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This paper is devoted to the asymptotic analysis of the amnesic elephant random walk (AERW) using a martingale approach. More precisely, our analysis relies on asymptotic results for multidimensional martingales with matrix normalization. In the diffusive and critical regimes, we establish the almost sure convergence and the quadratic strong law for the position of the AERW. The law of iterated logarithm is given in the critical regime. The distributional convergences of the AERW to Gaussian processes are also provided. In the superdiffusive regime, we prove the distributional convergence as well as the mean square convergence of the AERW.

Introduction

The Elephant Random Walk (ERW) is a discrete-time random walk, introduced by Sch ütz and Trimper [START_REF] Sch Ütz | Elephants can always remember: Exact long-range memory effects in a non-markovian random walk[END_REF] in the early 2000s. At first, the ERW was used in order to see how longrange memory affects the random walk and induces a crossover from a diffusive to superdiffusive behavior. It was referred to as the ERW in allusion to the traditional saying that elephants can always remember anywhere they have been. The elephant starts at the origin at time zero, S 0 = 0. At time n = 1, the elephant moves one step to the right with probability q and to the left with probability 1q for some q in [0, 1]. Afterwards, at time n + 1, the elephant chooses uniformly at random an integer k among the previous times 1, . . . , n. Then, it moves exactly in the same direction as that of time k with probability p or the opposite direction with the probability 1p, where the parameter p stands for the memory parameter of the ERW. The position of the elephant at time n + 1 is given by

S n+1 = S n + X n+1 (1.1)
where X n+1 is the (n + 1)-th increment of the random walk, such that

X n+1 = α n+1 X β n+1 (1.2)
where α n+1 ∼ R(p) and β n+1 ∼ U (1, n) are mutually independent and independant of the past. The ERW shows three differents regimes depending on the location of its memory parameter p with respect to the critical value p = 3/4. On the one hand, a wide literature is now available on the ERW in dimension d = 1 thanks to a variety of approaches. Baur and Bertoin [START_REF] Baur | Elephant random walks and their connection to p ólya-type urns[END_REF] used the connection to P ólya-type urns as well as functional limit theorems for multitype branching processes due to Janson [START_REF] Janson | Functional limit theorems for multitype branching processes and generalized P ólya urns[END_REF]. Bercu [START_REF] Bercu | A martingale approach for the elephant random walk[END_REF] and Coletti et al. [START_REF] Coletti | Central limit theorem and related results for the elephant random walk[END_REF] used martingales to obtain the almost sure convergence and asymptotic normality, among other results. K ürsten [START_REF] Ürsten | Random recursive trees and the elephant random walk[END_REF] and Businger [START_REF] Businger | The shark random swim (Lévy flight with memory)[END_REF] used the construction of random trees with Bernoulli percolation. A strong law of large numbers and a central limit theorem for the position of the ERW, properly normalized, were established in the diffusive regime p < 3/4 and the critical regime p = 3/4, see [START_REF] Baur | Elephant random walks and their connection to p ólya-type urns[END_REF][START_REF] Bercu | A martingale approach for the elephant random walk[END_REF][START_REF] Coletti | Central limit theorem and related results for the elephant random walk[END_REF][START_REF] Coletti | Asymptotic analysis of the elephant random walk[END_REF][START_REF] Guevara | On the almost sure central limit theorem for the elephant random walk[END_REF]. In the superdiffusive regime p > 3/4, Bercu [START_REF] Bercu | A martingale approach for the elephant random walk[END_REF] proved that the limit of the position of the ERW is not Gaussian and Kubota and Takei [START_REF] Kubota | Gaussian fluctuation for superdiffusive elephant random walks[END_REF] showed that the fluctuation of the ERW around this limit is Gaussian.

