
HAL Id: hal-03644317
https://hal.science/hal-03644317v1

Preprint submitted on 19 Apr 2022 (v1), last revised 6 Jul 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Completeness Theorems for Kleene Algebra with Top
Damien Pous, Jana Wagemaker

To cite this version:
Damien Pous, Jana Wagemaker. Completeness Theorems for Kleene Algebra with Top. 2022. �hal-
03644317v1�

https://hal.science/hal-03644317v1
https://hal.archives-ouvertes.fr

Completeness Theorems
for Kleene Algebra with Top
Damien Pous
Plume, LIP, CNRS, ENS de Lyon, France

Jana Wagemaker
University of Nijmegen, The Netherlands

Abstract
We prove two completeness results for Kleene algebra with a top element, with respect to languages
and binary relations. While the equational theories of those two classes of models coincide over the
signature of Kleene algebra, this is no longer the case when we consider an additional constant “top”
for the full element. Indeed, the full relation satisfies more laws than the full language, and we show
that those additional laws can all be derived from a single additional axiom. We recover that the
two equational theories coincide if we slightly generalise the notion of relational model, allowing
sub-algebras of relations where top is a greatest element but not necessarily the full relation.

We use models of closed languages and reductions in order to prove our completeness results,
which are relative to any axiomatisation of the algebra of regular events.

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting; Theory
of computation → Logic and verification; Theory of computation → Regular languages

Keywords and phrases Kleene algebra, Hypotheses, Completeness, Closed languages

Acknowledgements The authors would like to thank Paul Brunet, Amina Doumane, and Jurriaan
Rot for the discussions that eventually led to this work.

1 Introduction

The axiomatic treatment of regular expressions and languages was developed extensively by
Conway [9], after earlier work of Kleene [16]. He raised there a difficult question: how to
axiomatise the equations between regular expressions that hold under their standard interpre-
tation as formal languages? Redko had proved that every purely equational axiomatisation
must be infinite [31]. Conway proposed such an infinite axiomatisation, which Krob proved
to be complete twenty years later [24]. Conway had also proposed finite quasi-equational
axiomatisations, one of which Kozen proved to be complete the same year [17]—this axioma-
tisation is now commonly coined under the term Kleene algebra. By an additional remark of
Boffa [5], this latter completeness result can also be obtained as a consequence of Krob’s
completeness result. In the end, all finite quasi-equational axiomatisations proposed by
Conway, as well as a few other ones, are actually complete [24, 6].

In symbols, writing [e] for the language of a regular expression e and KA ⊢ e = f when
the equation e = f is derivable in any of the aforementioned axiomatisations, we have that
for all regular expressions e, f ,

KA ⊢ e = f ⇐⇒ [e] = [f]

The above equivalence extends with two more clauses: when an equation is derivable, it must
hold in all models of the chosen axiomatisation. These include in particular language models
(LANG) and relational models (REL), for which we actually have an equivalence: writing
X |= e = f when the equation e = f holds in all members of a class of models X , we actually
have:

KA ⊢ e = f ⇐⇒ REL |= e = f ⇐⇒ LANG |= e = f ⇐⇒ [e] = [f]

2 Completeness Theorems for Kleene algebra with Top

Completeness w.r.t. LANG is immediate given the previous equivalence: the language
interpretation of a regular expression lies in LANG. This is less obvious for REL: this comes
from a nice trick due to Pratt showing that every member of LANG embeds into a member
of REL [30, third page].

As an immediate consequence of the above equivalence, the equational theory of REL (or
LANG) is decidable—more precisely, PSpace-complete. This has important applications in
program verification: Kleene algebra and their extension to Kleene algebra with tests [18]
make it possible to represent and reason about the bigstep semantics of while programs,
algebraically. This was used for instance to analyse compiler optimisations [20]. The
decidability result was also implemented in proof assisants such as Coq and Isabelle/HOL,
in order to automate some reasoning steps about binary relations and Hoare logic on while
programs [27, 23].

Those results restrict to the regular operations and constants: composition, union, Kleene
star, identity, emptyness. A natural question is whether they may scale to other operations or
constants: intersection, converse, fullness. The case of converse was dealt with by Esik et al.:
the equational theories of REL and LANG differ in the presence of converse but both can be
axiomatised [4, 13], and they remain PSpace-complete [8]. The case of intersection (with or
without converse or the various constants) is significantly more difficult, and remains partly
open, see [2, 7, 25, 12]. In this paper we focus on the addition of a constant ⊤, interpreted
as the full language in LANG and as the full relation in REL.

The usefulness of adding such a constant was demonstrated recently in the context of
Kleene algebras with tests (KAT), to model incorrectness logic [32]. Indeed, while KAT
alone makes it possible to model Hoare triples for partial correctness [19], the addition of a
full element makes it possible to compare the (co)domains of relations, and thus to encode
incorrectness triples [26, Section 5.3].

As expected, one should consider an axiom expressing that ⊤ is a greatest element:

x ≤ ⊤ (T)

Together with the Kleene algebra axioms, axiom (T) yields a complete axiomatisation w.r.t.
language models: we sketched a proof in [29, Example 3.4], which we make fully explicit here
in Section 3 (Theorem 3.5). This proof gives us as a byproduct that the equational theory of
Kleene algebras with a greatest element remains PSpace-complete.

Unfortunately, the previous axiom is not enough to deal with relational models. In fact,
in the presence of ⊤, the equational theories of LANG and REL differ. Indeed, there are laws
such as ⊤x⊤y⊤ = ⊤y⊤x⊤ [28, page 13], or ⊤x⊤x = ⊤x [32, page 14], which are valid in
REL, but not in LANG.

In the present paper, we show that it suffices to further add the following axiom in order
to get a complete axiomatisation for REL (Theorem 4.16):

x ≤ x · ⊤ · x (F)

This inequation is mentioned in [32, page 14]; it holds in relational models, but not in
language ones. Thanks to (T), axiom (F) may be seen as a consequence of Ésik et al.’s axiom
x ≤ x · x◦ · x for dealing with converse (·◦) in relational models [13, 4]. How to use axiom (F)
in an equational proof is not so intuitive: it does not give rise to a natural notion of normal
form, and it must often be used in conjunction with (T) in order to compensate the fact that
it duplicates subterms. For instance here is how we can prove the first of the aforementioned

D. Pous and J. Wagemaker 3

laws:

⊤x⊤y⊤ ≤ ⊤x⊤y⊤ ⊤ ⊤x⊤y⊤ (by (F))
≤ ⊤x⊤y⊤⊤⊤x⊤ (by (T))
≤ ⊤x⊤y⊤x⊤ (by (T))
≤ ⊤y⊤x⊤ (by (T))

(We wrote compositions by juxtaposition, skipped the associativity steps, and underlined the
subterms to be simplified by axiom (T)—the converse inequation is derived symmetrically.)
Our completeness proof actually goes via a factorisation property (Proposition 4.7) intuitively
asserting that one can always proceed in this way to reason about star-free expressions:
expand the expressions using (F) a number of times, then remove spurious subterms using (T).
Combining such a technique together with Kleene algebra reasoning for star is the second
challenge we address in the present work. To get a grasp on the difficulties, the reader may
try to find a proof of the following valid law of REL, using KA and axiom (F):

a+ ≤ o(a + ⊤o)⊤a+ (⋆)

There, o and a+ are shorthands for (aa)∗a and a∗a; we give a solution in Example 4.13-4.15.
Finally, we show that the difference between the equational theories of language and

relational models can be blurred if we slightly generalise the notion of relational model,
allowing ⊤ to be any greatest relation rather than the full one1 (Corollary 5.2).

