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d’Orléans, Parc Grandmont, Tours, 37200, France.

2Peoples’ Friendship University of Russia (RUDN University),
6 Miklukho-Maklaya St., Moscow, 117198, Russian Federation.

3 Chair of Biotechnology, LGPM, CentraleSupélec, CEBB, 3 rue
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Abstract

We highlight the interest and the limitations of the L1-based Young
measure technique for studying convergence of numerical approximations
for diffusion problems of the variable-exponent p(x)- and p(u)- lapla-
cian kind. CVFE (Control Volume Finite Element) and DDFV (Discrete
Duality Finite Volume) schemes are analyzed and tested. In the situa-
tion where the variable exponent is log-Hölder continuous, convergence
is proved along the guidelines elaborated in [Andreianov, Bendahmane,
Ouaro, Nonlinear Analysis, 2010, Vol. 72&73] while investigating the
structural stability of weak solutions for this class of PDEs. In general,
the lack of density of the smooth functions in the energy space, related
to the Lavrentiev phenomenon for the associated variational problems,
makes it necessary to distinguish two notions of solutions, the narrow
ones (the H-solutions) and the broad ones (the W-solutions). Some situa-
tions where approximation methods “select” the one or the other of these
two solution notions are described and illustrated by numerical tests.

Keywords: p(x)-laplacian, p(u)-laplacian, gradient Finite Volume
approximation, Young measure, Lavrentiev phenomenon
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1 Introduction

The token “variable-exponent problems” refers to elliptic and parabolic PDEs
featuring Leray-Lions kind operators of the p-laplacian kind in which the expo-
nent p may vary as a function of the space-time variables and even as a function
of the unknown solution. In the general context of elliptic variable-exponent
nonlinear diffusion problems

− div a(x,∇u) = f in Ω, u|∂Ω = 0, (1)

in a bounded open domain Ω ⊂ Rd, d ≥ 1 (we will assume Ω polygonal to
make straightforward the meshing issue), as the simplest and fundamental
representative problem let us consider the p(x)-laplacian case:

a(x,∇u) = |∇u|p(x)−2∇u, p : Ω −→ (1,∞), (2)

(in the sequel, we will also discuss the situations where p(.) in (2) is itself a
function of u(.) with a local or non-local dependence). To avoid non-essential
technicalities we supplemented the PDE in (1) with the homogeneous Dirich-
let boundary condition, and for the sake of simplicity the reader may think at
this stage of f ∈ L∞(Ω) as a source term. Here and in the sequel, we write
p(.) or p(x) in order to stress the fact that the exponent p is a variable expo-
nent. Following the pioneering investigations of Zhikov [50] on minimization
of variable-exponent energy functionals over the adequate Sobolev-like spaces,
and in relation to applications to electrorheological and thermorheological flu-
ids [13, 48, 49] and to imaging [25], in the past twenty years there was a
remarkable revival of interest to such problems witnessed in particular by the
monographs [14, 28]. The goal of the present work is to discuss some aspects of
numerical approximation and of numerical analysis of such variable-exponent
problems.

Numerical analysis for the p-laplacian and more general Leray-Lions prob-
lems is well developed (see in particular [18, 19, 26] for the finite element
analysis, [4, 9–11, 32] and references therein for different finite volume schemes,
[12] for mimetic schemes, [3, 34] for gradient schemes (encompassing many of
the previous ones), [29] for a recent hybrid high-order strategy. The analysis
highlights the importance of strongly consistent gradient approximation and
exploits in the essential way the Lp − Lp′ duality for proving convergence of
such gradient approximations via the Minty-Browder argument [23, 44, 45].

In the present contribution, we are concerned with a variety of discretiza-
tion methods of the finite volume kind. The gradient reconstruction strategies
elaborated for the p-laplacian remain the cornerstone for finite volume approxi-
mation of the variable-exponent problems, however, specific issues arise. There
are two reasons for which the numerical analysis of the basic variable-exponent
p(x)-laplacian problem (1),(2) is considerably more delicate that for the case of
a constant exponent p. First, a fully practical numerical method (as opposed to
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the theoretical Galerkin method widely used for the sake of existence proofs)
makes it necessary to approximate the variable exponent map x 7→ p(x) by
a sequence (pn(.))n. While addressing the key issue of convergence of the
(approximate) gradients ∇un to the gradient ∇u of the exact solution, the
variable duality framework Lpn(.) − Lp

′
n(.) requires fine adaptations of the

Minty-Browder trick, such as developed by Zhikov [53–55]; such technical adap-
tations will be avoided in the present contribution, following the idea of [7, 8]
of which the present paper is a follow-up. Second, there is an ambiguity in
the choice of the underlying variable-exponent Sobolev framework, witnessed
through the celebrated Zhikov counterexample ([50, 51], see also [2, 15], see
Section 2). The lack of regularity of p(.) may lead to particular sensitivity with
respect to the choice of the discretization of p(.), see [38]. Moreover, it may
result in the Lavrentiev phenomenon for the associated minimization problem,
and in the necessity to distinguish two solution notions for the PDE at hand.
The notion of H-solution (or narrow solution, in the sequel of this paper)
appears when the solution and the test functions are sought in the closure H,
with respect to the p(x)-energy norm, of smooth compactly supported func-
tions. The notion of W-solution (or broad solution, in the sequel of this paper)
appears when the solution and the test functions are sought in the energy space
W (one has W = W 1,p(.) ∩ W 1,1

0 whenever the W 1,p(.) Poincaré-Friedrichs
inequality holds true). According to the choice of the numerical method, con-
vergence to the narrow or to the broad solution can be witnessed; we refer
in particular to the recent work [16] in the variational setting and for finite
element methods.

The two above difficulties are not specific to numerical approximations,
they arise already in the study of the structural stability of solutions (meaning
stability with respect to perturbation of data and coefficients of the problem,
including the variable exponent coefficient p(.)). Such study was conducted
systematically in [7], where the framework of renormalized solutions has been
chosen in order to impose the simplest possible assumptions on the pertur-
bation of the data. As a sample result, consider a sequence (un)n of weak
(narrow or broad, see [7] and Section 2) solutions to the Dirichlet p(x)-
laplacian problem with exponents pn(.) and source data fn. Assuming that
1 < p− ≤ pn(.) ≤ p+ <∞ and as n→∞, pn(.)→ p(.) in measure on Ω, that
‖fn‖∞ ≤ const and fn ⇀ f weakly in L1(Ω), one finds the following results:

• If un is a narrow solution of the pn(x)-laplacian problem (we mean the
n-labeled problem (1),(2)) with source fn and if for all n ∈ N one has
pn(.) ≥ p(.) a.e. in the domain Ω, then (un)n converges to the unique narrow
solution of the p(x)-laplacian problem with source f .

• If un is a broad solution of the pn(x)-laplacian problem with source fn and if
for all n ∈ N one has pn(.) ≤ p(.) a.e. in the domain Ω, then (un)n converges
to the unique broad solution of the p(x)-laplacian problem with source f .

• In the situation where p(.) verifies the log-Hölder regularity condition of
Zhikov and Fan ([36, 51, 52]; see Section 2 below for details), broad and
narrow solutions of (1),(2) coincide and any sequence of (broad or narrow)
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weak solutions un of the pn(x)-laplacian problem converges, irrespective of
the ordering of pn(.) and p(.), to the unique weak solution of the limit
problem.

In the present note, we combine the insight from these results and from the
recent work [16] with the standard finite volume discretization framework(s)
for the PDEs of p-laplacian kind. As the common guidelines of [16] and of our
investigation, one can highlight the following properties:

• In the case of log-Hölder regular exponent p(.), convergence of several
standard finite volume methods can be proved, with a wide choice of
approximation strategies for p(.).

• Approximation of the narrow solution requires discretization of p(.) by pD =
maxD p(.), whereD denotes the generic “diamond” of the mesh on which p(.)
is approximated; moreover, the method should be conforming in the sense
that the discrete solution can be assimilated to an element of W 1,∞

0 (Ω).
• Approximation of the broad solution requires discretization of p(.) by pD =

minD p(.); moreover, the method should be able to approximate in an ad
hoc sense the elements of W\H. While the latter property seems delicate to
check theoretically (in general, it is difficult to characterize W \H), it can
be tested numerically, in the classical setting of the Zhikov counterexample
([2, 15, 50, 51]).

However (see Section 5) in the finite volume context, (non)conformity may
have less impact on the result that the accurate choice of discretization of p.

For the sake of simplicity, we will state results for (1) only for the model
p(x)-laplacian case (2). However the results we prove can be extended in
a straightforward way to variable-exponent problems more general that (2),
following the guidelines of [7] where a wide family of variable-exponent Leray-
Lions elliptic operators for merely L1 data was considered. Further, our
numerical investigation is based on the notion of a weak solution, which
amounts to taking sufficient integrability assumptions on the source f so
that to make unnecessary the renormalized solutions setting of [7, 20]. This
restriction is due to the fact that finite volume approximation of renormalized
solutions enforces the additional orthogonality restriction on the meshes and
most importantly, it requires heavy technicalities, see [40, 43]. In practice, we
also test our discretization techniques, on orthogonal meshes, for the case of a
variable exponent thermistor problem of [53] with merely L1 source; this test
goes beyond our basic convergence analysis framework.

