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Abstract. In digital pathology, various biomarkers (e.g., KI67, HER2,
CD3/CDS8) are routinely analyzed by pathologists through immuno-histo-
chemistry-stained slides. Identifying these biomarkers on patient biopsies
allows for a more informed design of their treatment regimen. The di-
versity and specificity of these types of images make the availability of
annotated databases sparse. Consequently, robust and efficient learning-
based diagnostic systems are difficult to develop and apply in a clinical
setting. Our study builds on the observation that the overall organization
and structure of the observed tissues are similar across different staining
protocols. In this paper, we propose to leverage both the wide availabil-
ity of haematoxylin-eosin stained databases and the invariance of tissue
organization and structure in order to perform unsupervised nuclei seg-
mentation on immunohistochemistry images. We implement and evaluate
a generative adversarial method that relies on high-level nuclei distri-
bution priors through comparison with largely available haematoxylin-
eosin stained cell nuclei masks. Our approach shows promising results
compared to classic unsupervised and supervised methods, as we quan-
titatively demonstrate on two publicly available datasets. Our code is
publicly available to encourage further contributions?’.

Keywords: Precision medicine - Biomedical imaging - Digital pathology
- Generative Adversarial Networks.

1 Introduction

Learning nuclei segmentation models is a challenging problem for immunohisto-
chemistry (THC) stained histological images. In routine pathology, IHC images
are used to provide a distinct readout for proteins at the surface of nuclei or cell
membranes or in the cytoplasm that would otherwise be invisible to the human
eye, using immunostains [3]. IHC is widely used for diagnostic and for treatment
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selection, notably in cancer pathology, since it bypasses the need to perform ex-
pensive and time-consuming genetic testing. There are over 100 immunostains
routinely used by pathologists, highlighting different proteins such as Ki67 and
HER2, which can provide clues to tumor characterization. The segmentation of
nuclei stained as such provides essential information for distinguishing benign
cells from malignant cells or those which express a specific protein from those
which do not. The ability to automatically identify and segment nuclei in IHC
images is crucial since it could (i) accelerate the diagnosis time of cancers, (ii)
reduce misdiagnosis in routine pathology, and (%ii) improve the performance of
cell-based learning system for therapy response prediction.

The most popular nuclei segmentation approaches currently rely on manually
obtained, careful pixel-based annotations of nuclei [16,17,26]. However, produc-
ing such annotations is time-consuming, cumbersome, tedious and error-prone,
which hampers the development of segmentation models for a wide range of
immunostains. Some semi-supervised methods such as [11] have been proposed
to alleviate this need, requiring however manual interactions making their use
on whole slide level time-consuming. On the other hand, current unsupervised
segmentation approaches, such as those based on color clustering, perform inad-
equately, preventing their application in clinical settings.

This study introduces an approach that revolves around a simple idea: we
exploit the fact that the spatial organization and shape characteristics of cells
within tissues do not change significantly with the type of coloration technique
used to stain histological tissue slides. Specifically, we design and evaluate a
powerful and highly versatile adversarial-based approach that leverages already
publicly available nuclei annotations for haematoxylin-eosin (H&E) staining to
learn segmentation models for potentially many types of immunostains. We show
in our experiments that our approach is effective for two of the most prevalent
types of nuclei-based and membranous-based immunostains. On these examples,
our method obtains results which are close to fully supervised approaches quan-
titatively evaluated on two publicly available datasets, without requiring any
additional annotation.

2 Related Work

Nuclei segmentation is attracting a lot of attention lately with different chal-
lenges focusing on methods that can provide accurate segmentation for the many
and diverse nuclei present on histology slides [5,30]. These challenges however
focus on fully supervised methods, mostly in the domain of H&E stains. Similar
approaches relying on manually obtained pixel-based annotations on H&E some-
time generalize to some IHC stains e.g., for HER2-stained segmentation [27] and
StarDist [29]. However, these methods essentially use color augmentation strate-
gies [18,24], which would be specific to each new staining. In practice, there is
a trade-off between the available amount of annotated tiles and the expressive
power of the annotations: a higher number of annotated tiles can improve the



Unsupervised Nuclei Segmentation using Spatial Organization Priors 3

generalization performance of segmentation systems due to the higher variability
of the training data.

