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Stabilization of Heterogeneous Quasilinear Traffic Flow
System with Disturbances

Lina Guan, Liguo Zhang and Christophe Prieur

Abstract—In this paper, we investigate the problem of boundary
stabilization for a heterogeneous quasilinear traffic flow system with
disturbances in the congested regime. The H2 integral input-to-state
stability of multi-type traffic system described by first-order quasilinear
hyperbolic partial differential equations is obtained in closed loop with a
boundary controller. The control is at the inlet boundary of the considered
road section and is optimally designed and computed for the linearized
system. Making use of the backstepping transformation, the integral
input-to-state stability of the quasilinear system is derived by mapping
the transformed quasilinear system into an integral input-to-state stable
target system for which a strict Lyapunov function is constructed. By
simulations, we illustrate that the linear controller designed by using
backstepping method locally stabilizes the quasilinear system.

Index Terms—Heterogeneous quasilinear traffic flow system, distur-
bances, backstepping, integral input-to-state stability, Lyapunov function.

I. INTRODUCTION

High traffic demand causes the slow velocity of traffic stream
as a result of the interaction between vehicles. The extreme traffic
congestion will happen when the traffic demand approaches the
capacity of the intersections along the road. Traffic congestion has
some negative effects: wasting time, delays, air pollution, wasting
fuel, frequent vehicle repairs and replacements, road rage and high
chance of collisions.

Aiming to understand and develop an optimal transport network
with efficient movement of vehicles and minimal traffic congestion
problem, traffic flow is used to study the interactions between
travellers (drivers and their vehicles) and infrastructure (highways,
signage and traffic control devices). Congestion propagates upstream
from a traffic bottleneck and depends on the upstream traffic flow
and density in the direction of propagation. Several equilibriums,
frequent lane changes, overtaking and platoon dispersion probably
happen in the congested traffic on account of the interplay between
different types of vehicles and drivers [20]. In this paper, we develop
a control law to reject disturbances (high traffic demand) for the
congested traffic on a freeway, which involves several types of
vehicles characterized by some properties including vehicle size,
drivers’ style of vehicle operation and reaction time and other factors.
There are many macroscopic traffic flow models for heterogeneous
traffic. In [14], an extended speed gradient (SG) model is used to
study the mixed traffic flow system. A new car-following model is
presented in [23]. In [19], a continuum multi-type traffic model is
introduced on the basis of a three-dimensional flow–concentration
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surface. Paper [10] studies a two-type vehicle heterogeneous traffic
model to acquire overtaking and creeping traffic flows. In [18],
the extended macroscopic N -type Aw-Rascle (AR) traffic model is
used for heterogeneous traffic by using area occupancy. This paper
introduces this nonlinear model considering vehicle size, area occu-
pancy, road width of the heterogeneous traffic to study the problem
of disturbances rejection in the congested traffic. The concept of
area occupancy is introduced for measuring heterogeneous traffic
concentration in [17] and [2].

In [15], the data-driven optimal controller is designed for connected
and autonomous vehicles (CAVs) in a mixed-traffic situation (specif-
ically, including heterogeneous human-driven vehicles). In [21], for
a comparison of the ecological potential of variable speed limits
(VSLs) and signalized access control, the dynamics of the system is
modeled by microscopic traffic simulator (SUMO) and is controlled
by a nonlinear model predictive control (NMPC) framework with
an artificial neural network (ANN) to predict the fuel consumption.
The interaction between CAV and human-driven vehicle (HDV)
dynamics is investigated, and a complete CAV control input and
the feasible conditions of a platoon formation is presented in [16]
(see also [24]). By using the linear component of a nonlinear
dynamical system to define a warm start for a model-free, policy
gradient method, the nonlinear model is guaranteed to converge to
the (nearly) global optimal controller in [22]. Paper [29] designs the
reinforcement learning controllers to remove the congested traffic
for 2 × 2 quasilinear Aw-Rascle-Zhang (ARZ) partial differential
equations (PDEs) model by using the proximal policy optimization.
This paper uses the backstepping method to obtain the integral input-
to-state stability (iISS) of the quasilinear system with the application
of the designed control law for the corresponding linearized system.
This method has been used in many research. More recently, by using
the backstepping, paper [27] designs an observer to estimate traffic
states of the nonlinear ARZ traffic flow model. Paper [3] designs
a controller for the underactuated cascade network of interconnected
PDEs systems. Paper [8] designs an output feedback boundary control
to solve the stop and go traffic problem of linearized two-type AR
traffic flow system.

