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Regularity in shape optimization
under convexity constraint

Jimmy LAMBOLEY*, Raphaël PRUNIER*

January 31, 2024

Abstract

Keywords: Shape optimization, isoperimetric problem, convexity.

This paper is concerned with the regularity of shape optimizers of a class of isoperimetric problems
under convexity constraint. We prove that minimizers of the sum of the perimeter and a perturbative
term, among convex shapes, are C1,1-regular. To that end, we define a notion of quasi-minimizer fitted
to the convexity context and show that any such quasi-minimizer is C1,1-regular. The proof relies on a
cutting procedure which was introduced to prove similar regularity results in the calculus of variations
context. Using a penalization method we are able to treat a volume constraint, showing the same regu-
larity in this case. We go through some examples taken from PDE theory, that is when the perturbative
term is of PDE type, and prove that a large class of such examples fit into our C1,1-regularity result.
Finally we provide a counter-example showing that we cannot expect higher regularity in general.

1 Introduction

In this paper, we study the regularity properties of minimizers in shape optimization under convexity
constraint for a large class of problems of isoperimetric type.

In the classical framework of shape optimization (classical in the sense that there is no convexity
constraint), the question of regularity has a long-standing history, with strong interactions with the fields of
geometric measure theory and free boundary problems. More specifically, the study of various problems
involving the classical De-Giorgi perimeter P leads to the notion of quasi-minimizer of the perimeter (see
(9)) which is very useful to prove regularity for many problems of the form

min
{
P (Ω) +R(Ω), Ω ∈ A

}
(1)

Here R is considered to be a perturbative term, and A is a given class of measurable sets, for example the
class of sets of given volume V0, or the class of sets included in a fixed box D, or a mix of both:

A1 = {Ω ⊂ RN , |Ω| = V0}, A2 = {Ω ⊂ RN ,Ω ⊂ D}, A3 = {Ω ⊂ RN , Ω ⊂ D, |Ω| = V0}

though many other examples are possible (note that |Ω| denotes the volume of Ω). It would be impossible
to refer to every work in this direction, but we refer to [47] for a nice introduction to the concept of quasi-
minimizer of the perimeter and for several examples, and to [54, 4, 45, 41, 24, 23, 50] for a short sample
of applications.

In this paper, we are interested in a similar class of problems, where we add a convexity assumption to
the admissible shapes. More precisely, we replace (1) by

min
{
P (K) +R(K), K ∈ A ∩ KN

}
(2)
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where KN denotes the class of convex bodies of RN (convex compact sets with nonempty interior). As
before, P (K) denotes the perimeter of K, and as K is a convex body (and therefore is a Lipschitz set)
we have P (K) = HN−1(∂K) where HN−1 denotes the (N − 1)-dimensional Hausdorff measure in RN .
Again R is a shape functional that is considered as a perturbative term, and we will make assumptions on
R so that the term driving the regularity of optimal shapes is the perimeter term.

Before going into more details about our motivations and our strategy, let us start by giving a conse-
quence of the three main results of the paper that are Theorems 2.3, 2.10 and 3.2:

Theorem 1.1. Let n ∈ N∗, N ≥ 2, F : (0,+∞)× (0,+∞)× (0,+∞)n ×Rn
+ → R be locally Lipschitz.

Let R : KN → R be defined by the formula

R(K) := F
(
|K|, τ(K), λ1(K), . . . , λn(K), µ1(K), . . . , µn(K)

)
(3)

where τ(K) is the torsional rigidity of K, λ1(K), . . . , λn(K) are the n first Dirichlet eigenvalues of K,
and µ1(K), . . . , µn(K) the n first Neumann eigenvalues of K (see Section 3 for precise definitions). Let
D ⊂ RN be measurable (non-necessarily with finite measure).

• Any solution to the problem

inf
{
P (K) +R(K), K ∈ KN , K ⊂ D

}

is of class C1,1.

• Suppose that D is a convex body and let 0 < V0 < |D|. Then any solution to the problem

inf
{
P (K) +R(K), K ∈ KN , K ⊂ D, |K| = V0

}

is of class C1,1.

In other words, we have identified a large class of functions R so that solutions to (2) are smooth up
to the C1,1-regularity. We refer to Section 3.3 for an example of a shape optimization problem of the kind
(2) leading to an optimal shape that is a stadium, and is therefore not C2, thus showing that our result is
sharp in general. Note that existence is not always ensured for the two problems above (taking for instance
R = 0), and we thus prove in Theorem 3.4 the existence of solutions under various general hypotheses on
R and D.

Motivations: Let us give a few motivations for such a result: shape optimization under convexity con-
straint goes back to the study of Newton’s problem of the body of minimal resistance, that can be formu-
lated as

min

{
J(u) =

ˆ
D

dx

1 + |∇u|2 , u : D → [−M, 0] convex
}

(4)

where D is a smooth convex set in R2, and M > 0 is given. In this formulation, the graph of u represents
the form of a 3-dimensional convex body, and the energy J models the resistance experienced by the body
as it moves through a homogeneous fluid with constant velocity in the direction orthogonal to D (in the
negative direction in this formulation). The constant M gives a maximal height for the body under study.
We refer to [10, 42] for more details about this problem, but it is worth noticing that while one can prove
that this problem admits a solution (despite the energy not having a convexity property in |∇u|), even when
D is a disk the solutions are not explicitly known (see [46]) and even their regularity is not known. It is
nevertheless understood that the problem contains a non-convexity structure and that solutions cannot be
locally smooth, see for example [42]. Other models with various backgrounds may also involve a convexity
constraint, see for example [51] with a model in economics.

In the framework of shape optimization, it is interesting to notice that (1) might have optimizers that
are convex (for example the euclidean ball), and in this case the study of (2) is not relevant. Nevertheless,
in many situations, (1) may lead to non-convex solutions or even absence of an optimal shape. Let us give
two examples of these situations:
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• in [24] (see also [23]), the authors study (as in Theorem 1.1, λk denotes the kth-Dirichlet eigenvalue
of the Laplace operator in Ω):

min
{
P (Ω) + cλk(Ω), Ω ⊂ RN

}

for k ∈ N∗ and c > 0, and show that optimal shapes are smooth up to a residual set of co-dimension
less than 8 (see [24, Remark 3.6] where it is shown that this problem is equivalent to a constrained
formulation). When N = 2 we have (P + cλk)(Conv(Ω)) ≤ (P + cλk)(Ω) so optimal shapes
are necessarily convex, but when N ≥ 3 this argument is not valid anymore. In [7, Figure 2] some
numerical computations of optimal shapes are done when N = 3, and one can observe that for some
values of k the optimal shapes are not convex, so that the same problem with a convexity constraint
is of interest (see Section 3.2.2 for more details about this problem).

• the famous Gamow’s liquid drop model leads to the shape optimization problem

inf

{
P (Ω) +

ˆ
Ω

ˆ
Ω

dxdy

|x− y| , Ω ⊂ R3, |Ω| = V0

}
(5)

where V0 ∈ (0,+∞). It is conjectured that there is a threshold V ∗ > 0 such that the ball is a
solution if V0 < V ∗, and that there is no solution if V0 > V ∗, see [41, 38, 37] for partial results in
this direction. Let us note that the non-existence phenomenon (which is proven for V0 large enough,
see [37]) is expected to be due to the splitting of the mass into pieces, and the convexity constraint
is thus violated for such minimizing sequences. It is therefore interesting to wonder about a version
of (5) within the class of convex bodies. In general, as it is easier to get existence within the class
of convex bodies (see for example Theorem 3.4) hence many problems of the type (2) will be of
interest if (1) has no solution.

Let us also quote two areas of applications to motivate our regularity results:

• in the study of Blaschke-Santaló diagrams for (P, λ1, | · |) in the class of convex planar sets (see
[30]), that is to say describing the set

{
(x, y) ∈ R2, ∃K ∈ K2, P (K) = x, λ1(K) = y, |K| = 1

}

The authors of [30] use some regularity theory in shape optimization under convexity constraint in
the proof of their main result [30, Theorem 1.2]. Similar results in higher dimension (replacing K2

with KN for N ≥ 3) are still open problems, and we believe that the tools we develop in this paper
can be of help for further investigation in this direction.

• since the work of Cicalese and Leonardi [19], it is known that regularity theory can help to prove a
quantitative version of classical isoperimetric inequalities, see also [8] where this strategy is the only
one (we know of) giving the optimal exponent. It will be worth investigating if one could get new
quantitative isoperimetric inequalities in the class of convex sets thanks to our regularity results.

State of the art about regularity theory with convexity constraint: In the framework of Calculus of
variations, one can wonder about the regularity properties of solutions to the following generalization of
(4):

min

{ˆ
Ω
L(x, u(x),∇u(x))dx, u ∈ X, u convex

}
(6)

where Ω is a convex set in RN , L : Ω × R × RN → R is a Lagrangian and X is a suitable functional
space, possibly including boundary constraints. In [15] the author obtains in particular a C1-regularity
result when L is locally uniformly convex in the third variable, and when N = 1. In [16], the authors
study the same case (L locally uniformly convex), but this time when N ≥ 1, and X includes a Dirichlet
boundary condition: they identify conditions on Ω, L and X so that solutions are C1.
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These results were not sharp in general, therefore Caffarelli, Carlier and Lions studied in [14]1 the
model case

min

{
J(u) :=

1

2

ˆ
Ω
|∇u|2dx+

ˆ
Ω
fudx, u ∈ H1(Ω), u convex

}
, (7)

and proved that a minimizer u∗ is locally C1,1−N/p in Ω if f+ ∈ Lp(Ω) with p > N , and that this regularity
is optimal.

In the framework of shape optimization, D. Bucur proved in [9] a C1-regularity result for shape opti-
mization problems with convexity constraint, for functionals involving λk and the volume; this result can
be applied for example to

min
{
λk(K), |K| = V0, K ∈ KN

}
.

A sharp regularity result for this problem is still an open problem, though it is expected that optimal shapes
are C1,1/2 (and that this result is sharp when k = 2), see [43].

For problems of the kind (2), [44] shows that under some assumption on R (see Remark 2.6) and
assuming N = 2, solutions must be C1,1. Comparing it to Theorem 1.1 above, this result applies to
R(K) = F (|K|, λ1(K), τ(K)). Therefore, the results we show in the current paper are a generalization
of [44, Theorem 1] to the higher-dimensional case, and to a wider class of functional as well.

Finally, in [33] we can find another C1,1-regularity result for solutions to the following 2-dimensional
version of a model for charged liquid drop at an equilibrium state:

min
{
P (K) + I(K), K ∈ K2, |K| = V0

}

where I(K) = inf

{ˆ
K×K

log

(
1

|x− y|

)
dµ(x)dµ(y), µ ∈ P(K)

}
(8)

where P(K) denotes the set of probabily measures supported on K. Here I(K) can be seen as a capacity
term, and it is not so far from the functionals involved in (3), though it is related to a PDE in the exterior
of K. Our result does not apply directly to (8) or to its higher-dimensional generalizations, but it will be
the subject of future work to adapt our tools to this context.

Strategy of proof and plan of the paper: When dealing with regularity theory for (2) or (6), we already
have a mild regularity property, namely that solutions are necessarily locally Lipschitz. This is a big
difference with (1) where the most difficult part is to prove that solutions are a bit regular, further regularity
being obtained usually through an Euler-Lagrange optimality condition.

In [15] as well as in [44], the proofs of the regularity results also rely on the writing and the use
of an Euler-Lagrange equation, taking into account the convexity constraint, which involves a Lagrange
multiplier (infinitely dimensional). It does not seem easy to adapt this method to higher dimensional cases.

In [9, 16, 14, 33], the method is rather different, and consists in building test functions or shapes using
a cutting procedure.

In this paper, we obtain three main results, which together lead to the proof of Theorem 1.1:

1. in the spirit of what is done without convexity constraint, we introduce a new notion of quasi-
minimizer of the perimeter under convexity constraint (see Definition 2.1). We show in Theorem 2.3
that these sets are C1,1 adapting the ideas of [14]. A first important observation is that when writing
the perimeter term as a function on the graph, we obtain a Lagrangian of the form

´
D L(∇u)dx

with a uniform convexity property, which explains that the ideas for (7) can be adapted to this
case. However, the main difficulty here is to be careful on how a convex body can be seen as the
graph of a convex function: it is not possible to have a local point of view, because this would lead
to constraints that are too restrictive (see Remark 2.2). As an application, we show in Corollary

1At the time we are writing this paper, the work [14] is not published. Let us say here that we will use several ideas from this
paper, though we will reproduce them for the convenience of the reader. We try to make it as clear as possible when these ideas
are used in our proofs. We warmly thank G. Carlier for providing us a version of [14].
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2.4 that if R satisfies a suitable Lipschitz property with respect to the volume metric (see (13)),
then solutions to (2) (a priori with no other constraints) are quasi-minimizer of the perimeter under
convexity constraint, and are therefore C1,1. These results are described in Section 2.1.

2. then in Section 2.2, and in the same spirit with what is done in the classical case (without convexity
constraint, see [56] and [23] for example), we show how one can handle volume constraint (see
Theorem 2.10). To that end we show that the volume constraint can be penalized using Minkowski
sums (see Lemma 2.11).

3. finally in Section 3 we focus on examples, and in particular we show that the functional (3) satisfies
a Lipschitz property with respect to the volume metric, so that Theorem 2.3 can be applied (see
Theorem 3.2).

2 Regularity in shape optimization

In the classical context of sets minimizing perimeter (without convexity constraint), the concept of
quasi-minimizer of the perimeter has proved to be very convenient: denoting P the classical De-Giorgi
perimeter, we say that Ω ⊂ RN is a local quasi-minimizer of the perimeter if there exists α ∈ (0, 1], C > 0
and r0 > 0 such that for every r ∈ (0, r0) and x ∈ RN we have:

P (Ω) ≤ P (Ω̃) + CrN−1+α, for every measurable Ω̃ ⊂ RN such that Ω∆Ω̃ ⋐ Br(x). (9)

The regularity theory then shows that quasi-minimizers of the perimeter are C1,α/2, up to a possibly
singular set of dimension less than N − 8 (see for instance [56]). This regularity can even be strengthened
to C1,α for every α ∈ (0, 1) if there exists Λ > 0 such that

P (Ω) ≤ P (Ω̃) + Λ|Ω∆Ω̃|, for every measurable Ω̃ ⊂ RN (10)

(see [2, Theorem 4.7.4]). In order to take advantage of these results, when studying a shape optimization
problem involving the perimeter in the energy functional, one tries to show that a minimizer of our problem
must be a quasi-minimizer of the perimeter. To that end, one needs to handle the different terms in the
energy, as well as the various constraints.

In this section we therefore introduce a new notion of quasi-minimizer of the perimeter, under a con-
vexity constraint. We study the regularity property it leads to, and then show how one can deal with various
constraints and energy terms.

Throughout this section we denote by KN the class of convex bodies of RN (convex compact sets with
nonempty interior). Note that (as convex bodies are Lipschitz set), we have P (K) = HN−1(∂K) for any
K ∈ KN , i.e. the perimeter of a convex body is the N −1-dimensional Hausdorff measure of its boundary.