Further, as in the sequel [8] of the work [7], we address the situations
where the variable exponent depends (locally or non-locally) on the solution
u itself, i.e., p(x) = σ(x, u(x)) for a sufficiently regular Carathéodory function
σ. As in [8], we need the assumption of log-Hölder continuity of σ(., u(.)).
In practice this requires the a priori knowledge of the Hölder continuity of u
and thus imposes the restriction N < p− = min p(.), where N is the space
dimension. We also prospect numerically the behavior of more complex coupled
problems where p(.) depends on u(.) in a non-local way (via the coupling with
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another differential equation driven by u, and briefly discuss the extension
of the discretization techniques and of the convergence analysis to evolution
problems governed by variable-exponent operators.

The outline of the paper is as follows. In Section 2 we gather the key infor-
mation about variable-exponent spaces, some sample finite volume methods,
and Young measures, along with the related notation. This section is by no
means self-contained. Section 3 contains the theoretical and numerical results
for the “robust” situations where the equality W = H is ensured. Both p(x)-
and p(u)- laplacian problems are addressed following closely the method of
[7, 8] with the necessary adaptations to the discrete context. Section 4 is
devoted to the delicate situation of “Lavrentiev gap” W \H 6= ∅, mainly in
the setting of the Zhikov counterexample.

2 Preliminaries

The goal of this section is to provide, in a sketchy way, the conceptual
framework and the notation of the paper; details can be found in references.

2.1 Variable-exponent spaces, Zhikov’s counterexample

The solutions to problem (1), with the p(x)-laplacian nonlinearity (2) are
sought within the variable exponent and the variable exponent Sobolev spaces
H, W defined below.

Definition 1 Let p : Ω −→ [1,+∞) be a measurable function.

1. The space Lp(x)(Ω) consists of all measurable functions u : Ω −→ R such
that the quantity

ρp(x)(f) :=

∫
Ω

|f(x)|p(x) dx

called the modular is finite; on Lp(x) one considers the Luxemburg norm

‖u‖Lp(x) := inf
{
λ > 0

∣∣∣ ρp(x)

(
u/λ

)
≤ 1
}
.

2. The space W 1,p(.)(Ω) consists of all functions u ∈ Lp(.)(Ω) such that the
gradient ∇u of u (taken in the sense of distributions) belongs to Lp(.)(Ω);
this space is equipped with the norm

‖u‖W 1,p(.) := ‖f‖Lp(.) + ‖∇u ‖(Lp(.))d .

3. H := W
1,p(.)
0 (Ω) is the closure of C∞0 (Ω) in the norm of W 1,p(.)(Ω); we equip

it with the norm ‖f‖ := ‖∇f‖(Lp(.))d .

4. W is the space of all W 1,1
0 (Ω) functions such that in addition, ∇u ∈

(Lp(.))d(Ω), equipped with the same norm as H.
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When 1 < p− ≤ p(·) ≤ p+ < ∞, all the above spaces are separable
reflexive Banach spaces. Many important and subtle details can be found in
the monograph [28], in the papers [37] and [7] and in references therein. We
will need only a few basic properties as follows:

Proposition 1 Let p : Ω −→ [1,∞] be measurable.

1. The following form of the Hölder inequality holds true:

∀f ∈ Lp(·)(Ω), g ∈ Lp
′(·)(Ω)

∣∣∣∫
Ω

f(x)g(x) dx
∣∣∣ ≤ 2‖f‖Lp(·)‖g‖Lp′(·) .

where as usual, 1/p(.) + 1/p′(.) = 1.

2. There holds ρp(·)(f) = 1 if and only if ‖f‖Lp(·) = 1.
Further, if 1 ≤ p− ≤ p(.) ≤ p+ <∞, then

whenever ρp(·)(f) ≤ 1, one has ‖f‖p+
Lp(·) ≤ ρp(·)(f) ≤ ‖f‖p−

Lp(·) ;

whenever ρp(·)(f) ≥ 1, one has ‖f‖p−
Lp(·) ≤ ρp(·)(f) ≤ ‖f‖p+

Lp(·) .

3. If, in addition, π admits a uniformly continuous on Ω representative, then

the W
1,π(·)
0 Poincaré-Friedrichs inequality for the norms holds:

∀f ∈W 1,p(·)
0 (Ω) ‖f‖Lp(·) ≤ ‖∇f‖Lp(·) ;

in this case, W coincides with W 1,1
0 (Ω) ∩W 1,p(.)(Ω).

A difficulty in the interpretation and analysis of the variable exponent
problems of the p(x)-laplacian kind lies in the fact that H can be a strict sub-
space of W. Therefore there can be at least two different ways to interpret the
(1), (2) in the weak sense, according to the choice of the underlying functional
space. One can avoid the difficulty by ensuring that p(.) satisfy the log-Hölder
continuity property (3) put forward by Zhikov [51, 52] and Fan [36] and deeply
exploited in [28]; the same property ensures the optimal Sobolev embedding.

Proposition 2 (see [7, Corollary 2.6]) Assume that p(·) : Ω −→ [p−, p+] ⊂ (1,∞)
has a representative which can be extended into a function continuous up to the
boundary ∂Ω and satisfying the log-Hölder continuity assumption:

∃L > 0 ∀x, y ∈ Ω, x 6= y, − (log |x− y|) |π(x)− π(y)| ≤ L. (3)

Then the following properties hold true.

1. The space C∞c (Ω) is dense in W. In particular, H and W can be identified.

2. W = H is continuously embedded into Lp
∗(x)(Ω), where p∗(.) is a measurable

(1,∞]-valued optimal Sobolev embedding exponent defined as usual by the
formula p∗(x) = dp(x)/(d− p(x)) if p(x) < d, p∗(x) =∞ if p(x) > d, p∗(x)
is any real value if p(x) = d.
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The absence of (3) does not necessary lead to a discrepancy between W
and H, indeed, other sufficient conditions for the equality W = H exist and
the counterexamples to this equality are quite scarce (see, however, [15] for
recent results in this direction). Following [50] (see also [2, 15] for variants of
the example; the precise formulation we take involves a rotation, like in [16]),
in the square (−1, 1)2 of R2 consider the piecewise constant variable exponent
with a saddle-point at the origin:

p0(x) =

{
3/2 if |x1| < |x2| ,
3 if |x1| > |x2| .

(4)

For this choice of the domain and of the variable exponent, the above defini-
tions lead to W \H 6= ∅, moreover, H is of co-dimension one in W (see [2, 16]
and references therein).

Fig. 1 The setup of the (rotated, see [16]) Zhikov counterexample

More precisely, consider the function

u0(x) =


1 if |x1| < x2,

−1 if |x1| < −x2,
x2

|x1|
else ,

(5)

which is discontinuous at the origin. In his pioneering work [50], Zhikov showed
that the singularity of u0 cannot be approached by smooth functions in the
W 1,p(x) norm. Then, set ũ0(x1, x2) = (1 − x2

1 − x2
2)+u0(x1, x2) to produce a

function that has the same singularity as u0 at the origin and assumes the zero
Dirichlet data at the boundary of the domain Ω = (−1, 1)2. In this situation,
ũ0 ∈W \H and more precisely,

W = H⊕ Span(ũ0), (6)

see [2] and references therein.
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2.2 CVFE and DDFV approximations in 2D

The discrete framework we briefly describe is borrowed to the literature
devoted to the standard p-laplacian. We refer to [35] for the general back-
ground on finite volume methods, to [33, 34] for a general and comparative
view of the subject, to [1, 5, 24, 39] and references therein for CVFE schemes
and to [10, 31] for the DDFV schemes.

Having in mind several finite volume schemes with accurate (strongly con-
sistent) gradient reconstruction, i.e., the so-called MPFA schemes, diamond
schemes, gradient schemes etc.) let us fix a common notation which will per-
mit to write the core of the convergence proofs disregarding the specificities of
each scheme. We denote by T the control volumes of a mesh, by uT a generic
discrete function (constant per mesh volume) on the interior volumes of the
mesh. We denote by size(T) the maximal diameter of mesh volumes. The asso-
ciated space of all discrete functions is denoted by RT. When extended by
values zero at the boundary of the mesh, the discrete function is denoted by uT

and the associated space of all discrete functions vanishing on the mesh bound-
ary is denoted by RT

0 . The extension to the boundary of the mesh is required
to produce a discrete gradient of a discrete function. We denote by ∇DuT the
discrete gradient, provided by the method at hand, defined on the associated
diamond mesh denoted by D. Discrete gradients are particular instances of dis-
crete fields, which are R2-valued, constant per diamond functions; the space of
all discrete fields is denoted by (R2)D. Finite volume methods naturally asso-
ciate to a discrete field FD ∈ (R2)D its discrete divergence divT[FD] ∈ RT.
Further, two scalar products are defined: for discrete functions on the mesh T,

one uses
[[
uT, vT

]]
while for discrete fields on the diamond mesh D, one uses{{

FD,GD

}}
. For the sake of conciseness, we will limit our attention to schemes

that fulfill the following discrete duality property where we recall that vT ∈ RT

is extended to vT ∈ RT
0 by zero values at the boundary volumes:

∀ vT ∈ RT ∀ FD ∈ (R2)D

[[
− divT[FD] , vT

]]
=

{{
FD , ∇DvT

}}
. (7)

The two methods CVFE and DDFV that we describe in more detail below
(those are the methods used for the numerical tests) both possess the property
(7). Further methods successfully applied to discretization of the p-laplacian
kind equations (with a fixed p) possess a variant of this property (see in par-
ticular [9, 32]); within the very general family of gradient schemes ([34]) an
approximate version of the discrete duality (7) is postulated axiomatically.

