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Tactile Classification of Object Materials
for Virtual Reality based Robot Teleoperation

Bukeikhan Omarali1,2, Francesca Palermo1,3, Kaspar Althoefer1, Maurizio Valle2, Ildar Farkhatdinov1,4

Abstract— This work presents a method for tactile clas-
sification of materials for virtual reality (VR) based robot
teleoperation. In our system, a human-operator uses a remotely
controlled robot-manipulator with an optical fibre-based tactile
and proximity sensor to scan surfaces of objects in a remote
environment. Tactile and proximity data and the robot’s end-
effector state feedback are used for the classification of objects’
materials which are then visualized in the VR reconstruction of
the remote environment for each object. Machine learning tech-
niques such as random forest, convolutional neural and multi-
modal convolutional neural networks were used for material
classification. The proposed system and methods were tested
with five different materials and classification accuracy of 90%
and more was achieved. The results of material classification
were successfully exploited for visualising the remote scene in
the VR interface to provide more information to the human-
operator.

I. INTRODUCTION

The last few years have seen rapid adoption of Virtual
Reality (VR) technologies in robot teleoperation. The key
advantage of VR-based teleoperation interfaces is the three-
dimensional (3D) reconstruction of a remotely operated
robot and its’ environment that improves a human-operator’s
(further referred to as ”operator”) sense of presence [1], [2],
[3], [4]. However, this also leads to operators mainly relying
on visual feedback. An important aspect of teleoperation is
providing the operator with reliable information about the
objects’ materials in a remote environment. For example, the
operator may be required to collect all metallic objects in the
remote environment which might be difficult if the operator
can only rely on the visual reconstruction of the remote
environment, which is typically implemented with a point-
cloud geometric visualisation based on the data acquired
from RGB-D cameras. Often such cameras acquire noisy
data that reduce the accuracy of VR reconstruction.

We suggest using tactile sensing and classification to
identify materials of objects in the remote environment and
visually communicate those materials to the operator in the
VR interface. The majority of objects’ materials classification
techniques are based on machine learning applied to images
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Fig. 1. Overview of the system. a) a remotely operated robotic-manipulator
with a tactile sensor (b) is commanded by a human-operator (d) to explore
the surfaces of different objects. Material classification results are used to
visualise the objects differently in the VR reconstruction (c).

of objects [5], [6]. A convolutional neural network (CNN)
architecture was used to classify materials from patches
extracted from photos of objects, followed by localising
and segmenting the materials in the original images [7].
In situations with reduced lighting when computer vision
methods can fail (for example teleoperation in extreme
and hazardous environments [8]), tactile exploration can be
used for material recognition [9], [10]. A combination of
proximity, tactile and force sensing can provide important
information on the explored material such as texture, stiffness
and shape [11]. Compliance properties of different objects
via supervised classifiers using a hybrid force and proximity
finger-shaped sensor was investigated in [12]. A fibre optic-
based sensor has been designed and used in [13], [14], [15]
to recognise and classify fractures on surfaces implementing
a random forest classifier.

In contrast to machine learning algorithms which need
engineered features extracted from the data, deep learning
models achieve higher performance when trained with high
dimensional input, such as audio in speech recognition
[16] and figures in image recognition and detection [17].
Various machine learning classifiers (Gaussian, K-nearest



neighbours, support vector machine) were compared in [18]
against a CNN model to classify explored surfaces via tactile
skin sensor attached to an iCub humanoid robot. It was found
that the deep learning model for tactile material classification
provides more robust performance in comparison to feature
learning-based methods. The authors of [19] demonstrated
that implementing a multi-modal approach based on CNN
with both visual and physical interaction signals achieved
more accurate results than vision only as well as superior
classification compared to hand-designed features methods.
Authors of [20] proposed an algorithm for recognising the
object touched via human interactions on an electronic skin.
The 3D tactile data generated by the skin were converted into
2D images and used as input for a CNN which outperformed
classical tactile data classification algorithms.

We propose a method for tactile classification of materials
for VR-based robot teleoperation. In our system, the operator
remotely controls a robotic arm with an optical fibre-based
tactile and proximity sensor to scan surfaces of objects in
a remote environment. Tactile and proximity data as well
as the robot’s end-effector state feedback are used for the
classification of objects’ materials. Classification results are
then used to visualize objects’ materials in VR. Machine
learning techniques such as random forest, convolutional
neural and multi-modal convolutional neural networks were
used for material classification.