2.1 Regularity for quasi-minimizers of the perimeter under convexity constraint

Definition 2.1. We say that K ∈ KN is a quasi-minimizer of the perimeter under convexity constraint if
there exist εK > 0,ΛK ≥ 0 such that

∀K̃ ∈ KN such that K̃ ⊂ K and |K \ K̃| ≤ εK , P (K) ≤ P (K̃) + ΛK |K \ K̃| (11)

Remark 2.2. This notion of quasi-minimizer is not the mere restriction to convex perturbations of the
standard notion of quasi-minimizer recalled in (9) and (10):

• first, here we ask that K be minimal in a volume-neighborhood instead of asking it only for sets K̃
verifying K̃∆K ⊂ Br(x) for some x ∈ RN and for small enough r > 0. This is due to the fact that
the latter condition is much too restrictive for convex sets, as it is not always possible to perturbate
a convex set K into K̃ ∈ KN only over some ball Br(x). For instance, if K ∈ K2 is a square with
x ∈ ∂K located inside a segment of ∂K, then we can see that if r is small enough any K̃ ∈ K2 such
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that K̃∆K ⊂ Br(x) must be K itself. In fact, the possibility of perturbating a convex set K locally
around x ∈ ∂K is somehow directly connected to some kind of strict convexity of K around x. As
a consequence, the error term is replaced by the volume of K∆K̃, similarly to what is done in [47].

• on the other hand we merely require optimality for the sets K̃ which perturbate K from the inside,
as this will be sufficient to obtain regularity properties (see the proof of Theorem 2.3, where the
competitors Kr ⊂ K are obtained by cutting K by a well-chosen hyperplane). Note that improving
the quasi-minimality property by allowing also outward perturbations of K does not lead to better
regularity properties in general (as shows the counter-example in Section 3.3).

The regularity result for quasi-minimizers proved in this section is the following.

Theorem 2.3. Let K be a quasi-minimizer of the perimeter under convexity constraint. Then K is C1,1.

As mentioned in the introduction, this leads to a regularity result for minimizer of certain energy having
a perimeter term: letting D ⊂ RN , we consider the following shape optimization problem

inf
{
P (K) +R(K), K ∈ KN , K ⊂ D

}
(12)

where R is a shape functional satisfying

∀K ∈ KN ,∃CK > 0, ∃εK > 0, ∀K̃ ∈ KN s.t. K̃ ⊂ K and |K\K̃| ≤ εK , R(K̃)−R(K) ≤ CK |K\K̃|
(13)

Then we have the following easy consequence of Theorem 2.3:

Corollary 2.4. Assume that R : KN → R satisfies (13). Then any solution K∗ of (12) is C1,1.

Remark 2.5. Note that it may happen that (12) has no solution even if D is bounded: it is the case for
example if R ≡ 0. See Theorem 3.4 (i) for an existence result when D is a convex body and there is an
additional volume constraint on K.

Remark 2.6. In [44] is proved a result similar to Corollary 2.4 in the case N = 2: more precisely, it is
proved (see [44, Corollary 1]) that if K∗ is a solution of (12) and if R admits a shape derivative at K∗ (see
[36, Section 5.9.1]) which can be represented in Lp(∂K∗) with p ∈ [1,∞], which means that for every
ξ ∈W 1,∞(R2,R2),

R′(K∗)(ξ) = lim
t→0

(
R((Id+ tξ)(K∗))−R(K∗)

)

t
=

ˆ
∂K∗

g ξ · ν∂K∗dσ (14)

for some function g ∈ Lp(∂K∗), then ∂K∗ ∩ D is W 2,p. In particular when p = ∞, this leads to the
C1,1-regularity as in Corollary 2.4.

We also prove (see [44, Section 3.2]) that the function R : K 7→ F (|K|, λ1(K), τ(K)) (where F :
R3 → R is smooth, and the PDE functionals λ1 and τ are defined at the beginning of Section 3.2) satisfies
(14) for some g ∈ L∞(∂K∗), leading to a C1,1-optimal shape in that case. Let us conclude with two
comments:

1. The proof of [44, Theorem 1,Corollary 1] is completly different from the one of Theorem 2.3 and
Corollary 2.4, as it relies on an Euler-Lagrange equation for (12) (see [44, Proposition 1]), and we
believe that these ideas are restricted to the 2-dimensional case.

2. As we will see in Section 3, assumption (13) is much more flexible than (14) and applies to much
more examples, in particular it does not require the existence of a shape derivative.

Ideas of the proof of Theorem 2.3: As mentioned in the Introduction, the proof consists in building a
framework enabling to use the ideas of [14], where the authors prove C1,1-regularity of the minimizers to
the calculus of variation problem (7). For any K ∈ KN we locally write ∂K near some point x̂0 ∈ ∂K
as the graph of a convex function u : Ω → R, so that the perimeter of K "near this point" is seen as
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a Lagrangian
´
Ω L(∇u) where L is locally strongly convex, meaning that L : RN → R is smooth and

verifies

∀M > 0, ∃α > 0, ∀
(
|p| ≤M, |p′| ≤M

)
, L(p′)− L(p) ≥ ⟨∇L(p), p′ − p⟩+ α

2
|p′ − p|2

This gives hope that we can use the procedure from [14], as it is natural to expect that such an energy
behaves like (7). A main difficulty however is to show that the geometrical context actually allows to build
competitors in a similar fashion to [14]. If K is a quasi-minimizer in the sense of Definition 2.1, such
competitors will be obtained by setting

Kv := K ∩ Epi(v)

for well-chosen convex functions v : Ω → R with v ≥ u, using the notation Epi(v) for the epigraph of
v. It is important to notice that it is not possible to work locally (i.e. picking Ω as a small neighborhood)
but we rather have to choose Ω maximal, and this leads to new difficulties in comparison with [14] (mostly
linked to the case N ≥ 3, see also Remark 2.7). An important part of Step (ii) of the proof is concerned
with addressing this issue.

Proof of Theorem 2.3: Let K be a quasi-minimizer of the perimeter under convexity constraint in the
sense of Definition 2.1.

Representation of K as a graph: Let x̂0 ∈ ∂K ; applying Proposition 4.3, we get that there exists a
hyperplane H ⊂ RN and a unit vector ξ ∈ RN normal to H such that, denoting by (x, t) a point in
H × Rξ coordinates (and hence denoting x̂0 := (x0, 0)):

• The set Ω := {x ∈ H, (x+ Rξ) ∩ Int(K) ̸= ∅} is open, bounded and convex, and the function

u : Ω→ R
x 7→ min{t ∈ R, (x, t) ∈ K}

is well-defined and convex.

• It holds

{(x, u(x)), x ∈ Ω} ⊂ ∂K

K ∩ (Ω× Rξ) ⊂ {(x, t) ∈ Ω× Rξ, u(x) ≤ t}

• There exists a β > 0 and c := c(β) > 0 such that Bβ := Bβ(x0) ⋐ Ω verifies

{(x, t) ∈ Bβ × Rξ, u(x) ≤ t ≤ u(x) + c} ⊂ K. (15)

Throughout the proof the coordinates (x, t) are thought in the orthogonal decomposition H×Rξ. Moreover
the notation Br(x) for some x ∈ H and r > 0 will denote a ball lying in H .

Since Bβ ⋐ Ω we have that u is globally Lipschitz in Bβ . Setting some y ∈ Bβ/2(x0) and p ∈ ∂u(y)
(where ∂u(y) denotes the subdifferential of the convex function u at y) we let l(x) := u(y)+ ⟨p, x−y⟩ for
x ∈ H and Mr := supBr(y)(u− l). We aim to prove that there exists C > 0 and r0 > 0 (both independent
on y) such that Mr ≤ Cr2 for any y ∈ Bβ/2(x0) and 0 < r < r0. This classically ensures that u is C1,1

over Bβ/2(x0) (see for instance Lemma 3.2 in [22]). As the case Mr = 0 is trivial, from now on we fix
y ∈ Bβ/2(x0), 0 < r < β/2 and assume Mr > 0. Note that p, l, Mr (and other objects we will introduce
along the proof) depend on y, although for simplicity it does not appear in the notations. We will also
set y = 0 for simplicity, while paying attention to the fact that the estimates we make in the proof do not
depend on y.

Construction of a competitor: Let qr be some unit vector such that Mr = (u− l)(rqr). We set

∀x ∈ H, σr(x) := l(x) +
Mr

2r
(⟨qr, x⟩+ r), σ̂r(x) := (x, σr(x)),

7



Hr := σ̂r(H), H+
r := {(x, t) ∈ RN−1 × R, t ≥ σr(x)},

and finally we define:
Kr := K ∩H+

r

Notice that Kr ⊂ K is convex and compact. As we will show in section (i) of the proof, the construction
of Kr ensures that Int(Kr) ̸= ∅ and |K \Kr| ≤ εK for r ≤ r(diam(Ω), εK , ∥∇u∥L∞(Bβ)) (see (20) and
the end of section (i)). Therefore from (11) we will get

P (K)− P (Kr) ≤ ΛK |K \Kr| (16)

for such r. With (16) we are left to estimate (i) the volume variation from above and (ii) the perimeter
variation from below. We first provide some central estimates on the size of the set {u ≤ σr} which were
proven in [14]. Note that these estimates only use convexity of u and do not depend on the particular kind
of energy introduced in the problem (7). We reproduce the proof of [14] below for the convenience of the
reader.

Estimate of {u ≤ σr}: Let us prove

B+
r/2(0) ⊂ {u ≤ σr} ⊂ {|⟨qr, ·⟩| ≤ r} (17)

where we set B+
r/2(0) = Br/2(0) ∩ {⟨qr, ·⟩ ≥ 0}.

• {u ≤ σr} ⊂ {⟨qr, ·⟩ ≥ −r}: if ⟨qr, x⟩ < −r, then

u(x) ≥ l(x) > l(x) +
Mr

2r
(⟨qr, x⟩+ r) = σr(x)

whence we deduce x /∈ {u ≤ σr}.

• {u ≤ σr} ⊂ {⟨qr, ·⟩ ≤ r}: over the interval I := Ω ∩ {tqr, t > r} we know that u > l + Mr

thanks to the convexity of u. Therefore one can separate the convex sets I and {u ≤ l + Mr}
by some hyperplane Π. Since by definition Br(0) ⊂ {u ≤ l + Mr}, Π must also seperate Br(0)
and I , implying that Π = {x ∈ RN , ⟨qr, x⟩ = r}. This yields in particular (u − l) ≥ Mr over
Π ∩ Ω. Given now x ∈ Ω such that ⟨qr, x⟩ > r set z ∈ Π ∩ [0, x]: from the two informations
(u− σr)(0) = −Mr/2 and (u− σr)(z) = (u− l)(z)−Mr ≥ 0 we deduce (u− σr)(x) > 0 using
convexity of u− σr, so that x /∈ {u ≤ σr}.

• B+
r/2(0) ⊂ {u ≤ σr}: given x ∈ Br/2(0), we have 2x ∈ Br(0) hence

(u− l)(x) ≤ 1

2
(u− l)(2x) +

1

2
(u− l)(0)︸ ︷︷ ︸

=0

≤ Mr

2

using convexity. If in addition ⟨qr, x⟩ ≥ 0 then

(u− σr)(x) = (u− l)(x)− Mr

2r
(⟨qr, x⟩+ r) ≤ Mr

2
− Mr

2
≤ 0

so that x ∈ {u ≤ σr}.

(i) Estimate from above

We have

|K \Kr| = |K ∩ (RN \H+
r )|

= |{(x, t) ∈ K, t < σr(x)}|
≤ |{(x, t) ∈ Ω× R+, u(x) ≤ t ≤ σr(x)}|

=

ˆ
{u≤σr}

(σr − u)dHN−1 (18)
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using Fubini’s Theorem.

If x ∈ {u ≤ σr} we have thanks to the right-hand-side inclusion of (17)

0 ≤ (σr − u)(x) = (l − u)(x)︸ ︷︷ ︸
≤0

+
Mr

2r
(⟨qr, x⟩+ r) ≤Mr

i.e.
0 ≤ σr − u ≤Mr over {u ≤ σr} (19)

Injecting (19) into (18) yields
|K \Kr| ≤MrHN−1({u ≤ σr}) (20)

We will refine further (20) (into (43)), but this estimate is sufficient for now. It gives in particular that there
exists r0(diam(Ω), εK , ∥∇u∥L∞(Bβ)) > 0 such that |K\Kr| ≤ εK for any r < r0(diam(Ω), εK , ∥∇u∥L∞(Bβ))
hence also that Int(Kr) ̸= ∅ for such r. Indeed, as |p| ≤ ∥∇u∥L∞(Bβ) it holds for 0 < r < β/2:

Mr ≤ sup
x∈Br(0)

|u(x)− u(0)|+ sup
x∈Br(0)

|⟨p, x⟩| ≤ 2r∥∇u∥L∞(Bβ) (21)

so that from (20) we get

|K \Kr| ≤ 2r∥∇u∥L∞(Bβ)HN−1({u ≤ σr}) ≤ 2r∥∇u∥L∞(Bβ)HN−1(Ω)

which yields |K \Kr| ≤ εK for r < εK/(2HN−1(Ω)∥∇u∥L∞(Bβ)).

(ii) Estimate from below

We now deal with estimating from below the perimeter variation. In the view of (20), if r ≤ r0(diam(Ω), εK , ∥∇u∥L∞(Bβ))
then Kr has non-empty interior, which we will suppose from now on. Let us start by showing that

P (K)− P (Kr) ≥ HN−1(û(Ω))−HN−1(v̂r(Ω) ∩ ∂Kr) (22)

where we set

∀x ∈ Ω, û(x) := (x, u(x)), vr(x) = max{u, σr}(x), v̂r(x) := (x, vr(x)).

We have

P (K)− P (Kr) = HN−1(∂K)−HN−1(∂Kr)

= HN−1(∂K ∩ û(Ω)) +HN−1(∂K ∩ û(Ω)c)−HN−1(∂Kr ∩ v̂r(Ω))

−HN−1(∂Kr ∩ v̂r(Ω)
c)

= HN−1(û(Ω))−HN−1(∂Kr ∩ v̂r(Ω)) +HN−1(∂K ∩ û(Ω)c)

−HN−1(∂Kr ∩ v̂r(Ω)
c)

using in the third line that û(Ω) ⊂ ∂K. If we show

∂Kr ∩ v̂r(Ω)
c ⊂ ∂K ∩ û(Ω)c (23)

then we obtain (22). Therefore, let x̂ ∈ ∂Kr∩v̂r(Ω)c. As ∂Kr ⊂ K, we first want to show that x̂ /∈ Int(K).
Assume by contradiction that x̂ ∈ Int(K), then as

∂Kr = ∂(K ∩H+
r ) = (K ∩ ∂H+

r ) ∪ (∂K ∩H+
r ) = (K ∩Hr) ∪

(
∂K ∩H+

r \Hr

)
(24)

(the second equality comes from the fact that Kr and H+
r are closed) we must have x̂ ∈ Hr. But then

x̂ ∈ Hr ∩ Int(K) and we deduce that there exists x ∈ Ω such that x̂ = (x, σr(x)) with σr(x) > u(x), thus
getting vr(x) = σr(x) and x̂ = v̂r(x), which is a contradiction. Now, as x̂ ∈ ∂Kr ⊂ H+

r , assuming by

9



Ω

•
x̂0

K
Kr

x
•

y
•

H

σ̂r(x)
•

•
û(x)

Ωr

Figure 1: Cutting procedure

contradiction that there exists x ∈ Ω such that x̂ = (x, u(x)) leads to u(x) ≥ σr(x), implying again the
contradiction x̂ = v̂r(x). This concludes the proof of (23) and (22).

