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Cutaneous melanoma is a highly invasive tumor and, despite the development of recent
therapies, most patients with advanced metastatic melanoma have a poor clinical
outcome. The most frequent mutations in melanoma affect the BRAF oncogene, a
protein kinase of the MAPK signaling pathway. Therapies targeting both BRAF and
MEK are effective for only 50% of patients and, almost systematically, generate drug
resistance. Genetic and non-genetic mechanisms associated with the strong
heterogeneity and plasticity of melanoma cells have been suggested to favor drug
resistance but are still poorly understood. Recently, we have introduced a novel
mathematical formalism allowing the representation of the relation between tumor
heterogeneity and drug resistance and proposed several models for the development
of resistance of melanoma treated with BRAF/MEK inhibitors. In this paper, we further
investigate this relationship by using a new computational model that copes with multiple
cell states identified by single cell mRNA sequencing data in melanoma treated with
BRAF/MEK inhibitors. We use this model to predict the outcome of different therapeutic
strategies. The reference therapy, referred to as “continuous” consists in applying one or
several drugs without disruption. In “combination therapy”, several drugs are used
sequentially. In “adaptive therapy” drug application is interrupted when the tumor size is
below a lower threshold and resumed when the size goes over an upper threshold. We
show that, counter-intuitively, the optimal protocol in combination therapy of BRAF/MEK
inhibitors with a hypothetical drug targeting cell states that develop later during the tumor
response to kinase inhibitors, is to treat first with this hypothetical drug. Also, even though
there is little difference in the timing of emergence of the resistance between continuous
and adaptive therapies, the spatial distribution of the different melanoma subpopulations is
more zonated in the case of adaptive therapy.

Keywords: cancer heterogeneity, melanoma, targeted treatment, single cell data, mathematical modeling
April 2022 | Volume 12 | Article 8575721

https://www.frontiersin.org/articles/10.3389/fonc.2022.857572/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.857572/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.857572/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.857572/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:ovidiu.radulescu@umontpellier.fr
https://doi.org/10.3389/fonc.2022.857572
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.857572
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.857572&domain=pdf&date_stamp=2022-04-14


Hodgkinson et al. Model of Heterogeneity in Melanoma
INTRODUCTION

More than one half of melanomas carry mutations of the gene
coding the BRAF kinase, a key upstream component of the
MAPK signaling pathway, which is involved in cell growth and
proliferation. In this pathway, BRAF phosphorylates and
activates MEK that in turn phosphorylates and activates ERK,
a potent effector that induces the transcription of many
important genes that play a dominant role in survival and
development of tumor cells. In melanoma, targeted therapies
based on BRAF inhibitors (vemurafenib, dabrafenib,
encorafenib) and MEK inhibitors (trametinib, cobimetinib,
binimetinib) aim at reducing the activity of this key signaling
cascade (1–4). BRAF inhibitors act differentially on cancer and
healthy cells. Indeed, elevated MEK and ERK activity is induced
mainly by BRAF dimers, and less by monomers. In BRAF-
mutated melanomas, RAS-GTP levels are insufficient to
promote BRAF dimerization, therefore the inhibition of BRAF
monomers is sufficient for ERK inactivation. This specificity
reduces the toxicity of this type of treatment (5). Although the
treatment based on these kinase inhibitors initially leads to
efficient tumor regression, resistance appears almost
systematically. Several mechanisms have been associated to
acquired resistance, such as RAS mutation, receptor tyrosine
kinase activation that either compromise ERK inactivation or
induce other survival pathways such as PI3K/AKT (5).

We focus here on a non-exclusive, but different cause of
resistance, that involves the development of several drug tolerant
cell states by non-genetic mechanisms. The non-genetic nature
of adaptive resistance in melanoma was first suggested by the
reversibility of this process: resistant tumors can re-sensitize
upon a drug holiday (6, 7). Coexistence of sensitive and resistant
cells with anti-correlated fitness in treated and untreated
conditions can also explain apparent tumor re-sensitization in
the absence of drug by positive selection of sensitive cells and
negative selection of resistant cells, without the need for
transitions between different cell states (8). Moreover, single
cell RNA analysis has demonstrated plastic transitions between
distinct cellular phenotypes in cell lines (9–11) and in patient-
derived xenograft (PDX) mouse models (12, 13) submitted to
BRAF/MEK inhibitors. Treatment-induced transitions between
cell states have robust features, common to many patient-derived
cultures and different cell lines (11). Between the melanocytic
and mesenchymal-like states which represent the sensitive and
resistant extremes there are intermediate states resembling
nutrient-starved cells and evolving via several trajectories
towards mensenchymal-like states. The intermediate states and
the trajectories originating therein show intrinsic variability of
the gene expression, which suggests that the transitions between
states are continuous rather than discrete (9, 11, 12).