To the authors’ knowledge, this work is the first attempt
to demonstrate the integration of material classification with
tactile sensing in VR-based robot teleoperation. Our work
proposes a novel material classification technique based on
data collected with a fibre optics-based tactile sensor, human-
supervisory control and visualisation of objects’ materials in
VR.

II. SYSTEM OVERVIEW

Key components of the system are shown in Fig. 1:
Franka Emika’s Panda robot (a), a fibre optics tactile sensor
(b), an Intel Realsense 435i RGBD camera, Oculus Rift S
headset and Oculus Touch handheld controllers (d). Two
desktop computers were connected in a wired network: the
operator’s computer running the VR interface (built with
Unity 3D), and the robot’s computer running ROS. The
robot was controlled by the operator using a VR-based robot
teleoperation interface described in our previous work [2].
The operator sets desired motion path by manually placing
waypoints in a VR reconstruction of the remote environment.
These waypoints are then used to plan the robot’s motion,
which is previewed and accepted or rejected by the operator.
The remote environment was visualized in VR using a point
cloud from an Intel Realsense 435i RGB-D camera mounted
on the robot’s end-effector.

We used an integrated force and proximity finger-shaped
sensor described in [12], [21] attached to the robot’s end-
effector. The sensor consists of 3D printed rigid and soft
components that allow the finger to bend during interaction
with the environment, as shown in Fig. 1(b). The sensor
has three pairs of optical fibre cables (D1, D2, D3) that

The operator sets the scan reference posea)

The robot performs the scan
b) c) d) e)

start

reverse

t = 0 t = 2 t = 6.15 t = 10.3

Fig. 2. a) The operator manually sets the scan reference pose: the pose
of the 3D blue axis mesh is used as a reference of scan location with the
second reference at 56.5mm offset. b) the robot approaches to the scan start
position at t = 0; c) the slide begins at t = 2; d) the slide direction reverses
at t = 6.15; e) the slide is finished at t = 10.3.

use reflected lights’ intensity to measure the deformation
of the finger. The fourth pair of optical fibre cables (P)
is used to measure the distance between the tip of the
finger and nearby objects. Each pair of the sensor’s fibre
optic cables was attached to a Keyence FS-N11MN light-
to-voltage transducers that communicate with the robot’s
control computer at 400 Hz.

III. METHODS

Tactile Data Collection. Supervised teleoperation was
used for tactile exploration of five objects made of metal, pa-
per, silicon, hard styrofoam, soft foam. All objects were flat
and placed horizontally in the robot’s workspace. Fig. 1(a)
shows sample objects made of metal, styrofoam and soft
foam. An expert operator was asked to set the reference
tactile scan pose, which determined the location and the
orientation of initial touch between the end-effector mounted
tactile sensor and the object as well as the subsequent sliding
(scanning motion). Setting the initial conditions for tactile
exploration manually allows efficient collection of highly
variable data representative of real-world use cases suitable
for the classifiers’ training and validation.

Objects were scanned using horizontal linear sliding mo-
tion that was generated from a reference pose set by the
operator. The operator set the reference poses by manually
placing an axis 3D mesh object in the VR teleoperation
interface, see Fig. 2(a). The reference pose was then used to
generate the scan start and reverse positions (both generated
at the same height as the reference pose) for the tactile sensor.
The slide was always performed along the sensor’s y-axis
projection on the object’s horizontal plane, as it results in
more distinct D1 and D2 sensor outputs.

The orientation of the tactile sensor with respect to the
scanned object was determined by the orientation of the
3D axis mesh set by the operator in VR. The robot has
always approached to and moved away from the scanned
object along the sensor’s z-axis. Different orientations of
the sensor and corresponding approaches have resulted in



different sensor deformation behaviours. The contact force
exerted by the robot/finger on the scanned object (and by
extent the penetration depth on softer materials) depended
on the reference pose height set by the operator.

After the operator set the reference pose, the robot planned
and executed a trajectory necessary to approach and get in
contact with the scanned object, see Fig. 2(b,c), performed a
slide Fig. 2(d), reversed the slide direction, slid back Fig. 2(e)
and retracted. The length of the sliding motion was set to
56.5 mm. The motion plans were generated using Moveit
and the planned trajectory’s scan duration was automatically
re-scaled to 8.3 s.