We prove our two main theorems using the concept of closed language model for Kleene
algebra with hypotheses [11], and the reduction technique made explicit in [29, 15]2. Intu-
itively, we establish reductions from KA with (T) and KA with (T, F) to plain KA, so that
we can deduce completeness and decidability of the former theories from completeness and
decidability of the latter one.

While the first reduction is relatively straightforward—this is a syntactical linear reduction—
the second one is not. We exploit the aforementioned factorisation result (Proposition 4.7)
and Kleene’s theorem in order to show that regular languages are preserved by a certain
closure operation, and that this preservation property can be justified algebraically (Proposi-
tion 4.14). Moreover, in order to establish the correspondence between the closed languages
used there and relational models, we resort to a graph theoretical characterisation of the
equational theory of REL [7, Theorem 6] (whose main ingredient dates back to the works of
Freyd and Scedrov [14, page 208] and Andréka and Bredikhin [3, Theorem 1]).

Related work

Zhang et al. give a completeness result for KAT together with axiom (T), in terms of guarded
string languages [32, Theorem 9]. They observe that this axiomatisation is incomplete for
REL, that it does not suffice to properly express incorrectness triples, and they leave the
existence of a complete axiomatisation for relational models open. Our Theorem 4.16 gives
a positive answer to this question, in the more primitive setting of plain Kleene algebra,
without tests. We believe that a similar answer holds also for KAT; if this is the case, then we

1 In subalgebras where only certains relations are kept, since otherwise the only greatest relation is the
full one.

2 Such a technique is somehow implicit in Kozen and Smith’ completeness proof for KAT [22] and Ésik et
al.’s completeness proof for Kleene algebra with converse [4, 13].

4 Completeness Theorems for Kleene algebra with Top

would obtain a system where we can reason purely equationally about incorrectness triples,
as envisioned by Zhang et al.

Zhang et al. also give a completeness result w.r.t. generalised relational models [32,
Theorem 8]. They do so by exploiting Pratt’s trick to embed language models into relational
ones [30, third page]. We use the very same technique to obtain Corollary 5.2.

Outline

We setup and recall basic notation for regular expressions, formal languages and universal
algebra in Section 2. Then we deal with language models in Section 3, and relational models
in Section 4. While the language case was already sketched in [29, Example 3.4], we find it
useful to treat it explicitly here, before dealing with the more involved case of relations: 1/
it illustrates the reduction method in a simpler setting, and 2/ we build on the reduction
for languages to establish the reduction for relations. We finally prove completeness w.r.t.
generalised relational models in Section 5.

2 Preliminaries

Given a set X, we write X∗ for the set of words over X: finite sequences of elements of X.
We let u, v range over words, we write ϵ for the empty word, and uv for the concatenation of
two words u, v. A language is a set of words. We let e, f range over regular expressions over
X, generated by the following grammar:

e, f ::= e + f | e · f | e⋆ | 0 | 1 | x ∈ X

We sometimes omit the dots in regular expressions, writing, e.g., ab∗ for a · b∗. As usual,
we associate a language [e] to every regular expression e, the language of e. A language is
regular if it is the language of a regular expression.

We fix a finite set Σ of letters, ranged over using a, b. We write Σ⊤ for the set Σ extended
with a new element ⊤. We call the regular expressions over Σ⊤ regular expressions with top
(or often just expressions, since we are mostly concerned with these). We shall sometimes
see words over Σ⊤ as regular expressions with top. E.g., the word a⊤ can be seen as the
expression a · ⊤.

We consider signatures S ≜ {+2, ·2, ·⋆1, 00, 10} and S⊤ ≜ S ∪ {⊤0}. Given an S-algebra
A and a valuation σ : Σ → A, we write σ̂ for the unique homomorphism extending σ to
regular expressions over Σ. Similarly, given an S⊤-algebra A and a valuation σ : Σ → A, we
write σ̂ for the unique homomorphism extending σ to regular expressions with top. (Note in
that case that the domain of the valuation is only Σ, and that σ̂(⊤) = ⊤A by definition: ⊤ is
a constant, not a variable.)

Given a class X of S-algebras and two regular expressions e, f over Σ, we write X |= e = f

if for all members A of X and all valuations σ : Σ → A, we have σ̂(e) = σ̂(f). Similarly for
classes of S⊤-algebras and regular expressions with top.

An equation is a pair of regular expressions e, f , written e = f . We write e ≤ f , an
inequation, as a shorthand for the equation e + f = f . An axiomatisation is a set of equations
(or implications between equations). Given such a set E , we write E ⊢ e = f when the
equation e = f is derivable from E using the rules of equational reasoning (where letters
from Σ appearing in the equations of E can be substituted by arbitrary terms).

We let KA stand for any axiomatisation over plain regular expressions which is sound and
complete w.r.t. the regular language interpretation, i.e., such that for all regular expressions

D. Pous and J. Wagemaker 5

e, f (without top), we have3

KA ⊢ e = f ⇐⇒ [e] = [f] (†)

As explained in the introduction, valid candidates for KA include Conway’s infinite but purely
equational axiomatisation [9, page 116] (proved complete by Krob [24]), Kozen’s Kleene
algebras [17], left-handed Kleene algebras [21, 10], and Boffa’s algebras [6].

Also note that the above requirement is equivalent to the following one, since L ⊆ K iff
L ∪ K = K for all languages L, K:

KA ⊢ e ≤ f ⇐⇒ [e] ⊆ [f] (‡)

3 Languages

Given a set X, a language on X is a set of words over X. In the sequel, languages are ranged
over using letters L, K and their set is written P (X∗). Languages on X form a S⊤-algebra
with the operations defined as follows:

L + K ≜ L ∪ K

L · K ≜ {uv | u ∈ L ∧ v ∈ K}
L∗ ≜ {u0 . . . un | ∃n, ∀i ≤ n, ui ∈ L}

0 ≜ ∅
1 ≜ {ϵ}
⊤ ≜ X∗

(+ is set-theoretic union, · is language concatenation, ·⋆ is Kleene asterate, 0 and ⊤ are the
empty and full languages, and 1 is the singleton language reduced to the empty word.) We
write LANG for the class of all S⊤-algebras of the above shape.