In this paper, extending the control problem of the single vehicle-
type traffic system in paper [11], we solve the problem of the stabi-
lization for a multi-type traffic flow system of first-order hyperbolic
quasilinear partial differential equations (PDEs) in the congested
regime, with disturbances and actuation at the inlet boundary and
capacity drop in the downstream boundary of a considered road
segment. The optimal controller which is designed for the linearized
system by backstepping method is applied to locally stabilize the
quasilinear system around a nonuniform equilibrium. The iISS of the
quasilinear system is derived by making use of the Lyapunov method
to analyze the iISS of the target system, which is mapped into the
quasilinear system by a backstepping transformation.

This paper is organized as follows. In Section II, the quasilinear
system and control problem are formulated. In Section III, the main
result is given, such that the controller designed for linearized system
locally stabilizes the quasilinear system in the H2 sense. Moreover,
the proof of this result is given. The simulations are in Section IV.
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Some concluding remarks are shown in Section V.
Notation. Mn,n(R) denotes the set of n×n real matrices. [A]i,j

denotes the entry of matrix A in the i-th row and the j-th column.
For a function ϕ = (ϕ1, · · · , ϕn)> : [0, L] → Rn, ‖ϕ‖∞ =
supx∈[0,L] |ϕ(x)|. For a matrix M ∈ Mn,n, |M | = sup{|Mϕ| :
ϕ ∈ Rn, |ϕ| = 1}, ‖M‖∞ = sup{|M(x, ξ)| : x, ξ ∈ [0, L]}, the

definition of L2-norm is ‖ϕ‖L2 =
√∫ L

0
(ϕ2

1(ξ) + · · ·+ ϕ2
n(ξ))dξ,

H2-norm is ‖ϕ‖H2 = ‖ϕ‖L2 + ‖∂xϕ‖L2 + ‖∂xxϕ‖L2 .

II. MULTI-TYPE QUASILINEAR HYPERBOLIC TRAFFIC FLOW

SYSTEM AND PROBLEM STATEMENT

A. Multi-type traffic model

The introduced multi-type traffic flow model in [18] that represents
the dynamics of a heterogeneous traffic on a road segment with road
length L and the number of vehicle types N is as follows,

∂tρi(x, t) + ∂x
(
ρi(x, t)vi(x, t)

)
= 0, (1)

∂t
(
vi(x, t) + pi(Ao)

)
+ vi(x, t)∂x

(
vi(x, t) + pi(Ao)

)
=
Ve,i(Ao)− vi(x, t)

τi
, (2)

with the independent space variable x ∈ [0, L] and the independent
time variable t ∈ [0,∞). The density ρi(x, t) is the number of
vehicle type i passing road section per unit length and the velocity
vi(x, t) is the average speed of vehicle type i passing location x in
unit time, with the index of vehicle type i = 1, 2, · · · , N . The area
occupancy Ao(ρ) is Ao(ρ) = a>ρ

W
, with a = (a1, a2, · · · , aN )>

and ρ = (ρ1, ρ2, · · · , ρN )>, ai is the occupied surface per vehicle
for type i and W is the road width. Area occupancy 0 < Ao ≤ 1
describes the percentage of road space that is occupied by all the
vehicle types on the considered road section. The relaxation time
τi describes the driving behavior of drivers for vehicle type i. The
coefficients ai and τi characterize the vehicle type i.

In the model (1)-(2), the traffic pressure pi(Ao) of vehicle type i is
(see [8]), pi(Ao) = vMi

(
Ao(ρ)

AoMi

)γi
, i = 1, 2, · · · , N , where the free-

flow velocity vMi and the maximum area occupancy 0 < AoMi ≤ 1
respectively describe the maximal velocity of vehicle type i in the
free regime and the maximum percentage of occupied surface for
vehicle type i in the congested regime, when only vehicle type i is
on the road. The constant γi > 1 is the pressure exponent of type
i. In [7], the equilibrium speed-Ao relationship of vehicle type i (=
1, 2, · · · , N) is Ve,i(Ao) = vMi − pi(Ao) = vMi

(
1−

(
Ao
AoMi

)γi)
.