These fundamental findings could be used to design new
therapeutic strategies to avoid resistance. The re-sensitization,
either real or apparent, arising when resistant cells are slowly
growing in untreated conditions, suggest that a discontinuous
adaptive treatment, alternating ‘on’ and ‘off’ drug periods, may be
able to control tumor size, at least for some time. Combination
therapy may also depend on one’s capacity to predict the changes
Frontiers in Oncology | www.frontiersin.org 2
induced by the primary tumor treatment, in space and time. For
instance, drug tolerant neural crest stem cells, which are enriched
upon treatment with BRAF/MEK inhibitors, display an RXR-
driven signature, suggesting that these cells could eventually be
targeted pharmacologically by using RXR-inhibitors (12). Besides
anti-BRAF/MEK targeted therapies, the recent discovery that
immune checkpoint inhibitors, targeting regulatory molecules
on T lymphocytes (anti-CTLA4, anti-PD-1, and anti-PD-L1),
are highly efficient in melanoma patients has revolutionized the
treatment of metastatic melanoma. However, each treatment
modality has limitations. While treatment with targeted
therapies is associated with a strong beneficial short-term
response but is followed by systematic resistance, treatment with
immune checkpoint inhibitors has a lower response rate but
associates with better long-term responses on a subset of
melanoma patients. Thus, despite these considerable
improvements in melanoma treatment, the development of new
clinical strategies remains necessary and a better understanding of
melanoma biology is likely to provide additional therapeutic
options to patients with resistant cancers (14, 15).

In this paper we use a computational framework to study the
heterogeneity of melanoma and develop a predictive model for
various therapeutic outcomes. We base our model on data
obtained in MEL06 patient-derived melanoma cells, which
were demonstrated to develop non-genetic resistance to BRAF/
MEK inhibitors (12). Given the complexity of the resistance
mechanisms in melanoma, our conclusions may not hold true
for all melanomas, which may evolve during treatments through
multiple mechanisms of resistance.
RESULTS

Multidimensional, Data Driven
Model of Heterogeneity
Our main assumption is that under treatment melanoma cells
undergo a series of non-genetic transitions, leading to drug
tolerant and resistant cell states. Contrary to more traditional
models of heterogeneity that consider a finite number of discrete
cell states (16), our model can cope with a continuous spectrum
of states. In this model, cell populations are represented as
distributions (heatmaps) over many dimensions; spatial, coping
with cell motility and cell interactions with extracellular matrix,
diffusive drug and signaling molecules, but also structural,
representing internal cell-state variables such as gene
expression, signaling, and metabolic activities (Figures 1A, B).
An interesting possibility is to use single cell data and feature
extraction methods such as t-distributed stochastic neighbor
embedding (t-SNE) in order to define reduced structural
dimensions (Figures 1C, D). In this case, the distributions
(heatmaps) predicted by the model (Figure 1B) can be directly
compared to the empirical single cell distributions. We call this
approach ‘mesoscopic’ as it is intermediate between a
microscopic approach, which simulates each cell individually,
and a macroscopic one, in which the cell-to-cell variability is
averaged out. Even though this method can be applied to any
April 2022 | Volume 12 | Article 857572
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type of single cell data (transcriptomic, proteomic or
metabolomic), our analysis is based on the single cell mRNA
sequencing data from (12).

In order to clarify the structural dimensions of our tumor, we
distinguished six different melanoma subpopulations; namely
proliferative, invasive, pigmented cells, neural-crest stem cells
(NCSCs), starved-like melanoma cells (SMCs), and
uncharacterized resistant cells (URCs). These are schematically
represented in the structural plane in Figure 1D and are in line
with previous experimental results (12). It should be recalled that
individual cells may concurrently occupy several states, existing in
a continuum of gene expression profi les across the
structural domain.