Let KAT , Kleene Algebra with a Top element, denote the union of the axioms from KA
and axiom (T). We prove in this section that KAT is sound and complete for LANG.

Following the strategy from [11, 29], the first step consists of defining the closure below,
according to the axiom we add to Kleene algebra (T):

▶ Definition 3.1 (Language closure CT). Given two words u, v over Σ⊤, we write u ⇝T v if
u is obtained from v by replacing an occurrence of ⊤ with an arbitrary word w ∈ Σ⊤

∗. Given
a language L over Σ⊤, we call T -closure of L the following language

CT (L) ≜ {v | v ⇝∗T u for some u ∈ L}

CT is indeed a closure operator, and CT (L) may alternatively be described as the set of
words obtained by replacing occurrences of ⊤ in a word of L with arbitrary words over Σ⊤.

▶ Lemma 3.2. CT is an S⊤-algebra homomorphism.

Proof. By a routine verification; the case for composition follows from the fact that we
replace single letters. ◀

3 Actually, we require slightly more if the axiomatisation contains implications: those implications should
be valid in the models of languages and binary relations.

6 Completeness Theorems for Kleene algebra with Top

▶ Definition 3.3 (Expression closure r). Let r be the unique S-algebra homomorphism on
expressions with top such that r(a) = a for all letters a ∈ Σ, and r(⊤) = Σ⊤

∗ (where Σ⊤
∗ is

a regular expression with top for the full language—e.g., (a + b + · · · + ⊤)∗).

▶ Proposition 3.4. For all expressions e, we have
(i) [r(e)] = CT [e], and
(ii) KAT ⊢ e = r(e).

Proof. (i) [r(·)] and CT [·] are S-algebra homomorphisms, and they agree on Σ⊤.
(ii) we proceed by induction on e; the only interesting case is when e = ⊤, for which we

have KAT ⊢ r(⊤) ≤ ⊤ by axiom (T), and KAT ⊢ ⊤ ≤ r(⊤) by completeness of KA (‡),
since [⊤] = {⊤} ⊆ Σ⊤

∗ = [r(⊤)]. ◀

▶ Theorem 3.5. For all regular expressions with top e, f , we have

LANG |= e = f ⇐⇒ CT [e] = CT [f] ⇐⇒ KAT ⊢ e = f

Proof. We have

LANG |= e = f

⇒ CT [e] = CT [f] (CT [·] is an interpetation into a member of LANG, by Lemma 3.2)
⇔ [r(e)] = [r(f)] (Proposition 3.4(i))
⇔ KA ⊢ r(e) = r(f) (completeness of KA (†))
⇒ KAT ⊢ e = f (transitivity and Proposition 3.4(ii))
⇒ LANG |= e = f (soundness of KAT axioms w.r.t. LANG)

(In the last step, soundness w.r.t. LANG comes from our assumption about KA, and a trivial
verification for axioms (T).) ◀

Note that the first equivalence in the above theorem can be obtained in a more direct
way, without resorting to completeness of some axiomatisation; moreover the right-to-left
implication of the second equivalence is an instance of a general property of closed languages
models [11, Theorem 2]. The reduction r is used only for the left-to-right implication of this
second equivalence.

According to the proof, we could complete the statement with “. . . ⇐⇒ [r(e)] = [r(f)]”.
Doing so gives us a PSpace algorithm: compute the regular expressions r(e) and r(f), and
compare them for language equivalence. Also note that it is crucial that r(⊤) be defined
as Σ⊤

∗ rather than just Σ∗: otherwise we would equate Σ∗ and ⊤, while those are different
in LANG (e.g., for a counterexample when Σ = {a, b}, interpret both a and b as the empty
language on some non-empty alphabet).

4 Relations

Given a set X, a relation on X is a set of pairs of elements from X. In the sequel, relations
are ranged over using letters R, S, their set is written P (X×X), and we write x R y for

D. Pous and J. Wagemaker 7

⟨x, y⟩ ∈ R. Relations on X form an S⊤-algebra with the operations defined as follows:

R + S ≜ R ∪ S

R · S ≜ {⟨x, z⟩ | ∃y ∈ X, x R y ∧ y S z}
R∗ ≜ {⟨x0, xn⟩ | ∃n, x1, . . . , xn−1, ∀i < n, xi R xi+1}

0 ≜ ∅
1 ≜ {⟨x, x⟩ | x ∈ X}
⊤ ≜ X × X

(+ is set-theoretic union, · is relational composition, ·⋆ is reflexive transitive closure, 0, 1 and
⊤ are the empty, identity and full relations, respectively.) We write REL for the class of all
S⊤-algebras of the above shape.

Let KAF , Kleene Algebra with a Full element, denote the union of the axioms from KAT

and axiom (F). Let us insist that despite the abbreviation, KAF extends KAT and thus
contains axiom (T). We prove in this section that KAF is sound and complete for REL. The
proof consists of two parts. First we characterise the equational theory of REL in terms of
closed languages (Section 4.1, Proposition 4.8), then we use reductions to show completeness
of KAF w.r.t. this closed language interpretation and obtain our main result (Section 4.2,
Theorem 4.16).

4.1 Characterisation via closed languages

We start by extending the previous closure function (Definition 3.1), in order to take into
account the new axiom (F):

▶ Definition 4.1 (Language closure CF). Given two words u, v over Σ⊤, we write u ⇝F v

if either u ⇝T v, or u is obtained replacing a subword of the shape w⊤w in v, with w (for
some word w ∈ Σ⊤

∗). Given a language L over Σ⊤, we call F -closure of L the language

CF (L) ≜ {v | v ⇝∗F u for some u ∈ L}

CF is a closure operator, but unlike CT in the previous section, CF is not a homomorphism—
e.g., CF ({a} · {⊤a}) contains the word a while CF ({a}) · CF ({⊤a}) does not. Moreover, an
elementary description of CF requires more work than for CT in the previous section.

Let E be the following function on languages over Σ⊤, where for a word u and a natural
number n, we write un for the word obtained by concatenating n copies of u:

E(L) ≜ {w | ∃n, w(⊤w)n ∈ L}

We shall prove that CF = E ◦ CT , and that CF can be characterised in terms of certain
graph homomorphisms (Proposition 4.7 below). Before doing so, we need to define graphs.

▶ Definition 4.2 (Graph, graph homomorphism). A graph is a tuple ⟨V, E, ι, o⟩, where V is a
set of vertices, E ⊆ V × Σ × V is a set of labelled edges, and ι, o ∈ V are two distinguished
vertices, respectively called input and output.

A graph homomorphism from the graph G to the graph H is a function from vertices of
G to vertices of H that preserves labelled edges, input, and output. We write H ◁G when
there exists a homomorphism from G to H.