The decreasing function Ve,i(Ao) of area occupancy Ao represents
the desired velocity of the drivers. Define a nonuniform equilibrium,
for x ∈ [0, L], u∗(x) = (ρ∗1(x), v∗1(x), · · · , ρ∗N (x), v∗N (x))> with
ρ∗i , v

∗
i ∈ C2([0, L];R). Denoting u = (ρ1, v1, · · · , ρN , vN )> and

ũ = u − u∗, the system (1)-(2) is rewritten as, for all x ∈ [0, L],
t ∈ [0,+∞),

∂tũ(x, t) + F̃ (ũ, u∗(x))∂xũ(x, t) = G̃(ũ, u∗(x))ũ(x, t), (3)

where

F̃ (ũ, u∗(x)) =
F̃11(ũ, u∗(x)) F̃12(ũ, u∗(x)) · · · F̃1N (ũ, u∗(x))

F̃21(ũ, u∗(x)) F̃22(ũ, u∗(x)) · · · F̃2N (ũ, u∗(x))
...

...
. . .

...
F̃N1(ũ, u∗(x)) F̃N2(ũ, u∗(x)) · · · F̃NN (ũ, u∗(x))

 ,
with for i, j = 1, 2, · · · , N ,

F̃ij(ũ, u
∗(x)) =



[
v∗i (x) ρ∗i (x)

0 v∗i (x)− ρ∗i (x)δii(ρ)

]
, if j = i,[

0 0

(v∗i (x)− v∗j (x))δij(ρ) −ρ∗j (x)δij(ρ)

]
, if j 6= i,

and

G̃(ũ, u∗(x)) =
G̃11(ũ, u∗(x)) G̃12(ũ, u∗(x)) · · · G̃1N (ũ, u∗(x))

G̃21(ũ, u∗(x)) G̃22(ũ, u∗(x)) · · · G̃2N (ũ, u∗(x))
...

...
. . .

...
G̃N1(ũ, u∗(x)) G̃N2(ũ, u∗(x)) · · · G̃NN (ũ, u∗(x))

 ,
with for i, j = 1, 2, · · · , N , G̃ij is defined in (4) at the top of next
page. Therein, for i, j = 1, 2, · · · , N ,

δij(ρ) = ∂ρjpi(Ao) =
vMi γiaj
AoMi W

(
Ao

AoMi

)γi−1

,

σij(ρ) = ∂ρj δij(ρ) =
vMi γi(γi − 1)a2

j

(AoMi W )2

(
Ao

AoMi

)γi−2

.

Assume that the system (3) is strictly hyperbolic, for all u∗ ∈
R2N ([0, L]), the matrix F̃ (0, u∗) has 2N real distinct nonzero
eigenvalues. Given 2N eigenvalues, ∀x ∈ [0, L], λ1(x) > λ2(x) >
· · · > λm(x) > 0 > −λm+1(x) > · · · > −λ2N (x), of
F̃ (0, u∗) (λi ∈ C1([0, L]), i = 1, . . . , 2N , m is the number of
positive eigenvalues and 0 ≤ m < 2N ). For x ∈ [0, L], de-
fine Λ(x) = diag{λ1(x), · · · , λm(x),−λm+1(x), · · · ,−λ2N (x)},
therein −λm+1(x), · · · ,−λ2N (x) < 0 means that the traffic wave
moves upstream in the congested regime.

B. Problem statement

The motivation of control is to reduce the traffic congestion on a
road segment, with disturbances at the inlet boundary, in the presence
of constant density and capacity drop in the downstream boundary.
The diagram of control model is presented in Figure 1. As proven
in [12], the problem is equivalent to computing the boundary control
U in the space H2 such that system (3) converges to zero equilibrium,
with the following boundary conditions, for all t ∈ [0,+∞),

A1ũ(0, t) = d(t) + ΘU(t)−ΠNL(ũ(0, t)), (5)

B1ũ(L, t) = 0, (6)

where

A1 = diag {[v∗1(0), ρ∗1(0)], . . . , [v∗N (0), ρ∗N (0)]} ∈ MN,2N ,

B1 = diag

{[
1 0
0 0

]
, . . . ,

[
1 0
0 0

]}
∈M2N,2N ,

ΠNL(ũ(0, t)) =
[
ρ̃1(0, t)ṽ1(0, t), · · · , ρ̃N (0, t)ṽN (0, t)

]>
.