We have recorded raw outputs of the tactile sensor for
object classification. We recorded the robot’s end-effector’s
average position error during the scan as the mean of differ-
ences between the end-effector’s desired and actual positions.
The robot’s position error can be used as an indicator of
objects’ softness. For example, the tactile sensor can deform
and penetrate into soft foam resulting in a small position
error, which is not the case for metal. We also recorded
the reference pose orientation. The tactile sensor scan output
varied depending on the sensor’s orientation with respect to
the scanned objects, hence desired orientation was used as a
feature in classifiers.

The operator set the reference pose and the robot per-
formed the scan three separate times. Then the operator
changed the reference pose by either changing the reference
orientation, or reference position on the scanned object’s
surface, or the reference scan depth. We have recorded 150
samples (scans) per class.

Data pre-processing for classification. A sample was
recorded from 2 seconds before the slide start (to include the
initial contact between the sensor and the scanned object) to
2 seconds after the slide end (to include the retraction of the
sensor from the scanned object). We used spectrograms of
raw tactile data for objects’ material classification. Spectro-
grams were generated with 52 time segments and 50 spectral
bands (i.e. each channel’s spectrogram is a 52×50 matrix).
We compared three classifiers: random forest, convolutional
neural network (CNN) and multi-modal convolutional neural
network (M-CNN). Random forest was made using scikit-
learn library, CNNs were made using Keras with Tensor-
flow. Spectrograms were standardized using the maximum
amplitude present in the dataset. The average end-effector
position error was standardized using the maximum absolute
value present in the dataset. The reference orientation was
represented as a unit quaternion. We generated additional 50
synthetic samples per class by randomly copying existing
samples and adding corresponding ±5% standard deviation
to each of the spectrograms’ time segment and frequency
band (to each cell of the spectrogram’s 52×50 matrix).

The dataset was split into 60%-20%-20% training, valida-
tion and test sets, respectively. We distributed samples into
sets based on the tactile sensor’s orientation with respect to
the scanned objects. This was done to allow the classifiers
to train with the data collected at different tactile exploration
conditions. Fig. 3 demonstrates sensor orientations in radial

Fig. 3. Distribution of different initial tactile scanning angular orientations
of the sensor. γ is the angle between the objects’ surface normal and the
tactile sensor’s z axis. θ is the angle between the projection of the tactile
sensor’s z-axis to the scanned object’s xy-plane and the object’s x-axis
(object’s x and y-axis are collinear with the robot’s with an origin and
desired scan position).

angles present in the dataset (note that many samples over-
lap), where γ is the angle between scanned object’s z-axis
(scanned surface normal) and the tactile sensor’s z-axis and θ
is the angle from scanned object’s x-axis to y-axis (both are
collinear to robot’s base frame’s x and y-axis). The training
set contained samples in upper and lower 30% γ angles,
validation and testing sets were randomly chosen from the
rest. Hence classifiers were tested and validated on tactile
exploration conditions that were not present in the training
set, ensuring classifiers’ robustness.

Classification with Random forest. Random Forest [22]
is a machine learning algorithm used for classification and
regression built on an ensemble of multiple learning trees.
Insensitive to over-fitting, it can produce reasonable pre-
dictions with little tuning and provides an effective way
of handling missing data. Random Forest has been vastly
used in remote sensing [23], [15], [13]. We implemented a
Random Forest classifier with 1000 estimators. The number
of estimators was determined by a grid search. The classifier
was given concatenated spectrograms, average end-effector
position error and reference orientation as inputs.

Classification with Convolutional Neural Network.
CNNs are commonly used in image recognition due to
their ability to learn cross-correlations between multiple
channels (RGB in case of images) and shift invariancy. They
can also be used to learn patterns between multiple sensor
signals as demonstrated in [24], [25]. We suggest a similar
approach to classify objects’ materials - using tactile sensor’s
multiple sensing channels. The CNN classifier only takes
spectrograms as an input and its’ model architecture is shown
in Fig. 4. There was a dropout with 30% probability between
fully connected layers. The output of the last convolutional
layer was batch normalized. The model was trained with an
early stopping triggered by no improvement on validation
loss. We used the Adam optimizer with an exponentially
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Fig. 4. Convolutional neural network (CNN) and multi-modal CNN
classifiers. Classifiers are similar except for the additional input layer
that contains the robot’s end-effector position error and scan orientation
quaternion.

decaying learning rate. The model’s and training hyper-
parameters were determined using grid search.

