and LG.

Furthermore, we introduce an additional consistency loss for robustness and
to ensure that the segmentator does not solely focus on color for decision making.
For an IHC tile t, we consider two color augmentations c1 and c2 (e.g. color jitter)
and two augmented views c1(t) and c2(t) of t. The consistency loss is defined as
the ℓ1 norm between the predicted segmentation maps of both augmented views:

LC =
∥∥S(c1(t))− S(c2(t))

∥∥
1

(4)

Finally, we sharpen the predicted segmentation maps S(t) by multiplying the
predicted logits of the segmentator S using a sharpening factor r=60, similarly
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to [7]. This result in saturated value of 0 or 1 rather than float values in [0, 1]
which can be used by the discriminator D to easily identify fake segmentations.

The system is trained end-to-end, by optimizing both modules through min-
imization of the following loss function:

Lsystem = LD + LG + LR + LC (5)

4 Experimental Configuration

4.1 Databases

We performed extensive experiments on 3 immunohistochemistry datasets to
measure the performance of all benchmarked approaches. In detail, we utilize the
DeepLIIF dataset [6] with 1667 Ki67-stained fields of view of size 512 pixels
at 40x magnification. We used the same data splitting than publicly available, i.e.
709 images for training, 303 for validation and 598 for testing. Immunofluores-
cence correspondences in the dataset were discarded for the current study. Each
image is supplied with ground-truth annotations, which were used for testing
purposes but never for our training except for the fully supervised benchmark
comparisons. Ki767 IHC images are actually colored with haematoxylin, which
marks all nuclei, and Ki67, which marks pKi67 at the surface of some nuclei;
nuclei of Ki67-stained images are thus either brown or blue. We also employ he
BCDataset [8] which consists of 1338 Ki67-stained 640 pixel-width 40x fields
of view. Each nucleus is annotated with a single point highlighting its center.
These were never used for our training except for testing purposes. Lastly, we
use also the Warwick HER2 dataset [22,23] which contains 84 HER2-
stained whole slide images (WSI) split in 50 training and 34 testing images. We
extracted 256x256 patches from each tiles after performing contours detection
and filtering based on texture and lightness criteria [15]. To get a good represen-
tation of each tissue, we performed K-Means clustering on the Resnet features of
each patch and selected for each one the closest to centroids [10]. As KMeans is
sensitive to outliers, we applied an isolation forest algorithm to remove the few
artifacts that may remain after our pre-processing steps. For the testing set, we
divided the patch sets into 2 folds leading to 68 patches. Similarly, for the train-
ing set, we divided the patch sets into 14 folds leading to 700 patches. The testing
tiles were finally annotated by a expert anatomopathologist.Compared to Ki67,
HER2-stained images are more challenging since HER2 marks the membranes
of cells (and not their nuclei).

4.2 Baselines

We compare the performance of our proposed method with five competing meth-
ods, including two fully supervised approaches. Specifically: a fully supervised
model based on Unet [9] was utilized. Moreover, NuClick [11] was also em-
ployed, a weakly supervised approach specifically designed to compute nuclei
masks from point annotations at the center of each cell. To train this model,
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a senior pathologist manually annotated all nuclei centers in HER2, and such
centers were obtained by computing the centroid of each nuclei ground-truth
mask for both DeepLIIF and BCDataset datasets. Furthermore, StarDist [29]
is a supervised method originally trained on H&E images. For our problem, this
approach can be considered unsupervised since it does not rely on extra anno-
tations. StarDist was used as a plugin within QuPath [1]. Thresholding was
performed by applying Otsu thresholding on the Gaussian filtered luminance
image. We also applied the same protocol to images obtained through color de-
convoluton [25] but this method was found to perform worse. The proposed
approach was implemented with Unet-styles segmentator S and reconstructor
R, and PatchGAN-based discrimators DR and DS [9]. At each iteration, a seg-
mentation map S(t) is produced by G for an input IHC tile t. S(t) is forwarded
into the discriminator DS , along with a randomly sampled segmentation map
from the Pannuke dataset [4,5] which contains nuclei instance masks of H&E
tiles extracted at either 20X or 40X magnification. Similarly, the reconstructor
R outputs from these masks simulated IHC images that are compared to the real
ones through discriminator DR. As we found that the reconstruction represents
a key factor in the training of our method, we leveraged HER2 membranous
nature to train our approach reconstructing only the deconvolved hematoxylin
images as nucleus are only highlighted by this marker in this setting [25].

4.3 Implementation Details

We trained the generator using 64 filters in the last convolutional layer and a
dropout of 0.5 and Adam optimizer with a learning rate of 0.0002 and β1 = 0.5
and β2 = 0.999. For the discriminator, we used 64 filters and 3 layers in total,
with the same parameters for the optimizer. We exploited nucleus invariance to
rotation and flipping to perform data augmentation. Moreover, as our datasets
are all extracted from slides scanned at 40X magnifications, we performed ran-
dom resizing to simulate 20X magnifications images and reproduce Pannuke
distribution.

The fully supervised Unet based architecture was tuned on the number of
filters ngf ∈ [64, 128], the dropout value p ∈ [0.3 : 0.5], the learning rate
lr ∈ [10−5 : 10−2], the decay rate dr ∈ [10−10 : 10−3] and the batch size
bs ∈ [10, 30, 60, 120, 140] using a gaussian process algorithm during 50 iterations
maximising the F1 score on the validation set after 10 training epochs.