The model predicts dynamic heterogeneity, meaning that the
multidimensional distributions depend also on time. The evolution
of these distributions is driven by spatial fluxes, involving undirected
(diffusive) and directed (advective) spatial cell motility, and by
structural fluxes, corresponding to changes of the cell state. The
undirected spatial diffusion fluxes describe a cellular spatial random
walk process, whereas directed spatial fluxes describe controlled cell
migration mediated by adhesive extracellular matrix substrates or to
sites of more elevated nutritional content (see Methods and
Supplementary Methods). The undirected structural fluxes
(structural diffusion) correspond to random changes of the cell
state leading to the spread of the cell distributions (increased
heterogeneity) without changes of modal positions in the
structural dimensions. The directed structural fluxes (structural
advection) correspond to deterministic changes of the cell state,
leading to shifts of the distribution modes. The cell distribution
dynamics, represented as one 4D (2 spatial and 2 structural
dimensions) partial differential equation (PDE), is coupled to five
Frontiers in Oncology | www.frontiersin.org 3
other 2D (2 spatial dimensions) PDEs coping with the spatial
distribution of other variables such as extracellular nutritional
environment (ECNE), chemo-attractant molecules (surrogate for
mediated cell-cell communications), and drug concentrations. The
effect of the drugs on the cells’ distribution is taken into account in
the negative (degradative) source terms that depend on their
position within the structural domain, i.e., on the cell state. For
details, see Methods.

Targeted Treatment Exacerbates
Heterogeneity
The model recapitulates the dynamics of the cell heterogeneity
observed in (12) (seeMovies S1, S2). Starting with a naïve tumor
containing a population of sensitive melanocytes, several cell
subpopulations are induced by the therapy. In our simulations,
this is seen by the multimodality of the cell population’s
structural distribution, with positions of the modes depending
on time. As shown in Figure 1D, each sub-population is
characterized by the position of the mode and by its spread in
the structural domain. For a more quantitative approach, we use
the variance in the cell structural distribution as a metric and
show that heterogeneity increases with time upon drug
administration (Figure S1).

The model predicts the typical three phase tumor growth
curve under kinase inhibitors; a first phase wherein the tumor
responds and shrinks, a second phase wherein the tumor is no
longer visible corresponding to the minimal residual disease
(MRD), and a third phase during which tumor growth
resumes after the emergence of resistance. During the MRD
phase, heterogeneity strongly increases through continuous
spreading of the cell distributions in the structural dimensions
A
B

D
E F

C

FIGURE 1 | Components of the data driven heterogeneity model: (A) Dimensions of the model. (B) Multidimensional cell distributions predicted by the model
emphasizing treatment induced zoning. (C) Reduced representation of single cell expression data, from (12). (D) Cell states represented as domains in structural/
gene expression space. (E) Directed (advective) structural fluxes. (F) Undirected (diffusive) structural fluxes.
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and, moreover, by development of co-existing, drug-tolerant,
intermediate states between sensitivity and resistance (multi-
modality, see Movie S2).

Order in Combination Therapy Matters
We have tested, in our computational setting, combination
therapies by successively applying two differing types of
treatments: (1) using BRAF/MEK inhibitors (BRAF/MEKi) as in
(12), and (2) a hypothetical cancer treatment (HCT). We have
considered that the tumor has the same intrinsic dynamics, defined
by the same diffusion and advection terms, for the two treatments.
In particular, the cell states and their transitions will be the same for
the two treatments. However, the two treatments eliminate cells
differently, depending on their states. This difference between
treatments was modeled by using a drug response function,
defining how the drug dependent cell degradation changes with
the cell state. This function peaks in the modal position of the
primary tumor, in the case of BRAF/MEKi, or in the positions of the
BRAF/MEKi resistant states, typically invasive and URC cell
populations, in the case of HCT (see Methods and Figure S2).
Applied alone, the BRAF/MEKi treatment induces immediate and
drastic tumor reduction, followed by MRD and development of
resistance after approximately four months of continuous
administration of the drugs. The HCT treatment leads to a mild
response initially, but like BRAF/MEKi treatment, induces tumor
adaptation. However, the representation of invasive and URC cell
states is only moderate because they are now more
effectively eliminated.