Classification with Multi-modal Convolutional neural
network. We added an extra input to the CNN described
above that included the robot’s end-effector’s average posi-
tion error and the reference orientation. The model architec-
ture is detailed in Fig. 4. The extra inputs were concatenated
with the flattened output of the last convolution layer. The
multi-modal CNN retained the 30% probability dropout
between fully connected layers and batch normalization after
the last convolutional layer. The M-CNN was trained with
settings similar to the CNN.

Visualization of object’s materials in VR. We pro-
pose two visualization methods that communicate scanned
objects’ predicted classes to the operator in the VR-based
robot teleoperation interface. Both methods rely on naive
Octomap-based segmentation introduced in our previous
work [2], which allows the operator to segment pointclouds
into separate objects. Octomap [26] is a probabilistic map-
ping method that splits the space (for example the remote
environment) into occupied, vacant and unknown cubes
(voxels) using pointcloud as an input. Our naive segmen-
tation detects when such occupied cube has been pointed
and clicked by the operator and segments all points (of
the pointcloud) contained within it as well as within other
connected cubes. All segmented points are then stored locally
as static segmented pointclouds.

1) Objects’ predicted classes as color-coded Octomaps:
As the operator sets the reference pose using the 3D axis
mesh, the axis mesh checks for collisions with the Octomap
using Unity’s collider system. These collisions do not have
any physical meaning and are simply used to detect which
part of the Octomap the scan will be performed on. Once
a collision is detected the corresponding Octomap cube
and connected cubes are segmented and copied from the
”live” Octomap and stored locally. Once the classification is
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Fig. 5. The raw output of the tactile sensor for different materials. Reds:
D1, blues: D2, greens: D3, purples: P. Leftmost vertical blue line represents
the start of the sliding motion; the middle vertical blue line represents the
reverse in slide direction; the rightmost vertical blue line represents the end
of the slide.

finished the predicted class is used to colour the segmented
Octomap according to the color-code given to the operator
in the VR interface.

2) Objects’ predicted classes as color-coded pointclouds:
This visualization method is similar to the one above except
instead of segmenting and storing Octomaps, it segments and
stores corresponding pointclouds. Once the classification is
finished the predicted class is used to color the segmented
pointcloud according to the labels’ color-codes.

IV. RESULTS

Tactile data. Fig. 5 presents three samples of raw sensor
output for each material recorded at different sensor orien-
tations and heights. There is a noticeable variance between
different samples of each material. The leftmost vertical lines
indicate the start of the slide, the middle one indicates the
slide direction reversal, and the last vertical line indicates the
stop of the slide.

For all materials the proximity sensor (P) spikes up on the
sensor approach and retraction (before the slide begins and
after it finishes respectively). The proximity sensor reading
depends on the distance to the object. The proximity sensor
only detects in a limited range and once the object is too
close (or the sensor touches the object) the proximity sensor
value drops to the baseline. The amplitude of the spike is
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Fig. 6. Sample spectrograms (not normalized) for metal and soft foam. There are large spikes in 0-15Hz frequency range for both materials (arrows
indicate zoom-in regions) and smaller spikes in high frequency for softer/rougher soft foam.

also determined by the object’s surface roughness, color and
reflectivity. In the case of rough and porous materials (soft
foam, medium styrofoam), the proximity sensor generates a
noisy output even during the touch.

There was a delay between the beginning of the slide
and deformation sensors responses. The delay was the time
necessary for the sensing finger to deform, (the sensor
deformation can be seen in Fig 2d,e). Similarly, responses
of the deformation sensors were delayed after slide direction
reversal and sensor retraction.

Spectral analysis. Example spectrograms are shown in
Fig. 6. Spectrograms were distinct per material, which was
noticeable visually. Spectrograms differed most in the 0-
15Hz frequency band, where there were large amplitude
spikes during the sensor’s initial contact with an object,
during deformation and sensor retraction. There was also
a noticeable high-frequency signal present in rougher/softer
materials as well, (see D2 for soft foam).

End-effector position error. The average end-effector
position errors occurred along the scanned surface’s normal
as the robot failed to push in as deep as the operator
intended to. Table I presents means and standard deviations
of the robot’s end-effector’s average position error along
the scanned surface’s normal per material. As expected
the harder materials had larger errors: the sensor deformed
and pushed in deep into the soft foam but could not do
the same with metal. However, T-test showed no statistical
significance.