Let us briefly specify the meshing, the precise meaning of the above nota-
tion, and the key definitions of the operators ∇D, divT for the CVFE and the
DDFV schemes.
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2.2.1 CVFE method

Given a confirming triangular primal mesh D in the sense of the finite elements,
the principle of the CVFE method is to consider scalar unknowns uT on the
dual mesh T (built on D) while the gradient operator ∇D is defined on the
triangles of D (see, e.g., [1, 5, 24, 39]). A generic triangle is denoted by D.

The dual mesh T is centered on the vertices of the triangular mesh D. For
each each vertex v, the associated unique control volume Kv or simply K is
obtained by connecting the barycenter of the elements, having in common v,
to the centers of the edges sharing the same vertex. We denote by EK the set
containing the edges of K. The scalar product

[[
·, ·
]]

can be expressed as[[
uT, vT

]]
=
∑
K∈T

|K|uKvK ,

where |K| stands for the measure of K. The discrete gradient is defined as in
the finite element literature (see, e.g. [47]), meaning that

∇DuT =
∑
K∈T

uK∇ϕK ,

where (ϕK)K∈T is the basis of P1 shape functions on the triangular mesh T.
The function ∇DuT is constant per element of D, therefore one can consider
∇DuT as belonging to the space (RD)2 of discrete fields on Ω. The scalar

product
{{
., .
}}

on (RD)2 is defined for FD = (FD)D∈D, FD = (GD)D∈D merely

by {{
FD,GD

}}
=
∑
D∈D

|D| FD · GD. (8)

Let FD belong to (R2)D, the discrete divergence of FD within K is defined by

divT[FD]|K =
1

|K|
∑
σ∈EK

|σ| FD · nσ,

where |σ| is the length of the interface σ and nσ accounts for the outward unit
normal to σ.

The discrete duality (7) for this CFVE method on triangles holds true,
moreover, note that it is possible to extend the method to primal mesh con-
sisting of arbitrary polygons while keeping the discrete duality ([5]), though
issues with scheme coercivity may arise.

Finally, note that source terms f in CVFE setting are discretized by fT =
(fK)K∈T with either the mean-value choice (the L1 integrability of f is enough)
or the center-value choice (whenever f is continuous on K):

fK =
1

|K|

∫
K

f(x) dx (mean value) or fK = f(xK) (center value). (9)
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The discretization of the source term is strongly consistent in the sense that
if f ∈ Lp(Ω), p < ∞, and (uT)T is a sequence of discrete functions weakly
convergent in Lp

′
(Ω) to a limit u as the discretization step size(T) of the mesh

T goes to zero, then[[
fT, uT

]]
→
∫

Ω

f(x)u(x) dx as size(T)→ 0; (10)

moreover, the gradient discretization is strongly consistent in the sense that if
φ ∈ C∞c (Ω) is discretized by φT = (φ(xK))K∈T, there holds

∇DφT → ∇φ a.e. on Ω and in (Lp(Ω))2, for all p <∞ (11)

as size(T)→ 0 (see, e.g., [47]); moreover, the per diamond gradient discretiza-
tion is first-order accurate (it is exact on functions affine in a neighborhood of
a given diamond).

Finally, we point out that the discrete duality (7) ensures that for a family
of meshes with size(T) going to zero, weak L1 limits of discrete functions
and the associated discrete gradients are linked by the continuous gradient
operator:

uT ⇀ u in L1(Ω) weakly
∇DuT ⇀ G in (L1(Ω))2 weakly

}
=⇒ u ∈W 1,1

0 (Ω) and G = ∇u. (12)

The CVFE method can be seen as a lumped Finite Element method, indeed,
only the discretization of the source term, based on the mass lumping idea, dif-
fers from the Finite Element framework. In particular, while in CVFE context
one associates to a discrete function uT the piecewise constant on Ω function
uT(x) =

∑
K∈T uK11K , one can also exploit the continuous, affine per diamond

reconstruction.

2.2.2 DDFV method

The particularity of the DDFV discretization is the construction of the whole
discrete gradient on the diamond mesh D requiring two different partitions of
Ω, namely the primal mesh M and dual mesh M? (if one considers only the
inner volumes M? of the dual mesh, it does not cover the whole of Ω).

The primal mesh M is a set of control volumes K covering Ω. The volumes
of the dual mesh are defined on M around the vertices. Each dual cell of M?

corresponds to a vertex of M, the boundary cells corresponding to the vertices
of the primal mesh that lie on ∂Ω. These dual cells are obtained by connecting
the centers of primal cells of M sharing the vertex in question. The diamond
mesh is made from quadrilaterals (resp. triangles) built on the internal (resp.
external) edges of M.

Then, we denote T = M ∪M? (the boundary volumes of the primal mesh
which are degenerate flat portions of the boundary ∂Ω). The unknowns are
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attached only to the inner volumes of each mesh, so that uT =
(
uM, uM

∗
)

.

For the sake of the gradient discretization and having in mind the homoge-
neous Dirichlet condition (extension to inhomogeneous Dirichlet condition is
described in [10]), the values of uT in the primal and dual boundary volumes
are set to zero. In the DDFV setting, the inner product

[[
·, ·
]]

involves primal
and dual unknowns. It writes[[

uT, vT

]]
=

1

2

∑
K∈M

|K|uKvK +
1

2

∑
K?∈M?

|K?|uK?vK? .

Consider a diamond cell D with diagonals (σ, σ?) ∈ EK × EK? . In fact, the
interface σ = K|L is shared by two primal volumes K and L. This notation
also covers boundary edges seen as degenerate volumes by convention. The
dual edge σ = K?|L? is shared by two dual cells K?, L? corresponding to the
end point of σ. The discrete gradient on the diamond D is defined in the 2D
basis (nKL,n

?
K?L?) by the formula

∇DuT

|D =
1

2 |D|

(
|σ| (uL − uK)nKL + |σ?| (uL? − uK?)n?K?L?

)
,

where nKL (resp. n?K?L?) denotes the unit normal to σ (resp. σ?) pointing
from K to L (resp. from K? to L?), and |σ|, |σ?| stand for the length of the
respective edges. The function ∇DuT, constant per diamond, can be seen as
an element of the space (RD)2 of discrete fields. As in the CFVE context,
the scalar product on (RD)2 is defined by (8). Also the divergence operator is
defined in the traditional way of finite volume schemes, but separately on the
primal and dual meshes as follows:

divT[FD]|K =
1

|K|
∑
σ∈EK

|σ| FD ·nσ, divT[FD]|K? =
1

|K?|
∑

σ?∈EK?

|σ?| FD ·n?σ? .

The discrete duality, which gave its name to the DDFV method, holds true
([10]). Note that the DDFV method allows for two different 3D extensions; in
the present contribution we limit our attention to 2D tests, but the analytical
proof works as well for the 3D DDFV schemes of [27] et [4].

Finally, we stress that in the DDFV method, the identification of a dis-

crete function uT =
(
uM, uM

∗
)

to a piecewise constant function on Ω is done

through the formula

uT(x) =
1

2

∑
K∈M

uK11K +
1

2

∑
K?∈M?

uK∗11K? . (13)

Source terms are discretized analogously (9) on the primal and on the dual
mesh. Having in mind the convention (13), the properties (10), (11) (along
with the order one consistency of the gradient reconstruction) and (12) hold
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true (see, e.g., [10]). Note that in presence of u-dependent nonlinear terms,
such as for the p(u)-laplacian considered in Section 3.2 below, a penalization
of uM − uM∗ is needed for the convergence analysis (see [4, 6] for details).

2.3 Young measures and nonlinear weak-∗ convergence

In the following theorem, limiting our attention to the case of a bounded
domain Ω, we state the well-known results taken from Ball [17], Pedregal [46]
and Hungerbühler [41] on the generation of Young measures for equi-integrable
sequences of L1(Ω) functions, and on the reduction of Young measures. These
results are at the core of our convergence analysis.

Here and in the sequel, the notation δ0 will be used for the standard Dirac
measure concentrated at the origin of Rd, while δc(.) := δ0(.−c). We underline
the use of the convergence in measure on Ω, for a sharp statement of the
reduction result.

Theorem 3 Let Ω ⊂ RN , N ∈ N, be a bounded domain.