Let us rewrite

v̂r(Ω) ∩ ∂Kr = v̂r(Ω) ∩K = v̂r(Ωr) (25)

by setting Ωr := v̂r
−1(K) ⊂ Ω (see Figure 1). The first equality of (25) is justified in the following way:

first, as ∂Kr ⊂ K, then v̂r(Ω)∩∂Kr ⊂ v̂r(Ω)∩K. Second, if x̂ ∈ v̂r(Ω)∩K, let us write x̂ = (x, vr(x))
for some x ∈ Ω. Then either σr(x) ≥ u(x), giving x̂ = v̂r(x) = σ̂r(x) ∈ Hr ; as x̂ ∈ K, we get that
x̂ ∈ K ∩Hr ⊂ ∂Kr thanks to (24). Else, u(x) > σr(x) so that x̂ = û(x) ∈ ∂K ∩H+

r \H ⊂ ∂Kr using
again (24).
We then get from (22)

P (K)− P (Kr) ≥ HN−1(û(Ω))−HN−1(v̂r(Ωr)) ≥ HN−1(û(Ωr))−HN−1(v̂r(Ωr)) (26)

We will rewrite the right hand side of (26) using the classical formula for the perimeter of a Lipschitz
graph, but we start by showing two importants features of Ωr. Let us note here that the introduction of Ωr

is not necessary if N = 2, while it is meaningful for N ≥ 3 (see Remark 2.7).

Ωr is convex: Let us show that Ωr = πH(Kr), where πH(Kr) is the orthogonal projection over H of
the convex set Kr, which will give right away that Ωr is convex. First, if x ∈ Ωr then x ∈ Ω with
(x, vr(x)) ∈ K, and t = vr(x) ≥ σr(x) satisfies that (x, t) ∈ K with t ≥ σr(x), providing (x, t) ∈ Kr

hence x ∈ πH(Kr). Conversely, let x ∈ H be such that there exists t ∈ R with (x, t) ∈ Kr, implying that
(x, t) ∈ K with t ≥ σr(x). Note that x ∈ Ω by definition of Ω and using that Kr ⊂ K. If u(x) ≥ σr(x)
then v̂r(x) = û(x) ∈ K which means that x ∈ Ωr. Else, t is such that t ≥ σr(x) ≥ u(x), which gives that
v̂r(x) = σ̂r(x) ∈ K by convexity of K, since (x, t) ∈ K and (x, u(x)) ∈ K. Thus Ωr = πH(Kr) and Ωr

is convex.

Ωr has non-empty interior: We now prove that Ωr has non-empty interior with a ball which has size
uniform in y (which we set to be y = 0), i.e. that there exists β̃ ∈ (0, β2 ) such that

∀r ∈ (0, β̃), B
β̃
(0) ⊂ Ωr (27)

Given β̃ ∈ (0, β/2) that will be chosen later, using (21) and |p| ≤ ∥∇u∥L∞(Bβ) we get for any x ∈ B
β̃
(0)

and r ∈ (0, β̃),

σr(x) = u(0) + ⟨p, x⟩+ Mr

2r
(⟨qr, x⟩+ r)

≤ u(0) + ∥∇u∥L∞(Bβ)

(
2β̃ + r

)
≤ u(x) + 4β̃∥∇u∥L∞(Bβ)

10



If we choose β̃ such that 4β̃∥∇u∥L∞(Bβ) ≤ c(β) where c(β) satifies (15), we deduce

∀r ∈ (0, β̃), σr ≤ u+ c in B
β̃
(0) (28)

We are now in a position to prove (27). Let x ∈ B
β̃
(0): if u(x) ≥ σr(x), then v̂r(x) = û(x) ∈ K hence

x ∈ Ωr. Otherwise u(x) ≤ σr(x), and then u(x) ≤ σr(x) ≤ u(x) + c thanks to (28); using (15) we get in
fact v̂r(x) = (x, σr(x)) ∈ K, meaning that x ∈ Ωr.

Rewriting (26) with Lipschitz graphs: We claim now that (26) rewrites

P (K)− P (Kr) ≥
ˆ
Ωr

[√
1 + |∇u|2 −

√
1 + |∇vr|2

]
dHN−1 (29)

=

ˆ
Int(Ωr)

[√
1 + |∇u|2 −

√
1 + |∇vr|2

]
dHN−1

If (29) holds true, the second line comes from the fact that |Ωr| = |Int(Ωr)|, since Ωr is convex. Now,
from [3, Remark 2.72] one has

HN−1(û(ω)) =

ˆ
ω

√
1 + |∇u|2dHN−1

if ω ⊂ Ωr with u|ω Lipschitz. As u is not necessarily Lipschitz over the whole of Ωr, let us take an
increasing sequence (Ωn) of open subsets of Ω with Ωn ⋐ Ω for each n and ∪nΩn = Ω. Then setting
Ωn
r := Ωn ∩ Ωr, the sequence (Ωn

r ) is still increasing with ∪nΩn
r = Ωr. As u|Ωn

r
is now Lipschitz we can

write
HN−1(û(Ωn

r )) =

ˆ
Ωn

r

√
1 + |∇u|2dHN−1

The monotonous convergence theorem applies on each side of the equation, yielding at the limit

HN−1(û(Ωr)) =

ˆ
Ωr

√
1 + |∇u|2dHN−1 (30)

The same goes forHN−1(v̂r(Ωr)), thus getting (29).

Estimate from below of (29): Let

ωr := {x ∈ Int(Ωr), u(x) ≤ σr(x)} ⊂ {u ≤ σr}

and ω̃r be the projection of ωr onto Γr := {⟨qr, ·⟩ = 0}.
Thanks to (17) we have

ωr ⊂ {|⟨qr, ·⟩| ≤ r} (31)

On the other hand, if 0 < r < β̃ we have Br(0) ⊂ Ωr using (27), so that (17) again gives

B+
r/2(0) ⊂ ωr (32)

for such r.

The local strong convexity of the function ξ ∈ RN 7→
√

1 + ξ2 combined with the fact that for any
r ∈ (0, β/2)

|∇σr| =
∣∣∣∣p+

Mr

2r
qr

∣∣∣∣ ≤ 2∥∇u∥L∞(Bβ)

(where we used (21)) enable to find α = α(∥∇u∥L∞(Bβ)) > 0 such that for any r ∈ (0, β/2),

√
1 + |∇u|2 −

√
1 + |∇vr|2 ≥

∇vr · (∇u−∇vr)√
1 + |∇vr|2

+
α

2
|∇u−∇vr|2 over Bβ
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Note also the weaker (but global) estimate

√
1 + |∇u|2 −

√
1 + |∇vr|2 ≥

∇vr · (∇u−∇vr)√
1 + |∇vr|2

over Ωr

SinceHN−1(û(Ωr)) ≤ HN−1(∂K) < +∞, (30) implies in particular that
√

1 + |∇u|2 ∈ L1(Ωr), hence
also that |∇u| ∈ L1(Ωr). This ensures u ∈ W 1,1(Ωr) as we also have u ∈ L∞(Ωr). Let us integrate the
two previous estimates and use (29) to get

P (K)− P (Kr) ≥
ˆ
ωr

∇σr · (∇u−∇σr)√
1 + |∇σr|2

dHN−1 +
α

2

ˆ
ωr∩Bβ

|∇u−∇σr|2dHN−1 (33)

Recalling (19) we have,
0 ≤ σr − u ≤Mr over ωr. (34)

As∇σr is a fixed vector we get by integrating by parts

−
ˆ
ωr

∇σr · (∇u−∇σr)√
1 + |∇σr|2

dHN−1 = −
ˆ
∂ωr

∇σr · n√
1 + |∇σr|2

(u− σr)dHN−2 ≤
ˆ
∂ωr

(σr − u)dHN−2

where n denotes the outer unit normal to ∂ωr. Observing that (34) must also hold on ∂ωr, and since u = σr
on ∂ωr ∩ Int(Ωr) we deduce

−
ˆ
ωr

∇σr · (∇u−∇σr)√
1 + |∇σr|2

dHN−1 ≤MrHN−2
[
∂ωr ∩ ∂Ωr

]

Moreover, let us show that,

HN−2
[
∂ωr ∩ ∂Ωr

]
≤ (N − 1)HN−1(ωr)

d(y, ∂Ωr)
(35)

so that for r ∈ (0, β̃) we get

−
ˆ
ωr

∇σr · (∇u−∇σr)√
1 + |∇σr|2

dHN−1 ≤Mr
(N − 1)HN−1(ωr)

d(y, ∂Ωr)
≤Mr

(N − 1)

β̃
HN−1(ωr) ≤ CMrrHN−2(ω̃r)

(36)
with C = 2(N−1)

β̃
> 0 , where we used (27) and (31).

Estimate (35) was proven in [14]; we reproduce the argument for the convenience of the reader: from
Stokes formula,

HN−1(ωr) =
1

N − 1

ˆ
ωr

div(x)dHN−1(x) =
1

N − 1

ˆ
∂ωr

⟨x, n(x)⟩︸ ︷︷ ︸
≥0

dHN−2(x)

≥ 1

N − 1

ˆ
∂ωr∩∂Ωr

⟨x, n(x)⟩dHN−2(x)

and notice that for any x ∈ ∂ωr ∩∂Ωr such that n(x) is well-defined we have ⟨x, n(x)⟩ = d(0, Hx) where
Hx is the tangent hyperplane at x to ∂ωr, which is also the tangent hyperplane at x to ∂Ωr. This gives
⟨x, n(x)⟩ ≥ d(0, ∂Ωr) using the convexity of Ωr, implying (35).

L2 Estimate from below of∇(u− σr): We now estimate from below the term
ˆ
ωr∩Bβ

|∇u−∇σr|2dHN−1 ≥
ˆ
ωr∩Bβ̃

(0)
|∇u−∇σr|2dHN−1

We shall prove

∀r ∈ (0, β̃/2),

ˆ
ωr∩Bβ̃

(0)
|∇u−∇σr|2 ≥ δ

M2
r

r
HN−2(ω̃r) (37)
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Figure 2: Localization of ωr
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|ru�r�r|2dHN�1 �
!r\Be�(y)

|ru�r�r|2dHN�1

12

for some δ = δ(β̃, diam(Ω)). This estimate was proved in [14] but we reproduce the proof for the conve-
nience of the reader.

Let γ = β̃
2diam(Ω) > 0 be such that if r ∈ (0, β̃/2) we have thanks to (27)

[−r, r]qr × γω̃r ⋐ B
β̃
(0) ⊂ Int(Ωr). (38)

where [−r, r]qr × γω̃r := {tqr + γx′, t ∈ [−r, r], x′ ∈ ω̃r}. Setting

Aγ/2 :=
γ

2
ω̃r,

then for any x′ ∈ Aγ/2 we can write

{
(x′ + Rqr) ∩ ωr = [(a(x′), x′), (b(x′), x′)]

(x′ + Rqr) ∩ 1
2ωr = [(α(x′), x′), (β(x′), x′)]

for some functions a, b and α, β defined over Aγ/2, with (a(x′), x′) and (b(x′), x′) ∈ ∂ωr ∩B
β̃
(0) thanks

to (38) and the right inclusion of (17) (see Figure 2). In particular it holds (u − σr)(a(·), ·) = (u −
σr)(b(·), ·) = 0.

Since u ≤ σr over ωr and since u− σr is convex we get for every h ∈ ωr

(u− σr)(
h

2
) ≤ 1

2
(u− σr)(0) +

1

2
(u− σr)(h) ≤

1

2
(u− σr)(0) = −

Mr

4
,

that is
u− σr ≤ −Mr/4 over

1

2
ωr (39)

Set 0 < r < β̃/2 and x′ ∈ Aγ/2. We apply the inequality

For t0 ≤ t1 and f ∈ H1([t0, t1]),

ˆ t1

t0

f ′2(t)dt ≥ (f(t1)− f(t0))
2

t1 − t0
,

13



to (u−σr)(·, x′) over the segments [a(x′), α(x′)] and [β(x′), b(x′)], each of which has length smaller than
2r (see (17)), obtaining

ˆ b(x′)

a(x′)
(∂qr(u− σr))

2dt ≥
ˆ α(x′)

a(x′)
(∂qr(u− σr))

2dt+

ˆ b(x′)

β(x′)
(∂qr(u− σr))

2dt

≥ [u(α(x′), x′)− σr(α(x
′), x′)]2

α(x′)− a(x′)
+

[u(β(x′), x′)− σr(β(x
′), x′)]2

b(x′)− β(x′)
≥ M2

r

16r

since (u− σr)(a(x
′), x′) = (u− σr)(b(x

′), x′) = 0, and where we also used (39) in the last inequality.

We write |∇(u− σr)| ≥ |∂qr(u− σr)| and integrate the above estimate over x′ ∈ Aγ/2; this yields

ˆ
ωr∩Bβ̃

(0)
|∇(u− σr)|2dHN−1 ≥

ˆ
Aγ/2

(ˆ b(x′)

a(x′)
(∂qr(u− σr))

2dt

)
dHN−2(x′)

≥
M2

rHN−2(Aγ/2)

16r

≥ δ
M2

rHN−2(ω̃r)

r

for some constant δ = δ(β̃, diam(Ω)) > 0, getting (37).

Conclusion of the estimate from below: Plugging (37) and (36) into (33) gives

∀r ∈ (0, β̃/2),
M2

r

r
HN−2(ω̃r) ≤ C

(
P (K)− P (Kr) +MrrHN−2(ω̃r)

)
(40)

where C = C(N, d(x0, ∂Ω), c(β), ∥∇u∥L∞(Bβ), diam(Ω)), which completes the proof of the estimate
from below.

Conclusion

We claim that for all r ∈ (0, β̃) it holds

HN−1({u ≤ σr}) = HN−1(ωr) +HN−1({u ≤ σr} \ ωr)

≤ (1 + C)HN−1(ωr) (41)

with C = γ1−N , where γ = β̃
2diam(Ω) was introduced to obtain (38). Indeed, denoting by κr := {u ≤

σr} \ ωr, it suffices to show
∀r ∈ (0, β̃), γκr ⊂ ωr (42)

Let x ∈ κr; we have (u − σr)(γx) ≤ 0 using the convexity of u − σr, and furthermore γx ∈ B
β̃
(0) ⊂

Int(Ωr) (see (27)). This provides γx ∈ ωr, allowing to conclude that (42) holds.