Treatments using BRAF/MEKi (Figure 2A and Movie S3) or
HCT (Figure 2B and Movie S4), alone, resulted in a re-
establishment of initial tumor volume, prior to the end of the
study period, with HCT inducing resistance far earlier than BRAF/
MEKi. For the combination therapy, BRAF/MEKi then HCT, we
observe a later time-point for the re-establishment of the initial
tumor volume, in comparison to BRAF/MEKi only, but still resulted
in a significant increased tumor growth rate (Figure 2C andMovie
S5). Starting first with HCT and then using BRAF/MEKi, however,
Frontiers in Oncology | www.frontiersin.org 4
was a better strategy that significantly delayed resistance and also
reduced the tumor load by combining the advantages of the two
treatments (Figure 2D and Movie S6).

Output in Terms of Heterogeneity
Depends on the Therapeutic Strategy
The dynamics of melanoma cells submitted to kinase inhibitors is
typically robust. In the case of adaptive therapy, although the
intermediate dynamics is modified by allowing the tumor to grow
before re-applying treatment, our model predicted that resistance
development cannot be avoided (Movies S7, S8). However, in
terms of spatial heterogeneity, the outcome is much more variable.
In Figure 3 we have represented the spatial distribution of
different cell states at the end of MRD and beginning of
resistance, for various treatments. In all cases cell states depend
on position, a phenomenon called zoning. The details of this
phenomena depend on the type of therapy. Our model predicted
that the adaptive therapy generates more pronounced zoning, with
steeper and mutually exclusive patterns (Figure 3) than those
predicted under continuous therapies.
DISCUSSION AND CONCLUSION

Treatment by kinase inhibitors leads to a heterogeneity upsurge in
melanoma. At least part of this heterogeneity is generated by non-
genetic mechanisms and involves continuous modifications of
gene expression programs which lead to transitions between cell
states. Our mathematical model captures the essential features of
non-genetic transitions and explains the heterogeneous dynamics
by diffusive and advective spatial and structural fluxes. The
increased heterogeneity results from the multiplicity of drug
tolerant and resistant states induced by the treatment, and from
cooperative strategies in a spatially heterogeneous tumor where
resistant cells protect sensitive cells from elevated drug exposure.

Moreover, our model predicts in silico the outcomes of
various therapies.
A B

DC

FIGURE 2 | Outcomes from combination therapy, with treatment intervals indicated by graphical shading for BRAF/MEKi (green) and HCT (yellow). Panels show the
outcomes from (A) continuous BRAF/MEKi, (B) continuous HCT, (C) combination BRAF/MEKi then HCT, and (D) combination HCT then BRAF/MEKi treatment regimes.
April 2022 | Volume 12 | Article 857572
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Here, we show that, considering combination therapies, it is
better to treat first with a less effective hypothetical drug, targeting
sub-populations that develop during tumor resistance phases,
before treating with BRAF/MEKi. The explanation of this rather
counter-intuitive result can be found in the cell population
dynamics. We supposed that the intermediate response of the
tumor to any of the treatments results in increased heterogeneity
by non-genetic processes. If the first applied treatment is BRAF/
MEKi, this acts mainly on cells belonging to early modes and there
is a non-negligible probability that some cells escape treatment and
become resistant. The same probability is very small when the first
applied treatment is HCT that acts preferentially on cells belonging
to late modes; the role of HCT initial application is to avoid starting
the BRAF/MEKi treatment with some cells that are not sensitive.
Then, the application of BRAF/MEKi kills practically all the
remaining cells and resistance takes much longer time to develop
(see Movies S5, S6). One should note that, due to structural
diffusion, any cell state can, in theory, give rise to all other cell
states. Therefore, in order to confine cells to BRAF/MEKi-sensitive
modes, the drug has to act on a large domain of cell states, not only
on a single intermediate drug tolerant sub-population. This is
difficult to perform using targeted therapies.