(i) Let (vn)n be a sequence of Rd-valued functions on Ω, d ∈ N, such that
(vn)n is equi-integrable on Ω. Then there exists a subsequence (nk)k and
a parametrized family (νx)x∈Ω of probability measures on Rd, weakly mea-
surable in x with respect to the Lebesgue measure on Ω, such that for all
continuous function F : Rd 7→ Rt, t ∈ N, we have

lim
k→+∞

∫
Ω

F (vnk
(x)) dx =

∫
Ω

∫
Rd

F (λ) dνx(λ)dx (14)

whenever the sequence
(
F (vn(·))

)
n

is equi-integrable on Ω. In particular,

v(x) :=

∫
Rd

λ dνx(λ)

is the weak limit of the sequence (vnk
)k in L1(Ω), as k → +∞.

The family (νx)x is called the Young measure generated by the subsequence
(vnk

)k.
(ii) If (νx)x is the Young measure generated by a sequence (vn)n, then

νx = δv(x) for a.e. x ∈ Ω ⇐⇒ vn → v in measure as n→ +∞.

(iii) If (un)n generates a Dirac Young measure (δu(x))x on Rd1 , and (vn)n gen-

erates a Young measure (νx)x on Rd2 , then the sequence
(

(un, vn)
)
n

generates the Young measure
(
δu(x) ⊗ νx

)
x

on Rd1+d2 .
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3 The regular exponent case

In this section, we assume that p(.) fulfills (3) and consequently, Proposition 2
holds true. In this case, the notion of solution for problem (1),(2) is fairly
standard.

Definition 2 Assume p(.) fulfills (3) and f ∈ L(p∗)
′(.)(Ω). A weak solution of the

homogeneous Dirichlet p(x)-laplacian problem (1),(2) is a function u ∈W = H that
fulfills −div a(x,∇u) = f in the sense of distributions. Equivalently, this means

u ∈W = H s.t. ∀φ ∈W = H

∫
Ω
a(x,∇u(x)) · ∇φ(x) dx =

∫
Ω
f(x)φ(x) dx. (15)

We will strengthen the assumption of integrability on f to f ∈ L(p−)′ for
the sake of providing the essential arguments assessing convergence of CVFE
and DDFV approximations of problem (1),(2).

3.1 Convergence of CVFE and DDFV finite volume
schemes for the p(x)-laplacian

The central result of the paper is the following theorem, where we focus on
the simple setting to avoid the non-essential technicalities and put clearly the
core arguments.

Theorem 4 On a bounded polygonal open domain Ω of R2, consider the nonlinear
elliptic Dirichlet problem (1) with the p(x)-laplacian nonlinearity (2) for a variable
exponent p(.) verifying the log-Hölder regularity assumption (3).

Consider a family (Tn)n of CVFE or DDFV meshes of Ω with the associated
diamond meshes (Dn)n of size going to zero as n → ∞. Assume that the uniform
regularity assumptions on (Tn)n are taken that entail the validity of the discrete
Poincaré-Friedrichs inequality in Lq, q ∈ [1,∞), with a uniform in n constant1.
Regarding the discretization pDn = (pD)D∈Dn

∈ RDn of the variable exponent p(.)
on the diamond mesh, we merely assume that for each D ∈ Dn, pD ∈ [p−, p+] is
chosen so that

min
D

p(.) ≤ pD ≤ max
D

p(.). (16)

Assume f ∈ L(p−)′(Ω) and consider the mean-value discretization fTn ∈ RTn

as in (9) (if f is piecewise continuous, center-value discretization can be considered
instead). Consider the family of discrete problems written in the variational form:

find uTn ∈ RTn such that ∀φTn ∈ RTn{{
aDn(.,∇DnuTn) , ∇DnφTn

}}
=

[[
fTn , φTn

]]
(17)

1Proofs of discrete Poincaré inequality in the Finite Volume literature often require an assump-
tion of regularity of the family of meshes, cf. [35]; note however that in many situations including
DDFV and CVFE with homogeneous Dirichlet boundary condition, the hint of [11, Lemma 2.6(i)]
permits to drop the regularity assumptions, cf. the discussion in [10, Sect. III.B].
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where on each diamond D ∈ D, the approximation of a(., ξ) = |ξ|p(.)−2 ξ is chosen
to be

aD(., ξ) = |ξ|pD−2 ξ.

For all n ∈ N, the scheme admits a unique solution uTn that we assimilate to a
piecewise constant function on Ω. As n→∞, there holds

uTn → u and ∇DnuTn → ∇u a.e. on Ω, (18)

moreover the associated energies converge:∣∣∇DnuTn
∣∣pDn

→ |∇u|p(.) in L1(Ω), (19)

where u is the unique weak solution in the sense of Definition 2 of (1),(2).

It is not difficult to upgrade the a.e. convergence of the discrete solu-
tions and their gradients to convergence in some fixed or variable exponent
Lebesgue spaces, using (18),(19), De La Vallée Poussin equi-integrability prop-
erty with the Vitaly theorem, and the embeddings stated in Proposition 2.
However, unless we make the assumption pD = maxD p(.), one cannot reach
the Lp(.)(Ω) convergence of the gradients. In this direction, the sharpest con-
vergence result is (19) hereabove; it is also of interest for readers interested in
the approximation of the variational problem underlying (1),(2).

Further, scheme (17) can be rewritten into the standard per-volume form
by taking vTn in (17) with one entry equal to 1 and all the others equal to zero.

In addition to the key properties of the CVFE and DDFV schemes pointed
out in Section 2.2, we will use further standard properties of the CVFE and
DDFV schemes such as the inequality[[

fT, uT

]]
≤ const‖f‖Lq′ (Ω)‖∇

DuT‖Lq(Ω) (20)

valid for any constant value q ∈ (1,∞) due in particular to the discrete
Poincaré-Friedrichs inequality (see, e.g., [22] and references therein). Note that
we will not develop p(x)-versions of this inequality, taking the simplifying
assumption f ∈ L(p−)′(Ω).

Proof The proof is structured into several steps. For the sake of legibility we will
drop the subscript n and write size(T)→ 0 in the place of n→∞.

Step 1. Assuming that a solution to (17) exists, we take φT = uT as the test function
and find

ρpD(.)(∇
DuT) =

∫
Ω

∣∣∣∇DuT(x)
∣∣∣pD(x)

dx =
[[
fT, uT

]]
where we can apply (20) with the constant exponent q = p− to upper bound the right-
hand side (under the regularity assumptions on the family of meshes that guarantee
a uniform constant in the discrete Lq-Poincaré-Friedrichs inequality). Then a simple
case study based upon the two cases of Proposition 1.2. yields the bound

ρpD(.)(∇
DuT) ≤ const uniformly in size(T) (21)

which further entails a uniform bound on ‖∇DuT‖
LpD(.)(Ω)

.
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For a fixed mesh T, this norm is equivalent to any standard norm of uT on the
finite-dimensional space RT. The resulting a priori bound guarantees the existence
of a solution to (17), based either upon the Brouwer fixed-point theorem or upon the
topological degree argument (cf. [10, 32, 35, 44]).

In the sequel, we extract convergent subsequences from the family (Tn)n without
labeling them (as a shortcut, we write “convergence, as size(T) → 0”). At the end
of the proof, as soon as the convergence (up to a subsequence) of discrete solutions
to a weak solution of the continuous problem is established, the standard result of
uniqueness of a weak solution to (1),(2) permits to assess that the whole sequence
converges.

Step 2. We apply the discrete W
1,p−
0 compactness results proper to each scheme,

e.g., for the DDFV scheme we use [10, Lem. 3.8]2. More precisely, the uniform bounds
of Step 1, the fact that pD ≥ p− (see (16)) and the Poincaré-Friedrichs inequality for
q = p− entail the strong convergence of uT in Lp−(Ω) to some limit that we denote

u; further, they entail the weak convergence of ∇DuT in (Lp−(Ω))2 to some limit
that we denote G, whereas property (12) ensures that G = ∇u. We deduce in partic-

ular that u ∈W 1,1
0 (Ω) (and even in W

1,p−
0 (Ω)).

Step 3. The energy estimate (21) entails the boundedness of the family aD(.,∇DuT)

in (L
p+

p+−1 (Ω))2, since
∣∣aD(., ξ)

∣∣ pD
pD−1 = |ξ|pD and pD

pD−1 ≥
p+
p+−1 in view of (16). By

the De La Vallée Poussin equi-integrability property and the Dunford-Pettis char-
acterization of the weak convergence in L1 spaces, aD(.,∇DuT) converges weakly in
(L1(Ω))2 (up to a subsequence), as size(T)→ 0, to some limit we denote χ.

Step 4. Then the standard argument (see, e.g., the first step of the proof of [10,
Thm. 5.1]) permits to pass to the limit, as size(T) → 0, in the scheme (17). More
precisely, this is done taking as the discrete test function a straightforward discretiza-
tion φT of a fixed smooth test function φ. In this situation, ∇DnφT converges a.e. on
Ω and strongly in all Lq spaces towards ∇φ (the property (11)), while φT converges
a.e. on Ω and strongly in all Lq spaces towards φ (in the DDFV context, each of the

two components φM, φM
∗

converges strongly to the same limit φ) in the sense (10).
The weak convergence obtained in Step 3, the expression (8) and (11) show that the
left-hand side of (17) converges to the left-hand side of the identity∫

Ω
χ(x) · ∇φ(x) dx =

∫
Ω
f(x)φ(x) dx (22)

as size(T)→ 0. At the same time, the right-hand side of (17) converges to the right-
hand side of (22) due to (10). Consequently, the relation (22) linking χ and u is valid
for all test function φ ∈ C∞0 (Ω).