The actuation signal vector U ∈ C0([0,∞);R2N−m) with a coef-
ficient matrix Θ ∈ MN,2N−m(R) is implemented to reduce the
unknown and bounded disturbances d ∈ C2([0,∞);RN ) by the
on-ramp metering at the upstream boundary of the considered road
segment and ΠNL(ũ(0, t)) ∈ C2([0,∞);RN ). The well-posedness
of the closed loop system (3), (5)-(6) in the H2 space is under a
necessary condition that the initial conditions ũ(·, 0) = ũ0(·) ∈
H2([0, L];R2N ) satisfy the following second-order compatibility
conditions,

A1ũ0(0) = d(0) + ΘU(0)−ΠNL(ũ0(0)), (7)

B1ũ0(L) = 0, (8)

A1

(
−F̃ (ũ0(0), u∗(0))ũ′0(0) + G̃(ũ0(0), u∗(0))ũ0(0)

)
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G̃ij(ũ, u
∗(x)) =



[
v∗i
′(x) ρ∗i

′(x)
1
τi
δii(ρ) + v∗i (x)σii(ρ)ρ∗i

′(x)− δii(ρ)v∗i
′(x) 1

τi
+ v∗i

′(x) +
∑N
j=1,j 6=i δij(ρ)ρ∗j

′(x)

]
, if j = i,

[
0 0

1
τi
δij(ρ) + v∗i (x)σij(ρ)ρ∗j

′(x)− δij(ρ)v∗j
′(x) −δij(ρ)ρ∗j

′(x)

]
, if j 6= i.

(4)

0 L

U(t)Q∗rmp

Q∗in

d(t)

ρi(0, t)vi(0, t) ρ∗i (L)

Capacity Drop

Fig. 1. Multi-type vehicles traffic on a road with on-ramp metering and disturbances at the inlet boundary and a capacity drop in the downstream boundary.

= ḋ(0) + ΘU̇(0)− dΠNL

dũ

∣∣∣∣
t=0

×
(
−F̃ (ũ0(0), u∗(0))ũ′0(0) + G̃(ũ0(0), u∗(0))ũ0(0)

)
, (9)

B1F̃ (ũ0(L), u∗(L))ũ′0(L) = B1G̃(ũ0(L), u∗(L))ũ0(L). (10)

In the compatibility conditions, (8) and (10) naturally derived from
the physical meaning, but (7) and (9) are artificially derived from the
designed feedback control law and they rigorously require the specific
values of the initial conditions. Keeping the effect of stabilization of
the control law, a modification of the control law is done in the
boundary conditions (5)-(6), so that there is not requirement of any
specific values on the initial conditions. To more specific, inspired
by [9], the modified boundary conditions extend the controller as
follows:

A1ũ(0, t) = d(t) + ΘU(t) + w1(t) + w2(t)−ΠNL(ũ(0, t)),
(11)

B1ũ(L, t) = 0, (12)

where w1, w2 ∈ C1([0,∞);RN ) are the solutions of the following
system:

ẇ1 = −d1IN×Nw1, ẇ2 = −d2IN×Nw2, (13)

with the constant N -dimension diagonal positive definite matrices
d1IN×N , d2IN×N (d1 6= d2). Under the modification of the control
law, we can obtain the following compatibility conditions,

A1ũ0(0) = d(0) + ΘU(0) + w1(0) + w2(0)−ΠNL(ũ0(0)),

(14)

B1ũ0(L) = 0, (15)

A1

(
−F̃ (ũ0(0), u∗(0))ũ′0(0) + G̃(ũ0(0), u∗(0))ũ0(0)

)
= ḋ(0) + ΘU̇(0) + (−d1IN×Nw1(0)− d2IN×Nw2(0))− dΠNL

dũ

∣∣∣∣
t=0

×
(
−F̃ (ũ0(0), u∗(0))ũ′0(0) + G̃(ũ0(0), u∗(0))ũ0(0)

)
, (16)

B1F̃ (ũ0(L), u∗(L))ũ′0(L) = B1G̃(ũ0(L), u∗(L))ũ0(L). (17)

For the purpose of eliminating the compatibility conditions (7)
and (9), the initial conditions of w1, w2 satisfy, w1(0) + w2(0) =
g1(ũ0),−(d1IN×Nw1(0) + d2IN×Nw2(0)) = g2(ũ0), with
g1(ũ0) = A1ũ0(0) − d(0) − ΘU(0) + ΠNL(ũ0(0)), g2(ũ0) =

A1

(
−F̃ (ũ0(0), u∗(0))ũ′0(0) + G̃(ũ0(0), u∗(0))ũ0(0)

)
− ḋ(0) −

ΘU̇(0)+ dΠNL
dũ

∣∣∣∣
t=0

(
−F̃ (ũ0(0), u∗(0))ũ′0(0) + G̃(ũ0(0), u∗(0))ũ0(0)

)
.