8 Completeness Theorems for Kleene algebra with Top

The relation ◁ on graphs is a preorder. We depict graphs as usual, using an unlabelled
ingoing (resp. outgoing) arrow to indicate the input (resp. output); we use dotted red arrows
to depict graph homomorphisms. For instance, we depict two finite connected graphs below,
and a homomomorphism between them:

a
a

b

c

a b

c

▶ Definition 4.3 (Graph of a word). We associate to each word u ∈ Σ⊤
∗ the graph g(u)

defined as follows:
the vertices are the elements of [0; n], where n is the length of u;
for a ∈ Σ there is an a-labelled edge from i to i + 1 if the i-th letter of u is a;
the input is 0 and the output is n.

Graphs of words are rather simple: graphs as depicted above do not arise as graphs of
words. For words not containing ⊤, they are just directed paths from the input to the output.
For words containing ⊤, they are collections of (possibly empty) directed paths where the
input is the starting-point of some path and the output is the end-point of some path. For
example, the graphs of abc and d⊤de⊤ are depicted below:

a b c d d e

Nevertheless, homomorphisms between graphs of words may be non-trivial. For instance, we
have g(ab)◁ g(a⊤ab⊤b) and g(⊤a⊤b⊤)◁ g(⊤b⊤a⊤), as witnessed below:

a a b b

a b

b a

a b

In the sequel, we shall represent homomorphisms between graphs of words in a slightly more
compact way, starting directly from the natural writing of the words, and using horizontal
lines and shaded parallelograms to emphasise distinguished subwords and mappings between
them. For instance, the above homomorphisms can be generalised to g(uv) ◁ g(u⊤uv⊤v)
and g(⊤u⊤v⊤)◁ g(⊤v⊤u⊤) for arbitrary words u, v, which we can represent as follows:

⊤ ⊤u u v v

u v

⊤ ⊤ ⊤v u

⊤ ⊤ ⊤u v

Our main interest into graphs and homomorphisms comes from the following characterisa-
tion of the equational theory of REL. This characterisation appeared first in [7, Theorem 6],
for the syntax of Kleene allegories. Its (trivial) extension to Kleene allegories with top then
appeared in [28, Theorem 16].

▶ Theorem 4.4. [7, Theorem 6] For all regular expressions with top e, f , we have:

REL |= e ≤ f ⇐⇒ ∀u ∈ [e], ∃v ∈ [f], g(u)◁ g(v)

D. Pous and J. Wagemaker 9

Proof. Cf. above references. That we need the theorem only in a small fragment here
(without intersection and converse) does not seem to enable substantial simplifications. In
particular, we still need to consider arbitrary graphs, and a variant of [3, Lemma 3] with top.
We give a proof in Appendix A for the sake of completeness. ◀

▶ Remark 4.5. For words u, v without top, we have g(u) ◁ g(v) iff u = v. Therefore, for
regular expressions e, f without top (whose languages only contain words without top), the
above theorem reduces to REL |= e ≤ f ⇐⇒ [e] ⊆ [f], a standard variant of one of the
equivalences recalled in the introduction.

Thanks to Theorem 4.4, it suffices to relate homomorphisms betweem graphs of words to
the notion of CF -closure. We do so in the following lemma.

▶ Lemma 4.6. For all words u, v ∈ Σ⊤
∗, the following are equivalent:

(i) u ⇝∗F v,
(ii) g(u)◁ g(v),
(iii) u ∈ E(CT {v}).

Proof. We show (i) ⇒ (ii) ⇒ (iii) ⇒ (i). For the first implication, since ◁ is a preorder, it
suffices to show that u ⇝F v entails g(u)◁ g(v). There are two cases to consider.

either the rewriting rule associated to axiom (T) was used, i.e., u = lwr and v = l⊤r for
some words l, w, r ∈ Σ⊤

∗. In that case we have the following homomorhpism from the
graph of v to the graph of u:

⊤l r

l w r

or the rewriting rule associated to axiom (F) was used, i.e., u = lwr and v = lw⊤wr for
some words l, w, r ∈ Σ⊤

∗. In that case we have the following homomorhpism from the
graph of v to the graph of u:

⊤l w w r

l w r

For the second implication, assume g(u)◁ g(v). Let n be the number of occurrences of ⊤ in
v, and let v0, . . . , vn be top-free words such that v = v0⊤v1⊤ · · · ⊤vn. Since they are top-free,
those subwords must be mapped to u in a straight way, and thus be subwords of u. For
instance, when n = 3, the homomorphism may look as follows:

⊤ ⊤ ⊤v0 v1 v2 v3

u

For all 0 ≤ i ≤ n, let li, ri be the words such that u = liviri. We have that l0 and rn must
be the empty word since inputs and outputs must be preserved by homomorphisms. We
have u(⊤u)n ⇝nT v: we can obtain u(⊤u)n from v by replacing the ith occurrence of ⊤ in v

with the word ri−1⊤li, for 0 < i ≤ n. This suffices to conclude that u ∈ E(CT {v}): we have

10 Completeness Theorems for Kleene algebra with Top

proven (ii) ⇒ (iii). As an example, when n = 3, the situation may be depicted as follows:

⊤ ⊤ ⊤v0 v1 v2 v3

r0 ⊤ l1 r1 ⊤ l2 r2 ⊤ l3v0 v1 v2 v3

v

⊤ ⊤ ⊤u u u u

u

For the last implication, assume that u ∈ E(CT {v}). There exists n such that u(⊤u)n ⇝∗T v,
an thus in particular u(⊤u)n ⇝∗F v. Finally observe that u ⇝∗F u(⊤u)n using n rewriting
steps along (F), so that we can conclude by transivitity: u ⇝∗F u(⊤u)n ⇝∗F v. ◀

The above lemma has two important immediate consequences. First we have the an-
nounced factorisation of the closure CF , and second, combined with Theorem 4.4, we obtain
a characterisation of the equational theory of REL in terms of closed languages:

▶ Proposition 4.7. We have CF = E ◦ CT .

▶ Proposition 4.8. For all regular expressions with top e, f , we have:

REL |= e = f ⇐⇒ CF [e] = CF [f]

Proof. For all e, f , we have:

REL |= e ≤ f ⇐⇒ ∀u ∈ [e], ∃v ∈ [f], g(u)◁ g(v) (by Theorem 4.4)
⇐⇒ [e] ⊆ CF [f] (by Lemma 4.6)

The initial statement follows by antisymmetry and the fact that CF is a closure (so that for
all languages L, K, L ⊆ CF (K) iff CF (L) ⊆ CF (K)). ◀

4.2 Completeness w.r.t. closed languages
It remains to show that KAF is complete w.r.t. the previous closed language interpretation.
We use reductions in order to do so: we find a counterpart to the function r from Section 3
(Definition 3.3), for the F -closure rather than the T -closure. By Proposition 4.7, and since
we already have the function r for T -closure, it actually suffices to find a function s that
corresponds to the function E, i.e., such that for all expressions e, s(e) is an expression whose
language is E[e].