Injecting (41) into (20) and using (31) we get that there is a constant C = C(β̃,diam(Ω)) such that

∀r ∈ (0, β̃), |K \Kr| ≤ CMrrHN−2(ω̃r) (43)

Gathering (40) and (43) and recalling (16) finally provides the existence of r0 = r0(β̃, diam(Ω), εK , ∥∇u∥L∞(Bβ))
such that

∀r ∈ (0, r0),
M2

r

r
HN−2(ω̃r) ≤ CMrrHN−2(ω̃r) (44)

where C = C(N,ΛK , d(x0, ∂Ω), c(β), ∥∇u∥L∞(Bβ), diam(Ω)). Thanks to (32) we can simplify by
HN−2(ω̃r) in (44), to get that Mr ≤ Cr2. This completes the proof. □
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Remark 2.7. • If N = 2, the proof can be simplified, as one can show that there exists some r0 such
that Ωr = Ω for r < r0. Indeed, since H is one-dimensional, the right inclusion of (17) reads
{x ∈ Ω, u(x) ≤ σr(x)} ⊂ [y − r, y + r], which shows that Ωr = Ω for small r using (15).

On the other hand, for N ≥ 3 it is not hard to find convex bodies K such that Ωr ⊊ Ω for each
(small) r. For instance, let us consider K := C ∩ B the intersection of the unit ball B ⊂ RN with
the cylinder C := [−1, 1] × BRN−1((0, . . . , 0, 1), 1). Although it is possible to compute explicitly
Ω let us just notice that Ω ⊃ (−1, 1)× {0}N−2 =: S. We consider the situation where x0 = y = 0
with p = 0 ∈ ∂u(x0), so that l ≡ 0 in this case. Then we see that qr = (0, 1, 0, . . . , 0) satisfies
Mr = supBr(0) u = u(rqr). Note that u ≡ 0 along S, while on the other hand σr = Mr/2 > 0
over S. As a consequence, since K ∩ P = B ∩ P where P denotes the (x1, xN ) plan, we find
x = (x1, 0, . . . , 0) ∈ S close enough from (−1, 0, . . . , 0) such that v̂r(x) = σ̂r(x) /∈ K, thus
getting that Ωr ⊊ Ω in this case.

• Using the same ideas as in [14] where they study the regularity of u solution of (7) when f ∈ Lp(Ω)
(for some p > N ), one can prove the C1,α regularity of a convex body K satisfying

∀K̃ ∈ KN such that K̃ ⊂ K and |K \ K̃| ≤ ε, P (K) ≤ P (K̃) + Λ|K \ K̃|γ (45)

for some ε > 0,Λ ≥ 0 and γ ∈ (1− 1/N, 1]. In this case, instead of (44), we derive with the same
arguments

M2
r

r
HN−2(ω̃r) ≤ C

(
|K∆Kr|γ +MrrHN−2(ω̃r)

)
≤ CMγ

r r
γHN−2(ω̃r)

γ

Using (32) we get
M2−γ

r ≤ Cr(N−2)(γ−1)+γ+1 (46)

Direct computation gives that (N − 2)(γ − 1) + γ + 1 > 2− γ whenever γ ∈ (1− 1/N, 1], so that
the classical result [22, Lemma 3.1] gives that K is C1,α with α = (N(γ − 1) + 1)/(2− γ).

2.2 Regularity with volume constraint

We now focus on problems having a volume constraint, as they often appear in applications. We thus
consider the problem

inf
{
P (K) +R(K), K ∈ KN ,K ⊂ D, |K| = V0

}
(47)

for some convex body D ∈ KN and 0 < V0 < |D|. Existence for this problem can be shown under the
assumption (51) below made upon R (see Theorem 3.4 (i)). In this section we prove that under suitable
assumptions on R, minimizers of this problem are C1,1. We use a penalization method to prove that these
solutions are quasi-minimizer of the perimeter under convexity constraint.

2.2.1 Preliminaries

Before introducing the hypothesis which we will make upon R, let us recall the notion of Hausdorff
distance between sets. If A and B are non-empty compact subsets of RN , the Hausdorff distance dH(A,B)
between A and B is defined as the quantity

dH(A,B) := max

{
sup
x∈A

d(x,B), sup
x∈B

d(A, x)

}

where d(·, ·) denotes the euclidean distance. The Hausdorff distance dH is a distance over the class of
non-empty compact sets of RN .

Let us recall two classical facts about dH , whose proof is given in the Appendix:

Proposition 2.8. Let D ∈ KN , (Kn) be a sequence of convex bodies verifying Kn ⊂ D for any n ≥ 0,
and let K ⊂ D be a non-empty compact convex set. Then
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1. We have the equivalence:
dH(Kn,K)→ 0⇐⇒ |Kn∆K| → 0 (48)

2. If dH(Kn,K)→ 0, and C ∈ KN is such that C ⊂ Int(K) then

C ⊂ Kn for large n. (49)

We now introduce a new assumption on R which is slightly stronger than (13), as seen in Proposition
2.9 below: for any D′ ∈ KN with D′ ⊂ D we set

KN
D′,D := {K ∈ KN , D′ ⊂ K ⊂ D} (50)

and we assume

∀D′ ⊂ D ∈ KN , ∃CD′,D > 0, ∀
(
K1,K2 ∈ KN

D′,D, K1 ⊂ K2

)
, |R(K2)−R(K1)| ≤ CD′,D|K2 \K1|

(51)

Proposition 2.9. If R satifies (51) then R satisfies (13).

Proof. Letting K ∈ KN be fixed, there exists D′ ∈ KN such that D′ ⊂ Int(K). Thanks to (49) we know
that there exists δ > 0 such that if K̃ ∈ KN verifies dH(K, K̃) ≤ δ then K̃ ⊃ D′. Thanks to (48) we can
find εK > 0 such that if |K \ K̃| ≤ εK , dH(K, K̃) ≤ δ. Putting these together and applying hypothesis
(51) with the class KN

D′,K gives that R satisfies (13). □

Note that on the other hand condition (51) is genuinely stronger than (13). In fact, (51) is double-sided
while it is not the case for (13), but there is a deeper difference which boils down to the fact that in (13) the
constants (εK , CK) depend on K, while in (51) the constant CD′,D is locally uniform. In this sense, (13)
somehow says that R is "differentiable" everywhere while (51) means that R is locally Lipschitz; one can
build an example of R verifying a double-sided (13) and not (51) by setting R(K) := f(|K|) for some
f : R+ → R differentiable everywhere but not locally Lipschitz.

2.2.2 Main result

The main result of this section is the following.

Theorem 2.10. Let K∗ be a solution of problem (47), with R satisfying (51) and 0 < V0 < |D|. Then K∗

is a quasi-minimizer of the perimeter in the sense of Definition 2.1, and is therefore C1,1.

The proof of Theorem 2.10 relies on the following important lemma, which allows the use of the results
of section 2.1 over an auxiliary problem for which K∗ is still optimal. For any K ∈ KN and ε > 0 we set
the class Oε(K) of convex bodies which are ε−close perturbations of K from the inside:

Oε(K) := {K̃ ∈ KN , K̃ ⊂ K, |K \ K̃| ≤ ε}.
Lemma 2.11. Let K∗ be a solution of problem (47), with R satisfying (51) and 0 < V0 < |D|. Then there
exists Λ > 0 and ε > 0 such that K∗ is a solution of

min
{
P (K) +R(K) + Λ

∣∣|K| − V0

∣∣, K ∈ Oε(K
∗)
}

(52)

We will use in the proof of this lemma the following classical result concerning Minkowski sums and
mixed volume (see for instance [53, Theorem 5.1.7]).

Theorem 2.12 (Mixed volume). For any m ∈ N∗ and K1, ...,Km ∈ KN , the map (t1, ..., tm) ∈ (R+)m 7→
|t1K1 + ... + tmKm| is a homogeneous polynomial of degree N , i.e. there exists a symmetric function
V : (KN )N → R (called mixed volume) such that for any t1, t2, ..., tm ≥ 0

|t1K1 + ...+ tmKm| =
m∑

i1,...,iN=1

ti1 ...tiNV (Ki1 , ...KiN )

Furthermore V is nondecreasing in each coordinate for the inclusion of sets, and continuous for the Haus-
dorff distance.
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Proof of Lemma 2.11: Set G(K) := P (K) + R(K) for any K ∈ KN . We use a classical strategy (see
for example [23, Lemma 4.5], though our construction will be adapted to the convexity constraint): for any
K ⊂ K∗ with |K∗ \K| ≤ ε (for sufficiently small ε) we build a convex body K̃ ⊂ D such that |K̃| = V0

and G(K̃) ≤ G(K) + Λ
∣∣|K| − V0

∣∣ (for sufficiently large Λ). Writing then

G(K∗) ≤ G(K̃) ≤ G(K) + Λ
∣∣|K| − V0

∣∣

yields the conclusion.

For K ⊂ D a convex body and t ∈ [0, 1] we set the Minkowski sum

Kt := (1− t)K + tD

and note that Kt is a convex body and Kt ⊂ D. We first claim that there exist ε0 > 0, c > 0, t0 > 0 such
that

∀K ∈ Oε0(K
∗), ∀t ∈ [0, t0], |Kt| − |K| ≥ ct (53)

Let fK(t) := |Kt|. By Theorem 2.12, fK is polynomial with degree N and more precisely

fK(t) =
N∑

k=0

(
N

k

)
(1− t)ktN−kV (K[k], D[N − k])

where K[p] stands for (K,K, · · · ,K) with p repetitions.

Now, as the class {L ⊂ RN compact convex, L ⊂ D} is compact for dH and since V is continuous
for dH , we deduce that the coefficients of fK are uniformly bounded for K ∈ KN ,K ⊂ D. To conclude
that the claim holds it therefore suffices to show that f ′

K(0) is bounded from below by a positive constant
uniform in K ∈ Oε(K

∗) for some small ε.

One has

f ′
K(0) = N

(
V (K[N − 1], D)− V (K[N ])

)

= N
(
V (K, ...,K,D)− |K|

)

which is nonnegative by monotonicity of the mixed volume. Moreover, as soon as we have K ⊊ D, we
can apply [53, Theorem 7.6.17] to get V (K[N − 1], D)− |K| > 0; equality would in fact imply that D
is a 0-tangential body of K, hence that K = D. This gives in particular f ′

K∗(0) > 0 (since V0 < |D|).
Since K 7→ f ′

K(0) is continuous for dH , we therefore have f ′
K(0) ≥ f ′

K∗(0)/2 for any convex body
K ⊂ D with dH(K,K∗) small enough. Thanks to (48), we deduce the existence of ε0 > 0 such that
f ′
K(0) ≥ f ′

K∗(0)/2 > 0 for any K ∈ Oε0(K
∗). This yields (53) for c := f ′

K∗(0)/4 and for some small
t0 = t0(D,K∗).

We now show that a reverse inequality holds for the perimeter: there exists C = C(D) > 0 such that

∀t ∈ [0, 1], ∀K ∈ KN such that K ⊂ D, P (Kt)− P (K) ≤ Ct (54)

Since for any L ∈ KN ,
P (L) = NV (L[N − 1], B) (55)

where B is the ball of unit radius (see for instance [53, p.294, (5.43) to (5.45)]) the mapping t 7→
P (Kt) = NV (Kt[N − 1], B) is a polynomial function whose coefficients are continuous quantities of
(V (K[i], D[N − 1− i], B))0≤i≤N−1. Hence the continuity of V for dH and the compactness of the class
{L ⊂ RN compact convex, L ⊂ D} for dH give (54).

Putting together (54) with (53) and setting C ′ := C/c provides

∀K ∈ Oε0(K
∗), ∀t ∈ [0, t0], P (Kt)− P (K) ≤ C ′∣∣|Kt| − |K|

∣∣ (56)

On the other hand, there exists D′ ∈ KN such that D′ ⊂ Int(K). Then arguing as in the proof of
Proposition 2.9 ensures that for ε1 small enough, any K ∈ Oε1(K

∗) verifies K ⊃ D′. Therefore by (51)
there exists CD′,D > 0 such that

∀t ∈ [0, 1], ∀K ∈ Oε1(K
∗), R(Kt)−R(K) ≤ CD′,D|Kt \K| = CD′,D

∣∣|Kt| − |K|
∣∣. (57)
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Let ε = min{ε0, ε1, ct0} and K ∈ Oε(K
∗).

We deduce from (53) that

|Kt0 | − |K∗|= |Kt0 | − |K|+ |K| − |K∗| ≥ ct0 − ε ≥ 0

By continuity of t 7→ |Kt|, this ensures that

there exists t ∈ [0, t0] such that |Kt| = |K∗|. With (56) and (57) we get that the set K̃ := Kt satisfies
all the requirements laid out at the beginning of the proof with Λ := C ′ + CD′,D. □

Proof of Theorem 2.10: Thanks to Lemma 2.11, an optimal shape K∗ for (47) is solution of (52) for some
ε > 0 and Λ > 0. Therefore we have

∀K ∈ Oε(K
∗), P (K∗) ≤ P (K) +R(K)−R(K∗) + Λ|K∗ \K|,

By Proposition 2.9, R verifies hypothesis (13), and as a consequence there exists CK∗ > 0 such that

∀K ∈ Oε(K
∗), P (K∗) ≤ P (K) + (CK∗ + Λ)|K∗ \K|

Hence K∗ is a quasi-minimizer of the perimeter under convexity constraint in the sense of Definition 2.1.
We can therefore apply Theorem 2.3 to get that K∗ is C1,1. □

Remark 2.13. As in Remark 2.7, there is an analogous result to Theorem 2.10 if R is merely γ-Hölder for
some γ ∈ (1− 1/N, 1], meaning that (51) is replaced with

∀D′ ⊂ D ∈ KN , ∃CD′,D > 0, ∀
(
K1,K2 ∈ KN

D′,D, K1 ⊂ K2

)
, |R(K2)−R(K1)| ≤ CD′,D|K2 \K1|γ

(58)
In this case, keeping the same notations as in the proof of Lemma 2.11, the same arguments show

G(K̃) ≤ G(K) + Λ
∣∣|K| − V0

∣∣γ ,

and with the additionnal remark that

P (Kt)− P (K) ≤ Λ
∣∣|Kt| − |K|

∣∣ ≤ Λ′∣∣|Kt| − |K|
∣∣γ

with Λ′ := Λ×|D|1−γ , we conclude in this case that the optimal shape is C1,α for the same α as in Remark
2.7.

3 Examples and applications

This section is dedicated to applications of the results of Section 2.2. We therefore provide examples
of functionals R satisfying hypothesis (51) (and therefore (13) as well), Theorem 2.10 then implying that
the minimizers of the corresponding problem are C1,1-regular.

3.1 First examples

Let us start by giving two examples taken from the literature of minimization of P + R for which
proving that the functional R satisfies hypotheses (13) and (51) is quite easy.

A first example of relevant R is given through the following model of a liquid drop subject to the action
of a potential: it consists in minimizing the energy

P (E) +

ˆ
E
g

among bounded subsets E of RN with given volume, where g : RN → R is a fixed function in L1
loc(RN ),

see for example [27]. An optimal shape may not be convex, and in this case it is interesting to study
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the counterpart of this problem with an additional convex constraint: under reasonable hypotheses on g
we can prove existence and regularity for a minimizer of this problem in the class of convex shapes (see
Proposition 3.1 below).