Classification metrics. Accuracy, precision, recall, and f1-
score classification metrics are used to validate and compare
the used classification models. The results for the analysis
with the implemented classifiers are presented in Table II.
Random Forest, which is robust to outliers and requires
little parameter optimisation, achieves the best results. The
MCNN, with the extra inputs of the robot’s end-effector’s
average position error and reference orientation, achieves

TABLE I
END-EFFECTOR AVERAGE POSITION ERROR PER SAMPLE

Mean (mm) Standard deviation (mm)
Soft foam -0.166 0.179
Styrofoam -0.124 0.1477
Paperbook -0.264 0.415
Silicon -0.0817 0.1484
Metal -0.232 0.220

TABLE II
COMPARISON OF RESULTS FOR THE EXPERIMENTS

Model Accuracy Precision Recall F1

Random Forest 94.5 95.0 94.5 94.4
CNN 84.5 85.1 84.5 84.1

M-CNN 92.0 92.3 92.0 92.1

results comparable to the Random Forest classifier while the
baseline CNN generates the worst outcome. Thus, even with
the small size of the dataset of the network, the extra inputs
make the M-CNN model more robust than the CNN and able
to generalise better. Confusion matrices for CNN, M-CNN,
and Random forest classifiers are shown in Fig. 7. One of the
most challenging materials to classify for all three models is
the paperstack, which is frequently confused with the silicon
class. This may be due to a similar pattern in the frequency
domain.

Predicted class visualization in VR. The Fig. 8 shows
the operator’s VR view of classification results as colored
Octomaps and colored pointclouds as well as the GUI
description of the color-coding. The operator can toggle
between visualization modes and ”live” pointcloud using
a button press on a handheld controller. In the current
implementation, both methods use static segmented clones
of pointcloud and Octomap respectively, which means that
updates to ”live” pointclouds or Octomap of objects (for
example if objects move or RGB-D camera changes position
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Fig. 7. Confusion matrices of Random Forest, Convolutional Neural Network, Multi-modal Convolutional Neural Network classifiers.
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Fig. 8. Classification results visualized in Virtual Reality interface: a)
classification results as color-coded Octomaps overlaid on corresponding
objects; b) classification results as static color-coded segmented pointcloud
clones.

with respect to objects) would not be reflected in classified
clones. This presents a technical challenge that requires
object tracking as well as continuous segmentation.

V. DISCUSSION AND CONCLUSION

Summary. We presented a method for tactile classification
of materials for VR-based robot teleoperation. We have
collected a dataset using a teleoperated robot. The dataset
contains five objects with a wide range of different sensor-
to-object relative orientations and interaction forces. We
have compared three classifiers using spectrograms of raw
tactile data and robot’s end-effector feedback: random forest,
convolutional neural network and multi-modal convolutional
neural network. We also introduced two visualisation meth-
ods to display the classification results to a human-operator

in the VR using color-coded pointclouds and corresponding
bounding Octomaps.

The results demonstrated that the random forest classifier
had the highest accuracy at 94.5% followed by the multi-
modal convolutional neural network with 92%. The results
of material classification were successfully employed for
visualising the remote scene in the VR interface to provide
more information to a human-operator.

Limitations. The proposed method currently works only
with flat surfaces. In the case of non-flat surfaces, a similar
approach can be used where the operator sets multiple
waypoints that can be used to generate a non-flat trajectory.

The dataset was collected using constant scan length and
duration. It is possible that the random forest classifier
trained on this dataset may not be able to generalize well
to scans performed at higher or lower speeds. The dataset
was collected using teleoperation to be representative of in-
field operations. This however prevented us from collecting
a larger amount of samples that would improve classifier
training. Although the dataset contains samples collected at
various positions, orientations and depths, it was collected by
a single expert operator. It is a small chance that classifier
could be overfitting towards this operator’s specific manner-
isms of setting the desired scan position.

Future work The future work would benefit from larger
sample sizes collected by multiple expert operators as well
as from an extended object set. The latter would also allow
moving from hard-coded material based labels to more
general roughness/hardness estimation.

Due to the imprecise nature of pointclouds the operator
may put the reference pose too deep into the object poten-
tially damaging the sensor or not deep enough, resulting in
poor classification. In future work, we will make better use of
the proximity sensor and haptic feedback to place the sensor
more accurately at the object’s surface.

Proposed methods require a full scan to be completed be-
fore the object’s class is determined. A potentially interesting
follow-up topic is real-time objects’ materials classification
using Long Short-term Memory networks.
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