Both fully supervised Unet and the unsupervised proposed approach were
then trained on a single A100 GPU for up to 600 epochs with PyTorch v1.10 [21].
For Unet, the model with the lowest validation score was inferred on the (shared)
testing set of the DeepLIIF dataset (and was not trained on both other datasets
because of missing ground-truth training data). For proposed, the final model
was selected by finding the minimum of the system loss Lsystem after 250 epochs
to discard early training instabilities. To extract nucleus on our method, we first
applied a median filter with a window size of 5 to remove the noise that may
remain on our final predictions. For HER2 images, we applied in addition an
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Fig. 2. Examples of predictions of our approach on the different datasets

erosion operation with a radius of 5 to remove remaining artifacts. We lastly
applied a watershed algorithm to retrieve final instances [28].

5 Results & Discussion

Semantic Object
Method Unsupervised Dice Accuracy Precision Recall AJI Dice Hausdorff
Unet ✗ 77.56 84.49 81.59 73.95 40.02 64.30 5.10
Nuclick ✗ 76.19 82.57 86.12 68.36 56.70 73.18 4.76
Threshold ✓ 64.74 75.59 76.68 56.24 29.88 51.66 5.80
StarDist ✓ 62.06 73.03 88.16 47.95 40.80 52.06 5.21
Proposed ✓ 70.27 79.86 74.55 66.60 41.91 54.43 5.77
Table 1. Results on the DeepLIIF dataset [6]. Accuracy is balanced. Bold indicates the
top performing method for each metric, for both supervised and unsupervised groups.

Table 1 reports semantic and object-level results on the DeepLIIF dataset
for Ki67-stained images. The proposed approach obtained the highest Dice score
of 70.27 and the highest balanced accuracy of 79.86 among all unsupervised ap-
proaches, i.e. approaches that do not necessitate additional annotations. While
StarDist [29] obtained a higher precision, the proposed obtained the best re-
call of unsupervised approaches with 66.60; trading recall for precision is better
for clinical considerations as false negative could aggravate the course of the
patient care, while false positive can be more easily corrected. The proposed
approach obtained competitive results with the fully supervised Unet and the
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weakly supervised NuClick which obtained no more than 6% of improvement on
the balanced accuracy without requiring any further annotations.

Semantic Object
Method Unsupervised Dice Accuracy Precision Recall AJI Dice Hausdorff
Unet ✗ NA NA NA NA NA NA NA
Nuclick ✗ 44.55 71.81 40.10 50.46 38.95 56.40 5.21
Threshold ✓ 39.85 63.57 64.40 29.05 17.71 39.85 5.59
StarDist ✓ 56.85 71.83 77.86 44.94 34.81 57.73 4.29
Proposed ✓ 62.59 77.05 70.67 56.51 39.29 60.01 4.68
Table 2. Results on the Warwick dataset [22,23]. Accuracy is balanced. Bold indicates
the top performing method for each metric, for both supervised and unsupervised
groups. Unet results are not available (NA) since ground-truth segmentation maps
were unavailable.

The Table 2 outlines the results on the testing set extracted from Warwick
dataset. Our approach outperforms the other methods on almost all metrics,
showing great improvements in semantic metrics with a Dice score of 62.59 and
a recall of 56.51 while the classic methods top at 56.85 and 50.46 respectively.
Once again, our approach proved to be better tailored to a clinical use with a
higher recall and better object metrics. It is also advocating for a great adapt-
ability of our method to the diversity of IHC staining. Indeed, providing minor
changes in the training and post-processing, we successfully applied our method
to two different staining conditions, thus underlying that our method can bet-
ter leverage H&E information than directly applying pre-trained state-of-the-art
algorithms.

Finally, we assessed the generalisation of the proposed approach trained on
DeepLIIF to BCDataset dataset. As highlighted in Fig.2, our approach managed
to provide a segmentation matching many ground truth annotations without
adding any additional knowledge.

We performed an ablation study that can be found in the supplementary
material by successively removing some key components of our method and
computing the performances on both DeepLIIF (Ki67 staining) and Warwick
(HER2 staining). On both dataset, removing the cycle loss decreased the perfor-
mances significantly on all the metrics, and produced masks uncorrelated to the
input, thus underlying the key role of the proposed cycling architecture. For the
consistency loss and the sharpening factor, we noticed that these two elements
balanced each other, with a stronger precision but a lower recall when decreasing
the sharpening factor, and inversely when removing the consistency loss.

6 Conclusion

In this paper, we introduced a simple yet effective and unsupervised framework
for nuclei segmentation integrating spatial organization priors. Extensive exper-
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iments on 3 highly heterogeneous datasets highlight the potential of this ap-
proach. In particular, we found that our approach outperformed all other bench-
marked unsupervised methods as well as some weakly supervised approaches.

There are several axes of improvements over this work. First, besides the
nuclei segmentation and detection information, the type of nuclei is also an
important information in routine pathology. The current formulation could in-
tegrate such information by outputting one segmentation mask per stain and
counterstain of IHC images (e.g. HER2 and haematoxylin). Another very inter-
esting direction include the integration of additional datasets or segmentation
masks, which would unravel further shape and organization priors for the nuclei.
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