We can also consider the following generalization of the Gamow model (5), which consists in the
minimization

inf

{
P (E) +

ˆ
E

ˆ
E

dxdy

|x− y|N−α
, E ⊂ RN , |E| = V0

}

for a given mass V0 ∈ (0,+∞) and parameter α ∈ (0, N). The interaction term Vα(E) :=
´
E

´
E |x −

y|α−Ndxdy, called Riesz potential, is maximized by any ball of volume m by virtue of the Riesz inequality,
so that there is a competition in the above minimization. As in the case of (5) it is known that for small
masses m the ball of corresponding volume is the unique (up to translation) solution to the minimization
problem (see the Introduction of [26] for a review of these results), while it is proven in [40, Theorem 2.5]
and [41, Theorem 3.3] for α ∈ (N − 2, N) that beyond a certain threshold of mass m there is no existence
for this problem (and for α = N − 2 in [28, Theorem 3]). On the contrary, the convexity constraint will
enforce existence for all masses ; furthermore, applying Theorem 2.10 we are able to show regularity for
the problem when considered under a convexity constraint, see Proposition 3.1 below.

We thus have the following proposition.

Proposition 3.1. Let N ≥ 2 and V0 ∈ (0,+∞).
Let g ∈ L∞

loc(RN ) be coercive, that is to say lim|x|→∞ g(x) = +∞. Then there exists a solution to the
problem

inf

{
P (K) +

ˆ
K
g, K ∈ KN , |K| = V0

}

and any such solution K∗is C1,1.
Let α ∈ (0, N). Then there exists a solution to the problem

inf
{
P (K) + Vα(K), K ∈ KN , |K| = V0

}

and any such solution K∗ is C1,1.

Proof. Existence:

1. Let (Kn) be a minimizing sequence for the first problem. As g is coercive, there exists a bounded
set A such that g ≥ 0 outside A. Therefore, as there exists C > 0 such that P (Kn) +

´
Kn

g ≤ C by
definition of (Kn), we can write

P (Kn) ≤ C −
ˆ
Kn

g ≤ C −
ˆ
Kn∩A

g ≤ C + ∥g∥L1(A)

so the perimeters P (Kn) are uniformly bounded. We thus use the inequality

diam(K) ≤ C(N)
P (K)N−1

|K|N−2
(59)

valid for any convex body K (see [25, Lemma 4.1]) to get that the diam(Kn) are also uniformly
bounded, recalling also that |Kn| = V0. As a consequence, using the coercivity of g we now show
that there is no loss of generality in assuming that the Kn are uniformly bounded: let r > 0 be
such that Br the ball centered at 0 of radius r verifies diam(Kn) ≤ diam(Br) for every n, and
set m := ess supBr

g. Thanks to the fact that g is coercive we can find r′ > r such that g ≥ m

outside Br′ . For any fixed n ∈ N, either Kn ⊂ B2r′ and we set K̃n := Kn, or else there exists
x ∈ Kn ∩ (B2r′)

c so that Kn ⊂ (Br′)
c thanks to the bound on the diameters. In this latter case, we

thus have g ≥ m over Kn while Kn − x ⊂ Br′ gives that g ≤ m over Kn − x , so that

P (Kn − x) +

ˆ
Kn−x

g ≤ P (Kn) +m|Kn| ≤ P (Kn) +

ˆ
Kn

g
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using also the translation invariance of the perimeter. We then rather set K̃n := Kn − x. This
argument ensures that the sequence (K̃n) is still minimizing with the additionnal property that K̃n ⊂
B2r′ for each n. We will keep denoting it Kn.

Now, K 7→
´
K g satisfies (51): if D ∈ KN and K ′ ⊂ K ⊂ D are convex bodies, then

∣∣∣∣
ˆ
K
g −
ˆ
K′

g

∣∣∣∣ ≤ ∥g∥L∞(D)|K \K ′|. (60)

Using the Blaschke selection theorem and (48) we can extract a subsequence (still denoted (Kn)) and
a compact convex K∗ such that Kn → K∗ for the Hausdorff distance and in volume. In particular
|K∗| = V0. Thanks to (60) we have that

´
Kn

g →
´
K∗ g and P (Kn)→ P (K∗) by continuity of the

perimeter for convex domains (see for instance [10, Proposition 2.4.3, (ii)]). We thus get existence.

2. Let (Kn) be a minimizing sequence for the second problem. Since Vα is nonnegative we immediately
get that (P (Kn)) is bounded, getting thus from (59) that the sequence diam(Kn) is bounded as well.
By translation invariance of the perimeter and of Vα there is not loss of generality in assuming that
there exists a compact set D such that Kn ⊂ D for each n.

Let us now show that Vα verifies (51). This was done in [41, Equation (2.11)], but we reproduce
hereafter the short argument for the convenience of the reader. Let D ∈ KN and K ′ ⊂ K ⊂ D
be convex bodies. We set vE(x) :=

´
E |x − y|α−Ndy for any compact set E and write f(x, y) :=

|x− y|α−N . We have

0 ≤ Vα(K)− Vα(K
′) =
ˆ
K

ˆ
K
f −
ˆ
K

ˆ
K′

f +

ˆ
K\K′

ˆ
K′

f

=

ˆ
K\K′

vK + vK′

≤ 2|K \K ′|
(ˆ

BD

dy

|y|N−α

)
(61)

with BD a ball of volume |D|, where we used that

vK′(x) ≤ vK(x) =

ˆ
K

dy

|x− y|N−α
=

ˆ
x−K

dy

|y|N−α
≤
ˆ
BD

dy

|y|N−α

thanks to the Hardy-Littlewood inequality and since |K| ≤ |D|.
Since Vα verifies (51) and Kn ⊂ D for all n ∈ N we conclude to existence as before using the
Blaschke selection theorem.

Regularity: We proved respectively in (60) and (61) that K 7→
´
K g and Vα satisfy (51). We can therefore

apply Theorem 2.10 to get that any minimizer is C1,1. □

3.2 PDE and Spectral examples

We now focus on more difficult examples, which will lead to the proof of Theorem 1.1 given in the
introduction. Let us first set some notations and definitions.

If Ω ⊂ RN is a bounded Lipschitz open set we denote respectively by

0 < λ1(Ω) ≤ λ2(Ω) ≤ · · · ≤ λn(Ω) ≤ · · · ↗ +∞
0 = µ1(Ω) ≤ µ2(Ω) ≤ · · · ≤ µn(Ω) ≤ · · · ↗ +∞

the nondecreasing sequence of the Dirichlet and Neumann Laplacian eigenvalues associated to Ω (see for
example [35] for more details). We also define τ(Ω) the torsional rigidity of Ω as

τ(Ω) =

ˆ
Ω
uΩdx = −2min

{ˆ
Ω

|∇u|2
2
−
ˆ
Ω
fu, u ∈ H1

0 (Ω)

}
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where uΩ is the unique solution of {
−∆u = 1 in Ω

u ∈ H1
0 (Ω)

(62)

For any convex body K ∈ KN we will frequently use the notation ΩK := Int(K), and then define
λn(K) := λn(ΩK), µn(K) := µn(ΩK) for n ∈ N∗, and τ(K) := τ(ΩK).

We are now ready to state the main result of this section, which will be proved later on in Sections
3.2.3 and 3.2.4.

Theorem 3.2. Let n ∈ N∗, N ≥ 2. Then any R ∈ {λn, µn, τ} satisfy (13) and (51), namely for every
D′ ⊂ D ⊂ RN convex bodies there exists C = C(D′, D,R) such that for any K ′ ⊂ K lying in KN

D′,D
(defined in (50)) ∣∣R(K)−R(K ′)

∣∣ ≤ C|K \K ′|.

Remark 3.3. The fact that K ′ ⊂ K is not essential to ensure that Lipschitz estimates hold. In fact, one
has that

∃C > 0,∀(K,K ′) ∈ KN
D′,D, |R(K)−R(K ′)| ≤ C|K∆K ′|

by applying Theorem 3.2 with K and K ∪K ′ on the one hand, K ′ and K ∪K ′ on the other hand.

As a consequence, combined with Corollary 2.4 and Theorem 2.10, we are able to prove Theorem 1.1.

Proof of Theorem 1.1: Recall that R(K) := F (|K|, τ(K), λ1(K), . . . , λn(K), µ1(K), . . . , µn(K)) for
some F : (0,+∞)× (0,+∞)× (0,+∞)n ×Rn

+ → R locally Lipschitz. Let us show that R satifies (51),
so that it also satisifes (13) (thanks to Proposition 2.9) and Corollary 2.4 and Theorem 2.10 give the results.

Let D1 ⊂ D2 ∈ RN be convex bodies and let K,K ′ ∈ KN
D1,D2

with K ′ ⊂ K. Set L = K or L = K ′.
Then from monotonicity of Dirichlet eigenvalues and torsion, for any k ∈ N∗ it holds

λk(D2) ≤ λk(L) ≤ λk(D1)

τ(D1) ≤ τ(L) ≤ τ(D2)

Moreover, since µk(L) ≤ λk(L) ≤ λk(D1) we have for any k ∈ N∗

µk(L) ≤ λk(D1)

Also,
|D1| ≤ |L| ≤ |D2|

Putting these four estimates together and using that F is locally Lipschitz we find C(F,D1, D2) such that

|R(K)−R(K ′)| ≤ C(F,D′, D)
( n∑

k=1

|λk(K)− λk(K
′)|

+
n∑

k=1

|µk(K)− µk(K
′)|+ |τ(K)− τ(K ′)|+

∣∣|K| − |K ′|
∣∣ )

Applying Theorem 3.2 for λk, µk and τ and noticing that ||K| − |K ′|| = |K \K ′| ensures that R satisfies
(51). The result follows. □

3.2.1 A general existence result

In this short section we show a general existence result for the minimization among convex sets of
a functionnal of the type P + R, where R is mostly thought of as a PDE-type functional. Using mild
continuity of R, we show existence of a minimizer under additional box and volume constraints, and
we also show existence in the unconstrained case with coercivity assumptions of R. The statement is as
follows.
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Theorem 3.4. (i) Let R : KN → R be lower-semi-continuous for the Hausdorff convergence of convex
bodies. Let D ∈ KN and 0 < V0 < |D|. Then there exists a minimizer to the problem

inf
{
P (K) +R(K), K ∈ KN , K ⊂ D, |K| = V0

}

(ii) Let V0 > 0. Let n ∈ N∗ and F : (R+)2n+2 → R be coercive (meaning lim|x|→∞ F (x) = +∞) and
lower-semi-continuous, and set

R(K) := F (|K|, τ(K), λ1(K), . . . , λn(K), µ1(K), . . . , µn(K))

Then there exists minimizers to the problems

inf
{
P (K) +R(K), K ∈ KN

}

inf
{
P (K) +R(K), K ∈ KN , |K| = V0

}

Proof. In both cases existence is proved using the direct method: let (Ki) be a minimizing sequence.

(i) Since Ki ⊂ D for each n, then thanks to the Blaschke selection theorem and (48) we can extract
a subsequence (still denoted (Ki)) and a compact convex K∗ such that Ki → K∗ for the Hausdorff
distance and in volume. We can pass to the limit in |Ki| = V0 to get |K∗| = V0 > 0, so that K∗ has
non-empty interior. We deduce that limR(Ki) ≥ R(K∗) thanks to the hypothesis made on R and that
P (Ki) → P (K∗) by continuity of the perimeter for convex domains (see for instance [10, Proposition
2.4.3, (ii)]), thus getting existence.

(ii) We start with existence for the first of the two problems. Thanks to John’s ellipsoid Lemma, there
exists ci ∈ RN and ellipsoids Ei such that

Ei ⊂ Ki ⊂ ci +N(Ei − ci)

We have by monotonicity of the perimeter for convex bodies P (Ki) ≥ P (Ei), while we also have
diam(Ki) ≤ Ndiam(Ei). As a consequence, if we assume by contradiction that (up to subsequence)
diam(Ki)→ +∞, then we first deduce diam(Ei)→ +∞ so that P (Ei)→ +∞, whence P (Ki)→ +∞.
The function F being coercice and lower-semi-continuous it is therefore bounded from below, and we get
the contradiction P (Ki)+R(Ki)→ +∞. Therefore diam(Ki) is bounded and we can assume by transla-
tion invariance of P and R that there exists a compact set D ⊂ RN such that Ki ⊂ D for each i. Thanks to
the Blaschke selection theorem and (48) we can extract a subsequence (still denoted (Ki)) and a compact
convex K∗ such that Ki → K∗ for the Hausdorff distance and in volume. The case |K∗| = 0 is excluded,
since it would lead to |Ei| → 0 and then +∞← λ1(Ei) ≤ N2λ1(Ki) by monotonicity of λ1, which yields
R(Ki) → +∞ by coercivity of F hence the contradiction P (Ki) + R(Ki) → +∞. As a consequence
|K∗| > 0, which means that K∗ has non-empty interior, and in particular there exists D′ ∈ KN such that
D′ ⊂ Int(K∗). Since dH(Ki,K

∗) → 0 we know thanks to (49) that Ki ∈ KN
D′,D for large enough i. As

a consequence, the Ki are uniformly Lipschitz in the sense that they verify the ε-cone condition for some
ε independent of i (see Definition 4.1 and Remark 4.2). We thus have continuity λk(Ki) → λk(K

∗) and
τ(Ki)→ τ(K∗) (see [34, Theorem 2.3.18]) and µk(Ki)→ µk(K

∗) (see [34, Theorem 2.3.25]). Recalling
the lower-semi-continuity of F we deduce limR(Ki) ≥ R(K∗), and by continuity of the perimeter for
convex domains we also have P (Ki)→ P (K∗). This finishes the proof of existence for the first problem.

Existence for the second problem is shown with the same argument, by noticing that the volume con-
straint passes to the limit.

□

3.2.2 Selected examples

Before moving on to the proof of Theorem 3.2 (which is the object of sections 3.2.3 and 3.2.4), we
discuss here some specific examples where R involves spectral functionals and for which we can prove
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existence without a box constraint (in the spirit of Theorem 3.4 (ii)). We will make use of Theorem 3.2 in
this section.

We start by considering spectral problems with a perimeter constraint, which have been studied in the
literature without the additionnal convexity constraint (see for instance [11], [24], [6], [7]). Namely, given
p0 > 0, we are interested in the minimization problems

inf{λn(K), K ∈ KN , P (K) = p0} (63)

In [11], the authors use convexity for proving existence as well as C∞ regularity and some qualitative prop-
erties of minimizers of λ2 under perimeter constraint in two dimensions. In fact, although their problem
is set without a convexity constraint, they are able to show that solutions are in fact convex, thus yielding
a bit of regularity to start with. On the other hand, in dimension N = 3 there are eigenvalues for which
the expected solutions are not convex (see [7, Figure 2]), so that the convexity constraint would thus be
meaningful in the minimization.

In our case we can prove existence together with C1,1 regularity of minimizers. This is the object of
next result.

Proposition 3.5. Let n ∈ N∗, N ≥ 2 and p0 > 0. Then there exists a solution to problem (63) and any
such solution is C1,1.

Proof. The proof is divided into proof of existence and proof of regularity.