Conversely, a variety of thresholding-based approaches have been investigated
for unsupervised nuclei segmentation, either based on Otsu thresholding [12,20]
or constrained local thresholding [2,19]. In [28], authors train a network to accu-
rately classify the magnification of an input tile using an attention module, and
show that the attention maps can be used to produce detection maps of nuclei
in H&E staining which can be further converted into nuclei segmentation maps.

Cross-domain learning is a paradigm that consists of the adaptation of a
model from one domain to another, for instance from the H&E domain to the
THC domain. In this vein, authors of [13] tackle H&E-THC cross-domain learning
by matching the distribution of high-level features obtained from both domains,
for tissue segmentation. Other recent approaches have leveraged the use of gener-
ative adversarial networks (GANS) to train segmentation networks with various
approaches. GANs can be used to generate images via style transfer and use an-
notations provided in one domain into another, which can then be used to train
a supervised network like a U-Net or a Mask-RCNN [13,14]. Moreover, in [31]
an auto-encoder like approach for image-to-image translation for style transfer
is proposed, learning the segmentation and transfer simultaneously.

Contrary to these approaches, our method exploits the available information
at the segmentation level by encoding and identifying the histological tissue
characteristics that are independent of the explored staining. To the best of our
knowledge, this is the first time that such a scheme has been explored, and shown
to provide close to fully supervised performance.

3 Methodology

In this study, we propose an unsupervised method for nuclei segmentation in-
corporating priors from publicly available datasets. The intuition for our work
is that the underlying spatial organization of cells within tissues is the same
irrespective of staining. For a given immunostain, rather than relying on specific
pixel-based annotations, our approach exploits generic pixel-based segmentation
annotations from classical H&E-stained histological images.

Our architecture is composed of three different components trained jointly, as
illustrated in Figure 1. The first is a generator (S) that generates segmentation
maps from the IHC inputs. The output of S is then processed by a discriminator
(Dg), which predicts if the produced segmentation is plausible or not. Moreover,
real, unpaired binary segmentation of nuclei from public datasets are given to
the discriminator, in order to guide and encode real tissue characteristics. The
last component of our method relies upon a reconstruction generator (R) which
is trained to reconstruct IHC-looking nuclei from a segmentation. This way, our
framework enforces consistency priors between the generated and the real tiles.

Formally, given an input IHC tile ¢ from a training set T, the segmenter S
produces a predicted segmentation map S(t). Given a database DB of segmen-
tation maps from any type of staining (e.g., H&E), a ground-truth segmentation
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Fig. 1. An overview of our proposed framework. An IHC image ¢ is fed to the generator
S, outputting the corresponding segmentation map S(t). This map is compared to a
ground truth mask Sgp through discriminator Dgs; and used by the generator R to
reproduce the original image R(S(¢)). Similarly, the same process is applied to Sgr to
generate the corresponding IHC image (not represented here for clarity).

map Sqgr is sampled from DB for each THC tile ¢. The discriminator Dg is then
asked to correctly predict that each Sy is real (label 1) and that each predicted
THC segmentation map S(t) is fake (label 0); this is done by minimizing £p:

Lo = (D(Ser) —1)7 + (D(S(t))? (1)

Conversely, the segmenter S is optimized by maximizing its ability to fool, i.e.
by minimizing the loss function MSE that is:

Le = (D(S(1) — 1) 2)

The two examined losses Lp and L¢ should train S to produce segmentation
maps that contain nuclei objects that resemble true nuclei segmentation (shape
prior), and that display nuclei distribution similar to the nuclei distribution
of DB (organization prior). In fact, with both losses Lp and L& combined, the
system is optimized when the distributions of DB and {S(t),t € T'} are matched.