In order to verify the compatibility conditions (7) and (9), select

w1(0) = −g2(ũ0) + d2IN×Ng1(ũ0)

d1 − d2
, (18)

w2(0) =
d1IN×Ng1(ũ0) + g2(ũ0)

(d1 − d2)
. (19)

C. State transformations

For deriving the form of characteristic values of the quasilinear
system (3), (11)-(12), (13) and making the analysis easier, we handle
a transformation for the state ũ. Defining an invertible transformation
R̄(x, t) = Φ(x)ũ(x, t) with x ∈ [0, L], t ∈ [0,+∞), from ũ
to the new variables R̄ = (R̄+, R̄−)> : [0, L] × [0,+∞) →
R2N with R̄+ : [0, L] × [0,+∞) → Rm, R̄− : [0, L] ×
[0,+∞) → R2N−m, R̄in(t) = (R̄+(0, t), R̄−(L, t))>, R̄out(t) =
(R̄+(L, t), R̄−(0, t))>, the system (3), (11)-(12), (13) is mapped into
the following simplified system, for all x ∈ [0, L], t ∈ [0,+∞),

∂tR̄(x, t) + Λ(x)∂xR̄(x, t)− Σ(x)R̄(x, t) + ΛNL(R̄, x)∂xR̄(x, t)

= ΣNL(R̄, x)R̄(x, t), (20)

R̄in(t) = KP R̄out(t) + Γ0

(
d(t) + ΘU(t)

)
+ Γ0(w1(t) + w2(t))

− Γ0ΠNL(Φ−1(0)R̄(0, t)), (21)

where Λ(x) = Λ̄(0, x), Σ(x) = ∂R̄Σ̄(0, x), ΛNL(R̄, x) =
Λ̄(R̄, x)− Λ(x), ΣNL(R̄, x) = Σ̄(R̄, x)− Σ(x), with

Λ̄(R̄, x) = Φ(x)F̃
(
Φ−1(x)R̄, u∗(x)

)
Φ−1(x),

Σ̄(R̄, x) = Φ(x)G̃
(
Φ−1(x)R̄, u∗(x)

)
Φ−1(x)

− Φ(x)F̃
(
Φ−1(x)R̄, u∗(x)

)
Φ−1(x)′,

the main diagonal elements of matrix Σ ∈ C([0, L];M2N,2N (R))
are zeros, and KP ∈ M2N,2N (R),Γ0 ∈ M2N,N (R) are given
gain matrices. The well-posedness of the system (20)-(21) in the
H2 space is under a necessary condition that the initial condition
R̄(·, 0) = R̄0(·) ∈ H2([0, L];R2N ) satisfies the following second-
order compatibility condition,

R̄in(0) = KP R̄out(0) + Γ0 (d(0) + ΘU(0))

+ Γ0(w1(0) + w2(0))− Γ0ΠNL(Φ−1(0)R̄0(0)), (22)
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([M1
i ]1≤i≤m, [M

2
j ]m+1≤j≤2N )>

= KP ([M2
i ]1≤i≤m, [M

1
j ]m+1≤j≤2N )> + Γ0

(
ḋ(0) + ΘU̇(0)

)
+ Γ0(−d1IN×Nw1(0)− d2IN×Nw2(0))− Γ0

dΠNL

dũ
(Φ−1(0)

∣∣∣∣
t=0

× Φ−1(0)

(
−
(
Λ(0) + ΛNL(R̄0(0), 0)

)
R̄′0(0)

+
(
Σ(0) + ΣNL(R̄0(0), 0)

)
R̄0(0)

)
, (23)

with

M1 =−
(
Λ(0) + ΛNL(R̄0(0), 0)

)
R̄′0(0)

+
(
Σ(0) + ΣNL(R̄0(0), 0)

)
R̄0(0),

M2 =−
(
Λ(L) + ΛNL(R̄0(L), L)

)
R̄′0(L)

+
(
Σ(L) + ΣNL(R̄0(L), L)

)
R̄0(L).