On the other hand, over the last years, various processes derivated from the ERW have recevied a lot of attention. Bercu and Laulin in [START_REF] Bercu | On the multi-dimensional elephant random walk[END_REF] extended all the results of [START_REF] Bercu | A martingale approach for the elephant random walk[END_REF] to the multidimensional ERW (MERW) where d ≥ 1 and to its center of mass [START_REF] Bercu | On the center of mass of the elephant random walk[END_REF] using a martingale approach, while Bertenghi used the connection [START_REF] Bertenghi | Functional limit theorems for the multi-dimensional elephant random walk[END_REF] to P ólya-type urns for the MERW. The ERW with stops or minimal RW, changing in particular the distribution of α n , has also been investigated [START_REF] Bercu | New insights on the minimal random walk[END_REF][START_REF] Bercu | On the elephant random walk with stops playing hide and seek with the Mittag-Leffler distribution[END_REF][START_REF] Gut | The number of zeros in elephant random walks with delays[END_REF][START_REF] Miyazaki | Limit theorems for the 'laziest' minimal random walk model of elephant type[END_REF]. The ERW with reinforced memory has been studied by Baur [START_REF] Baur | On a class of random walks with reinforced memory[END_REF] via the urn approach, and Laulin [START_REF] Laulin | New Insights on the Reinforced Elephant Random Walk Using a Martingale Approach[END_REF] using martingales.

The idea of this paper is to use the approach developped in [START_REF] Bercu | On the center of mass of the elephant random walk[END_REF] and [START_REF] Laulin | New Insights on the Reinforced Elephant Random Walk Using a Martingale Approach[END_REF] to study how changing the memory allows us to induce amnesia to the ERW. More precisely, the distribution of the memory β n of our new variation of the ERW is such that the probability of choosing a fixed instant k ∈ N * at time n ≥ k decreases approximatly with speed (k/n) β for some amnesia parameter β ≥ 0. The very interesting question of amnesic elephant random walk (AERW) has not been investigated a lot. Gut and Stadm üller [START_REF] Gut | Variations of the elephant random walk[END_REF][START_REF] Gut | The elephant random walk with gradually increasing memory[END_REF] studied variations of the memory for the special cases of ERW with delays or gradually increasing memory. In [START_REF] Gut | Variations of the elephant random walk[END_REF] the elephant could stop and only remember the first (and second) step it tooks. Consequently, it did not induced a phase transition. In [START_REF] Gut | The elephant random walk with gradually increasing memory[END_REF], the elephant only remembered a portion of its past (recent or distant), this portion being fixed or depending on the time n, but was always "small".

The entire study we conduct below can be generalized when β < 0 is not an integer. This can be interpreted as cases where the elephant remembers more vividly the first steps it performed. When β < -1, it appears that the AERW only have one regime that is the diffusive regime. This observation is coherent with the work of Gut and Stadm üller [START_REF] Gut | The elephant random walk with gradually increasing memory[END_REF].

The AERW will appear to be non-Markovian, as the reinfroced ERW. However, unlike the reinforced ERW, the AERW can not be studied using P ólya-type urns. The major change for the AERW is that the distribution of the memory β n in equation (1.2) is no longer uniform but depends on the amnesia parameter β ≥ 0. In this approach, the elephant chooses an instant according to β n+1 as follows,

P(β n+1 = k) = (β + 1)Γ(k + β)Γ(n) Γ(k)Γ(n + β + 1) = (β + 1) n µ k µ n+1 for 1 ≤ k ≤ n, (1.3) 
where

µ n = n-1 ∏ k=1 1 + β k = Γ(n + β) Γ(n)Γ(β + 1)
.

(1.4)

The case β = 0 corresponds to the traditionnal ERW. As β grows, the probability of choosing a recent instant gets bigger, see the illustrative Figure 1. We have by definition of the step X n+1 given in (1.2) and the distribution

β = 0 β = 1 β = 2 β = 3 β = 10 β = 100
β n+1 (1.3) that E[X n+1 | F n ] = E[α n+1 ]E[X β n+1 | F n ] = (2p -1)E n ∑ k=1 X k 1 β n+1 =k | F n = (2p -1)(β + 1) nµ n+1 n ∑ k=1 X k µ k . (1.5)
Then, denote a = 2p -1 and