To this end, we use Kleene’s theorem stating that a language is regular if and only if it is
recognisable by a finite automaton, and the fact that regular languages are closed under union
and intersections. Using those tools, we show that the language E(L) is regular whenever L

is a regular language, by forming unions and intersections of regular languages extracted
from some finite automaton for L.

We first recall standard notions from finite automata theory.

▶ Definition 4.9 (Non-deterministic finite automaton). Let X be a finite set. A non-
deterministic finite automaton (NFA) over the alphabet X is a tuple A = ⟨Q, i, ∆, F ⟩
where:

Q is a finite set of states;

D. Pous and J. Wagemaker 11

i ∈ Q is an initial state;
∆ : X → P (Q×Q) is the transition relation, associating to each letter of X a relation
on states;
F ⊆ Q is a subset of accepting states.

We extend the transition relation ∆ into a function ∆′ on words as follows (where as before,
1 is the identity relation on Q and · is relation composition):{

∆′(ϵ) ≜ 1
∆′(xu) ≜ ∆(x) · ∆′(u) for x ∈ X and u ∈ X∗

The language of A from states p to q, written LA(p, q) or just L(p, q) when A is clear from
the context, is defined as follows:

LA(p, q) ≜ {u ∈ X∗ | ⟨p, q⟩ ∈ ∆′(u)}

The language of A, written LA is finally obtained as
⋃

f∈F LA(i, f).

Intuitively, the language from p to q consists of those words that label a path from p to q in
the automaton, and the language of the automaton consists of those words labelling a path
from the initial state to some accepting state.

We will also need a function which is intuitive in the end, but cumbersome to define. Let
us use the standard notations for lists: [] for the empty list, x :: q for the insertion of an
element x in front of a list q, and [x; y; . . . ; z] for concrete lists. Given a set Q, two elements
p, q ∈ Q, and a list l ∈ (Q × Q)∗ of pairs elements of Q, we write pr(p, l, q) for the list of
pairs of elements of Q defined as follows, by recursion on l:{

pr(p, [], q) ≜ {⟨p, q⟩}
pr(p, ⟨r, s⟩ :: k, q) ≜ ⟨p, r⟩ :: pr(s, k, q) for r, s ∈ Q, and k ∈ (Q × Q)∗

Intuitively, pr(p, l, q) shifts the pairs found in l, integrating p at the beginning and q at the
end. For instance, we have pr(p, [⟨q, r⟩; ⟨s, t⟩], u) = [⟨p, q⟩; ⟨r, s⟩; ⟨t, u⟩].

▶ Example 4.10. The function pr is useful for the following reason. Consider an automaton
with initial state i, a single final state f , ∆(a) = {⟨r, s⟩}, and ∆(b) = {⟨t, u⟩}. Suppose we
want to characterise the set of words w such that wawbw is accepted. Those are precisely
those words in the intersection L(i, r) ∩ L(s, t) ∩ L(u, f). The terms from this intersection
are easily described using pr: we have pr(i, [⟨r, s⟩; ⟨t, u⟩], f) = [⟨i, r⟩; ⟨s, t⟩; ⟨u, f⟩]. ◀

We finally write X⃝∗ for the set of duplicate-free finite sequences over X (i.e., such that
every element of X appears at most once). When X is finite, so is X⃝∗ .

We now have all that we need to characterise the image of E on regular languages:

▶ Proposition 4.11. Let A = ⟨Q, i, ∆, F ⟩ be a NFA over Σ⊤ with language L. We have

E(L) =
⋃ { ⋂

{L(p, q) | ⟨p, q⟩ ∈ pr(i, l, f)}
∣∣ l ∈ ∆(⊤)⃝∗ , f ∈ F

}
Proof. We proceed by double inclusion.

From left-to-right, assume w ∈ E(L). Let m be the length of w, and let n be the minimal
natural number such that w(⊤w)n ∈ L. By definition, there is some f ∈ F and a path from
i to f labelled with w(⊤w)n in A. Call a ⊤-transition a pair ⟨p, q⟩ belonging to ∆(⊤). Let l

be the sequence of ⊤-transitions used in this path at positions m + 1, 2m + 1, . . . , nm + 1.

12 Completeness Theorems for Kleene algebra with Top

This sequence is duplicate-free by minimality of n: if the same ⊤-transition was appearing
twice, we would find a smaller witness for the membership of w in E(L). We check easily that
for all pairs ⟨p, q⟩ ∈ pr(i, l, f), we have w ∈ L(p, q). Therefore, w belongs to the right-hand
side expression.

From right-to-left, let w, l, f such that for all ⟨p, q⟩ ∈ pr(i, l, f), we have w ∈ L(p, q).
Let n be the length of l. We can construct a path from i to f labelled by w(⊤w)n in A.
Therefore we have w(⊤w)n ∈ L, whence w ∈ E(L). ◀

The above formula expresses E(L) as a finite union of finite intersections of languages
of the form L(p, q), which are all regular by Kleene’s theorem. Since regular languages are
closed under unions and intersections, we deduce that E(L) is regular. In other words, the
function E preserves regularity of languages over Σ⊤.

▶ Definition 4.12 (Expression closure s). Given a regular expression with top e, we define
the regular expression with top s(e) as follows:
1. construct a NFA ⟨Q, i, ∆, F ⟩ whose language is [e];
2. for all l ∈ ∆(⊤)⃝∗ and all f ∈ F , compute a regular expression with top gl,f for the regular

language
⋂

{L(p, q) | ⟨p, q⟩ ∈ pr(i, l, f)};
3. set s(e) ≜

∑
l,f gl,f .

▶ Example 4.13. Call e the expression o(a + ⊤o)⊤a+ from the introduction (⋆), where
o ≜ (aa)∗a is an expression for the set of words of as of odd length, and a+ ≜ a∗a is an
expression for the set of non-empty words of as. Let us compute s(e) using the following
automaton for [e], where i is the initial state, and f is the only final state.

i

·

p q

·

r s f
a ⊤ a ⊤ a

a

a a a a
a

We can easily describe various languages of interest in this automaton:

x y L(x, y)
i p [o]
q r [o]
s f [a+]

x y L(x, y)
i r [o(a + ⊤o)]
q f [o⊤a+]
s p ∅

There are exactly two ⊤-transitions, so that we have five lists in ∆(⊤)⃝∗ to consider for s(e):
1. the empty list, contributing L(i, f) = [e] to E[e];
2. [⟨p, q⟩], not contributing since L(i, p) ∩ L(q, f) = [o] ∩ [o⊤a+] = ∅;
3. [⟨r, s⟩], contributing L(i, r) ∩ L(s, f) = [o(a + ⊤o)] ∩ [a+] = [oa];
4. [⟨p, q⟩; ⟨r, s⟩], contributing L(i, p) ∩ L(q, r) ∩ L(s, f) = [o] ∩ [o] ∩ [a+] = [o];
5. [⟨r, s⟩; ⟨p, q⟩], not contributing since L(i, r) ∩ L(s, p) ∩ L(q, f) = ∅;
So in the end, s(e) can simply be taken to be e + oa + o. ◀

▶ Proposition 4.14. For all expressions e, we have
(i) [s(e)] = E[e], and
(ii) KAF ⊢ e = s(e).

D. Pous and J. Wagemaker 13

Proof. The first item holds by definition of s and Proposition 4.11. We proceed by antisym-
metry for the second item. Taking n = 0 in the definition of E, we have [e] ⊆ E[e] = [s(e)],
so that KA ⊢ e ≤ s(e) by completeness of KA (‡). For the converse implication, it suffices
to prove that for all l ∈ ∆(⊤)⃝∗ and all f ∈ F , the expression gl,f from Definition 4.12 is
provably smaller than e in KAF . Let us abbreviate gl,f as g, let n be the length of l, and let
⟨pj , qj⟩j≤n be the successive elements of pr(i, l, f) (so that p0 = i and qn = f). We have

[g(⊤g)n]
= [g] · {⊤} · [g] · . . . · {⊤} · [g] ([·] is a homomorphism)
⊆ L(p0, q0) · {⊤} · L(p1, q1) · . . . · {⊤} · L(pn, qn)

(by definition of g, [g] is contained in each L(pj , qj))
⊆ L(p0, q0) · L(q0, p1) · L(p1, q1) · . . . · L(qn−1, pn) · L(pn, qn)

(since l ∈ ∆(⊤)⃝∗ , we have ⟨qj , pj+1⟩ ∈ ∆(⊤), and thus ⊤ ∈ L(qj , pj+1))
⊆ L(i, f) ⊆ [e] (p0 = i, qn = f , and definition of L)

We deduce KA ⊢ g(⊤g)n ≤ e by completeness of KA (‡), and we conclude by prepending n

applications of axiom (F): KAF ⊢ g ≤ g(⊤g)n ≤ e . ◀

▶ Example 4.15. Continuing Example 4.13, we check that both oa ≤ oa⊤oa ≤ e and
o ≤ o⊤o⊤o ≤ e are derivable in KAF , in both cases using axiom (F) for the the first
inequation (once or twice), and KA completeness for the second one. Also observe that
[a+] = [oa+o], so that KA ⊢ a+ = oa+o once again by KA completeness. Putting everything
together, we obtain a derivation of the following shape for the law (⋆) from the introduction.

KAF ⊢ a+ = oa + o ≤ oa⊤oa + o⊤o⊤o ≤ e ◀

More generally, we can combine all the above results to obtain our main theorem:

▶ Theorem 4.16. For all regular expressions with top e, f , we have

REL |= e = f ⇐⇒ CF [e] = CF [f] ⇐⇒ KAF ⊢ e = f

Proof. We have

REL |= e = f

⇔ CF [e] = CF [f] (Proposition 4.8)
⇔ E(CT [e]) = E(CT [f]) (by Proposition 4.7)
⇔ [s(r(e))] = [s(r(f))] (by Propositions 3.4(i) and 4.14(i))
⇔ KA ⊢ s(r(e)) = s(r(f)) (by completeness of KA (†))
⇒ KAF ⊢ e = f (by transitivity and Propositions 3.4(ii) and 4.14(ii))
⇒ REL |= e = f (soundness of KAF axioms w.r.t. REL)

◀

The above proof follows the same strategy as the one for Theorem 3.5. Like there, the
right-to-left implication of the second equivalence is an instance of [11, Theorem 2], and we
use reductions only for the left-to-right part of this equivalence.

Like for Theorem 3.5, we could complete the statement of Theorem 4.16 with “. . . ⇐⇒
[s(r(e))] = [s(r(f))]”. This gives decidability since the function s is computable, but this does
not give a reasonable algorithm: given an expression e, the size of s(e) (or of an automaton
for it) might be very big. We leave open the question of whether there is a better algorithm,
hopefully in PSpace.

14 Completeness Theorems for Kleene algebra with Top

5 Relations with a greatest element

We call generalised S⊤-algebra of relations an S-subalgebra of an algebra of relations
(P (X×X)) with a greatest element, seen as an S⊤-algebra by using this greatest element for
the constant ⊤. We write REL′ for the class of all generalised S⊤-algebras of relations.

Intuitively, REL′ consists of models of binary relations where ⊤ is not necessarily the full
relation, only a greatest element. As an example, consider ordered relations R on natural
numbers, such that i ≤ j whenever i R j. Those form an S-algebra with greatest element the
order relation ≤ itself, which is not the full relation.

In the literature, REL′ is sometimes preferred over REL because it is closed under taking
subalgebras and products, and actually forms a quasivariety [1]. (In contrast, it is not clear
whether REL is closed under products: the two obvious ways of embedding a pair of relations
into a new relation fail to preserve either union or top—REL as defined here is not closed
under taking subalgebras either, but definining it in such a way would not change the results
from the present paper.)

The equational theory of REL′ differs from that of REL. For instance, the previous
example of ordered relations shows that REL′ ̸|= x ≤ x ·⊤ ·x. Indeed, for x = {⟨0, 1⟩}, x ·⊤ ·x
is empty since ⊤ does not relate 1 to 0.

We show below that the equational theory of REL′ actually coincides with that of LANG,
and can thus be axiomatised by KAT .

▶ Proposition 5.1. Every member of LANG embeds into a member of REL′.

Proof. We adapt the technique used by Pratt for Kleene algebras (without top) [30, third
page] and later reused by Kozen and Smith for Kleene algebras with tests [22, Lemma 5].
For a set X, let M(X) be the set of relations R on X∗ such that for all words u, v, u is a
prefix of v whenever u R v. The S-operations on relations restrict to M(X), so that M(X)
is an S-algebra, and setting ⊤ ≜ {⟨u, uv⟩ | u, v ∈ X∗} turns it into a member of REL′. We
embed a member P (X∗) of LANG into M(X) as follows:

ι : P (X∗) → M(X)
L 7→ {⟨u, uv⟩ | u ∈ X∗, v ∈ L}

The function ι is easily shown to be an S⊤-algebra homomorphism, and it is injective (since,
e.g., L = {u | ⟨ϵ, u⟩ ∈ ι(L)}). ◀

Note that it is crucial that we consider REL′ here: the above construction would not give
an S⊤-algebra homomorphism if we were not restricting to relations of a certain shape: ⊤
would not be preserved.

▶ Corollary 5.2. For all regular expressions with top, we have

LANG |= e = f ⇐⇒ REL′ |= e = f ⇐⇒ KAT ⊢ e = f

Proof. The outer equivalence was proven in Theorem 3.5. That REL′ |= e = f entails
LANG |= e = f is a direct consequence of Proposition 5.1. That KAT ⊢ e = f entails
REL′ |= e = f follows from the soundness of KAT axioms w.r.t. REL′. ◀

Similarly to REL′, we can define a class LANG′ of S⊤-algebras which is closed under taking
subalgebras and where ⊤ is not necessarily the full language. However, unlike with REL′ and
REL, the equational theory of LANG′ coincides with that of LANG (and REL′). Indeed the
axioms of KAT remain sound for LANG′.

D. Pous and J. Wagemaker 15

A Proof of Theorem 4.4

We give here a proof of Theorem 4.4. Variants of this theorem appeared for Kleene allegories
without top in [7, Theorem 6], and for Kleene allegories with top in [28, Theorem 16]. The
latter variant subsumes Theorem 4.4: it deals with a strictly larger fragment of relation
algebra. We nevertheless give a proof here for the sake of completeness.

First we observe that valuations into relational models are very close to (potentially
infinite) graphs in the sense of Definition 4.2: it suffices to adjoin to them an input and an
output.

▶ Definition A.1 (Graph of a valuation). Let σ : Σ → P (X×X) be a valuation of Σ into
relations on some set X. For all elements i, j ∈ X, we define the graph ⟨σ, i, j⟩ ≜ ⟨X, F, i, j⟩
where F ≜ {⟨x, a, y⟩ | a ∈ Σ, ⟨x, y⟩ ∈ σ(a)}.

The first key lemma characterises evaluation of expressions not using 0, +, ·∗ in a relational
model, in terms of graph homomorphisms. In our case, expressions not using 0, +, ·∗ can be
represented by words with top. Such a lemma appeared first in [3, Lemma 3] for a signature
including intersection and converse, but not top. Under its original formulation, its extension
to cover top is trivial once we realise that the graph of ⊤ should simply be a graph without
edges and exactly two vertices (the input and the output).

▶ Lemma A.2. Let σ : Σ → P (X×X) be a valuation of Σ into a member of REL. For all
words u ∈ Σ⊤

∗, we have

⟨i, j⟩ ∈ σ̂(u) ⇐⇒ ⟨σ, i, j⟩◁ g(u)

Proof. By induction on u.
if u is empty, then both sides reduce to the condition i = j;
if u is a letter a, then both sides reduce to the condition ⟨i, j⟩ ∈ σ(a);
if u is ⊤, then both sides hold independently of i, j;
if u = vw for two smaller words v, w then we have

⟨i, j⟩ ∈ σ̂(vw)
⇔ ∃k, ⟨i, k⟩ ∈ σ̂(v) ∧ ⟨k, j⟩ ∈ σ̂(w) (by definition)
⇔ ∃k, ⟨σ, i, k⟩◁ g(v) ∧ ⟨σ, k, j⟩◁ g(w) (by induction hypothesis on v and w)
⇔ ⟨σ, i, j⟩◁ g(vw)

(The last equivalence comes from a simple analysis of the homomorphisms whose source
is a sequential composition of two graphs—see, e.g., [3, Lemma 2(ii)].) ◀

The second key lemma characterises the evaluation of an arbitrary expression in terms of
(the evaluations of) the words in the language of that expression. Variants of such a lemma
often appear in the litterature for star-continuous models, rather than just relational ones
(e.g., [22, Lemma 4]).

▶ Lemma A.3. Let σ : Σ → P (X×X) be a valuation of Σ into a member of REL. For all
regular expressions with top e, we have

σ̂(e) =
⋃

u∈[e]

σ̂(u)

Proof. By an easy induction on e, using distributivity of · over arbitrary unions in REL. ◀

16 Completeness Theorems for Kleene algebra with Top

Equipped with those two lemmas, we obtain the announced theorem.

▶ Theorem A.4. For all regular expressions with top e, f , we have:

REL |= e ≤ f ⇐⇒ ∀u ∈ [e], ∃v ∈ [f], g(u)◁ g(v)

Proof. For the forward implication, assume REL |= e ≤ f and let u ∈ [e]. Let n be the length
of u and consider relations on [0; n], a member of REL. Define σ : Σ → P ([0; n]×[0; n]) by
⟨i, j⟩ ∈ σ(a) if the i-th letter of u is a and j = i+1. The graph g(u) is nothing but ⟨σ, 0, n⟩, so
that we have ⟨0, n⟩ ∈ σ̂(u) by Lemma A.2, using the identity graph homomorphism. Thus we
consecutively get ⟨0, n⟩ ∈ σ̂(e) by Lemma A.3, ⟨0, n⟩ ∈ σ̂(f) by assumption, and ⟨0, n⟩ ∈ σ̂(v)
for some v ∈ [f] by Lemma A.3 again. Lemma A.2 finally gives g(u) = ⟨σ, 0, n⟩◁ g(v), as
required.

For the backward implication, assume the right-hand side and let σ : Σ → P (X×X) be
a valuation into a member of REL. For all i, j ∈ X, we have

⟨i, j⟩ ∈ σ̂(e)
⇔ ⟨i, j⟩ ∈ σ̂(u) for some u ∈ [e] (by Lemma A.3)
⇔ ⟨σ, i, j⟩◁ g(u) for some u ∈ [e] (by Lemma A.2)
⇒ ⟨σ, i, j⟩◁ g(u) for some u, v s.t. v ∈ [f] and g(u)◁ g(v) (by assumption)
⇒ ⟨σ, i, j⟩◁ g(v) for some v ∈ [f] (by transitivity of ◁)
⇔ ⟨i, j⟩ ∈ σ̂(v) for some v ∈ [f] (by Lemma A.2)
⇔ ⟨i, j⟩ ∈ σ̂(f) (by Lemma A.3)

Whence σ̂(e) ⊆ σ̂(f), and thus REL |= e ≤ f as required. ◀

D. Pous and J. Wagemaker 17

References
1 H. Andréka and S. Mikulás. Axiomatizability of positive algebras of binary relations. Algebra

Universalis, 66(1):7–34, 2011.
2 H. Andréka, S. Mikulás, and I. Németi. The equational theory of Kleene lattices. Theoretical

Computer Science, 412(52):7099–7108, 2011.
3 H. Andréka and D. Bredikhin. The equational theory of union-free algebras of relations.

Algebra Universalis, 33(4):516–532, 1995.
4 S. L. Bloom, Z. Ésik, and G. Stefanescu. Notes on equational theories of relations. Algebra

Universalis, 33(1):98–126, 1995.
5 M. Boffa. Une remarque sur les systèmes complets d’identités rationnelles. Informatique

Théorique et Applications, 24:419–428, 1990.
6 M. Boffa. Une condition impliquant toutes les identités rationnelles. Informatique Théorique

et Applications, 29(6):515–518, 1995.
7 P. Brunet and D. Pous. Petri automata for Kleene allegories. In Proc. LICS, pages 68–79.

ACM, 2015.
8 P. Brunet and D. Pous. Algorithms for Kleene algebra with converse. Journal of Logical and

Algebraic Methods in Programming, 85(4):574–594, 2016.
9 J. Conway. Regular Algebra and Finite Machines. Chapman and Hall mathematics series.

Chapman and Hall, 1971.
10 A. Das, A. Doumane, and D. Pous. Left-handed completeness for Kleene algebra, via cyclic

proofs. In Proc. LPAR, volume 57 of EPiC Series in Computing, pages 271–289. Easychair,
2018.

11 A. Doumane, D. Kuperberg, P. Pradic, and D. Pous. Kleene algebra with hypotheses. In Proc.
FoSSaCS, volume 11425 of LNCS, pages 207–223. Springer, 2019.

12 A. Doumane and D. Pous. Completeness for identity-free Kleene lattices. In Proc. CONCUR,
volume 118 of LIPIcs, pages 18:1–18:17. Schloss Dagstuhl, 2018.

13 Z. Ésik and L. Bernátsky. Equational properties of Kleene algebras of relations with conversion.
Theoretical Computer Science, 137(2):237–251, 1995.

14 P. Freyd and A. Scedrov. Categories, Allegories. North Holland, 1990.
15 T. Kappé, P. Brunet, A. Silva, J. Wagemaker, and F. Zanasi. Concurrent Kleene algebra with

observations: From hypotheses to completeness. In Proc. FoSSaCS, volume 12077 of LNCS,
pages 381–400. Springer, 2020.

16 S. C. Kleene. Representation of events in nerve nets and finite automata. In Automata Studies,
pages 3–41. Princeton University Press, 1956.

17 D. Kozen. A completeness theorem for Kleene Algebras and the algebra of regular events. In
Proc. LICS, pages 214–225. IEEE Computer Society, 1991.

18 D. Kozen. Kleene algebra with tests. Transactions on Programming Languages and Systems,
19(3):427–443, May 1997.

19 D. Kozen. On Hoare logic and Kleene algebra with tests. ACM Trans. Comput. Log., 1(1):60–76,
2000.

20 D. Kozen and M.-C. Patron. Certification of compiler optimizations using Kleene algebra with
tests. In Proc. CL2000, volume 1861 of LNAI, pages 568–582. Springer, 2000.

21 D. Kozen and A. Silva. Left-handed completeness. In Proc. RAMiCS, volume 7560 of LNCS,
pages 162–178. Springer, 2012.

22 D. Kozen and F. Smith. Kleene algebra with tests: Completeness and decidability. In Proc.
CSL, volume 1258 of LNCS, pages 244–259. Springer, September 1996.

23 A. Krauss and T. Nipkow. Proof pearl: Regular expression equivalence and relation algebra.
Journal of Automated Reasoning, 49(1):95–106, 2012.

24 D. Krob. Complete systems of B-rational identities. Theoretical Computer Science, 89(2):207–
343, 1991.

25 Y. Nakamura. Partial derivatives on graphs for Kleene allegories. In Proc. LiCS, pages 1–12.
IEEE, 2017.

http://dx.doi.org/10.1007/s00012-011-0142-3
http://dx.doi.org/10.1016/j.tcs.2011.09.024
http://dx.doi.org/10.1007/BF01225472
http://dx.doi.org/10.1007/BF01190768
http://archive.numdam.org/article/ITA_1990__24_4_419_0.pdf
http://www.numdam.org/article/ITA_1995__29_6_515_0.pdf
http://dx.doi.org/10.1109/LICS.2015.17
http://dx.doi.org/10.1016/j.jlamp.2015.07.005
https://books.google.nl/books?id=1KAXc5TpEV8C
http://dx.doi.org/10.29007/hzq3
http://dx.doi.org/10.29007/hzq3
http://dx.doi.org/10.1007/978-3-030-17127-8_12
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.18
http://dx.doi.org/10.1016/0304-3975(94)00041-G
http://www.rand.org/pubs/research_memoranda/2008/RM704.pdf
http://dx.doi.org/10.1109/LICS.1991.151646
http://dx.doi.org/10.1145/256167.256195
http://dx.doi.org/10.1145/343369.343378
http://dx.doi.org/10.1007/3-540-44957-4_38
http://dx.doi.org/10.1007/3-540-44957-4_38
http://dx.doi.org/10.1007/978-3-642-33314-9_11
http://dx.doi.org/10.1007/3-540-63172-0_43
http://dx.doi.org/10.1007/s10817-011-9223-4
http://dx.doi.org/10.1016/0304-3975(91)90395-I
http://dx.doi.org/10.1109/LICS.2017.8005132

18 Completeness Theorems for Kleene algebra with Top

26 P. W. O’Hearn. Incorrectness logic. Proc. ACM Program. Lang., 4(POPL):10:1–10:32, 2020.
27 D. Pous. Kleene Algebra with Tests and Coq tools for while programs. In Proc. ITP, volume

7998 of LNCS, pages 180–196. Springer, 2013.
28 D. Pous. On the positive calculus of relations with transitive closure. In Proc. STACS,

volume 96 of LIPIcs, pages 3:1–3:16. Schloss Dagstuhl, 2018.
29 D. Pous, J. Rot, and J. Wagemaker. On tools for completeness of kleene algebra with

hypotheses. In Proc. RAMiCS, volume 13027 of LNCS, pages 378–395. Springer, 2021.
30 V. R. Pratt. Dynamic algebras and the nature of induction. In Proc. ACM Symposium on

Theory of Computing, STOC ’80, page 22–28, New York, NY, USA, 1980. Association for
Computing Machinery.

31 V. Redko. On the algebra of commutative events. Ukrain. Mat, (16):185–195, 1964.
32 C. Zhang, A. A. de Amorim, and M. Gaboardi. On incorrectness logic and Kleene algebra

with top and tests. Proc. ACM Program. Lang., 6(POPL):1–30, 2022.

http://dx.doi.org/10.1145/3371078
http://dx.doi.org/10.1007/978-3-642-39634-2_15
http://dx.doi.org/10.4230/LIPIcs.STACS.2018.3
http://dx.doi.org/10.1007/978-3-030-88701-8_23
http://dx.doi.org/10.1007/978-3-030-88701-8_23
http://dx.doi.org/10.1145/800141.804649
http://dx.doi.org/10.1145/3498690
http://dx.doi.org/10.1145/3498690

	1 Introduction
	2 Preliminaries
	3 Languages
	4 Relations
	4.1 Characterisation via closed languages
	4.2 Completeness w.r.t. closed languages

	5 Relations with a greatest element
	A Proof of Theorem 4.4