Since for x ∈ [0, L], ΛNL(0, x) = 0, ΣNL(0, x) = 0 and ΠNL(0) =
dΠNL

dũ
(0) = 0, then 0 is an equilibrium of the quasilinear system

(20)-(21). For the sake of conveniently analyzing the applicability of
designed controller for the linearized system, the quasilinear system
(20)-(21) is written as the linear part plus the nonlinear terms, done
in the next section.

III. LOCAL H2 IISS OF THE QUASILINEAR MODEL

Inspired by [9], the problem of local H2 iISS of the first-order
hyperbolic quasilinear system (3) and (13) is studied in this section.
We will show that the controller derived for linearized system by
using backstepping method locally stabilizes this quasilinear system.

Concerning the linearized system, for all x ∈ [0, L], t ∈ [0,+∞),

∂tR(x, t) + Λ(x)∂xR(x, t) = Σ(x)R(x, t), (24)

Rin(t) = KPRout(t) + Γ0 (d(t) + ΘU(t)) , (25)

the designed control law U is derived by using the following
backstepping transformation, for all x ∈ [0, L], t ∈ [0,+∞),

Z(x, t) = R(x, t)−
∫ L

x

K(x, ξ)R(ξ, t) dξ = K[R], (26)

where K(x, ξ) =

[
0 0

G1(x, ξ) G2(x, ξ)

]
∈ M2N,2N (C2(T)),

with suitable G1 ∈ M2N−m,m(C2(T)) and G2 ∈
M2N−m,2N−m(C2(T)) defined in the domain T ={

(x, ξ) ∈ R2| 0 ≤ x ≤ ξ ≤ L
}

as in paper [12]. The kernels
G1(x, ξ), G2(x, ξ) satisfy an 2N × 2N first-order hyperbolic PDEs,
whose well-posedness is shown in [1, D.6]. The corresponding iISS
target system is, for all x ∈ [0, L], t ∈ [0,+∞),

∂tZ(x, t) + Λ(x)∂xZ(x, t) = Σ1(x)Z(x, t)

+

∫ L

x

C1(x, ξ)Z(ξ, t) dξ, (27)

Zin(t) = KPZout(t) +KI

∫ t

0

Zout(σ) dσ + Γ0d(t), (28)

where Z = (Z+, Z−)>, with Z+ : [0, L] × [0,+∞) →
Rm, Z− : [0, L] × [0,+∞) → R2N−m, Zin(t) =
(Z+(0, t), Z−(L, t))>, Zout(t) = (Z+(L, t), Z−(0, t))>, the ma-
trices Σ1 ∈M2N,2N (C2([0, L])), C1 ∈M2N,2N (C2(T)) and KI =[

K11
I K12

I

0(2N−m),m 0(2N−m),(2N−m)

]
, with K11

I ∈ Mm,m(R),K12
I ∈

Mm,2N−m(R) are given. The controller for the linearized system
(24)-(25) is derived as follows, for all t ∈ (0,+∞),

U(R) = (ΘΓ2Θ)−1Θ

∫ t

0

(
K11
I R

+(L, σ) +K12
I R

−(0, σ)
)

dσ

− (ΘΓ2Θ)−1ΘK12
I

∫ t

0

∫ L

0

[
G1(0, ξ)R+(ξ, σ)

+G2(0, ξ)R−(ξ, σ)
]

dξ dσ − (ΘΓ2Θ)−1ΘΓ1

×
∫ L

0

[
G1(0, ξ)R+(ξ, t) +G2(0, ξ)R−(ξ, t)

]
dξ, (29)

where the coefficient matrices Γ1, Γ2 are given, and the matrix Θ is
inM2N−m,m and such that ΘΓ2Θ is invertible. So the controller in
terms of the original variable ũ in (11) is, for all t ∈ (0,+∞),

U(t) = (ΘΓ2Θ)−1Θ

∫ t

0

([
K11
I 0

]
Φ(L)ũ(L, σ)

+
[
0 K12

I

]
Φ(0)ũ(0, σ)

)
dσ − (ΘΓ2Θ)−1ΘK12

I

×
∫ t

0

∫ L

0

[
G1(0, ξ) G2(0, ξ)