Y n = n ∑ k=1 X k µ k . (1.6)
We deduce from (1.5) that

E[Y n+1 | F n ] = 1 + a(β + 1) n Y n . (1.7)
Hereafter, for any n ≥ 1, let

γ n = 1 + a(β + 1) n (1.8)
and Our strategy for proving asymptotic results for the AERW is as follows. On the one hand, the behavior of the position S n is closely related to the one of the sequences (M n ) and (N n ) defined, for all n ≥ 0, by

a n = n-1 ∏ k=1 γ -1 k = Γ(n)Γ(a(β + 1) + 1) Γ(n + a(β + 1)) . ( 1 
M n = a n Y n and N n = S n + a(β + 1) β -a(β + 1) µ -1 n Y n .
(1.12)

We immediatly get from (1.7) and (1.9) that (M n ) is a locally square-integrable martingale adapted to (F n ). Moreover, we have from (1.5) that

E S n+1 + a(β + 1) β -a(β + 1) µ -1 n+1 Y n+1 | F n = S n + a(β + 1) β -a(β + 1) µ -1 n Y n
which also means that (N n ) is also a locally square-integrable martingale adapted to F n . On the other hand, we can rewrite S n as

S n = N n - a(β + 1) β -a(β + 1) (µ n a n ) -1 M n (1.13)
and equation (1.13) allows us to establish the asymptotic behavior of the AERW via an extensive use of the martingale theory.

The main results of this paper are given in Section 2. We first investigate the diffusive regime and we establish the strong law of large numbers, the law of iterated logarithm and the quadratic strong law for the AERW. The functional central limit theorem is also provided. Next, we prove similar results in the critical regime. Finally, we establish a strong limit theorem in the superdiffusive regime. Our martingale approach is described in Section 3. Finally, we give some of the technical proofs in Section 4.

Main results

The diffusive regime

Our first result deals with the strong law of large numbers for the AERW in the diffusive regime where p < 4β+3 4(β+1) . The following strong law for the AERW will be deduced from both the strong laws for (N n ) and (M n ). The almost sure rate of convergence for the AERW is as follows, for

σ 2 β = 2β + 1 -a (1 -a)(1 + 2β -2a(β + 1))
.

Theorem 2.2. We have the quadratic strong law

lim n→∞ 1 log n n ∑ k=1 S 2 k k 2 = σ 2 β a.s. (2.2)
Hereafter, we are interested in the distributional convergence of the AERW, which holds in the Skorokhod space D([0, ∞[) of right-continuous functions with left-hand limits.

Theorem 2.3. The following convergence in distribution in D([0, ∞[) holds S nt √ n , t ≥ 0 =⇒ W t , t ≥ 0 (2.3)
where W t , t ≥ 0 is a real-valued centered Gaussian process starting from the origin with covariance

E[W s W t ] = a(1 + β)(1 -a) + aβ (2(β + 1)(1 -a) -1)(a -β(1 -a))(1 -a) s t s a-β(1-a) + β (β(1 -a) -a)(1 -a) s (2.4) for 0 < s ≤ t.
In particular, we have

S n √ n L -→ N 0, σ 2 β .
(2.5)

Remark 2.4. When β = 0 we find again the results from [START_REF] Baur | Elephant random walks and their connection to p ólya-type urns[END_REF] for the ERW

S nt √ n , t ≥ 0 =⇒ W t , t ≥ 0
where W t , t ≥ 0 is a real-valued mean-zero Gaussian process starting from the origin and

E[W s W t ] = 1 1 -2a s t s a .

The critical regime

Hereafter, we investigate the critical regime where p = 4β+3 4(β+1) . It is interesting to notice that, when β is really large (or β → ∞) the critical regime is reached for the memory parameter p = 1. Hence, the greater β is, the more there are values of the memory parameter p for which the AERW stays in the diffusive regime; but whatever the value of β, we still observe a phase transition. 

lim n→∞ S n √ n log n = 0 a.s. (2.6)
The almost sure rates of convergence for the AERW are as follows.

Theorem 2.6. We have the quadratic strong law

lim n→∞ 1 log log n n ∑ k=1 S 2 k (k log k) 2 = (2β + 1) 2 a.s.
(2.7)

In addition, we also have the law of iterated logarithm lim sup n→∞ S (2.10)

The superdiffusive regime

Finally, we focus our attention on the superdiffusive regime where p > 4β+3 4(β+1) .

Theorem 2.8. We have the following distributional convergence in D([0, ∞[)

S nt n a(β+1) , t ≥ 0 =⇒ (Λ t , t ≥ 0) (2.11)
where the limiting Λ t = t a(β+1) L β , L β being some non-denegerate random variable. In particular, we have

lim n→∞ S n n a(β+1)-β = L β a.s.
(2.12)

where the limiting L β is a non-degenerate random variable. We also have the mean square convergence

lim n→∞ E S n n a(β+1)-β -L β 2 = 0.
(2.13)

Remark 2.9. The expected value of L β is

E[L β ] = a(β + 1)(2q -1)Γ(β + 1) a(β + 1) -β Γ a(β + 1) + 1 (2.14)
while its second order moment is given by

E L 2 β = a 2 (β + 1) 2 Γ(β + 1) 2 Γ 2(a -1)(β + 1) + 1 a(β + 1) -β 2 Γ (2a -1)(β + 1) + 1 2 .
(2.15)

When β = 0 we find again the expected values for the ERW from [START_REF] Bercu | A martingale approach for the elephant random walk[END_REF] E

[L] = 2q -1 Γ(a + 1) and E[L 2 ] = 1 (2a -1)Γ(2a)
.

A two-dimensional martingale approach

In order to investigate the asymptotic behavior of (S n ), we introduce the two-dimensional martingale (M n ) defined by

M n = N n M n (3.1)
where (M n ) and (N n ) are the two locally square-integrable martingales introduced in (1.12).

As for the CMERW and the RERW, the main difficulty we face is that the predictable quadratic variations of (M n ) and (N n ) increase to infinity with two different speeds. A matrix normalization will again be necessary to establish the asymptotic behavior of the AERW. We will alternatively study

(M n ), (M n ) or (N n ). Denote the martingale increment ε n+1 = Y n+1 -γ n Y n .
We obtain that

∆M n+1 = M n+1 -M n = S n+1 -S n + a(β+1) β-a(β+1) Y n+1 µ n+1 -Y n µ n a n+1 Y n+1 -a n Y n = 1 + a(β+1) β-a(β+1) X n+1 - a(β+1) (β-a(β+1))µ n+1 β n Y n a n+1 ε n+1 = β (β-a(β+1))µ n+1 Y n + X n+1 µ n+1 -(γ n -1)Y n a n+1 ε n+1 .
Consequently

∆M n+1 = β (β-a(β+1))µ n+1 a n+1 ε n+1 .
We also obtain that

E[ε 2 n+1 | F n ] = E[Y 2 n+1 | F n ] -γ 2 n Y 2 n = Y 2 n + 2(γ n -1)Y 2 n + µ 2 n+1 -γ 2 n Y 2 n = µ 2 n+1 -(γ n -1) 2 Y 2 n . (3.2)
Therefore, we deduce that

E (∆M n+1 )(∆M n+1 ) T | F n = (µ 2 n+1 -(γ n -1) 2 Y 2 n ) β (β-a(β+1))µ n+1 2 βa n+1 (β-a(β+1))µ n+1 βa n+1 (β-a(β+1))µ n+1 a 2 n+1 .
We are now able to compute the quadratic variation of M n

M n = n-1 ∑ k=0 β β-a(β+1) 2 βa k+1 µ k+1 β-a(β+1) βa k+1 µ k+1 β-a(β+1) (a k+1 µ k+1 ) 2 -ξ n (3.3)
where

ξ n = n-1 ∑ k=0 (γ k -1) 2 Y 2 k β (β-a(β+1)) 2 βa k+1 µ k+1 (β-a(β+1)) βa k+1 µ k+1 (β-a(β+1)) (a k+1 µ k+1 ) 2 .
Hereafter, we immediatly deduce from (3.3) that

M n = n ∑ k=1 (a k µ k ) 2 -ζ n where ζ n = n ∑ k=1 a 2 k (γ k -1) 2 Y 2 k (3.4)
and

N n = β β -a(β + 1) 2 n.
(3.5)

The asympotic behavior of M n is closely related to the one of

w n = n ∑ k=1 (a k µ k ) 2 (3.6)
as one can observe that we always have M n ≤ w n and that ζ n is negligeable when compared to w n . Consequently, it follows from the definitions of (a n ) and (µ n )that we have three regimes of behavior for (M n ). In the diffusive regime where is p < 4β+3 4(β+1) or a < 1 -1 2(β+1) ,

lim n→∞ w n n 1-2(a(β+1)-β) = where = 1 1 + 2(β -a(β + 1)) Γ(a(β + 1) + 1) Γ(β + 1) 2 .
(3.7)

In the critical regime where p = 4β+3 4(β+1) or a = 1 -1 2(β+1) ,

lim n→∞ w n log n = Γ(β + 1 + 1 2 ) Γ(β + 1) 2 .
(3.8)

In the superdiffusive regime where p > 4β+3 4(β+1) or a > 1 -1 2(β+1) ,

lim n→∞ w n = ∞ ∑ k=1 Γ(a(β + 1) + 1)Γ(k + β) Γ(k + a(β + 1))Γ(β + 1) 2 < +∞. (3.9)
4 Proofs of the main results

The diffusive regime

Lemma 4.1. Let (V n ) be the sequence of positive definite diagonal matrices of order 2 given by

V n = 1 √ n 1 0 0 a(β+1) β-a(β+1) (a n µ n ) -1 . (4.1) Let v = 1 -1 such that v T V n M n = S n √ n . (4.2)
The quadratric variation of M n satisfies in the diffusive regime where is a < 1 -1 2(β+1) ,

lim n→∞ V n M n V T n = V a.s. (4.3)
where the matrix V is given by

V = 1 (β -a(β + 1)) 2 β 2 aβ 1-a aβ 1-a a 2 (β+1) 2 1+2β-2a(β+1) .
(4.4) Remark 4.2. Following the same steps as in the proof of Lemma 4.1, we find that in the critical regime a = 1 -1 2(β+1) , the sequence of normalization matrices (V n ) has to be replaced by

W n = 1 n log n 1 0 0 (2β + 1)(a n µ n ) -1 .
(4.5)

The limit matrix V also need to be replaced by 

W = (2β + 1) 2 0 0 0 1 . ( 4 
V n M n V T n = lim n→∞ 1 n   ∑ n-1 k=0 β (β-a(β+1)) 2 a(β+1)β (β-a(β+1)) 2 a n µ n ∑ n-1 k=0 a k+1 µ k+1 a(β+1)β (β-a(β+1)) 2 a n µ n ∑ n-1 k=0 a k+1 µ k+1 a(β+1) (β-a(β+1))a n µ n 2 ∑ n-1 k=0 (a k+1 µ k+1 ) 2   = 1 (β -a(β + 1)) 2   β 2 a(β+1)β β+1-a(β+1) a(β+1)β β+1-a(β+1) a(β+1) 2 2(β-a(β+1))+1  
which is exactly what we wanted to prove.

Proof of Theorem 2.1. We shall make extensive use of the strong law of large numbers for martingales given, e.g. by theorem 1.3.24 of [START_REF] Duflo | Random iterative models[END_REF]. First, we have for (M n ) that for any γ > 0,

M 2 n = O (log w n ) 1+γ w n a.s.
which by definition of M n and as a n is asymptotically equivalent to n -a(β+1) and w n is asymptotically equivalent to n 1+2(β-a(β+1)) ensures that

Y 2 n n 2 = O (log n) 1+γ n 1+2(β-a(β+1)) n 2(1-a(β+1)) a.s.
Finally as µ n is asymptotically equivalent to n β , we obtain that

Y 2 n (µ n n) 2 = O (log n) 1+γ n a.s. which reduces to lim n→∞ Y n µ n n = 0 a.s. (4.7)
We now focus our attention on (N n ). By the same token as before, we have that for any γ > 0, (H.1) We have from (4.3) and the fact that a nt is asymtotically equivalent to t -a(β+1) a n that

N 2 n = O (log n) 1+γ n a.s. which by definition of (N n ) gives us S n -a(β+1) β-a(β+1) µ -1 n Y n 2 n 2 = O (log n) 1+γ n a.
V n M nt V T n -→ n→∞ V t a.s.
where

V t = 1 (β -a(β + 1)) 2    β 2 t aβ 1 -a t 1+β-a(β+1) aβ 1 -a t 1+β-a(β+1) a 2 (β + 1) 2 1 + 2β -2a(β + 1) t 1+2β-2a(β+1)    .
(H.2) In order to verify that Lindeberg's condition is satisfied, we start by deducing from (1.12) together with (3.1) and V n given by (4.1) that for all 1 ≤ k ≤ n

V n ∆M k = 1 (β -a(β + 1)) √ nµ n β µ n µ k a a k a n ε k which implies that V n ∆M k 2 = 1 (β -a(β + 1)) 2 n β 2 µ 2 k + a 2 a 2 k (a n µ n ) 2 ε 2 k . ( 4.9) 
Consequently, we obtain that for all ε > 0,

n ∑ k=1 E V n ∆M k 2 1 { V n ∆M k >ε} | F k-1 ≤ 1 ε 2 n ∑ k=1 E V n ∆M k 4 | F k-1 . (4.10) 
It follows from (1.10) that

a -2 n n ∑ k=1 a 2 k = O(n) and a -4 n n ∑ k=1 a 4 k = O(n).
Hence, using that the sequence

(ε n ) is bounded sup 1≤k≤n |ε k | ≤ sup 1≤k≤n (β + 2)µ k ≤ (β + 2)µ n a.s. (4.11) 
we find that

n ∑ k=1 E V n ∆M k 4 | F k-1 = O 1 n a.s.
which ensures that Lindeberg's condition (H.2) holds almost surely, that is for all ε > 0,

lim n→∞ n ∑ k=1 E V n ∆M k 2 1 { V n ∆M k >ε} | F k-1 = 0 a.s. (4.12) Since V n V -1 nt converges, we immediatly obtain that lim n→∞ nt ∑ k=1 E V n ∆M k 2 1 { V n ∆M k >ε} | F k-1 ≤ lim n→∞ nt ∑ k=1 E V n ∆M k 4 ≤ lim n→∞ nt ∑ k=1 E (V n V -1 nt )V nt ∆M k 4 = 0 a.s.
(H.3) In this particular case, we have

V t = tK 1 + t α 2 K 2 + t α 3 K 3 where α 2 = 1 -a(β + 1) > 0 and α 3 = 1 -2a(β + 1) > 0 as a < 1 -1 2(β+1)
, and the matrix are symmetric

K 1 = β 2 (β -a(β + 1)) 2 1 0 0 0 , K 2 = aβ (1 -a)(β -a(β + 1)) 2 0 1 1 0 , K 3 = a 2 (β + 1) 2 (1 + 2β -2a(β + 1))(β -a(β + 1)) 2 0 0 0 1 .
Consequently, we obtain that

V n M nt , t ≥ 0 =⇒ B t , t ≥ 0
where B is defined as in Theorem A.2 from [START_REF] Laulin | New Insights on the Reinforced Elephant Random Walk Using a Martingale Approach[END_REF]. Finally, using the fact that S nt is asymp-

totically equivalent to N nt + t β-a(β+1) a(β+1) β-a(β+1) (µ n a n ) -1 M nt , and multiplying by u t = 1 t a(β+1)-β , we conclude 1 √ n S nt , t ≥ 0 =⇒ W t , t ≥ 0 (4.13) 
where

