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CLASSIFICATION OF LOG SMOOTH TORIC DEL PEZZO PAIRS

ACHIM NAPAME

Abstract. We give a description of all log-Fano pairs (X, D) where X is a
smooth toric surface and D a reduced simple normal crossing divisor such that
the pair (X, D) is equivariant.

1. Introduction

The Enriques-Kodaira classification gives a classification of complex compact
surfaces by using their Kodaira dimension. Nonsingular projective minimal sur-
faces with Kodaira dimension −∞ have an important position in this problem of
classification, they correspond in the MMP-terminology to Mori’s fiber spaces (see
[Mat02, Theorem 1.5.5]). Del Pezzo surfaces form a class of surfaces with kodaira
dimension −∞.

A toric variety X of dimension n is an irreducible variety that contains a torus
T ≃ (C∗)n as a dense open subset, together with an action of T on X that extends
the natural action of T on itself. We say that a toric surface is log del Pezzo if it has
at worst log-terminal singularities and its anticanonical divisor is a Q-Cartier ample
divisor. According to [Dais17, Proposition 4.2], there is a one-to-one correspondence
between toric log del Pezzo surfaces and LDP-polygons which are convex lattice
polygons containing the origin in their interior and having only primitive vertices.
The classification of toric log del Pezzo surfaces is an open problem. There are
results on the classification according to the index of the anticanonical divisor (see
[CLS11, Section 8.3] for index one and [KKN10] for index two).

Motivated by Iitaka’s philosophy, in this paper we are interested by the question
of classification of log smooth toric del Pezzo pairs. A pair (X, D) is called a log

smooth del Pezzo pair if X is a smooth surface and D a simple normal crossing
divisor such that −(KX +D) is ample. Moreover, we say that (X, D) is toric if X
is toric and the sheaf TX(− logD) is an equivariant sheaf which means that D is
an invariant divisor under the action of the torus T of X .

Theorem 1.1. Let X be a complete smooth toric surface such that rkPic(X) ≥ 3.
For any reduced invariant divisor D of X, the pair (X, D) is not toric log del Pezzo.

According to this Theorem, to find the classification of log smooth toric del Pezzo
pairs, it suffices to consider complete smooth toric surfaces with Picard rank one or
two. The variety P2 = CP2 is the unique smooth toric surface of Picard rank one.
We denote by [x0 : x1 : x2] the homogeneous coordinates of P2 and Di the divisor
defined by xi = 0.

Theorem 1.2. If X = P2, then the log smooth pair (X, D) is toric log del Pezzo

if and only if D ∈ {D0, D1, D2} ∪ {D0 +D1, D0 +D2, D1 +D2} .

Every smooth toric surface of Picard rank two is of the formX = P (OP1 ⊕ OP1(r))
with r ∈ N (we refer to [CLS11, Theorem 7.3.7] and [Kle88]). We denote by
π : X −→ P1 the projection on the base P1. Let E0 = {0} and E∞ = {∞} be
two divisors of P1 = C ∪ {∞} (the identification come from [x0 : x1] 7−→ x1/x0).
Let F0 and F1 be two rank one vector bundles over P1 whose sheaf of sections
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2 A. NAPAME

are respectively given by OP1 and OP1(r). We denote by si a section of Fi. The
irreducible T -invariant divisors of X are given by

D0 = {s0 = 0} , D1 = π−1(E0) , D2 = {s1 = 0} and D3 = π−1(E∞) .

If D =
∑

i∈I Di with I ⊂ {0, 1, 2, 3} such that card(I) ≥ 3, then −(KX +D) is
not ample by Proposition 3.1. He have here the classification of toric log del Pezzo
pairs for toric surfaces with Picard rank two.

Theorem 1.3. Let X = P (OP1 ⊕ OP1(r)) with r ∈ N. Then :

(1) −KX or −(KX +D0) are ample if and only if r ∈ {0, 1}.
(2) If D ∈ {D1, D3, D0 +D1, D0 +D3}, −(KX +D) is ample if and only if

r = 0.
(3) If D ∈ {D2, D2+D1, D2+D3}, −(KX +D) is ample if and only if r ∈ N.

(4) if D ∈ {D0 +D2, D1 +D3}, −(KX +D) is not ample for any r ∈ N.

In the first part of this paper, we will recall some properties about toric varieties
and we will give the characterization of ample divisors on toric surfaces. In the
second part (Section 3), we will describe the family of log smooth toric del Pezzo
pairs.

Acknowledgments. I would like to thank my advisor Carl Tipler for our dis-
cussions on this subject.

2. Ample divisors on toric surfaces

2.1. Toric varieties. Let N be a rank n lattice and M = HomZ(N, Z) be its dual
with pairing 〈 · , · 〉 : M × N −→ Z. The lattice N is the lattice of one-parameter
subgroups of N⊗ZC

∗. For K = R or C, we define NK = N⊗ZK and MK = M⊗ZK.
A fan Σ in NR is a set of rational strongly convex polyhedral cone in NR such that:

• Each face of a cone in Σ is also a cone in Σ;
• The intersection of two cones in Σ is a face of each.

Definition 2.1 ([CLS11, Definition 1.2.16]). A cone σ inNR is smooth if its minimal
generators form part of a Z-basis of N .

By [CLS11, Definition 3.1.18], a fan Σ is smooth if every cone σ in Σ is smooth.
A fan Σ is complete if

⋃

σ∈Σ

σ = NR .

For σ ∈ Σ, let Uσ = Spec(C[Sσ]) where C[Sσ] is the semi-group algebra of

Sσ = σ∨ ∩M = {m ∈ M : 〈m, u〉 ≥ 0 for all u ∈ σ} .

If σ, σ′ ∈ Σ, we have Uσ ∩ Uσ′ = Uσ∩σ′ . We denote by XΣ the toric variety
associated to a fan Σ ; the variety XΣ is obtained by gluing affine charts (Uσ)σ∈Σ .

The variety XΣ is normal and its torus is T = N ⊗Z C∗. Let Σ(k) be the set of
k-dimensional cones of Σ. There is a bijective correspondence between cones σ ∈ Σ
and T -orbits O(σ) in XΣ ; moreover we have dimO(σ) = dim(XΣ)− dim(σ).
For any ray ρ ∈ Σ(1), there is a Weil divisor Dρ defined as the Zariski closure of
O(ρ) in XΣ . We denote by uρ ∈ N the minimal generator of ρ ∈ Σ(1). By [CLS11,
Theorem 4.1.3], if NR = Span(uρ : ρ ∈ Σ(1)) then

(1) card(Σ(1) ) = dim(XΣ) + rkCl(XΣ) .

Let X be the toric variety associated to a fan Σ. We say that X is smooth (resp.
complete) if and only if Σ is smooth (resp. complete). We know the expression of
the canonical divisor KX .
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Theorem 2.2 ([CLS11, Theorem 8.2.3]). The canonical divisor of X is the torus

invariant divisor

KX = −
∑

ρ∈Σ(1)

Dρ .

A Cartier divisor of X is ample, if it satisfies the toric Kleiman Criterion.

Theorem 2.3 (Toric Kleiman Criterion, [CLS11, Theorem 6.3.13]). Let D be a

Cartier divisor on a complete toric variety X. Then D is ample if and only if

D · C > 0 for all torus-invariant irreducible curves C ⊂ X.

2.2. Description of complete toric surfaces. We assume thatN = Z2, M = Z2

and the pairing 〈 · , · 〉 : M × N −→ Z is the dot product. Let Σ be a smooth
complete fan in R2 and X the toric surface associated to Σ. We denote by T the
torus of X . There is a family of primitive vectors {ui ∈ N : 0 ≤ i ≤ n − 1} with
n ≥ 3 such that

Σ = {0} ∪ {Cone(ui) : 0 ≤ i ≤ n− 1} ∪ {Cone(ui, ui+1) : 0 ≤ i ≤ n− 1}

where un = u0. For all i ∈ {0, . . . , n−1}, we set ρi = Cone(ui), σi = Cone(ui, ui+1)
and Di the divisor corresponding to the ray ρi. As Σ is smooth, we can assume
that det(ui, ui+1) = ±1. From now on, we will assume that det(ui, ui+1) = 1.
For all i ∈ {0, . . . , n− 1}, there is γi ∈ Z such that

(2) ui−1 − γi ui + ui+1 = 0 .

The number γi is det(ui−1, ui+1).

2.3. Ample divisors of X. In this part, if L =
∑

i aiDi is a Cartier divisor of X ,
we will give a condition on the numbers ai which ensures that L is ample.
By [CLS11, Proposition 6.4.4], for all i ∈ {0, . . . , n− 1}, we have

(3)







Di ·Di = −γi
Dk ·Di = 1 if k ∈ {i− 1, i+ 1}
Dk ·Di = 0 if k /∈ {i− 1, i, i+ 1}

.

Proposition 2.4. A Cartier divisor L =
∑

i aiDi is ample if and only if for all

i ∈ {0, . . . , n− 1}, ai+1 + ai−1 − γi ai > 0 .

Proof. The set of torus-invariant irreducible curve of X is {Di : 0 ≤ i ≤ n− 1}. By
(3), we have

(4) L ·Di = ai−1 + ai+1 − γi ai .

By using the toric Kleiman Criterion (Theorem 2.3), we deduce that L is ample if
and only if ai+1 + ai−1 − γi ai > 0 for all i ∈ {0, . . . , n− 1}. �

Let L =
∑

i aiDi be a Cartier divisor of X . The polytope corresponding to L is
given by

(5) P = {m ∈ Z2 : 〈m, ui〉 ≥ −ai for i ∈ {0, . . . , n− 1}}

and the facet of P perpendicular to the vector ui is given by

(6) Pi = {m ∈ Z2 : 〈m, ui〉 = −ai} ∩ P .

The polytope P is a polygon; hence any vertex of P is precisely the intersection of
two facets. If for all i ∈ {0, . . . , n − 1}, Pi 6= ∅, then Pi ∩ Pi+1 contains only one
point; we set {mi} = Pi ∩ Pi+1, we have

P = Conv(mi : 0 ≤ i ≤ n− 1)

and Pi is the edge having mi−1 and mi for extremities.



4 A. NAPAME

Remark 2.5. The point mi is the solution of the equations 〈mi, ui〉 = −ai and
〈mi, ui+1〉 = −ai+1.

We recall that a lattice M defines a measure ν on MR as the pull-back of the
Haar measure on MR/M . The measure ν is translation invariant and satisfies
ν(MR/M) = 1. Let vol(Pi) be the volume of Pi with respect to the measure
determined by the lattice

Λ = M ∩ {m ∈ Z2 : 〈m, ui〉 = −ai}

in the affine span of Λ.

Proposition 2.6. Let P be the polytope corresponding to a Cartier divisor L =
∑

i aiDi such that for all i ∈ {0, . . . , n− 1}, Pi 6= ∅. We have

vol(Pi) = |ai+1 + ai−1 − γi ai| .

We first observe that :

Lemma 2.7. If x = (x1, x2) and y = (y1, y2) are two point of Z2, then

card
(

{tx+ (1− t)y : t ∈ [0 ; 1]} ∩ Z2
)

− 1 = gcd(|x1 − y1|, |x2 − y2|) .

Proof. We can assume that (x1, x2) = (0, 0). Let A = {t y : t ∈ [0 ; 1]} ∩ Z2. If
y1 = 0, then card(A) = y2 + 1 and when y2 = 0, card(A) = y1 + 1. For the case
y1 6= 0 and y2 6= 0, we can reduce the study to the case where y1 > 0 and y2 > 0.

First case : We assume that gcd(y1, y2) = 1. If t = 0 or t = 1, then t y ∈ A. If

there is t ∈ ]0 ; 1[ such that t y ∈ A, then t =
p

q
with p, q ∈ N such that 1 ≤ p < q.

As
p y1
q

,
p y2
q

∈ N, we deduce that q divides y1 and y2. This is in contradiction

with the fact that gcd(y1, y2) = 1. Thus, we deduce that card(A) = 2.

Second case : gcd(y1, y2) ≥ 2. We have t y ∈ A if and only if t =
k

gcd(y1, y2)
with

k ∈ {0, 1, . . . , gcd(y1, y2)}. Thus, card(A) = gcd(y1, y2) + 1. �

Proof of Proposition 2.6. We have vol(Pi) = card(Pi ∩ Z2) − 1. We write ui =
αi e1+βi e2 with αi, βi ∈ Z. The equations 〈mi, ui〉 = −ai and 〈mi, ui+1〉 = −ai+1

give mi =

(

ai+1 βi − ai βi+1

−ai+1 αi + ai αi+1

)

. We have

−−−−−→mi−1 mi =

(

βi(ai+1 + ai−1)− ai(βi+1 + βi−1)

−αi(ai+1 + ai−1) + ai(αi−1 + αi+1)

)

.

The equalities det(ui−1, ui) = det(ui, ui+1) = 1 give

(7) αi (βi−1 + βi+1) = βi (αi−1 + αi+1) .

First case : We assume that αi = 0. As gcd(αi, βi) = 1, we deduce that αi−1 +
αi+1 = 0 and by the relation det(ui−1, ui) = 1, we have αi−1 βi = 1, i.e αi−1 =
βi = ±1. Hence,

γi = αi−1 βi+1 − αi+1 βi−1 = βi βi+1 + βi βi−1 = βi (βi−1 + βi+1) .

By Lemma 2.7, we have

vol(Pi) = gcd(|βi(ai+1 + ai−1)− ai(βi+1 + βi−1)|, 0)

= gcd(|(ai+1 + ai−1)− ai βi(βi+1 + βi−1)|, 0)

= gcd(|ai+1 + ai−1 − ai γi|, 0)

= |ai+1 + ai−1 − γi ai|

The case βi = 0 is similar to the case αi = 0.
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Second case : αi βi 6= 0 and αi−1 + αi+1 = 0. By (7), we have βi−1 + βi+1 = 0.
Hence, ui−1 = −ui+1 and γi = 0. Thus,

vol(Pi) = gcd(|βi(ai−1 + ai+1)|, |αi(ai−1 + ai+1)|)

= |ai−1 + ai+1| gcd(|βi|, |αi|)

= |ai−1 + ai+1|

Third case : αi βi 6= 0 and αi−1 + αi+1 6= 0. As gcd(αi, βi) = 1, by (7) we have
αi−1 + αi+1 = αi and βi−1 + βi+1 = βi. Hence,

vol(Pi) = gcd(|βi(ai+1 + ai−1 − ai)|, |αi(ai+1 + ai−1 − ai)|) = |ai+1 + ai−1 − ai|

To finish the proof, we must show that γi = 1. We have

γi = αi−1 βi+1 − αi+1 βi−1

= αi−1(βi − βi−1)− βi−1(αi − αi−1)

= αi−1 βi − βi−1 αi

= 1

Hence, we get the proof. �

With this proof, we observe that : if P is the polytope corresponding to the
polarized toric surface (X, L), then L ·Di = vol(Pi). It is a particular case of the
result of [Dan78, Section 11].

3. Smooth toric log del Pezzo pairs

Let X be a smooth complete toric surface associated to a fan Σ. If D is a reduced
T -invariant Weil divisor of X , we will give a description of all pairs (X, D) such
that −(KX +D) is ample. By (1), we have

card(Σ(1)) = 2 + rk(Pic(X)) .

We keep the notations of the previous section.

3.1. Analysis. Let ∆ be a subset of {0, . . . , n− 1} and D =
∑

i∈∆

Di .

Proposition 3.1. Let X be a complete smooth toric surface. If card(∆) ≥ 3, then
−(KX +D) is not ample.

Proof. By Theorem 2.2, we have

−(KX +D) =
∑

i∈∆′

Di

where ∆′ = {0, . . . , n−1}\∆. Let P be the polytope corresponding to −(KX+D).
We set ∂P = P0 ∪ P1 ∪ . . . ∪ Pn−1. By (6), for all i ∈ ∆, 0 ∈ Pi. Hence, 0 ∈ ∂P
is a vertex. According to Proposition 2.4 and Proposition 2.6, if P is the polytope
corresponding to an ample divisor, then all vertex v of P is precisely the intersection
of two facets Pj and Pj+1 for some j ∈ {0, . . . , n − 1}. With this fact, we deduce
that −(KX +D) is not ample. �

Proposition 3.2. Let X be a complete smooth toric surface such that rkPic(X) ≥
3 . If card(∆) ∈ {1, 2}, then −(KX +D) is not ample.

Proof. We start with the case card∆ = 1. We assume that D = D0 . We have

−(KX +D) ·Dn−1 = 1− γn−1 and − (KX +D) ·D1 = 1− γ1 .
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If−(KX+D) is ample, then γn−1 ≤ 0 and γ1 ≤ 0 . Let A = {β u1−αu0 : α, β ≥ 0},
B = {−αu0−β u1 : α, β ≥ 0} and C = {αu0−β u1 : α, β ≥ 0}. As X is complete,
the fan Σ of X satisfies

⋃

σ∈Σ

σ = A ∪B ∪ C ∪ Cone(u0, u1) .

As γ1 = det(u0, u2) and γn−1 = det(un−2, u0), we deduce that u2 ∈ B and
un−2 ∈ A.

u0

u1

A

B

C

When n ≥ 5, this is in contradiction with the fact that if u2 ∈ B, then un−2 is in
B or C. Thus, we deduce that −(KX +D) is not ample.

We now assume that card(∆) = 2. After renumbering the indices, we can assume
that D = D1 +Dj with j ∈ {2, . . . , n− 1}.
First case. We assume that j ∈ {3, . . . , n−1}. Let P be the polytope of−(KX+D).
As 0 ∈ P1 and 0 ∈ Pj , we deduce that 0 is a vertex of P . Hence, for k ∈ {2, . . . , j−
1}, we have vol(Pk) = 0. By Propositions 2.4 and 2.6, we deduce that −(KX +D)
is not ample.

Second case. We assume that D = D1 +D2. We have

−(KX +D) ·D3 = 1− γ3 and − (KX +D) ·D0 = 1− γ0 .

Let A = {−αu1 + β u2 : α, β ≥ 0}, B = {−αu1 − β u2 : α, β ≥ 0} and C =
{αu1 − β u2 : α, β ≥ 0}.

u1

u2

A

B

C

If −(KX + D) is ample, then γ3 ≤ 0 and γ0 ≤ 0. As γ3 = det(u2, u4) and
γ0 = det(un−1, u1), we deduce that u4 ∈ C and un−1 ∈ A. If n ≥ 6, this situation
contradicts the positioning order of vectors ui. If n = 5, we have u4 ∈ A and
u4 ∈ C, this is not possible.
Thus, we deduce that −(KX +D) is not ample. �

If ∆ 6= ∅, according to Propositions 3.1 and 3.2, it is enough to study the
positivity of −(KX + D) when rkPic(X) ∈ {1, 2} and card(∆) ∈ {1, 2} . The
Propositions 3.1 and 3.2 prove Theorem 1.1.
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3.2. Proofs of Theorems 1.2 and 1.3. Let (e1, e2) be the standard basis of
Z2. The rays of the fan of P2 are the half-line generated by u1 = e1, u2 = e2 and
u0 = −(e1 + e2). The divisors Di of P

2 defined in Theorem 1.2 correspond to the
divisors associated to the ray Cone(ui).

Proof of Theorem 1.2. We have the linear equivalence D1 ∼ D0 and D2 ∼ D0. By
Theorem 2.2, we have KX = −(D0 +D1 +D2), i.e −KX ∼ 3D0. As D0 is ample,
we deduce that −(KX +D) is not ample if and only if D = D1 +D2 +D3. �

We now assume that X = P (OP1 ⊕ OP1(r)) with r ∈ N. The rays of the fan of X
are the half lines generated by the vectors u1 = e1, u2 = e2, u3 = −e1 + r e2 and
u0 = −e2 .

•
u1

•u2

•u3

•u0

The numbers γi defined in (2) are given by

(8) γ0 = −r γ1 = 0 γ2 = r γ3 = 0 .

By Proposition 2.4, the divisor L = a0 D0 + a1D1 + a2D2+ a3 D3 is ample if and
only if

a0 + a2 > 0 , a1 + a3 > r a2 , a1 + a3 > −r a0

if and only if

(9) a0 + a2 > 0 and a1 + a3 > r a2 .

We have the linear equivalence of divisors

(10) D1 ∼ D3 and D2 ∼ D0 − r D3 .

The divisor Di of X corresponding the ray Cone(ui) defined here correspond to
those defined in Theorem 1.3.

Proof of Theorem 1.3. As −KX = D0 +D1 +D2 +D3, by (10), we have

−KX ∼ 2D0 + (2− r)D3

−(KX +D0) ∼ D0 + (2− r)D3

−(KX +D3) ∼ 2D0 + (1− r)D3

−(KX +D0 +D3) ∼ D0 + (1− r)D3

and

−(KX +D2) ∼ D0 + 2D3

−(KX +D2 +D3) ∼ D0 +D3

−(KX +D2 +D0) ∼ 2D3

−(KX +D1 +D3) ∼ 2D0 − rD3

If a1 = a2 = 0, the condition (9) becomes a0 > 0 and a3 > 0. This allows us to
conclude. �
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