]
Φ(ξ)ũ(ξ, σ) dξ dσ

− (ΘΓ2Θ)−1ΘΓ1

∫ L

0

[
G1(0, ξ) G2(0, ξ)

]
Φ(ξ)ũ(ξ, t) dξ. (30)

The formula of control law U in (29) for the linearized system
(24)-(25) is derived by using backstepping method and the proof of
iISS of the corresponding target system (27)-(28) is obtained in [12].
In this paper, we derive the iISS of the quasilinear system (3), (11)-
(12), (13) with the state feedback law (30) as follows:

Theorem 1: Considering the system (3), (13) with the ex-
tended boundary conditions (11)-(12), the initial conditions ũ0 ∈
H2([0, L];R2N ), w1(0), w2(0) ∈ RN verifying (18)-(19), and the
control law (30). Then, for every α > 0, there exist positive constants
δ, c, b such that, for any d satisfying ḋ, d̈ ∈ L2[0,∞), if ‖ũ0‖H2 ≤ δ,
it holds that for all t ∈ [0,+∞),

‖ũ(·, t)‖2H2 + |w1(t)|2 + |w2(t)|2 ≤ ce−αt
(
‖ũ0‖2H2 + |w1(0)|2

+ |w2(0)|2
)

+ b

∫ t

0

(|ḋ(s)|2 + |d̈(s)|2) ds. (31)

Proof. As a result of the invertible transformation Φ(x), x ∈ [0, L],
the system (3), (11)-(12), (13) has the same dynamical behavior as
the system (20)-(21). Therefore, in order to prove the iISS of the
quasilinear system (3), (11)-(12), (13), we firstly prove the iISS of the
quasilinear system (20)-(21) after applying the control law U in (29),
which is designed for the linearized system (24)-(25). The quasilinear
system (20)-(21) is mapped into a target system Z̄ by using the direct
transformation Z̄ = K[R̄] and the inverse transformation R̄ = L[Z̄]
with C2(T) kernel functions. Differentiating twice with respect to
x in these transformations, it is shown that the H2 norm of Z̄ is
equivalent to the H2 norm of R̄. So local iISS of the system R̄ is
same as local iISS of the target system. The equations of the target
system Z̄ is, for all x ∈ [0, L], t ∈ [0,+∞),

∂tZ̄(x, t) + Λ(x)∂xZ̄(x, t) = Σ1(x)Z̄(x, t)

+

∫ L

x

C1(x, ξ)Z̄(ξ, t) dξ + F3[Z̄, ∂xZ̄] + F4[Z̄], (32)

Z̄in(t) = KP Z̄out(t) + X̄(t) + Γ0(w1(t) + w2(t)), (33)

X̄(t) = KI

∫ t

0

Z̄out(σ) dσ + Γ0

(
d(t)− Π̄NL(Z̄(0, t))

)
, (34)

where

F3[Z̄, ∂xZ̄] = −K[
(
Λ(x) + F1[Z̄]

)
∂xZ̄] + Λ(x)∂xZ̄,

F4[Z̄] = −K12[Z̄]−K[
(
Λ(x) + F1[Z̄]

)
K1[L[Z̄]] + Σ(x)L[Z̄]

+ F2[Z̄]L[Z̄]],

Π̄NL(Z̄(0, t)) = ΠNL(Φ−1(0)R̄(0, t)),

K12[Z̄] = Σ1(x)Z̄(x, t) +

∫ L

x

C1(x, ξ)Z̄(ξ, t) dξ,
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K1[Z̄] =

∫ L

x

∂xK(x, ξ)Z̄(ξ, t) dξ −K(x, x)Z̄(x, t),

F1[Z̄] = ΛNL(L[Z̄], x),

F2[Z̄] = ΣNL(L[Z̄], x),

with Z̄ = (Z̄+, Z̄−)>, Z̄+ : [0, L] × [0,+∞) → Rm, Z̄− :
[0, L] × [0,+∞) → R2N−m, Z̄in(t) = (Z̄+(0, t), Z̄−(L, t))>,
Z̄out(t) = (Z̄+(L, t), Z̄−(0, t))>. Next, the local stability of system
(32)-(34) in the space H2 is analyzed by using the Lyapunov
approach. It includes analyzing the growth of ‖Z̄‖L2 , ‖η‖L2 and
‖ζ‖L2 (by definition η = ