Giao Duong 
  
Ky 
  
LOCAL EXISTENCE AND UNIQUENESS OF SOLUTIONS TO YANG-MILLS HEAT FLOW PROBLEM

Keywords: Local Cauchy problem, Local existence and uniqueness problem, Yang-Mills heat flows, Yang-Mills connections, Geometric flows

In this paper, we consider the following nonlinear equation ( ) ( ) 2 2 2 3 1 3 2 2 rr ud u u d u d r u tr + =  +  ---- where ( ) 2* : , , u r t d +  . This equation has been investigated by Grotowski in 2001 in studying the Yang-Mills heat flow connections on Riemann manifolds. In the paper, we prove the local Cauchy problem for above equation that is well-posed in ( ) 2 1 r L  + + . More precisely, for any initial data ( ) 2 0 1 r uL  + +  , there exists ( ) 0 0 Tu  such that the above equation has a unique solution ( ) ( ) 2 1 r u t L  + +  for all ( ) 0 0, t T u    .

I. INTRODUCTION

In this paper, we are interested in the following nonlinear heat equation which is an important part in Yang-Mills theory. We would like to mention that the theory was used to study the weak nuclear forces, governing the nuclear decay of some particles which is considered as a non-commutative version of Maxwell's electromagnetism, see more details in [START_REF] Actor | Classical solutions of SO(2)-Yang-Mills theories[END_REF]- [START_REF] Grotowski | Finite time blow-up for the Yang-Mills heat flow in higher dimensions[END_REF]. In particular, the Yang-Mills heat flow has received a lot of attention from both mathematics and physics communities. Results on existence and uniqueness of weak solutions in other functional spaces were obtained in [START_REF] Klainerman | Finite energy solutions of the Yang-Mills equations in 31 +[END_REF] for 2,3 d =

( ) ( ) ( ) ( )  ) ( ) ( ) 2 
, and [START_REF] Oh | Gauge choice for the Yang-Mills equations using the Yang-Mills heat flow and local well-posedness in 1 H[END_REF] and [START_REF] Quittner | Superlinear parabolic problems[END_REF] for 4 d = ; global existence has proved in [START_REF] Tao | Local well-posedness of the Yang-Mills equation in the temporal gauge below the energy norm[END_REF]- [START_REF]Equivariant solutions of the Yang-Mills equations[END_REF]; the regularity was established in [START_REF] Kozono | Global solution for the Yang-Mills gradient flow on 4-manifolds[END_REF] in for higher dimensions; stability were proved in [START_REF] Rade | On the Yang-Mills heat equation in two and three dimensions[END_REF] and [START_REF] Schlatter | Global existence of the Yang-Mills flow in four dimensions[END_REF]; singularity formations have been studied in [START_REF] Struwe | The Yang-Mills flow in four dimensions, Calculus of Variations and Partial Differential Equations[END_REF]- [START_REF] Chen | Stabilities of homothetically shrinking Yang-Mills solitons[END_REF], the local well posedness was studied in [START_REF] Kelleher | Singularity formation of the Yang-Mills flow[END_REF] and [START_REF] Tian | Gauge theory and calibrated geometry I[END_REF] in Sobolev spaces . In particular, the study of Yang-Mills connections usually is considered in abstract spaces such as Riemann manifolds which get lot of inconveniences. For that reason, the author in [START_REF] Weinkove | Singularity formation in the Yang-Mills flow[END_REF] reduced the study of Yang-Mills connections to the problem introduced in (1).

The main goal of this paper is to study the local Cauchy problem to (1) since strong connections to the Yang-Mills problem. Recently, the authors in [START_REF] Chen | Stabilities of homothetically shrinking Yang-Mills solitons[END_REF] 



which is strictly larger than

( ) 0 C  + .
For more convenience, we mention below some important notations which will be used in the proof of the paper. Let  be a Lebesgue measurable set in

( )   ( )   inf such that : 0 B x f x B     =  +
which is a Banach space with the following norm

( ) ( )   ( )   inf such that : 0 . L f B x f x B    =    =
Similarly, we also define ( )

2 1 x L  +  ( ) ( ) ( ) ( ) ( ) 2 2 1 such that 1 . x L L f L x f   +    =   +  +  
and it is also a Banach space with the norm

( ) ( ) ( ) ( ) 2 1 2 1. x L L f x f   +   =+ .
We call f a radially symmetric function on  if and only if for all orthogonal matrices A and x  , then it satisfies that Ax  and ( ) ( )

f Ax f x =
. Hence, we introduce

( ) ( )   such that radially symmetric rad L f L f   =   ,
which is a Banach space with

( )
. L   norm. In particular, we also define the abstract space of Banach-valued functions ,0

T XT  by   ( ) ( ) ( ) 2 1 0, , T rad x X L T L L    + =   
which is also a Banach space with the norm

( )   ( ) 0, T X LT z Z t  = where ( ) ( ) ( ) 2 1 x L Z t z t  +  = .
Next, we denote  as Laplace operator in Euclide space 

We would like to mention [START_REF] Chen | Monotonicity formula and small action regularity for Yang-Mills flows in higher dimensions[END_REF]Proposition 48.4] the following fundamental estimate

( ) ( ) 2 2 d d L t L e f f + +   . (3) 

II. MAIN RESULTS

In this section, we aim to prove the local Cauchy problem for equation (1) in ( )

2 1 x L  + +
. However, it is so hard to give a direct proof to equation (1) due to complexity of the linear operator To overcome this challenge, we used the idea investigated in [START_REF] Atiyah | The Yang-Mills equations over Riemann surfaces[END_REF] where the authors successfully handled the Cauchy problem for harmonic heat flows. Let f be a function defined in + , then we denote f as f 's extension on 2 d + given by ( ) ( )

f x f x = . ( 4 
)
We can see that the extension is always a radially symmetric function on 