The remainder of the proof consists in showing that u ∈ W = H and χ =
a(.,∇u), which is done based on the Young measure representation of ∇u and χ and
the monotonicity of a.

Step 5. We start by applying Theorem 3 to express ∇u and χ via the same Young
measure, the one generated by (a subsequence of) (∇DuT). Indeed, notice that the

2As in [10, Thm. 5.1], for the DDFV context the proof of strong convergence of uT requires

two steps: until the identification of the limit, one only needs that uM, uM∗ strongly converge
the some limits uprimal and udual respectively, and sets u := (uprimal + udual)/2; and at the
very end of the proof, using the Poincaré inequality (we can again stick to the constant exponent
case q = p−) one finds that uprimal = udual = u. For more involved PDE problems, e.g., those

involving nonlinear reaction terms, one may need to penalize the difference uM − uM∗ in order
to ensure that uprimal = udual = u at the limit (see [4, 6]).
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(log-Hölder) continuity of p(.) and the choice (16) ensure the uniform on Ω conver-
gence of pD(.) to p(.), in particular Theorem 3(ii) tells us that the Young measure
generated by the family (pD) (remember we skip the labeling of meshes by n to
lighten the notation) is δp(x). By Theorem 3(i), ∇u = G being the weak L1 limit

of the family of (L1(Ω))2 functions (∇DuT(.)), it can be represented by the Young
measure we denote dνx:

∇u(x) :=

∫
R2
ξ dνx(ξ). (23)

From these two claims it follows by Theorem 3(iii) that the Young measure rep-

resenting the family
(
pD(.),∇DuT(.)

)
is δp(x) ⊗ νx. Now, we apply formula (14)

of Theorem 3 for the latter family, with the choice F (π, ξ) = |ξ|π−2 ξ. Note that

the discrete flux aD(.,∇DuT(.)) writes as F (pD(.),∇DuT(.)), and the (L
p+

p+−1 (Ω))2

estimate of Step 3 ensures the equi-integrability of F (pD(.),∇DuT(.)) required in
Theorem 3(i). This permits to write

χ(x) :=

∫
R2
F (π, ξ) dδp(x)(π)⊗ νx(ξ) =

∫
R2
|ξ|p(x)−2 ξ dνx(ξ). (24)

Step 6. Next, we prove that u ∈W; in view of the definition of W and the result
of Step 2, it remains to prove that ∇u ∈ (Lp(.)(Ω))2 due to the uniform bound
(21). We employ a simple semi-continuity argument, which we detail for the sake of
completeness. Introduce, for m > 0, the truncations

hm : R2 −→ R2, hm(ξ) =

{
ξ, |ξ| ≤ m
m ξ
|ξ| , |ξ| > m.

(25)

Because hm(.) is bounded for every fixed m, we can apply Theorem 3(i),(iii) with

the function Fm(π, ξ) = |hm(ξ)|π to the sequence
(
pD(.),∇DuT(.)

)
(cf. Step 5). We

find for all m <∞,∫
Ω

∫
R2
Fm(π, ξ) dδp(x)(π)⊗ νx(ξ) dx = lim

size(T)→0

∫
Ω
Fm
(
pD(x),∇DuT(x)

)
dx. (26)

The right-hand side of (26) is upper bounded by∫
Ω
F
(
pD(x),∇DuT(x)

)
dx =

∫
Ω

∣∣∣∇DuT(x)
∣∣∣pD(x)

dx = ρpD(.)(∇
DuT),

where we used the fact that Fm(·, ·) ≤ F (·, ·) pointwise since |hm(·)| ≤ |·|. Whence
by (21), the right-hand side of (26) is bounded uniformly with respect to m. To

conclude, observe that |hm(·)|p(x) → |·|p(x), as m → ∞, moreover, the convergence
is monotone. We then have∫

Ω

∫
R2
|ξ|p(x) dνx(ξ) dx = lim

m→∞

∫
Ω

∫
R2
Fm(π, λ) dνx(ξ) dx

so that (ξ, x) 7→ |ξ|p(x) is integrable with respect to the measure dνx(ξ) dx. Finally,

in view of the representation (23) and due to the convexity of ξ 7→ |ξ|p(x), by the

Jensen inequality de deduce that ∇u belongs to Lp(.).

Moreover, in a very similar manner we find that χ ∈ Lp
′(.) due to the represen-

tation (24), the convexity of ξ 7→ |ξ|p
′(x), and the Jensen inequality.

Step 7. The key assumption (3) on p(.) ensures that W = H and therefore, u ∈ H
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is an admissible test function in the weak formulation. Indeed, u ∈ H can be approx-

imated in the norm of W 1,p(.)(Ω) by C∞c (Ω) functions; in view of the Lp
′(.)(Ω)

integrability of χ and the assumption f ∈ L(p−)′(Ω) ⊂ Lp
′(.)(Ω), the density

argument permits to extend the validity of (22) to the choice φ = u.

At the same time, we can take the test function uT in the discrete weak formula-
tion (17). Having in mind property (10) (applied with the constant exponent (p−)′,

due to the assumption f ∈ L(p−)′(Ω)), this yields∫
Ω
χ(x) · ∇u(x) dx =

∫
Ω
f(x)u(x) dx = lim

size(T)→0

[[
fT, uT

]]
= lim

size(T)→0

{{
aD(.,∇DuT) , ∇DuT

}}
= lim

size(T)→0

∫
Ω

∣∣∣∇DuT(x)
∣∣∣pD(x)

dx. (27)

We can rewrite the left-hand side of (27), using (23) and (24), as∫
Ω

(∫
R2
ξ dνx(ξ)

)
·
(∫

R2
|ξ|p(x) dνx(ξ)

)
dx.

Step 8. The above inequality allows us to reduce the Young measure νx to the Dirac
measure δ∇u(x) and to identify χ(x) with a(x,∇u(x)).

While one cannot apply Theorem 3 to represent this limit because the equi-
integrability property fails, a lower semi-continuity argument similar to the one
detailed in Step 6 applies. First, for every fixed m < ∞ we can lower bound the
right-hand side of (27) by

lim
size(T)→0

∫
Ω

∣∣∣hm(∇DuT(x))
∣∣∣pD(x)

dx =

∫
R2
|hm(ξ)|p(x) ξ dνx(ξ).

Then we let m→∞ using the monotone convergence theorem, thus reaching to∫
Ω

(∫
R2
ξ dνx(ξ)

)
·
(∫

R2
|ξ|p(x)−2 ξ dνx(ξ)

)
dx ≥

∫
Ω

∫
R2

(
ξ
)
·
(
|ξ|p(x)−2 ξ

)
dνx(ξ) dx.

As in [7, 30, 42], elementary manipulations based on the fact that νx is a probability
measure on R2 lead to

0 ≥
∫

Ω

∫
R2

∫
R2

(
ξ − ζ

)
·
(
|ξ|p(x)−2 ξ − |ζ|p(x)−2 ζ

)
dνx(ξ)dνx(ζ)dx. (28)

The monotonicity of the map ξ 7→ |ξ|p(x)−2 ξ entails that the integrand in (28) in
nonnegative; whence(

ξ − ζ
)
·
(
|ξ|p(x)−2 ξ − |ζ|p(x)−2 ζ

)
= 0

a.e. on R2 × R2 × Ω with respect to dνx(ξ)dνx(ζ)dx.

Since the above mentioned monotonicity is strict, this actually means that νx(ξ) ⊗
νx(ζ)-a.e., ξ = ζ for a.e. x ∈ Ω. This forces νx to be a Dirac measure on R2, whence

by (23) we have νx = δ∇u(x) and then by (24), χ(x) = |∇u(x)|p(x)−2∇u(x) =
a(x,∇u(x)) for a.e. x ∈ Ω.

This concludes the proof of identification of χ. Inserting it into (22), we conclude
that u constructed in Step 1 is a solution of (1),(2) in the sense of Definition 2.

Step 9. It remains to prove the strong convergences claimed in (18) and in (19);
they are byproducts of the above proof. It follows from Step 1 that uT → u in L1(Ω)
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while it follows from Step 8 and Theorem 3(ii) that ∇DuT → ∇u in measure, as
size(T) → 0; thus upon extraction of a further subsequence, (18) holds. Next, we
revisit (27) by rewriting the left-hand side of it using the representation of χ. We
reach to ∫

Ω
|∇u(x)|p(x) dx = lim

size(T)→0

∫
Ω

∣∣∣∇DuT(x)
∣∣∣pD(x)

dx,

bearing in mind that
∣∣∣∇DuT(x)

∣∣∣pD(x)
→ |∇u(x)|p(x) due to (18) and to the obvious

convergence of discretizations pD. The claim (19) follows by the refinement of the
Fatou lemma, sometimes referred to as the Schaeffe’s lemma (cf. [32, Lemma 8.4]).

�

Remark 1 The particular form (2) of the variable-exponent nonlinearity a is strongly
exploited in the above proof. Adaptation of the proof to more general Leray-Lions
kind nonlinearities, under the assumptions of [7], is not difficult but some of the argu-
ments become more technical. In this relation, note that in the context of Theorem 4,
we have the uniform convergence of pD to p(.) and therefore, in the context of Step
3 of the above proof, the heavy cutting argument of [7, Claim 7] can be bypassed.

3.2 Adaptation to the p(u)-laplacian

The result of Theorem 4 admits a simple extension to the situation where
the nonlinearity a in (1) and the variable exponent p(.) are allowed to depend
on the solution u. For the sake of simplicity, here we only consider the p(u)-
laplacian situation with (2) replaced by

a(x, u,∇u) = |∇u|σ(x,u(x))−2∇u, σ : Ω× R −→ (1,∞)

With a slight abuse of notation, we refer to the associated Dirichlet problem as
“problem (1),(2) with p(.) = σ(., u(.))”. In [8], it was shown that the stability
technique of [7] readily extends to this case under a set of assumptions ensuring
the log-Hölder regularity of the resulting exponent p(.). To this end, we are
led to assume

σ extends to a Hölder continuous function on Ω× R (29)

σ takes values in [p−, p+] with p− > d, (30)

where we recall that d is the space dimension. The associated well-posedness
theory is constructed in [8]. Note that for the uniqueness, additional assump-
tions are required on σ. If we assume only (29),(30), then the following analogue
of Theorem 4 holds up to extraction of a subsequence (and without extraction
of a subsequence, under additional assumptions of [8] ensuring the uniqueness
for the p(u)-laplacian problem at hand).

Theorem 5 In the context of the assumptions of Theorem 4, consider the problem
(1),(2) with p(.) = σ(., u(.)) with σ satisfying (29),(30). For the DDFV case, consider
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in the place of (17) the penalized scheme of [4, 6] using the constant exponent q = p−
in the definition of the penalization operator.

Regarding the discretization pDn = (pD)D∈Dn
∈ RDn of the variable exponent

p(.) = σ(., u(.) on the diamond mesh, we assume that for each D ∈ Dn, pD ∈ [p−, p+]
is chosen so that

min
K∈V(D)

σ(xK , uK) ≤ pD ≤ max
K∈V(D)

σ(xK , uK), (31)

where V(D) denotes the set of all control volumes K ∈ Tn (both primal and dual
ones, in the DDFV setting) which centers are vertices of the diamond D ∈ Dn.

Then, up to extraction of a subsequence, the conclusion of Theorem 4 on
convergence to a limit u - solution of (1),(2) with p(.) = σ(., u(.)) - hold true.

Proof This is a straightforward adaptation of the proof of Theorem 4.
We focus on the fact that pD converges to the limit σ(., u(.)) where u is the

strong limit of uT in Lp−(Ω). At this point, the penalization of [6], see also [4], is

needed in the DDFV framework in order to ensure that uM − uM
∗

converges to
zero strongly in Lp−(Ω). The estimate of Step 1 ensures that whatever be the choice
of KD ∈ V(D) for each D ∈ D, the discrete functions

∑
D∈D uKD

11D converge to
the same limit u, as size(T) → 0. Then the uniform continuity of σ (which is a
consequence of (29)) ensures that under the assumption (31), we do have the strong
a.e. convergence pD → σ(., u(.)) =: p(.). This allows us applying Theorem 3(iii) in
the context of Steps 5,6 and 8 of the proof of Theorem 4.

The other key argument is the property W = H underlying Step 7; it is readily
deduced from (29) and from the restriction (30) ensuring that u is Hölder continuous
on Ω due to the Gagliardo-Sobolev embedding.

The other steps of the proof are unchanged in the CVFE context. To handle the
introduction - in the DDFV context - of penalization within the scheme (17), note
that it corresponds to the addition of a discrete term corresponding to −size(T)∆p−u
in the left-hand side of (17). This term permits to replace (27) with the inequality
“≥” (which is typical of the monotonicity arguments of the Minty-Browder kind and
compatible with out Young-measure-based argument), moreover this penalization
term vanishes from the weak formulation as size(T)→ 0 due to the straightforward a
priori estimate obtained as in [4, 6]. The same a priori estimate is exploited for the
proof of existence of a discrete solution. We refer to [4] for details on these issues.

�

3.3 Extensions to p[u]-laplacian and evolution problems

In a very similar way, one can deal with problems where p(.) depends on
u nonlocally, typically p(.) = σ(., v(.)) where v(.) satisfies a PDE with
u(.)-dependent coefficients. Such coupled problems naturally appear in appli-
cations, see e.g. [13, 53]. We token these problems as p[u]-laplacian variable
exponent problems. A sample situation was treated in detail in [8]; the key
assumption, for the adaptation of the convergence technique we pursue here,
is the (log-)Hölder regularity of the resulting exponent p(.).

It is also possible to exploit the analysis technique of Theorem 4 in the
context of evolution problems of p(x), p(u) or p[u]-laplacian kind, under the
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general form ut − div a(t, x,∇u) = 0 with (t, x)-dependent variable exponent
p(.) which may depend on u(.) in a local or in a non-local way. This requires
adaptation to the functional framework established for the evolution problem,
see, e.g. [14, 21], and in particular the chain rule / integration-by-parts argu-
ment, known as the Mignot-Bamberger or Alt-Luckhaus lemma, is required in
Step 7 of the proof (cf. [21]).

We do not pursue here any of these lines in our analysis, but we provide
below a numerical text corresponding to a particular instance of p[u]-laplacian
stationary problem borrowed from [53].

3.4 Numerical experiments

This subsection is devoted to exhibiting the behavior of the CVFE scheme with
respect to various nonlinearities spanned by smooth formulas of the exponent
in the p(·)-Laplacian problem. In this case, the H-solution and the W-solution
(see Definition 3) are identical.

The domain of computation is fixed to Ω = (−1, 1)2. It is discretized using
a regular family of triangulations. Each triangular mesh, indexed by by ` where
1 6 ` 6 6, is obtained by decomposing the squares of the Cartesian mesh, made
from 21+`× 21+` cells, into triangles along their diagonals. Figure 2 illustrates
the first two elements of the primal mesh. The proposed finite volume scheme
yields a nonlinear algebraic system solved thanks to the Newton-Raphson’s
algorithm. Its tolerance is fixed to ε = 10−8. The stopping criterion is applied
on the relative error of the successive iterates in the sense of ‖·‖∞-norm.

Fig. 2 The first and the second triangulations of Ω.

In all the numerical examples below, the exact solution is unknown. Then,
we are led to consider a reference solution on a very refined mesh of level ` = 7
in order to assess the accuracy of the finite volume scheme. Quantifying the
errors requires the introduction of the following approximate modular

%p(·)(uref − uh) =

∫
Ω

|uref − uh|p̃h(x,uh)
dx,

where p̃h is a piecewise constant approximation of p(·) on the triangulation of
Ω. Precisely, let S1, S2, S3 denote the vertices of the triangle D, the expression
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of p̃h is given by

p̃h(x, uh) =
p(xS1

, u1) + p(xS2
, u2) + p(xS3

, u3)

3
, ∀x ∈ D,∀D ∈ Th;

note that it satisfies (16). The number %p(·) entails no information on the
accuracy, nor on the convergence speed, but it enables the computation of
Luxemburg’s norm written as

‖uref − uh‖p(·) = inf

{
λ > 0, %p(·)

(
uref − uh

λ

)
≤ 1

}
.

The function g : λ → %p(·)
(
(uref − uh)/λ

)
− 1 being decreasing, a dichotomy

routine is implemented to compute ‖uref − uh‖p(·). Before that, we need to

determine an interval, whose extremities are λ0, λ1, for which g(λ0)g(λ1) < 0.
For this purpose, it suffices to choose a value of λ0, retain its sign and deduce
the other one by dividing (resp. multiplying) its by 1/2 (resp. by 2) until the
opposite sign is reached.

A similar approach is adopted to calculate the errors of the gradients.
In the tables of the sequel, the notations Rho u,Err u,Rho gu,Err gu refer
respectively to the quantities

%p(·)(uref−uh), ‖uref − uh‖p(·) , %p(·)(∇
ref
h uref−∇huh),

∥∥∇ref
h uref −∇huh

∥∥
p(·)

3.4.1 Test 1

The goal of this first experiment is to validate the scheme and to test its
accuracy in the case where the variable exponent p(·) is only depending on
space, in a smooth way. We then consider for x = (x1, x2) ∈ R2

p(x) =
5

2
+ cos(x1) cos(x2).

We take a constant right-hand side as f(x) = 10. A homogeneous Dirich-
let boundary condition is prescribed. The numerical convergence results are
shown in Table 1. A second order accuracy is obtained for the solution and an
accuracy of order around 3/2 for the gradients, in the Luxemburg norm. This
is expected because of the data smoothness. Figure 3 illustrates the 2D view
of the numerical solution on the third mesh.
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h Rho u Err u rate Rho gu Err gu rate
0.354E+00 0.130E-01 0.129E+00 - 0.960E-01 0.317E+00 -
0.177E+00 0.152E-02 0.396E-01 1.699 0.176E-01 0.396E-01 1.384
0.884E-01 0.123E-03 0.104E-01 1.926 0.190E-02 0.104E-01 1.692
0.442E-01 0.906E-05 0.261E-02 1.996 0.174E-03 0.261E-02 1.598
0.221E-01 0.626E-06 0.625E-03 2.064 0.144E-04 0.625E-03 1.481
0.110E-01 0.322E-07 0.125E-03 2.322 0.876E-06 0.125E-03 1.678

Table 1 Numerical convergence for Test 1.

Fig. 3 Test 1: numerical solution on the third mesh.

3.4.2 Test 2

In this second example, we are interested in the case where the exponent
function depends nonlinearly on the solution itself such as

p(x) = σ(x, u(x)) =
5

2
+ arctan(u(x)).

We also consider the following right hand side defined by

f(x) = 100
2x1 + x2

x2
1 + 3x2

2 + 1
.

The Dirichlet boundary conditions are non-homogeneous (note that the exten-
sion of the convergence analysis of Theorem 4 to the inhomogenous Dirichlet
conditions can be obtained as in [10], at least when the boundary condition is
the trace of a W 1,p+(Ω) function) and they are prescribed by the function

u(x) = (x1 − 0.5)2 + (x2 − 0.5)2, ∀x = (x1, x2) ∈ ∂Ω.

The results on the convergence rates are displayed in Table 2. A small loss
of convergence is recorded on the first two meshes, while the second order
accuracy is recovered as the mesh is refined. However, only a linear rate is
noticed for the gradients. Thus the dependency of the variable exponent on
the solution impacts the accuracy. Figure 4 indicates how the shape of the
obtained solution looks on the third triangular mesh. We plot in Figure 5 the
behavior of the approximate solution to the above problem.
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h Rho u Err u rate Rho gu Err gu rate
0.354E+00 0.684E-03 0.120E+00 - 0.441E-01 0.412E+00 -
0.177E+00 0.263E-04 0.491E-01 1.286 0.171E-01 0.491E-01 0.353
0.884E-01 0.460E-06 0.154E-01 1.676 0.757E-03 0.154E-01 1.275
0.442E-01 0.244E-08 0.362E-02 2.086 0.718E-04 0.362E-02 0.931
0.221E-01 0.332E-10 0.100E-02 1.852 0.854E-05 0.100E-02 0.833
0.110E-01 0.262E-12 0.255E-03 1.977 0.830E-06 0.255E-03 0.950

Table 2 Numerical convergence for Test 2.

Fig. 4 Test 2: numerical solution on the third mesh.

3.4.3 Test 3

We here look at the situation where the exponent solves an elliptic equation.
The right hand side of the latter is given under the form of Joule heating term
with a variable exponent. This system, taken from [53], is a generalization of
the well-known steady thermistor problem. It reads{

−div
(
|∇u|σ(θ)−2∇u

)
= f, u|∂Ω = 0,

−4θ = α |∇u|σ(θ)
θ|∂Ω = 0, α > 0,

where we take

σ(θ) =
5

2
+

2

π
arctan(θ), f(x) = 4

(
(1−x1)(x1 +1)+(1−x2)(x2 +1)

)
, α = 0.5.

The errors and their convergence rates are shown in Table 3 for u. Similar
outcomes are obtained as in the first example. Table 4 gives the errors together
with the orders with respect to θ. The results are computed in the sense of
the L2 norm for the solution and its gradient. In both cases, a quadratic
convergence is reached. This is standard and is due to the fact that the mesh
is structured.

Although we do not pursue this line in this paper, note that the scheme
readily extends to evolution problem with the CVFE strategy developed for a
different version of the generalized thermistor problem in [39]; both numerical
tests and convergence analysis in the evolution framework are left for future
work.
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h Rho u Err u rate Rho gu Err gu rate
0.354E+00 0.253E-04 0.188E-01 - 0.160E-02 0.911E-01 -
0.177E+00 0.836E-06 0.531E-02 1.826 0.168E-03 0.531E-02 1.198
0.884E-01 0.236E-07 0.139E-02 1.930 0.131E-04 0.139E-02 1.366
0.442E-01 0.637E-09 0.356E-03 1.970 0.915E-06 0.356E-03 1.420
0.221E-01 0.152E-10 0.849E-04 2.067 0.561E-07 0.849E-04 1.479
0.110E-01 0.227E-12 0.181E-04 2.228 0.198E-08 0.181E-04 1.774

Table 3 Numerical convergence for Test 3 with respect to u.

h ErrL2 θ rate ErrL2 gθ rate
0.354E+00 0.341E-01 - 0.138E+00 -
0.177E+00 0.122E-01 1.479 0.568E-01 1.285
0.884E-01 0.325E-02 1.912 0.158E-01 1.841
0.442E-01 0.813E-03 2.000 0.402E-02 1.977
0.221E-01 0.194E-03 2.068 0.964E-03 2.061
0.110E-01 0.388E-04 2.322 0.193E-03 2.320

Table 4 Numerical convergence for Test 3 with respect to θ.

Fig. 5 Test 3: (left) behavior of u (right) and θ (left) on the third mesh.

4 The Lavrentiev phenomenon: approximation
of broad and narrow solutions

The proof of Theorem 4 requires, at Step 7, that the limit u ∈W be taken as a
test function in the equation (22); while the standard approach of consistency
of the Finite Volume scheme with the weak formulation ensures that any φ ∈
C∞c (Ω) (and then, by density, φ ∈ H) is an admissible test function. In this
context, the log-Hölder regularity assumption (3) on p(.) is imposed in order
to ensure that W = H while in general, one may have H ( W; e.g. for (4)
the inclusion is indeed strict. Therefore in general, one should distinguish two
notions of weak solution generalizing Definition 2.

Definition 3 (cf. [7]) Assume p(.) is measurable and f ∈ L(p∗)
′(.)(Ω). A narrow

weak solution of the homogeneous Dirichlet p(x)-laplacian problem (1),(2) is a func-
tion u that fulfills the analogue of (15) with u, φ ∈ H. A broad weak solution of the
same problem is a function u that fulfills the analogue of (15) with u, φ ∈W.

A common terminology in the literature devoted to the Lavrentiev phenomenon
is to call the above solution notions “H-solution” and “W-solution”, respectively.
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Note that for each of these notions of solution uniqueness is straightforward,
while existence can be inferred using the stability technique highlighted in this
paper (see [7, Thm. 3.11]; our assumption f ∈ L(p∗)

′(.)(Ω) ensures that the
renormalized broad (respectively, renormalized narrow) solution constructed
in [7] is also a narrow weak (resp., broad weak) solution). In general, the
two solutions may differ, which is known, in the variational interpretation of
our PDE problem, as the Lavrentiev phenomenon. In [7], it is demonstrated,
moreover, that for problems including (1),(2)

• a sequence of narrow solutions with pn(.)→ p(.), pn ≥ p a.e. in Ω, converges
to a narrow solution;

• a sequence of broad solutions with pn(.)→ p(.), pn ≤ p a.e. in Ω, converges
to a broad solution.

In the context of numerical approximations, we have two alternative ways
to proceed, for proving convergence to one or the other type of weak solution:

• either ensure that the limit u of uT belongs to the narrow space H while the
proof in Step 6 gives us only the weaker property u ∈W (in this case, the
scheme would approximate the narrow weak solution);

• or ensure that the limit equation (22) holds with test functions φ ∈W while
the standard approximation properties of the CVFE and DDFV schemes
only yield it with smooth test functions φ and, by density, for φ ∈ H (in
this case, the scheme would approximate the broad weak solution).

Heading towards convergence analysis, we borrow from [7] the assumption
pDn ≥ p(.) for reaching the narrow solution, and the assumption pDn ≤ p(.)
for reaching the broad solution of our problem. Moreover, we get insight
from the analysis, in [16], of convergence of conforming and non-conforming
Finite Element methods for p(x)-laplacian variational problems exhibiting the
Lavrentiev phenomenon.

4.1 Ensuring convergence to the narrow solution

Proposition 6 In the setting of Theorem 4, regarding the discretization pDn =
(pD)D∈Dn

∈ RDn of the variable exponent p(.) on the diamond mesh, instead of (16)
assume that

pD = ess sup
D

p(.). (32)

In addition, assume that the scheme is conforming in the sense that there exists a
sequence ũTn of W 1,∞

0 (Ω) functions such that

‖∇DnuTn −∇ũTn‖
LpDn(.)

→ 0 as n→∞. (33)

Then the conclusion of Theorem 4 can be replaced by the conclusion of convergence
to the narrow weak solution of the problem.

Remark 2 We stress that the assumption (33) is trivially verified for the CVFE
scheme, by taking ũT :=

∑
K∈T uKϕK , where (ϕK)K∈T is the basis of P1 shape

functions on the triangular mesh T (the CVFE scheme can be seen as a mass-lumped
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conforming Finite Element scheme). Indeed, the CVFE construction simply means

∇DnuTn := ∇ũTn . On the contrary, the assumption (33) is not a natural assumption
for the DDFV scheme (which is witnessed, in particular, by the possible discrepancy

between uMn and uM
∗
n which led us to introduce a penalization into the scheme).