W t = u T t B t . It only remains to compute the covariance function of (W t ) that is for 0 ≤ s ≤ t E W s W t = u T s E B s B T t u t = u T s V s u t = u T s sK 1 + s 1+β-a(β+1) K 2 + s 1+2β-2a(β+1) K 3 )u t = β 2 (β -a(β + 1)) 2 s + aβs 1+β-a(β+1) (1 -a)(β -a(β + 1)) 2 (s a(β+1)-β + t a(β+1)-β ) + a 2 (β + 1) 2 (1 + 2β -2a(β + 1))(β -a(β + 1)) 2 s 1+2β-2a(β+1) (st) a(β+1)-β = a(1 + β)(1 -a) + aβ (2(β + 1)(1 -a) -1)(a -β(1 -a))(1 -a) s t s a-β(1-a) + β (β(1 -a) -a)(1 -a)
s.

Proof of Theorem 2.2. We need to check that all the hypotheses of Theorem A. Therefore, we can replace log(det V -1 n ) 2 by log n in (4.1). Hereafter, we obtain from (4.9) and (4.11) that

∞ ∑ n=2 1 (log n) 2 E V n ∆M n 4 F n-1 = O ∞ ∑ n=1 1 (n log n) 2 .
(4.16)

Thus, (4.16) guarentees that (H.4) is verified. We are now going to apply the quadratic strong law given by Theorem A.3 in [START_REF] Laulin | New Insights on the Reinforced Elephant Random Walk Using a Martingale Approach[END_REF]. We get from equation (4.15) that 

lim n→∞ 1 log n n ∑ k=1 (det V k ) 2 -(det V k+1 ) 2 (det V k ) 2 V k M k M T k V T k = 1 + 2β -2a(β + 1) V a.s. ( 4 
(det V n ) 2 -(det V n+1 ) 2 (det V n ) 2 = 1 + 2β -2a(β + 1). (4.18) 
Finally, we can deduce from (4.2), (4.17 which, together with

v T Vv = 2β + 1 -a (1 -a)(1 + 2β -2a(β + 1)) (4.20)
completes the proof of Theorem 2.2.

The critical regime

The proofs of Theorems 2.5 and 2.7 follows essentially the same lines as the ones in the diffusive regimes, provided one exchange V n with W n . Hence, they shall not be explicited here.

Proof of Theorem 2.6. The proof of the quadratic strong law (2.7) is left to the reader as it follows essentially the same lines as that of (2.2). The only minor change is that the matrix V n has to be replaced by the matrix W n defined in (4.5). We shall now proceed to the proof of the law of iterated logarithm given by (2.8). On the one hand, it follows from (1. Consequently, we deduce from the law of iterated logarithm for martingales due to Stout [START_REF] Stout | Maximal inequalities and the law of the iterated logarithm[END_REF], see also Corollary 6.4.25 in [START_REF] Duflo | Random iterative models[END_REF], that (M n ) satisfies when a = 1 -1/2(β + 1)

lim sup n→∞ M n (2w n log log w n ) 1/2 = -lim inf n→∞ M n (2w n log log w n ) 1/2 = 1 a.s. However, as a n w -1/2 n is asymptotically equivalent to (n 2β+1 log n) -1/2 , we immediately ob- tain from (3.8) that lim sup n→∞ Y n (2n 2β+1 log n log log log n) 1/2 = -lim inf n→∞ Y n (2n 2β+1 log n log log log n) 1/2 lim sup n→∞ n -β Y n (2n log n log log log n) 1/2 = -lim inf n→∞ n -β Y n (2n log n log log log n) 1/2 = 1 a.s. (4.22)
The law of iterated logarithm for martingales also allow us to find that ( 

N n ) satisfies lim sup n→∞ N n (2n log log n) 1/2 = -lim inf n→∞ N n (2n log log n) 1/2
N n + (2β + 1)(µ n a n ) -1 M n (2n log n log log log n) 1/2 = lim sup n→∞ (2β + 1) Y n (2n 2β+1 log n log log log n) 1/2 = -lim inf n→∞ (2β + 1) Y n (2n 2β+1 log n log log log n) 1/2 = -lim inf n→∞ S n (2n log n log log log n) 1/2 .
Hence, we obtain that lim sup which immediately leads to (2.8), thus completing the proof of Theorem 2.6.

The superdiffusive regime

Proof of Theorem 2.8. Hereafter, we shall again make extensive use of the strong law of large numbers for martingales given, e.g. by theorem 1.3.24 of [START_REF] Duflo | Random iterative models[END_REF] in order to prove (2.12). When a > 1 -1 2(β+1) , we have from (3.9) that w n converges. Hence, as M n ≤ w n , we clealy have that M ∞ < ∞ almost surely and we can conclude that Moreover, we still have that for any γ > 0,

N 2 n = O (log n) 1+γ n a.s.
which by definition of N n gives us for all t ≥ 0

S n + a(β+1) β-a(β+1) (µ n ) -1 Y n ) 2 n 2a(β+1)-2β = O (log n) 1+γ n 2a(β+1)-2β-1
a.s.

We know that a > 1 -1 2(β+1) in the superdiffusive regime, which ensures that 2a(β + 1) -2β -1 > 0. Then, we obtain thanks to (1.11) and (4. Finally, the fact that (4.25) holds almost surely ensures that it also holds for the finite-dimensional distributions, and we obtain (2.11) with Λ t = t a(β+1) L β and L β = a(β+1) a(β+1)-β Y. We shall now proceed to the proof of the mean square convergence (2.13). On the one hand, as M 0 = 0 we have from (3.4) that

E M 2 n = E M n ≤ w n .
Hence, we obtain from (3.9) that sup Finally, we obtain the mean square convergence (2.13) from (4.26) and (4.27) and we achieve the proof of Theorem 2.8.
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n≥1 E M 2 2 n

 22 n < ∞ which ensures that the martingale (M n ) is bounded in L 2 . Therefore, we have the mean square convergence limn→∞ E M n -M 2 = 0 which implies that lim n→∞ E Y n n a(β+1) -Y 2 = 0. (4.26)On the other hand, for any n ≥ 0, the martingale (N n ) satisfiesE N 2 n = E N n ≤ β βa(β + 1)and since a(β + 1)β > 1

  Once again, our next result concerns the asymptotic normality of the AERW.

	Theorem 2.7. The following convergence in distribution in D([0, ∞[) holds
	S n t n t log n	, t ≥ 0 =⇒ (2β + 1) B t , t ≥ 0	(2.9)
	where (B t , t ≥ 0) is a one-dimensional standard Brownian motion. In particular, we have the
	asymptotic normality		
	S n n log n	L -→ N 0, (2β + 1) 2 .

2 n 2n log n log log log n = (2β + 1) 2 a.s. (2.8)

  .6) 

	Proof of Lemma 4.1. We obtain from Theorem 2.1, equations (1.10) and (3.7) that
	lim n→∞

  In order to apply Theorem A.2 from[START_REF] Laulin | New Insights on the Reinforced Elephant Random Walk Using a Martingale Approach[END_REF], we must verify that (H.1), (H.2) and (H.3) are satisfied.

							s.	
	and we conclude that	lim n→∞	S n n	-	a(β + 1) β -a(β + 1)	Y n µ n n	= 0 a.s.	(4.8)

This achieves the proof of Theorem 2.1 as the convergences (4.7) and (4.8) hold almost surely.

Proof of Theorem 2.3.

  3 in[START_REF] Laulin | New Insights on the Reinforced Elephant Random Walk Using a Martingale Approach[END_REF] are satisfied. Thanks to Lemma 4.1, hypothesis (H.1) holds almost surely. We also immediately obtain from (4.12) that (H.2) is verified almost surely when t = 1. Hereafter, we need to verify (H.4) is satisfied in the special case β = 2 that is

	We immediately have from (4.1)			
			det V -1 n =	β -a(β + 1) a(β + 1)	a n µ n	√	n.	(4.14)
	Hence, we obtain from (1.10) and (4.14) that		
		lim n→∞	log(det V -1 n ) 2 log n	= 1 + 2β -2a(β + 1).	(4.15)
	∞ ∑ n=1	1 log(det V -1 n ) 2 2 E V n ∆M n	

F n-1 < ∞ a.s.