( ) ( ) ( ) ( ) ( ) ( ) 2 2 3 2 2 0 3 2 2 , , 0, , 0. d t d rad u u d u d x u x t T u u L + +   =  - - --     =   (5)
From the symmetricity of equation ( 5), the solution u remains radially symmetric as well as the solution exists. In the following, we aim to prove the local Cauchy problem to equation ( 5 ( )

2 d fL +  satisfying ( ) ( ) ( ) 2 1. d L x f A  + + . ( 6 
)
Then, it holds that ( )

( ) ( ) 2 1 , 0 d t L x e f C A t   +  +   ,
where the semi-group t e  defined as in [START_REF] Biernat | Type II blow-up mechanism for supercritical harmonic map heat flow[END_REF]. Proof: By the explicit formula in (2), we write as follows Let us consider 0 R  large enough and fixed later. For all xR  , we use (6) to derive ( ) + For 2 I : Using the fact that 2 , 2

( ) ( ) ( ) 2 
x y K y  , then it follws ( )

1 1 x C y    +  +
. Hence, we estimate 2 I as follows . Thus, we conclude that for all xR  , we have

( ) ( ) ( ) 2 
( ) ( ) (1 ) 
,

t x e f x C R A    + .
Finally, we get the conclusion of the proof. In addition, we define  a mapping on T X (

, , 0 and 0 t ts t u t e u e F s u s ds t z u

-   = +   =  , (7) 
and F defined by

( ) ( ) ( ) 2 23 3 2 2 F u d u d x u = - - -- . (8) 
In the below, we aim to prove that once T small enough,  satisfies the following properties: (H1):  maps 0 B into itself.

(H2):  is a contraction mapping on 0 B i.e. there exists ( )

0,1   such that ( ) ( ) 1 2 1 2 1 2 0 ,, T T X X u u u u u u B   -   -   . -Proof of (H1): Let 0 uB 
arbitrarily, we derive from (8) and the fact 1 

T X u  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 
() 01 0 T T T t t t s X X X u e u e F u s ds C T u  -  - =   , (9) 
for all 0 uB  . Taking In addition, since u is radially symmetric, so ( ) Fu defined as in ( 8) is and the convolution in (2) saves the symmetry that leads

( ) ( ) ut  is radially symmetric for all   0, tT 
. Finally, we conclude (H1).

-Proof of (H2): Let 1 2 0 , u u B  , and we write

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 2 1 2 1 2 2 22 1 2 1 1 2 2 32 2 . F u s F u s d u s u s u s u s d x u s u s u s u s u s u s - = - - - + -- - + + Since 1 1 T X u  and 2 1 T X u  , we derive ( ) ( ) ( ) ( ) ( ) 
( ) ( ) ( )   2 2 2 2 1 1 1 2 1 2 , 0, d d x x L L F u s F u s C u s u s s T + + + + -  -   .
Regarding to Lemma 2.1, we have

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 1 1 1 2 1 2 1 2 T d d x x ts X L L e F u s F u s C u s u s C u u + + + + - -  -  - , for all ( ) 0, 0, t s s t - 
. Thus, we derive from ( 6) that for all 

(  0, tT  ( )( ) ( )( ) ( )
1 2 1 2 1 2 T T X X u u u u  -  - , 1 2 0 
, u u B  , . which concludes (H2). Now, we continue on the proof of the proposition, since T X is a Banach space and  is a contractive map from 0 B to itself, so we apply Banach fixed point theorem that there uniquely exists 

In particular, by the parabolic regularity of the semi-group t e  , we improve that ( ) ( ) ( ) 

  problem (1) has a strong connection to the problem of Yang Mills connections in

  solved the local Cauchy problem for (1set of smooth functions with compact supports. However, it remains open if the local Cauchy problem in can be solved ( ) L  + . In this work, we aim to prove the Cauchy problem in

2 d 2 C

 22 + -solution to (1) (so-called classical solution), then the extension u belongs to

Lemma 2 . 1 .

 21 Let us consider  be a positive number and

Now, we have the following result: Proposition 2

 2 The result follows from the Banach fixed point theorem (the unique fixed point of a constructive mapping). Let us consider initial data

  )

	Applying Lemma 2.1 with	2  = and	ts -	( ) 0,1	, we get							
						e	( ) ts -	( ) ( ) ( ) 2 2 1 d x + L F u s +		1 C u	X	T	,		
	which yields															
				( )					( ) ( )						
	1	+	2 x F u s	d + L	2		2 23 2 1 1 d x L L + + u s  +   2 2 d x C u s +  +		C u s	1 L + 	x	2	d	+	2	,
											
									.							

d + , and then, we established a new property that the semi-group t e  , 0 t  reserves the polynomial decays showed in Lemma 2.1, then the existence and uniqueness follows by the route map based on Banach fixed point theorem.

, then, it follows from the extension (4) that ( ) ( )

we obtain the existence and the uniqueness of the solution u to equation ( 5) on ( )

, then, the problem ( 1) and ( 8) are equivalent in the radially symmetric setting, this leads to the existence and the uniqueness of u and also the conclusion the proposition completely follows.

Remark 2.4:

We can repeat the proof of Propositions 2.2 and 2.3, to establish the local existence and uniqueness in spaces ( )

  . Since the main difficulty is to handle the hugeness of nonlinear term 23 ruat infinity. However, once ( )

 it follows that the nonlinearity is controlled well by ( )