Existence: We use the direct method. Let (Ki) be a minimizing sequence for (63). By definition there
exists C > 0 such that λn(Ki) ≤ C for each i. Since λ1(Ki) ≤ λn(Ki) ≤ C, we deduce using Faber-
Krahn inequality

C|Ki|2/N ≥ λ1(Ki)|Ki|2/N ≥ λ1(B)|B|2/N =: CN

with B the unit ball, giving

|Ki| ≥
(
CN

C

)N/2

(64)

On the other hand the perimeters P (Ki) are bounded from above (in fact P (Ki) = p0), yielding that the
Ki are uniformly bounded (up to translation), using (59). We therefore get existence by proceeding as in
the proof of Theorem 3.4 (i): thanks to the Blaschke selection theorem and (48) we thus find a subsequence
(still denoted (Ki)) converging to some compact convex set K∗ in the Hausdorff sense and in volume. The
lower bound on volumes (64) thus ensures that |K∗| > 0, so that the convex K∗ has nonempty interior.
Hence there exists D′ ∈ KN such that D′ ⊂ Int(K∗). Since dH(Ki,K

∗)→ 0 we know thanks to (49) that
Ki ∈ KN

D′,D for large enough i. We deduce that λn(Ki) → λn(K
∗) using that λn satisfies (51) thanks to

Theorem 3.2, and that P (Ki)→ P (K∗) by continuity of the perimeter for convex domains. This finishes
the proof of the existence part.

Regularity: Let K∗ be any minimizer for (63). Following [24, Remark 3.6] we can show that there exists
µ > 0 such that K∗ minimizes

inf{λn(K) + µP (K), K ∈ KN} (65)

As a consequence we can apply Corollary 2.4 to get that K∗ is C1,1. □

We now move on to problems of the kind (47) with a volume constraint and with R of spectral type.
These type of problems are related to the study of Blaschke-Santalo diagrams, see [30] and the numerical
results in [29]. Again, we can drop the box constraint and still get existence:

Proposition 3.6. Let N ≥ 2, V0 > 0 and n ∈ N∗. There exist minimizers to the problems

inf{P (K) + λn(K), K ∈ KN , |K| = V0} (66)

inf{P (K)± µn(K), K ∈ KN , |K| = V0} (67)

and any minimizer is C1,1.
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Proof. The regularity assertion is a consequence of Theorem 1.1. Let us prove existence of a solution for
the two family of problems:

1. Existence is obtained by applying Theorem 3.4 (ii).

2. For the minimization of P + µn we can directly apply Theorem 3.4 (ii) to get existence. For the
minimization of P − µn, first note the inequalities

diam(K) ≤ C(N)
P (K)N−1

|K|N−2
µn(K) ≤ Cn(N)

diam(K)2
(68)

for any convex body K, for some constants C(N) and Cn(N) only depending on the indicated
parameters (for the first, recall (59) and see for instance [52, Proposition 2.1 (b)] for the second).
Let (Ki) be some minimizing sequence for problem (67). The sequence (P (Ki) − µn(Ki)) being
bounded from above by definition, we find C > 0 such that

P (Ki) ≤ C + µn(Ki) ≤ C ′(N)(1 + diam(Ki)
−2)

for some dimensional constant C ′(N), using the second inequality of (68). Now, for fixed i we
either have diam(Ki) ≥ 1, in which case we deduce P (Ki) ≤ 2C ′(N), or diam(Ki) ≤ 1. Thanks
to the first inequality of (68) this yields

diam(Ki) ≤ max

{
1,

C(N)(2C ′(N))N−1

V N−2
0

}

Therefore, using the translation invariance of P and µn we can find a compact set D such that
Ki ⊂ D for each i. Recalling that R(K) := µn(K) verifies (51) thanks to Theorem 3.2, the rest of
the proof of existence is as in Theorem 3.4 (i).

□

Remark 3.7. • One can also wonder about the minimization

inf{P (K)− λn(K), K ∈ KN , |K| = V0}

In this case the problem is ill-posed, as the box constraint is needed to ensure existence. In fact, one
can see that the infimum is −∞, choosing the sequence of long thin rectangle Rε := [0, V0ε

−1] ×
[0, ε] × [0, 1]N−2 for which P (Rε) ≤ CNε−1 for some dimensional constant CN > 0 while
λn(Rε) ∼ V −2

0 π2ε−2.

• Thanks to the isoperimetric inequality and the Faber-Krahn inequality (respectively the Szego-
Weinberger inequality), it is known that the unique solution up to translation to the minimization
of P + λ1 (respectively of P − µ2) is any ball B of volume V0. On the other hand, if n ≥ 2 (re-
spectively n ≥ 3) the problem (66) (respectively (67)) has C1,1 solutions which are not analytically
known.

• Inspired by [30], one could wonder about the regularity properties of solutions to

min{P (K), K ∈ KN , |K| = V0, λn(K) = ℓ0}, max{λn(K), K ∈ KN , |K| = V0, P (K) = p0},

where p0 > 0, ℓ0 > 0. In [30, Corollary 3.13] it is proven when N = 2 and n = 1 that these
problems are equivalent (for suitable choices of p0 and ℓ0) and that solutions are C1,1. Nevertheless,
we were not able to apply our regularity result to these cases, so the regularity of solutions of these
problems remains open in other cases (N ≥ 3 or n ≥ 2), up to our knowledge.
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3.2.3 Torsional rigidity and Dirichlet eigenvalues

If D′ ⊂ D ⊂ RN are convex bodies, we still denote by KN
D′,D the set

KN
D′,D := {K ∈ KN , D′ ⊂ K ⊂ D}

Let us state now the main result of this section, which basically restates Theorem 3.2 for τ . Indeed as we
will see below, the proof of Theorem 3.2 for λn will be a consequence of the same result for τ .

Proposition 3.8. Let N ≥ 2 and D′ ⊂ D ⊂ RN be convex bodies. Then there exists C = C(D′, D) such
that for any K ′ ⊂ K lying in KN

D′,D

0 ≤ τ(K)− τ(K ′) ≤ C|K \K ′| (69)

The proof of Proposition 3.8 is based on two preliminary lemmas: for convex bodies K ′ ⊂ K,

1. we construct a “change of variable” operator TK,K′ : W 1,∞(ΩK) → W 1,∞(ΩK′) whose norm is
uniformly bounded in KN

D′,D, and which is the identity on a large part of K ′, see Lemma 3.9 (recall
that ΩK denotes the interior of K).

2. we show uniform W 1,∞-estimates of the torsion function of ΩK , see Lemma 3.10.

Lemma 3.9 (Change of variables). There exists C = C(D′, D) > 0 such that for any K,K ′ ∈ KN
D′,D

with K ′ ⊂ K, there exists a bi-Lipschitz homeomorphism ϕ := ϕK′,K : RN → RN such that the operator
T := TK,K′ defined by

TK,K′ : L1(ΩK)→ L1(ΩK′)

f 7→ f ◦ ϕ

satisfies the requirements:

• There exists K ′′ ⊂ K ′ such that |K ′ \K ′′| ≤ C|K \K ′| and

Tf(x) = f(x) a.e. in K ′′, for any f ∈ L1(ΩK)

• For all f1 and f2 respectively in H1
0 (ΩK) and W 1,∞(ΩK), Tf1 and Tf2 belongs to H1

0 (ΩK′) and
W 1,∞(ΩK′) respectively, with furthermore

∥Tf1∥H1
0 (ΩK′ ) ≤ C∥f1∥H1

0 (ΩK)

∥Tf2∥W 1,∞(ΩK′ ) ≤ C∥f2∥W 1,∞(ΩK)

Note that this result is similar to [13, Theorem 4.23] but for a different class of sets, namely KN
D′,D: it

is unclear whether [13, Theorem 4.23] implies Lemma 3.9, so we prefered to make our own proof of this
result.

Let us recall that any K ∈ KN has its boundary ∂K naturally parametrized as a graph over the sphere.
More precisely, we can assume up to translating that 0 is contained in ΩK , and then set ρ(x) := sup{λ ≥
0, λx ∈ K} for any x ∈ ∂B, called the radial function of K. Then the set K is globally parametrized by
ρ:

K = {λxρ(x), x ∈ ∂B, λ ∈ [0, 1]} (70)

It is classical that ρ ∈W 1,∞(∂B) and moreover one can estimate∇τρ in terms of ρ

∥∇τρ∥L∞(∂B) ≤
(sup ρ)2

inf ρ
(71)

(see for instance the computations leading to (3.13) in [31]).
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Proof of Lemma 3.9: We will assume up to translating that 0 ∈ Int(D). Let K,K ′ ∈ KN
D′,D with K ′ ⊂ K.

The proof consists in building a bi-Lipschitz change of variables ϕ : K ′ → K which is the identity on a
large part of K ′, and such that

∥ϕ∥W 1,∞(ΩK′ ), ∥ϕ−1∥W 1,∞(ΩK) ≤ C (72)

for some constant C = C(D′, D) > 0 independent of K and K ′.

Let ρ and ρ′ denote respectively the radial functions of K and K ′. Let α be defined over ∂B by the
relation

ρ′ − α = c(ρ− ρ′) (73)

for some c > 0 that will be chosen later. Then α ≤ ρ′ and we get the estimate

α = ((c+ 1)ρ′ − cρ) ≥ (c+ 1)inr(D′)− c diam(D)

where inr(D′) is the inradius of D′. For c = c(D′, D) = inr(D′)
2[diam(D)−inr(D′)] we get

α ≥ inr(D′)
2

(74)

which is a lower bound independent of K,K ′ ∈ KN
D′,D.

If u ∈ RN \ {0} we denote by xu = u/|u|. Let ϕ be defined over RN by the formulae

∀u ∈ RN \ {0}, ϕ(u) :=
{
ϕ1(u) := xu

(
c+1
c |u| −

α(xu)
c

)
, if |u| ≥ α(xu)

ϕ2(u) := u, if |u| < α(xu)

and ϕ(0) := 0. Observe that the function ϕ is continuous and increasing along any normal direction
x ∈ ∂B, and it verifies by construction that

ϕ(0) = 0, ϕ(u) = ρ(xu)xu if |u| = ρ′(xu)

This ensures that ϕ is a bijection from K ′ to K.

Define K ′′ as the (non necessarily convex) set on which ϕ is the identity, i.e.

K ′′ := {λxα(x), x ∈ ∂B, 0 ≤ λ ≤ 1}

The mapping u ∈ RN \K ′′ 7→ xu having Lipschitz constant 2(minRN\K′′ |u|)−1 = 2(minα)−1, then

u ∈ RN \K ′′ 7→ xuα(xu)

has Lipschitz constant only depending on minα and ∥∇τα∥L∞(∂B). From the definition (73) of α and
recalling (71), we deduce that ϕ1 has Lipschitz constant L only depending on c, inr(D′) and diam(D),
hence only on inr(D′) and diam(D). Now, ϕ2 is Lipschitz over RN (with Lipschitz constant 1), so
that we deduce that ϕ is globally Lipschitz over RN . Indeed: let u0 ∈ K ′′, u1 ∈ RN \ K ′′ and pick
t ∈ [0, 1] such that the point ut := (1 − t)u0 + tu1 verifies ut ∈ ∂K ′′ with [ut, u1] ⊂ RN \K ′′. Since
ϕ(ut) = ϕ1(ut) = ϕ2(ut) we can write

|ϕ(u0)− ϕ(u1)| = |ϕ2(u0)− ϕ2(ut) + ϕ1(ut)− ϕ1(u1)|
≤ 1× |u0 − ut|+ L|ut − u1|
≤ max(1, L)|u0 − u1|

Hence ϕ is globally Lipschitz and its Lipschitz constant only depends on D′ and D. The same arguments
can be applied to ϕ−1, thus getting (72). Let us now show that the operator defined by

∀f ∈ L1
loc(ΩK), T f := f ◦ ϕ (75)
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satisfies the expected requirements. For p ∈ {2,∞}, any f ∈ W 1,p(ΩK) satifies f ◦ ϕ ∈ W 1,p(ΩK′) and
the weak derivatives of f ◦ϕ can be expressed with the classical formula for the derivative of a composition
(see for instance [48, Theorem 1.1.7]); furthermore, if f ∈ H1

0 (ΩK) then f ◦ ϕ verifies f ◦ ϕ = 0 a.e.
outside ΩK′ , giving that Tf ∈ H1

0 (ΩK′) since ΩK′ is Lipschitz (see [36, 3.2.16]). Together with (72) we
deduce that T satisfies the second requirement.

By construction ϕ(u) = u if u ∈ K ′′, so that it only remains to show

|K ′ \K ′′| ≤ C|K \K ′| (76)

with C uniform in the class KN
D′,D.

It is classical that |K| = 1
N

´
∂B ρNdHN−1 (see for instance [53, (1.53)]) and similarly for K ′ and K ′′

with ρ′ and α in place of ρ, respectively. Therefore

|K ′ \K ′′| = 1

N

ˆ
∂B

(
ρ′N − αN

)
dHN−1, |K \K ′| = 1

N

ˆ
∂B

(
ρN − ρ′N

)
dHN−1 (77)

Using the identity

xN − yN = (x− y)

N−1∑

k=0

xkyN−1−k

we obtain:

|K ′ \K ′′| ≤ N(diam(D))N−1

ˆ
∂B

(
ρ′ − α

)
dHN−1 = cN(diam(D))N−1

ˆ
∂B

(
ρ− ρ′

)
dHN−1

recalling (73). Likewise we get

|K \K ′| ≥
(
N

inr(D′)N−1

2N−1

)ˆ
∂B

(
ρ− ρ′

)
dHN−1

recalling (74). This proves (76) for some C = C(N,D,D′) and completes the proof. □

Next lemma is a control of the torsion function ∥uΩK
∥W 1,∞(ΩK) uniformly in the class KN

D′,D:

Lemma 3.10. Let D ∈ KN . There exists C = C(D) > 0 such that for all K ∈ KN with K ⊂ D, then

∥uK∥W 1,∞(ΩK) ≤ C

where uK = uΩK
is the torsion function defined in (62).

Proof.

• L∞ estimate of uK: We apply a standard maximum principle argument. We note first that uK ∈
C0(Ω) (see [32, Theorem 6.13]). We choose x0 ∈ ΩK and let

w(x) :=
1

2N

(
diam(ΩK)2 − |x− x0|2

)

The construction of w ensures
{
−∆w = −∆uK in ΩK

w ≥ uK over ∂ΩK

The maximum principle then writes

0 ≤ uK ≤ w ≤ diam(ΩK)2

2N
in Ω

so that

∥uK∥L∞(ΩK) ≤
diam(ΩK)2

2N
(78)
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• L∞ estimate of ∇uK: This is obtained in [21, Lemma 1] ; we reproduce the proof for sake of
completeness.