However, we found that the segmentation model S tended to produce false
negatives by failing to segment some nuclei. The reconstructor R is intended
to circumvent this by reconstructing the input THC tile ¢ from its predicted
segmentation S(t); nuclei that would be missed by S would then induce errors
in the reconstruction R(S(t)), therefore inducing S to minimize the number of
false negatives. R is trained by minimizing the reconstruction Lg, where an ¢;
norm is used for sparsity:

Lr=||R(S#) -], (3)

Following CycleGAN [32], we add another discriminator Dg on the THC and re-
constructed THC domains, in order to train R (and therefore S through backprop-
agation) with an additional loss more complex than pixel-based. For simplicity,
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we merge this discriminator loss within £p, and the corresponding adversarial
loss of R within Lr and Lg.

Furthermore, we introduce an additional consistency loss for robustness and
to ensure that the segmentation network does not solely focus on color. For
an THC tile ¢, we consider a color augmentations ¢; (e.g. color jitter) and an
augmented view ¢y () of t. The consistency loss is defined as the ¢; norm between
the predicted segmentation maps from both the original tile and the augmented
view:

Lo =|SEt) = S(a®)], (4)

Finally, we sharpen the predicted segmentation maps S(¢) by multiplying the
predicted logits of S using a sharpening factor r=60, similarly to [7]. This result
in saturated values of 0 or 1 rather than float values in [0, 1], which can be used
by the discriminator Dg to easily identify fake segmentations.

The system is trained end-to-end, by optimizing both modules through min-
imization of the following loss function:

Lsystem = £+ La +Lr+ Lc (5)

4 Experimental Configuration

4.1 Databases

We performed extensive experiments on 3 immunohistochemistry datasets to
measure the performance of all benchmarked approaches. In detail, we utilize the
DEEPLIIF DATASET [6] with 1667 Ki67-stained fields of view of size 512 x 512
pixels at 40x magnification. Our experiments are based on the publicly available
splitting of the dataset [6], excluding the immunofluorescence data. Each image
is supplied with ground-truth annotations, which were used for testing purposes
but never for our training except for the fully supervised benchmark comparisons.
We also employ the BCDATASET [8] which consists of 1338 Ki67-stained 640
pixel-width 40x fields of view. Each nucleus is annotated with a single point
highlighting its center. These were never used for our training except for testing
purposes. Lastly, we also use the WARWICK HER2 DATASET [22,23] which
contains 84 HER2-stained whole slide images (WSI) split into 50 training and 34
testing slides. We extracted 512 x 512 patches and 256 x 256 patches from each
slide for each set respectively after performing contours detection and filtering
based on texture and lightness criteria [15]. To get a good representation of each
tissue, we performed K-Means clustering on the Resnet18 features of each patch
and selected for each one the closest to centroids [10]. As KMeans is sensitive to
outliers, we applied an isolation forest algorithm to remove the few artifacts that
may remain after our pre-processing steps. For the testing set, we divided the
patch sets into 2 folds leading to 68 patches. Similarly, for the training set, we
divided the patch sets into 14 folds leading to 700 patches. The testing tiles were
finally annotated by an experienced anatomopathologist. Compared to Ki67,
HER2-stained images are more challenging since HER2 marks the membranes
of cells (and not their nuclei).
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4.2 Baselines

We compare the performance of our proposed method with five competing meth-
ods, including two fully supervised approaches. Specifically: a fully supervised
model based on Unet [9] was utilized. Moreover, NuClick [11] was also em-
ployed, a weakly supervised approach specifically designed to compute nuclei
masks from point annotations at the center of each cell. To provide this su-
pervision, an experienced pathologist manually annotated all nuclei centers in
HER2 test images, and such centers were obtained by computing the centroid
of each nuclei ground-truth mask for both DeepLIIF and BCDataset test sets.
Furthermore, StarDist [29] is a supervised method originally trained on H&E
images. For our problem, this approach can be considered unsupervised since
it does not rely on extra annotations. StarDist was used as a plugin within
QuPath [1]. Thresholding was performed by applying Otsu thresholding on
the Gaussian filtered luminance image. For Warwick HER2 dataset, we applied
the same protocol to the deconvolved haematoxylin images obtained through
stain deconvolution [25]. The proposed approach was implemented with Unet-
style architectures for S and R, and PatchGAN-based discrimators for Dr and
Dgs [9]. At each iteration, a segmentation map S(t) is produced by S for an input
THC tile t. S(¢) is forwarded into Dg, along with a randomly sampled segmen-
tation map Sgr from the Pannuke dataset [4,5] which contains nuclei instance
masks of H&E tiles extracted at either 20x or 40x magnification. Similarly, R
outputs from these masks simulated IHC images that are compared to the real
ones through Dg. As we found that the reconstruction represents a key factor in
the training of our method, we leveraged HER2 membranous nature to train our
approach reconstructing only the deconvolved haematoxylin images as nucleus
are only highlighted by this marker in this setting [25].

4.3 Implementation Details

We trained S and R using 64 filters in the last convolutional layer and a dropout
of 0.5 and Adam optimizer with a learning rate of 0.0002 and 8; = 0.5 and
B2 = 0.999. For the discriminators, we used 64 filters and 3 layers in total, with
the same parameters for the optimizer. We exploited nuclei invariance to rota-
tion and flipping to perform data augmentation. Moreover, as our datasets are
all extracted from slides scanned at 40x magnifications, we performed random
resizing to simulate 20x magnifications images and reproduce Pannuke distri-
bution.

The fully supervised Unet based architecture was tuned using a Gaussian
process algorithm during 50 iterations maximising the F'1 score on the validation
set after 10 training epochs. The parameters include the number of filters €
{64,128}, the dropout value € [0.3,0.5], the learning rate € [107°,1072], the
decay rate € [107191073] and the batch size € {10, 30, 60, 120, 140}.

Both fully supervised Unet and the unsupervised proposed approach were
then trained on a single A100 GPU for up to 600 epochs with PyTorch v1.10 [21].
For Unet, the model with the highest validation score was inferred on the
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Fig. 2. Examples of predictions of our approach on the different datasets.

(shared) testing set of the DeepLIIF dataset (and was not trained on both other
datasets because of missing ground-truth training data). For proposed, the final
model was selected by finding the minimum of the loss: L + LR + L after
250 epochs to discard early training instabilities. To improve our nuclei masks,
we first applied a median filter with a window size of 5 to remove the noise that
may remain on our final predictions. For HER2 images, we applied in addition
an erosion operation with a radius of 5 to remove remaining artifacts. To obtain
nuclei instance segmentation, we lastly applied opening and closing operations
and a watershed transform with labeling [28]. To ensure a fair comparison, the
same post-processing was applied to the Unet and Thresholding outputs.

5 Results & Discussion

Table 1 reports semantic and object-level results on the DeepLIIF dataset for
Ki67-stained images. The proposed approach obtained the highest Dice score of
69.81 and the highest balanced accuracy of 79.65 among all unsupervised ap-
proaches, i.e. approaches that do not necessitate additional annotations. While
StarDist [29] obtained a higher precision, the proposed obtained the best re-
call of unsupervised approaches with 66.30; trading recall for precision is better
for clinical considerations as false negative could aggravate the course of the
patient care, while false positive can be more easily corrected. The proposed
approach obtained competitive results with the fully supervised Unet and the
weakly supervised NuClick, which obtained no more than 5% of improvement
on the balanced accuracy without requiring any further annotations.
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Semantic Object
Method  Unsupervised | Dice Accuracy Precision Recall| AJI  Dice Hausdorff
Unet X 77.28 84.30 81.42 73.67| 51.01 72.52 12.81
Nuclick X 76.14  82.65 85.85 68.62 | 61.09 75.81 9.46
Threshold v 64.21  75.65 76.86 56.42 | 37.08 58.85 17.30
StarDist v 61.92 73.04 87.89 48.00 | 40.80 60.38 14.79
Proposed v 69.81 79.65 74.54 66.30 |41.91 63.47 16.18

Table 1. Results on the DeepLIIF dataset [6]. Accuracy is balanced. Bold indicates the
top performing method for each metric, for both supervised and unsupervised groups.
AJI corresponds to the Mean Aggregated Jaccard Index.

Semantic Object
Method  Unsupervised | Dice Accuracy Precision Recall| AJI  Dice Hausdorff
Unet X NA NA NA NA NA NA NA
Nuclick X 70.63  89.08 64.10  82.79 | 56.61 70.88 7.39
Threshold v 43.03  67.46 75.71 34.65 | 25.49 44.56 9.87
StarDist v 51.95 71.32 72.41 42.71 | 35.44 54.95 6.12
Proposed v 58.46 81.64 64.01 64.34|39.07 58.65 8.71

Table 2. Results on the Warwick dataset [22,23]. Accuracy is balanced. Bold indi-
cates the top performing method for each metric for unsupervised group. Unet results
are not available (NA) since ground-truth segmentation maps were unavailable. AJI
corresponds to the Mean Aggregated Jaccard Index.

The Table 2 outlines the results on the testing set extracted from the Warwick
dataset. Our approach outperforms the other unsupervised methods on almost
all metrics, showing great improvements in semantic metrics with a Dice score
of 58.46 and a recall of 64.34 while the classic methods top at 51.95 and 42.71
respectively. Once again, our approach proved to be better tailored to clinical use
with a higher recall and better object metrics. It is also advocating for a great
adaptability of our method to the diversity of IHC staining. Indeed, providing
minor changes in the training and post-processing, we successfully applied our
method to two different staining conditions, thus underlying that our method
can better leverage H&E information than directly applying pre-trained state-
of-the-art algorithms.

Finally, we qualitatively assessed the generalization of the proposed approach
trained on DeepLIIF to BCDataset dataset. As highlighted in Fig.2, our ap-
proach managed to provide a segmentation matching many ground truth anno-
tations without adding any additional knowledge.

We performed an ablation study that can be found in the supplementary
material (Table 1. supplementary) by successively removing some key compo-
nents of our method and computing the performances on both DeepLIIF (Ki67
staining) and Warwick (HER2 staining). On both datasets, removing the recon-
struction loss decreased the performances significantly on almost all the metrics
and produced masks uncorrelated to the input, thus underlying the key role of
the proposed cycling architecture. For the consistency loss and the sharpening
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factor, we noticed that these two elements balanced each other, with a stronger
precision but a lower recall when decreasing the sharpening factor, and inversely
when removing the consistency loss.

6 Conclusion

In this paper, we introduced a simple yet effective and unsupervised framework
for nuclei segmentation integrating spatial organization priors. Extensive exper-
iments on 3 highly heterogeneous datasets highlight the potential of this ap-
proach. In particular, we found that our approach outperformed all other bench-
marked unsupervised methods, closing the gap with supervised approaches.

There are several axes of improvement for this work. First, besides the nuclei
segmentation and detection information, the type of nuclei is also an important
information in routine pathology. The current formulation could integrate such
information by outputting one segmentation mask per stain and counterstain of
THC images (e.g. HER2 and haematoxylin). Another very interesting direction
includes the integration of additional datasets or segmentation masks, which
would unravel further shape and organization priors for the nuclei.

Acknowledgments This work was partially supported by the ANR project
Hagnodice ANR-21-CE45-0007, and the PRISM project funded by France 2030
and grant number ANR-18-IBHU-0002.
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