More generally, the requirement (33) is related to the energy estimate (21) and its
fulfillment may depend on the choice of the mesh. E.g., in the situation of piecewise
constant variable exponent p(.) (that includes the Zhikov counterexample (4)) one
could consider piecewise application of the lifting construction of [11] - developed

for constant p - to produce the continuous interpolates ũTn of uTn . Here, we do not
pursue the verification of (33) beyond the trivial CVFE case.

Proof The proof of Proposition 6 differs from the one of Theorem 4 at the point
where u should be inserted as an admissible test function in (22), in the place of a
smooth test function. To ensure this is possible, we first observe that due to (32),
one has pD ≥ p(.) and therefore, from the energy estimate (21), G = ∇u is also the

limit, in the weak (Lp(.)(Ω))2 topology, of (a subsequence of) ∇DuT. Then, because
of pD ≥ p(.), (33) implies that ∇u is also the weak limit of (a subsequence of) ∇ũT,

which are W 1,∞
0 (Ω) functions and can be approximated, in turn, by H functions in

the norm of H. The resulting approximation, with gradients weakly convergent in
(Lp(.)(Ω))2, is enough to ensure that u can be taken as a test function in the left-

hand side of (22); note that the assumption f ∈ L(p−)′(Ω) permits a robust passage
to the limit in the right-hand side of (22).

As soon as the passage to the limit is concluded, using (19) along with the
inequality pD ≥ p(.), the equi-integrability and the Vitali argument, we assess the

convergence, in the strong (Lp(.)(Ω))2 topology, of ∇DuT. Then the above chain
of approximation arguments (note that they are valid with respect to the strong
topology) shows that u is the limit, in the norm of H, of a sequence of smooth
functions; finally, we do have u ∈ H. �

4.2 Prospecting convergence to the broad solution

Proposition 7 In the setting of Theorem 4, regarding the discretization pDn =
(pD)D∈Dn

∈ RDn of the variable exponent p(.) on the diamond mesh, instead of (16)
assume that

pD = ess inf
D

p(.). (34)

In addition, assume that the discrete framework at hand possesses the strong approx-
imation property of the space W, namely, beyond (11), for all φ ∈ W there exist
φTn ∈ RTn such that

‖φTn − φ‖Lp(.) → 0 and ‖∇DnφTn −∇φ‖Lp(.) → 0 as n→∞. (35)

Then the conclusion of Theorem 4 can be replaced by the conclusion of convergence
to the broad weak solution of the problem.

Remark 3 The above proposition is a conditional result, indeed at the present stage,
we are not able to verify the assumption (35) theoretically. However, in the context
of the Zhikov counterexample (4), it is known that H is of codimension 1 in W; and
the density of smooth functions in H ensures (35) for φ ∈ H. Therefore in practice,
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in order to conclude that the scheme with the choice (34) approximates the broad
solution, it is enough to observe that it is able to approximate ũ0 verifying (6). The
below numerical examples show that this is feasible, in particular, for the DDFV
scheme which is non-conforming - contrarily to the CVFE scheme, - and thus it may
indeed possess the strong approximation property for the wider space W.

Proof The proof of Proposition 6 differs from the one of Theorem 4 only at the point
where discrete test functions are taken into the scheme in order to derive (22). To
ensure that it is possible to use discrete functions approximating any element of W,
we first observe that due to (32), one has pD ≤ p(.). Given a test function φ ∈W,
we use (35) to produce a sequence of discrete test functions to be inserted into the

scheme (17). The Lp(.) convergences required in (35) permit to pass to the limit in
the resulting identities, having in mind the energy bound (21) and the inequality
pD ≤ p(.); at the limit, we infer (22). �

4.3 Numerical experiments on Zhikov’s counterexample

The aim of this paragraph is to numerically capture the two different solutions,
namely the W-solution and the H-solution, in the case where p(·) is discontin-
uous. For this purpose, we focus on the counterexample of Zhikov recalled in
Section 2. We take the nonlinearity (2) with p(.) as given in (4), and consider
u0 defined in (5). Referring to Figure 1, u0 is equal to 1 (respectively to −1)
on the upper (resp., on the lower) white triangle and x2/ |x1| on the hatched
zone in Figure 1.

We keep the same set up as previously when using the CVFE solver. A
similar resolution process is extended to the context of the DDFV scheme on
the same meshes. Figure 6 and Figure 7 show the distribution of the discretized
variable exponent pD around the origin, in the context of the CVFE method
and the DDFV method respectively. Recall that p(·) is piecewise constant on
the diamonds (triangles, in the CVFE context; quadrangles, in the DDFV one).

In what follows, we compare and illustrate the obtained results using both
methods with two different examples.

Fig. 6 Magnification on the shape of the power function p(·) around the origin using
p = pmin (left) and p = pmax (right) in the framework of the CVFE method.
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Fig. 7 Magnification on the shape of the power function p(·) around the origin using
p = pmin (left) and p = pmax (right) in the framework of the DDFV method.

4.3.1 Test 4a

Consider the p(x)-Laplacian problem without forcing term but supplemented
with non-homogeneous Dirichlet boundary conditions borrowed from [16]:{

−div
(
|∇u|p(x)−2∇u

)
= 0,

u|∂Ω = αu0, where α > 1 is large enough.

The parameter α is set to 10. Figure 8 plots the obtained approximate solu-
tion using two constant piecewise discretizations of ph per triangles. For each
triangle D, the first (resp. second) one consists in taking the minimum (resp.
maximum) of the values of p at the vertices of D. As a consequence, both
solutions are completely different. Indeed, the one corresponding to pmax(·)
is entirely continuous, including the area surrounding the origin. This can be
qualified as the narrow (or the H-) solution. The other one corresponding to
pmin(·) is singular at 0 and resembles to u0. It can be then qualified as the
broad (or the W-) solution.

Fig. 8 Numerical solution by the CVFE method with pmin(·) (left) and pmax(·) (right)
over each triangle.

In addition to the CVFE method which is conforming, we make use of the
non-conforming DDFV strategy. Quite analogous outcomes are noticed, see
Figure 9. In this case, the max and min of the discrete exponent are performed
on the diamond cells.
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Fig. 9 Numerical solution by the DDFV method with pmin(·) (left) and pmax(·) (right)
over each diamond.

To sum up, in this test we observe that the choice (32) (resp., (34)) for
discretization of p(.) permits to approximate the narrow (resp., the broad)
solution, irrespective of the conformity of the underlying scheme.

4.3.2 Test 4b

In this last test-case, we consider the setting (1),(2),(4) with a specific numer-
ical procedure for computation of the source term. The originality of this
example is to impose the function

u(x) =
(

1− x2
1 − x2

2

)+

u0(x),

as the broad (W-) solution that is evaluated at the vertices of the mesh,
see Figure 10. In other words, we compute the discrete left-hand side of (1)
using the CVFE scheme, where according to the above results on approxima-
tion of broad solutions, the discretized variable exponent is defined as pmin(·).
The resulting per volume values are set to define the discrete source term
in the right hand side (RHS). Note that by this choice, the resulting scheme
approximates the broad solution u by construction.

Now, keeping the same mesh, we take this discrete RHS in the CVFE
algorithm with pmax(·) discretization of the variable exponent. As Figure 11
shows, the obtained numerical solution is different from the imposed one. It is
clearly regular around x = 0 and therefore, we assimilate it to the narrow (H-
) solution. This highlights the importance of the conformity assumption (33)
for the approximation of the narrow solution.
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Fig. 10 Discretized continuous solution ue(xK) with pmin over each triangle.

Fig. 11 Numerical solution by the CVFE method with pmax(·) over each triangle. The
right hand side is computed using the CVFE scheme.

We repeat a similar experience by computing this time the RHS using the
DDFV scheme with pmin(·)-discretization. We inject this term in the DDFV
algorithms with pmax(·)-approximation of p(·). In light of Figure 12, the found
solution is in great accordance with the imposed one, meaning that only the
W-solution is detected.

Through this example we observe that, on the one hand, the non-
conforming nature of the DDFV scheme may preclude it from approximating
the narrow solution; while on the other hand, the DDFV scheme seems to pos-
sess the approximation property (35) of the space W, at least in the setting
of the Zhikov counterexample.

Fig. 12 Numerical solution by the DDFV method with pmax(·) over each diamond. The
right hand side is computed using the DDFV scheme.
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5 Conclusions

We pointed out that the technique of [7], based upon the Young-measure
description of the weak L1 convergence, is suitable for assessing convergence of
consistent numerical schemes for the p(x)-laplacian kind problem, at least in
the standard case with log-Hölder regular exponent; the strategy of the proof
easily extends to p(u)- and p[u]-laplacian problems.

In the more general situation involving a Lavrentiev gap W \H 6= ∅, we
describe the specific strategies for separate approximation of the H- and the
W- solutions, and illustrate them numerically. Our results and experiments
demonstrate that the choice of pD = maxD p (respectively of pD = minD p)
is particularly important for the selection of the H-solution (resp., of the W-
solution) and that the conformity (resp., the non-conformity) of the underlying
approximation is another important criterion for successful approximation of
these dissimilar solutions. These conclusions corroborate, in the Finite Volume
setting, the conclusions of the recent work [16] for the Finite Element setting.
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The gradient discretisation method, volume 82 of Mathématiques &
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