Since ΩK is convex the corresponding torsion function uK is 1/2-concave (see [39, Theorem 4.1]),
yielding also that the level sets {uK > c} are convex for any c ∈ R. Let x0 ∈ ΩK and take a
supporting hyperplane H to the convex set A := {uK > uK(x0)}, which we can assume to be
H = {xN = 0} without loss of generality. The convexity of A ensures that A is located on one
side of H , say that A ⊂ {xN ≥ 0}. As x0 ∈ H we must also have A ⊂ {xN ≤ d} where
d := diam(ΩK). Hence

A ⊂ {0 ≤ xN ≤ d} (79)

This construction provides a natural barrier to uK at x0. In fact, denoting by F := {0 < xN < d},
we let w : F → R be defined for x ∈ F by,

w(x) =
1

2
xN (d− xN ) + uK(x0) (80)

Then see that w verifies {
−∆w = 1 in F

w = uK(x0) over ∂F

Furthermore it holds

∀x ∈ F, |∇w(x)| = |∂Nw(x)| ≤ d

2
(81)

We can now estimate the gradient of uK at x0. Noting that uK ∈ C0(Ω) (see [32, Theorem 6.13]),
we have thanks to (79) and (80) that w ≥ c ≥ uK over ∂A ⊂ {uK ≥ uK(x0)}. We can therefore
apply the maximum principle in the open set A to get

sup
x∈Ω

uK(x)− uK(x0)

|x− x0|
≤ sup

x∈A

uK(x)− uK(x0)

|x− x0|

≤ sup
x∈A

w(x)− w(x0)

|x− x0|

≤ sup
x∈F

w(x)− w(x0)

|x− x0|

Using (81) we finally obtain

sup
x∈Ω

uK(x)− uK(x0)

|x− x0|
≤ d

2
,

that is

∥∇uK∥L∞(Ω) = sup
x,y∈Ω

|uK(x)− uK(y)|
|x− y| ≤ 1

2
diam(Ω)

□

Remark 3.11. We did not use the convexity of ΩK for estimating ∥uK∥L∞(ΩK) in terms of diam(ΩK), so
that estimate (78) holds for any bounded open set Ω. Moreover, one can also obtain a finer estimate relying
on a symmetrization argument due to G. Talenti: if v is the solution to

{
−∆v = 1 in Ω♯

K

v ∈ H1
0 (Ω

♯
K)

where Ω♯
K is the ball centered at the origin having the same volume than ΩK , then [55, Theorem 1 (iv)]

implies
u♯K ≤ v in Ω♯

K
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with u♯K denoting the symmetric decreasing rearrangement of uK . This provides a Volume-type control of
∥uK∥L∞(ΩK):

∥uK∥L∞(ΩK) = ∥u♯K∥L∞(Ω♯
K)
≤ ∥v∥

L∞(Ω♯
K)
≤ C(N)|ΩK |2/N

with C(N) a dimensional constant2. This estimate implies (78) up to a dimensional multiplicative constant,
as ΩK can always be included in some cube of size diam(ΩK). It can reveal to be very convenient for
controlling ∥uK∥L∞(ΩK) when we can bound |ΩK | while having diam(ΩK) −→ +∞.

We are now in a position to prove Proposition 3.8:

Proof of Proposition 3.8: Let K ′ ⊂ K be convex bodies. Recall that ΩK and ΩK′ denote the interiors
of K and K ′ respectively. Let T : ΩK → ΩK′ the change of variables given by Lemma 3.9. Let
uK := uΩK

the torsion function, solution of (62). Using TuK ∈ H1
0 (ΩK′) as a test function in the

variational formulation of τ(K ′) we can write

0 ≤ τ(K)− τ(K ′) ≤
ˆ
K

(
|∇(TuK)|2 − |∇uK |2

)
− 2

ˆ
K
(TuK − uK)

Using the properties of T given by Lemma 3.9 we get

0 ≤ τ(K)− τ(K ′) ≤
ˆ
K\K′′

(|∇(TuK)|2 − |∇uK |2)− 2

ˆ
K\K′′

(TuK − uK)

≤ |K \K ′′|
(
∥∇(TuK)∥2L∞(ΩK′ ) + 2∥TuK∥L∞(ΩK′ ) + 2∥uK∥L∞(ΩK)

)

≤ Cmax
(
∥uK∥L∞(ΩK), ∥∇uK∥2L∞(ΩK)

)
|K \K ′|

for some C = C(D′, D). Lemma 3.10 then yields the result. □

We will now show Theorem 3.2 for λn. To that end we will use the following result that was proved in
[9, Theorem 3.4]:

Theorem 3.12. Let Ω′ ⊂ Ω be bounded open sets. For any n ∈ N∗ it holds
∣∣λn(Ω)− λn(Ω

′)
∣∣ ≤ C(n)λn(Ω)

N/2+1λn(Ω
′)|τ(Ω)− τ(Ω′)|

where C(n) = 2n2e1/4π.

Proof of Theorem 3.2 for λn: Theorem 3.12 gives that for any K ∈ KN
D′,D

∣∣λn(K)− λn(K
′)
∣∣ ≤ C(n)λn(K)N/2+1λn(K

′)|τ(K)− τ(K ′)|

From monotonicity of the Dirichlet eigenvalues we have λn(K)N/2+1λn(K
′) ≤ λn(D

′)2+N/2, and there-
fore the estimate from Proposition 3.8 gives the result. □

3.2.4 Neumann eigenvalues

The purpose of this section is to prove Theorem 3.2 in the case of Neumann eigenvalues. We actually
get a slightly better result (with no assumption of inclusion between K and K ′, see also Remark 3.3), more
precisely:

Proposition 3.13. Let N ≥ 2. Let D′ ⊂ D ⊂ RN be convex bodies. For any n ∈ N∗ there exists
Cn = Cn(D

′, D) > 0 such that for each K,K ′ ∈ KN
D′,D

|µn(K)− µn(K
′)| ≤ Cn|K∆K ′| (82)

2This was pointed out to us by D. Bucur.
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Remark 3.14. This result is stronger than [52, Theorem 4.2], proven in the same class but for a different
distance between sets (namely, the L∞ distance between the radial functions). More precisely, it is proven
in [52] that there exists Cn = Cn(D

′, D) such that for all K ′,K ∈ KN
D′,D with respective radial functions

ρK and ρK′

|µn(K)− µn(K
′)| ≤ Cn∥ρK − ρK′∥∞.

This latter result is not enough to provide (82), as one sees for example by taking K = [0, 1]3 and Ki =
K ∩ {x ∈ R3, x3 > 1/i − x1} (Ki is built by cutting the neighborhood of an edge). It is not hard to see
that |K \Ki| ≤ C∥ρK − ρKi∥2∞ (we fixed an origin inside K, for example (12 ,

1
2 ,

1
2)), thus contradicting

the possibility of controlling ∥ρK − ρK′∥∞ by |K∆K ′|. On the other hand this result is implied by (82),
recalling the expression of volume in terms of radial functions (see for instance [53, (1.53)])

|K∆K ′| = 1

N

ˆ
∂B
|ρNK − ρNK′ | ≤ C∥ρK − ρK′∥∞

with C a constant only depending on D′ and D.

As in the Dirichlet case we follow the general strategy of [12, 13], as we were not able to apply their
result, namely [12, Theorem 6.11]. The proof of Proposition 3.13 relies on the two independent steps:

1. we construct an extension operator ΠK : W 1,∞(ΩK) → W 1,∞(RN ) whose norm uniformly
bounded in KN

D′,D.

2. we provide W 1,∞-estimates of Neumann eigenfunctions.

Note that unlike in the Dirichlet case, we cannot rely on a statement like Theorem 3.12 and we have to
directly work with the variational formulation of eigenvalues (we could actually apply the same strategy
for proving Theorem 3.2 for λn, though we thought it was more elegant to use Theorem 3.12).

The following lemma deals with the first item of this strategy:

Lemma 3.15 (Extension operator). Let N ≥ 2 and D′ ⊂ D ⊂ RN be convex bodies. There exists
C = C(D′, D) > 0 such that for any K ∈ KN

D′,D there exists a bounded operator

ΠK : L1(ΩK)→ L1(RN )

satisfying the requirements:

• for any f ∈ L1(ΩK), ΠKf(x) = f(x) for a.e. x in ΩK ,

• if f ∈W 1,∞(ΩK) then ΠKf ∈W 1,∞(RN ) with

∥ΠKf∥W 1,∞(RN ) ≤ C∥f∥W 1,∞(ΩK)

Remark 3.16. This result could be seen as a consequence of [18, Theorem II.1] which asserts the same
result in the wider class of sets satisfying the ε−cone condition (see Definition 4.1). Nevertheless, using
that the domains we consider are convex, we are able to give a shorter proof of this result.

Proof. The ideas are similar from the ones in the proof of Lemma 3.9. We again assume up to translating
that 0 ∈ Int(D′), and let ρ be the radial function associated to K.

If u ∈ RN \ {0} we set xu := u/|u|. We let

K̃ := {λx(ρ(x) + 1), x ∈ B, λ ∈ [0, 1]}

∀u ∈ RN , ϕ1(u) :=

{
u if u ∈ K

ρ(xu)xu if u /∈ K
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and

∀u ∈ RN , ϕ2(u) :=





1 if u ∈ K

ρ(xu)− |u|+ 1 if |u| ∈ [ρ(xu), ρ(xu) + 1]

0 if |u| > ρ(xu) + 1

Functions ϕ1 and ϕ2 are built by gluing continuously Lipschitz functions; as in the proof of Lemma 3.9
we thus deduce that ϕ1 and ϕ2 are Lipschitz with Lipschitz constant only depending on ∥∇τρ∥L∞(B) and
min ρ, hence only on D′ and D. Therefore there exists C(D′, D) such that

{
∥ϕ2∥L∞(RN ) ≤ 1, ∥∇ϕ2∥L∞(RN ) ≤ C(D′, D)

∥Dϕ1∥L∞(RN ) ≤ C(D′, D)
(83)

We finally let, for any f ∈ L1(ΩK) and u ∈ RN

ΠKf(u) :=

{
f(ϕ1(u))ϕ2(u) if u ∈ K̃

0 if u /∈ K̃

By construction ΠKf(u) = f(u) for u ∈ ΩK , and ∥ΠKf∥L∞(RN ) ≤ ∥f∥L∞(ΩK). Since ϕ1 and ϕ2 are
Lipschitz we have that ΠKf ∈W 1,∞(RN ) if f ∈W 1,∞(ΩK) and further∇ΠKf = (f ◦ϕ1)∇ϕ2+∇(f ◦
ϕ1)ϕ2 a.e.. Using (83) we deduce

∥∇ΠKf∥L∞(RN ) = ∥∇ΠKf∥
L∞(K̃)

≤ ∥ϕ2∇(f ◦ ϕ1)∥L∞(K̃)
+ ∥(f ◦ ϕ1)∇ϕ2∥L∞(K̃)

≤ ∥ϕ2∥W 1,∞(RN )

(
∥∇(f ◦ ϕ1)∥L∞(K̃)

+ ∥f ◦ ϕ1∥L∞(K̃)

)

≤ (1 + C(D′, D))2∥f∥W 1,∞(ΩK)

This completes the proof of the lemma. □

We now state a W 1,∞-estimate for Neumann eigenfunctions:

Lemma 3.17. Let N ≥ 2, D′ ⊂ D ⊂ RN be convex bodies, and n ∈ N∗. There exists Cn =
Cn(N,D′, D) > 0 such that for all K ∈ KN

D′,D,

∥vK,n∥W 1,∞(ΩK) ≤ Cn

where vK,n is any Neumann eigenfunction associated to µn(K) and such that ∥vK,n∥L2(ΩK) = 1.

Proof. We fix n ∈ N and denote more simply vn := vK,n.

• L∞ estimate of vn: By [52, Proposition 3.1] (and the remark following), it holds

∥vn∥L∞(ΩK) ≤ C1

(
(1 +

√
µk(K))C2

)r

where 



C1 = C1(N)

C2 = C2(D
′, D)

r = r(N)

Since µn(K) ≤ λn(K) ≤ λn(D
′), we get the estimate

∥vn∥L∞(ΩK) ≤ Cn(N,D′, D) (84)

• L∞ estimate of∇vn: It is proved in [49] in any dimension N ≥ 2 that

∥∇vn∥L∞(ΩK) ≤ C(N)|K|1/Nµn(K)C−1
ΩK
∥vn∥L∞(ΩK)

31



where CΩK
is the isoperimetric constant relative to ΩK , i.e. if Ω ⊂ RN is a bounded open set

CΩ := inf
E⊂Ω

0<|E|≤|Ω|/2

P (E,Ω)

|E|1−1/N
= inf

E⊂Ω
0<|E|<|Ω|

P (E,Ω)

min{|E|, |Ω \ E|}N−1
N

with P (·,Ω) denoting the relative perimeter in Ω. Together with (84) this provides

∥∇vn∥L∞(ΩK) ≤ Cn(N,D′, D)C−1
ΩK

(85)

Now it is shown in [57, Corollary 2] that CΩ ≥ δ(ε, b,N) > 0 for any Lipschitz domain Ω with
diameter ≤ b and satisfying the ε-cone condition (94). As there exists ε = ε(D′, D) such that (94)
is satisfied for any K ∈ KN

D′,D (see Remark 4.2) we can conclude from (85) that

∥∇vn∥L∞(ΩK) ≤ Cn(N,D′, D)

□

We are now in a position to prove Proposition 3.13. The following is a combination of the proofs of
Theorems 3.2 and 4.20 of [12] adapted to the particular case of the Neumann Laplace operator, which we
reproduce for the convenience of the reader.

Proof of Proposition 3.13: We denote by v1, ..., vn n first eigenfunctions of the Neumann Laplace operator
on ΩK normalized for the L2 norm (i.e. ∥vk∥L2(ΩK) = 1). Recall that functions vk are orthogonal for the
L2 scalar product. Let f :=

∑n
k=1 αkvk with ∥f∥L2(ΩK) = 1, which means

∑n
k=1 α

2
k = 1. Set

T := RK′ ◦ΠK : L1(ΩK)→ L1(ΩK′)

where ΠK is the extension operator given by Lemma 3.15 and RK′ is the restriction onto ΩK′ . Note
first that it suffices to prove estimate (82) under the additionnal condition |K∆K ′| ≤ εn for some small
εn(D

′, D) > 0 depending on n, D′, D; indeed, using µn(K) ≤ λn(K) ≤ λn(D
′) for any K ∈ KN

D′,D,
we have

|µn(K)− µn(K
′)| ≤ 2λn(D

′) ≤ 2λn(D
′)

εn
|K∆K ′|

if |K∆K ′| ≥ εn.

Estimate from below of ∥Tf∥L2(ΩK′ ): We will first prove

∥Tf∥2L2(ΩK′ ) ≥ 1− Cn|ΩK \ ΩK′ | (86)

for some Cn = Cn(N,D′, D) > 0, which immediately provides

∥Tf∥−2
L2(ΩK′ )

≤ 1 + 2Cn|ΩK \ ΩK′ | (87)

whenever |ΩK \ ΩK′ | ≤ 1/2Cn, using the inequality (1− x)−1 ≤ 1 + 2x if 0 ≤ x ≤ 1/2.

We have, as RK′ ◦ΠK(f) = f on ΩK ∩ ΩK′ ,

∥Tf∥2L2(ΩK′ ) ≥ ∥Tf∥2L2(ΩK∩ΩK′ ) = ∥f∥2L2(ΩK∩ΩK′ ) = ∥f∥2L2(ΩK) − ∥f∥2L2(ΩK\ΩK′ ) (88)

But thanks to Lemma 3.17 and recalling that
∑n

k=1 α
2
k = 1

∥f∥2L2(ΩK\ΩK′ ) ≤
( n∑

k=1

αk∥vk∥L2(ΩK\ΩK′ )

)2
≤

n∑

k=1

∥vk∥2L2(ΩK\ΩK′ )

≤
( n∑

k=1

∥vk∥2L∞(ΩK)

)
|ΩK \ ΩK′ | ≤ Cn(N,D′, D)|ΩK \ ΩK′ |
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Pluging this into (88) yields (86).