A possible candidate for the hypothetical cancer treatment
(HCT) is the drug family of immune checkpoint inhibitors (ICIs).
Although this treatment does not act directly on melanoma cells, it
can have a differential indirect effect on melanoma sub-populations,
Frontiers in Oncology | www.frontiersin.org 5
and acts more generally than targeted treatments. Very recent Phase
III trials combining kinase inhibitors and ICIs show that starting a
first line treatment with ICIs leads to better results in terms of
survival time and duration of response than starting with kinase
inhibitors (17). This is explained if checkpoint inhibitors induce
effective prior elimination of resistant stage sub-populations. There
are, however, other interpretations of the interplay between kinase
inhibitors and immunotherapy. Obenauf et al. (18) showed that
kinase inhibitors induce changes in the stroma and cell secretome
and hypothesized changes of immune cells infiltration. Other
authors suggested that treatment with BRAFi leads to favorable
changes in the tumor microenvironment in synergy with immune
checkpoint inhibitors (see (14) for a review). The interactions
between the immune cells and the various melanoma sub-
populations are still poorly defined. We hope that future
experimental and modelling work in the field, will elucidate the
mechanistic aspects of these interactions.

Simple models of adaptive therapy were based on the idea that,
in the absence of drugs, resistant cells grow more slowly than
sensitive cells (10). It is believed that this fitness advantage allows
sensitive cells to recover at least partially during a drug holiday.
Although this effect is present in our model, it is compensated by
structural and spatial diffusion that led to increased heterogeneity
and delay only moderately the time to resistance. The resulting
tumor, however, depends on the type, continuous or adaptive, of
treatment. Irrespective of the treatment, zoning is a population-scale
A

B

C

FIGURE 3 | Adaptive therapy. (A) Outcome of adaptive therapy, with BRAF/MEKi treatment intervals indicated in green and drug hollidays in pink. Decision about
treatment is taken every day. Treatment is applied if the volume is higher than the upper threshold, stopped if the volume is lower than the lower threshold
(thresholds are indicated as dotted lines). Spatial heterogeneity (zoning) generated by continuous (B) and adaptive (C) therapy.
April 2022 | Volume 12 | Article 857572
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strategy to increase the mean fitness by cooperative protection of
sensitive cells by resistant cells. In the adaptive treatment, the
growth of sensitive cells is also favored by drug holidays, which
lead to a more pronounced zoning.

From a theoretical perspective, our model shows the interplay
between directed and undirected structural fluxes for the
development of plasticity and heterogeneity. Undirected fluxes
correspond to diffusion and random changes of cell states. As
well known in physics, or in neutral theory of molecular
evolution, free diffusion can reach any state from any other state
if one waits a time proportional to the square of the state change. In
the presence of treatment, diffusion is not free and has to cross
barriers generated by the drugs action. In this case, the escape
transition time is exponential. The escape transition time and the
proportion of escaping cells depend on the position, height, and
width of the barriers, which are different for different treatments.
This dependence further explains why order matters in
combination therapy and why heterogeneity may differ when
employing adaptive strategies, since the barrier is time-transient.
Another important theoretical aspect is the symmetry breaking
induced by the treatment. Although a barrier can be crossed in both
directions, the transition probability is asymmetric if one of the
states is more stable than the others. This leads to the notion of
metastable states hierarchy, in which states are distinguished by the
time that cells spend in each one of these; this time can be very long
for highly stable states. Adaptive therapies favor the stabilization of
one metastable state by alternating treatment and holiday periods.
The success of this strategy depends on conditions that may be
difficult to guarantee, especially in a multidimensional context and
for a spatially heterogeneous drug distribution.

We should nevertheless emphasize that our model is mostly
phenomenological with structural dimensions representing
nonlinear functions of the gene expression data. As several
findings point towards the role of BRAFi in metabolic remodeling
(19), it would be very useful to interpret the structure variables in
terms of metabolic changes. This is possible within our formalism as
metabolic ODE models [see for instance (20)] are transposable into
structural advection fluxes, where metabolic stochasticity or
uncertainty would translate to diffusive fluxes. This possibility will
be investigated in future work. Furthermore, the distribution of
blood vessels that are sources of nutrition and drug compounds is
an important variable for understanding zoning aspects of cancer
adaptation to treatment [see also (21)]. Like in (21), we expect that
the spatial distribution of sensitive and resistant cells depends on the
distance to these sources. Blood vessels distribution can be
reconstructed from ex vivo tumor sections (22) and we will use
these distributions to increase the realism of future models.
METHODS

General Formalism
Mesoscale models of cancer heterogeneity are based on partial
differential equations and can be generically obtained from the
Liouville continuity equation (8, 23, 24). Let us consider that there
are n types of cells. In this model cells are distinguished by two types
of variables, a discrete one representing the type i e {1,…, n} and a
Frontiers in Oncology | www.frontiersin.org 6
continuous one y = (y1, …, ym) representing the internal state
(vector of concentrations of biochemical species, for instance). Then
c = (c1,…, cn) represents a vector of cell distributions satisfying the
equation

∂ c x, y, tð Þ
∂ t

= − ∇ x ·Fx x, y, tð Þ − ∇ y · Fy x, y, tð Þ + S x, y, tð Þ, (1)

where x is the spatial position, y is the cell’s internal state
(structure variable), Fx is the spatial flux, Fy is the structural
flux and S is the source term. If the cell’s internal state follows
ODEs dy

dt = F(y), then the structural flux is advective Fy = cF. If
the cell’s state follows random Brownian motion in the structural
space, then the structural flux is diffusive resulting from Fick’s
law Fy = –Dy ∇yc, where Dy is the structural diffusion coefficient
matrix. The spatial flux contains terms related to cell motility:
undirected (diffusion), or directed (chemotaxis, haptotaxis) (25).
The source term can integrate cell proliferation, death, and
discrete stochastic changes (finite jumps) of the cell state y,
other than those included in the continuous flux Fy.

Model Derived From Single Cell
Expression Data
In this section we present only the broad lines of the
model construction. The details can be found in the
Supplementary Methods.

Model Components
Our melanoma progression model has two main components:
the cancer cell population density c(t, x, y) and the extra-cellular
nutritional environment (ECNE) density v(t, x). In our minimal
melanoma model, space positions x, and structural positions y
are two dimensional (in space we consider a 2D tumor section,
and in structure we use a 2D t-SNE representation of the tumor
transcriptome). We also consider spatial gradients of three types
of diffusible molecules, namely 1) the nutritional molecular
species, provided by the ECNE and consumed by cells, 2) the
acidic molecular species, produced by cells and degrading the
ECNE as in (26), and 3) drugs.

The fluxes defining the model dynamics have been derived
using the following assumptions:

Spatial Variables and Fluxes
We assume, consistently with previous mathematical studies of
spatial cancer dynamics (25), that the spatial dynamics of
melanoma cells are governed by both random (diffusive) and
deterministic (advective) components. The random (diffusive)
component is assumed to occur as a result of tissue-scale
reorientation and volume-filling processes. The deterministic
(advective) component is assumed to result from directed cell
motility and is driven by cell-environment interactions. In
particular, we assume that cells exhibit controlled migration to
sites of chemically elevated nutritional content (chemotaxis), as
well as to sites of higher ECNE density (haptotaxis).

Structural Variables and Fluxes
The definition of the structural variables follows from the data
analysis in (12). Unsupervised clustering of single cell mRNA-seq
April 2022 | Volume 12 | Article 857572
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data identified several types of cell sub-populations with distinct
transcription states. The high-dimensional transcriptome was
compressed to a 2D map using t-distributed stochastic neighbor
embedding (t-SNE). The support of this 2D map is our structure
space domain. The different transcription states represent sub-
domains in this representation (see Figure 1D). The cell-state
transitions observed experimentally can be represented as
diffusion and advective flow in this domain. The flow changes
the positions of the cells in the 2D structure domain, moving them
from one state to another. Thus, rather than considering a number
of distinct cell types, we have built a model with only one cell type
whose state can change continuously by the structural fluxes. A
cell is added to a sub-population if its state enters the
corresponding structural sub-domain and is subtracted if it dies
or if it leaves the sub-domain. In order to define the structural
fluxes, we start by identifying the sub-domains corresponding to
different sub-populations inside the tumor at different times.
Although seven transcriptional signatures were identified [Table
S1 of (12)], we focus upon the description of six primary states
important for resistance. For their localization in the structural
domain, we use cardinal points, as follows:

i. Melanoma cells with a “proliferative” signature are
predominant in naive tumors, localized south-west (SW).

ii. Invasive cells are also present in naive tumors. They are
localized east (E).

iii. Pigmented cells expressing markers of differentiation are
induced by the treatment. They are localized north-west (NW).

iv. Neural crest stem cells (NCSC) are enriched by the
treatment, have a maximum during the minimal residual
disease and are diluted out during the development of
resistance. They are localized north-east (NE).

v. Starved-like melanoma cells (SMC) are rapidly induced by
the treatment, and become predominant during MRD. They
are localized north (N).

vi. Uncharacterized resistant cells (URCs) were not thoroughly
biologically investigated, though the model predicts they
may have a biological interest. They are localized south-west
(SW).

The structural fluxes describe the metabolic adaptation within
the structural domain and diffusion-like exchanges between cell
populations (Figures 1E, F). In order to define these fluxes, we
use the following dynamical assumptions:

• Horizontal advection is assumed to stabilize the proliferative
(SW) state, since there is no known emergence of URCs prior
to resistance;

• SMC states (N) are also stabilized by horizontal advection
fluxes that converge towards this state, allowing cells to
populate this minimally mitotic state;

• advection is assumed to interpolate linearly at intermediate
phenotypes between proliferative cells and SMCs;

• horizontal diffusion is assumed to be maximal in the northern
regions of the structural plane and decreases in southern
regions, illustrating rare, stochastic transitions between
proliferative and URC states;
Frontiers in Oncology | www.frontiersin.org 7
• vertical diffusion is maximal towards the western and eastern
regions, allowing transitions between proliferative, invasive,
and NCSC or pigmented and URC populations, but lower
transition rates between SMC and southern states.

In principle, by diffusion any cell state can give rise to all cell
states. However, advection maintains a certain degree of cellular
hierarchy. These assumptions have been made upon a reasoned
analysis of the figures presented in (12), as a minimal set of
functional assumptions to reproduce observed patterns, but do
not necessarily represent an optimal or biologically motivated set
of assumptions.

Source Terms and Degradation
The source and degradation terms describe cell proliferation and
death, respectively. Like in (12) we consider that proliferation is
significantly reduced among SMC cells and increased among
proliferative cells. We consider that treatment is the only cause of
active cell death. Due to the nature of our modelling framework,
drugs may target cells with a spectrum of specific expression
markers as would be the case in the clinical scenario. In this case,
we assume the existence of two particular treatments. Firstly,
BRAF and MEK inhibitors were employed within the study
conducted by (12) and, as such, are assumed to primarily target a
distribution centered around the proliferative population,
stretching into the invasive population but with diminished
success among cells in the NW of the structural domain
(Figure S2). Secondly, a hypothetical cancer therapeutic
(HCT) has been used for the sake of illustration and targets
primarily the invasive and URC cell populations, with an
expansive effectiveness span E and SW (Figure S2).

Spatial Dynamics of Other Components
Given the complexity of the dynamics in the primary cancer cell
population, the dynamics of other components have been kept as
simple as possible. It is assumed that the ECNE exhibits only a
natural restorative growth process, as well as acidic species-
induced and natural degradation kinetics. Nutritional and acidic
species exhibit diffusion, as well as controlled production, and
natural degradation. Finally, the drug species also exhibit
diffusion, time dependent administration, as well as natural
and cell-based degradation.
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et al. Mitochondrial Oxidative Stress Is the Achille’s Heel of Melanoma Cells
Resistant to BRAF-Mutant Inhibitor. Oncotarget (2013) 4:1986. doi: 10.18632/
oncotarget.1420

20. Jia D, Lu M, Jung KH, Park JH, Yu L, Onuchic JN, et al. Elucidating
Cancer Metabolic Plasticity by Coupling Gene Regulation With Metabolic
Pathways. Proc Natl Acad Sci (2019) 116:3909–18. doi: 10.1073/pnas.
1816391116

21. Kumar S, Sharife H, Kreisel T, Mogilevsky M, B+ar-Lev L, Grunewald M, et al.
Intra-Tumoral Metabolic Zonation and Resultant Phenotypic Diversification
Are Dictated by Blood Vessel Proximity. Cell Metab (2019) 30:201–11.
doi: 10.1016/j.cmet.2019.04.003

22. Kiemen A, Braxton AM, Grahn MP, Han KS, Babu JM, Reichel R, et al. In Situ
Characterization of the 3d Microanatomy of the Pancreas and Pancreatic
Cancer at Single Cell Resolution. bioRxiv (2020). doi: 10.1101/
2020.12.08.416909

23. Hodgkinson A, Chaplain MAJ, Domschke P, Trucu D. Computational
Approaches and Analysis for a Spatio-Structural-Temporal Invasive
Carcinoma Model. Bull Math Biol (2018) 80:701–37. doi: 10.1007/s11538-
018-0396-4
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