Estimate from above of ∥∇Tf∥L2(ΩK′ ): We now prove

∥∇Tf∥2L2(ΩK′ ) ≤ µn(K) + Cn|ΩK′ \ ΩK | (89)

for some Cn = Cn(N,D′, D).

Note that

∥∇Tf∥2L2(ΩK′ ) = ∥∇Tf∥2L2(ΩK′∩ΩK) + ∥∇Tf∥2L2(ΩK′\ΩK)

= ∥∇f∥2L2(ΩK′∩ΩK) + ∥∇Tf∥2L2(ΩK′\ΩK)

≤ ∥∇f∥2L2(ΩK) + ∥∇Tf∥2L2(ΩK′\ΩK) (90)

The Neumann eigenfunctions being orthogonal for the L2 scalar product, we also have
´
ΩK
∇vk · ∇vk′ =

µk(K)
´
ΩK

vkvk′ = 0 for k ̸= k′. Furthemore ∥∇vk∥2L2(ΩK) = µk(K) ≤ µn(K) and we thus get

∥∇f∥2L2(ΩK) =
n∑

k=1

α2
k∥∇vk∥2L2(ΩK) ≤ µn(K) (91)

On the other hand, denoting by C1 = C1(D
′, D) and C2 = C2(N,D′, D) the constants respectively given

by Lemmas 3.15 and 3.17, we obtain

∥∇Tf∥2L2(ΩK′\ΩK) ≤ ∥∇Tf∥2L∞(ΩK′ )|ΩK′ \ ΩK |
≤ C1∥f∥2W 1,∞(ΩK)|ΩK′ \ ΩK |

≤ C1

( n∑

k=1

∥vk∥2W 1,∞(ΩK)

)
|ΩK′ \ ΩK |

≤ C1nC
2
2 |ΩK′ \ ΩK | (92)

With estimates (91) and (92), (90) gives (89) for Cn(N,D′, D) = C1nC
2
2 .

Min-max principle and conclusion: Let us remind the following min-max principle:

µn(K
′) = min

dim(V )=n
max
g∈V
g ̸=0

∥∇g∥2L2(ΩK′ )

∥g∥2
L2(ΩK′ )

(93)

where the minimum is taken over all n-dimensional subspaces V ⊂ H1(ΩK′).

In the view of (86), if |ΩK \ ΩK′ | ≤ εn for some εn = εn(N,D′, D), we deduce ∥Tf∥L2(ΩK′ ) > 0
for any f =

∑n
k=1 αkvk with ∥f∥L2(ΩK) = 1, thus getting that Tv1, . . . , T vn are linearly independent as

(v1, . . . , vn) also are. Setting Ln := Vect(v1, ..., vn), formula (93) therefore implies

µn(K
′) ≤ max

g∈TLn
g ̸=0

∥∇g∥2L2(ΩK′ )

∥g∥2
L2(ΩK′ )

= max
f∈Ln

∥f∥L2(ΩK )=1

∥∇Tf∥2L2(ΩK′ )

∥Tf∥2
L2(ΩK′ )

Putting estimates (87) and (89) provides

µn(K
′) ≤

(
µn(K) + Cn|ΩK′ \ ΩK |

)(
1 + 2Cn|ΩK \ ΩK′ |

)

≤ µn(K) + C̃n|ΩK∆ΩK′ |

for some constant C̃n(N,D′, D), if |ΩK \ ΩK′ | ≤ εn, where we used µn(K) ≤ λn(K) ≤ λn(D
′).

Switching the roles played by K and K ′ we get (82). □
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3.3 Optimality of the C1,1 regularity

We show in this short section that the Hölder regularity obtained in Theorem 2.3 is optimal. Precisely
we prove:

Proposition 3.18. In R2, there exists a quasi-minimizer of the perimeter under convexity constraint which
is C1,1 but not C2.

Let us first introduce some notations. If Ω is a measurable set we define its (scaling invariant) Fraenkel
asymmetry α(Ω), which is scaling invariant:

α(Ω) := inf

{ |Ω∆B|
|Ω| , B ⊂ R2 a ball , |B| = |Ω|

}
.

We also denote D(Ω) := (P (Ω)−P (B))/P (B) the normalized isoperimetric deficit, where B is any ball
with same volume than Ω. We call stadium a set Ω ⊂ R2 which is obtained as the convex envelope of two
disjoint disks of same radius.

The following result is proved in [1] (see also [5, Theorem 1.2], and the introduction of [20]).

Theorem 3.19. It holds

inf
K∈K2

D(K)

α(K)2
≃ 0.405585 > 0

and equality is achieved at a particular stadium K∗.

Proof of Proposition 3.18: Let us note that any stadium is C1,1 but not C2, as the curvature jumps from
value 0 on a flat part to a positive value on a semi-circle. Call c∗ the value of the infimum above, and set
V0 := |K∗| and BV0 a ball of volume V0. Then Theorem 3.19 implies

P (K)− P (BV0)− c∗P (BV0)α(K)2 ≥ 0

for any planar convex body K of volume V0, with equality at K∗. In other words, K∗ minimizes the
functional P − P (BV0) − cα2 among planar convex sets of volume V0, with c := P (B)c∗. If one proves
that α2 satisfies hypothesis (51), then we deduce that K∗ is a quasi-minimizer of the perimeter under
convexity constraint, which concludes the proof. Let (K,K ′) ∈ K2, and with no loss of generality (as α
is invariant with scaling) let us assume that |K| = |K ′| = 1. We denote B an optimal ball in the definition
of α(K): we have

α2(K ′)− α2(K) ≤ 2(α(K ′)− α(K)) ≤ 2
(
|K ′∆B| − |K∆B|

)
≤ 2|K∆K ′|

where the last inequality is obtained by easily checking that K ′∆B ⊂ (K∆K ′) ∪ (K∆B). Inverting the
roles played by K and K ′ we deduce that α verifies (51), thus completing the proof. □

4 Appendix

4.1 Parametrization of convex bodies in cartesian graphs

Let us start by covering a few preliminaries about Lipschitz sets. The following definition, first given
by D. Chenais in [17], is a very convenient way of considering "uniformly" Lipschitz sets.

Definition 4.1. Let ε > 0. We say that an open set Ω ⊂ RN satisfies the ε-cone condition if for any
x ∈ ∂Ω there exists a unit vector ξx such that

∀y ∈ Bε(x) ∩ Ω, C(y, ξx, ε) ⊂ Ω (94)

where we set

C(y, ξx, ε) := {z ∈ RN , ⟨z − y, ξx⟩ > cos(ε)|z − y|, 0 < |z − y| < ε}.
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u+ c

•
x̂0

K

x
•

H

•
(x, u(x))

ω

Figure 3: Convex body in cartesian graph

Remark 4.2. For any fixed M ≥ m > 0, it can be shown that any open convex set Ω such that there exists
x ∈ RN with

Bm(x) ⊂ Ω ⊂ BM (x)

verifies the ε-cone condition for some ε = ε(m,M) (see for instance [36, Proposition 2.4.4]).

The following proposition shows that one can see a convex set as the graph of a Lipschitz function with
specific additional properties that will be used in the proof of Theorem 2.3 (see Figure 3 for an illustration).

Proposition 4.3. Let K ∈ KN . For any x̂0 ∈ ∂K, there exists

• A hyperplane H ⊂ RN containing x̂0,

• A unit vector ξ ∈ RN normal to H ,

such that, denoting by (x, t) a point in H × Rξ coordinates (and hence denoting x̂0 := (x0, 0)), it holds

1. The set Ω := {x ∈ H, (x+ Rξ) ∩ Int(K) ̸= ∅} is open, bounded and convex, and the function

u : Ω→ R
x 7→ min{t ∈ R, (x, t) ∈ K}

is well-defined and convex. Furthermore, if ε is such that Int(K) satifies the 2ε-cone condition (see
Definition 4.1), then Bε := Bε tan(ε)(x0) ⊂ Ω and u|Bε is tan(ε)−1-Lipschitz.

2. It holds

{(x, u(x)), x ∈ Ω} ⊂ ∂K

K ∩ (Ω× Rξ) ⊂ {(x, t) ∈ Ω× Rξ, u(x) ≤ t}

3. For any open set ω ⋐ Bε, there exists c > 0 such that

{(x, t) ∈ ω × Rξ, u(x) ≤ t ≤ u(x) + c} ⊂ K

Furthermore we can choose c only depending on d(ω, ∂Bε) and ε.

Proof. The proof is inspired from [36, Theorem 2.4.7], with a few adaptations due to convexity. Since
K ∈ KN , then Int(K) satisfies the cone condition (see Definition 4.1 and Remark 4.2). We can assume
without loss of generality that it satisfies the 2ε-cone condition for some ε > 0 with tan(ε) ≤ 1. Let then
ξ := ξx̂0

be a unit vector associated to x̂0 and the 2ε-cone condition, that is

∀x̂ ∈ K ∩B2ε(x̂0), C(x̂, ξ, 2ε) ⊂ Int(K)

We set H := {x̂ ∈ RN , ⟨x̂− x̂0, ξ⟩ = 0}.
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The function u is well-defined by construction of Ω. The convexity of K gives immediately that u is
convex: if λ ∈ [0, 1] and x, y ∈ Ω, the point (1− λ)(x, u(x)) + λ(y, u(y)) ∈ K since K is convex, giving
that u((1− λ)x+ λy) ≤ (1− λ)u(x) + λu(y) by definition of u.

For the rest of the proof we will write (y, yξ) for the H ×Rξ coordinates of a point ŷ ∈ RN . Any cone
C(x̂, ξ, 2ε) can be written

C(x̂, ξ, 2ε) =

{
ŷ ∈ B2ε(x̂), yξ − xξ >

1

tan(ε)
|y − x|

}
(95)

Indeed, if ŷ ∈ RN and x̂ ∈ RN are such that yξ − xξ ≥ 0, then

yξ − xξ > cos(ε)|ŷ − x̂| ⇐⇒ (yξ − xξ)
2 > cos2(ε)

(
|y − x|2 + (yξ − xξ)

2
)

⇐⇒ yξ − xξ >
1

tan(ε)
|y − x|

Recalling that Bε = {x ∈ H, |x− x0| < ε tan(ε)} we claim that

∀x ∈ Bε,

{
(x, ε) ∈ Int(K)

(x,−ε) /∈ Int(K)
(96)

Indeed, let x ∈ Bε. Let us first show that (x, ε) ∈ Int(K). Since C(x̂0, ξ, 2ε) ⊂ Int(K) by the 2ε-cone
condition, then it suffices to prove that (x, ε) ∈ C(x̂0, ξ, 2ε). But as |x−x0| < ε it holds (x, ε) ∈ B2ε(x̂0),
and furthermore tan(ε)−1|x − x0| < ε, so that we deduce (x, ε) ∈ C(x̂0, ξ, 2ε) thanks to (95) and hence
(x, ε) ∈ Int(K). For the second assertion it is sufficient to prove that C(x̂0,−ξ, 2ε) ⊂ RN \ Int(K), since
in any case (x,−ε) ∈ C(x̂0,−ξ, 2ε) using again (95), as (x,−ε) ∈ B2ε(x̂0) with tan(ε)−1|x − x0| <
ε = (−ε) × (−1). Suppose then by contradiction that there exists x̂ ∈ C(x̂0,−ξ, 2ε) ∩ Int(K); since
x̂ ∈ B2ε(x̂0), it holds that C(x̂, ξ, 2ε) ⊂ Int(K) by the 2ε-cone property. But then x̂0 ∈ C(x̂, ξ, 2ε),
yielding x̂0 ∈ Int(K), which is a contradiction. This finishes the proof of (96).

Thanks to (96), it holds Bε ⋐ Ω. Let us show that u|Bε is Lipschitz continuous with Lipschitz constant
tan(ε)−1. If x ∈ Bε then (x, ε) ∈ Int(K) thanks to (96) and (x, u(x)) ∈ ∂K so that [(x, u(x)), (x, ε)] ⊂
K. This ensures −ε < u(x) < ε using again (96), so that in particular (x, u(x)) ∈ B2ε(x̂0). Let now
x, y ∈ Bε. As (x, u(x)) ∈ B2ε(x̂0) we must have C((x, u(x)), ξ, 2ε) ⊂ Int(K) by the 2ε-cone property;
but then, as (y, u(y)) ∈ ∂K we get (y, u(y)) /∈ C((x, u(x)), ξ, 2ε), giving

u(y)− u(x) ≤ 1

tan(ε)
|y − x|

Reversing the roles played by x and y, we deduce in fact that u|Bε is tan(ε)−1-Lipschitz. This finishes the
proof of the first requirement.

The construction of u ensures that the second requirement is verified. As for the third let δ be such that
d(ω, ∂Bε) ≥ δ > 0. Set c := δ tan(ε)−1 and let x ∈ Bε and u(x) ≤ t ≤ u(x) + c. As x ∈ Bε, we have
(x, ε) ∈ Int(K) and (x, u(x)) ∈ ∂K so that [(x, u(x)), (x, ε)] ⊂ K, hence it suffices to show that t < ε to
get the claim. As it holds that |x − x0| < ε tan(ε) − δ, then recalling that u|Bε is tan(ε)−1-Lipschitz we
get

t ≤ u(x) + c < tan(ε)−1 × (ε tan(ε)− δ) + c = ε

This finishes the proof of the third point and hence the proof of the Proposition. □

4.2 Proof of Proposition 2.8

Proof. Let (Kn) be a sequence of convex bodies verifying Kn ⊂ D where D ∈ KN .

• Let us first focus on
dH(Kn,K)→ 0⇐⇒ |Kn∆K| → 0
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The direct sense is proved in [10, Proposition 2.4.3, (ii)]. As for the converse, suppose |Kn∆K| →
0, and assume by contradiction that (Kn) does not converge to K for dH . Up to extracting we can
therefore suppose that there exists ε > 0 such that

∀n ∈ N, dH(Kn,K) ≥ ε (97)

Thanks to the Blaschke selection theorem which states that {L compact convex of RN , L ⊂ D} is
compact for the Hausdorff distance, up to further extraction there exists K∞ compact convex such
that Kn → K∞ for dH . Using again [10, Proposition 2.4.3, (ii)] and since |Kn∆K| → 0 we must
have K∞ = K, contradicting (97).

• We now assume that dH(Kn,K)→ 0, and let C ∈ KN be such that C ⊂ Int(K). We want to prove

C ⊂ Kn for large n.

There exists ε > 0 such that d(C, ∂K) ≥ ε. Since Kn → K for dH , we also have ∂Kn → ∂K
for dH (see [53, Lemma 1.8.1]). This gives d(C, ∂Kn) ≥ ε/2 for large n. Let us assume to get a
contradiction that we do not have C ⊂ Kn for n large enough. Up to extraction we can therefore
suppose that C ∩ (RN \Kn) ̸= ∅ for each n. But then C ⊂ RN \Kn thanks to the convexity of C,
since otherwise there would exist x ∈ C ∩ ∂Kn which is in contradiction with d(C, ∂Kn) ≥ ε/2.
This rewrites Kn ⊂ RN \ C for each n, yielding K ⊂

(
RN \ C

)
at the limit. This contradicts the

hypothesis Int(C) ⊂ K.

□
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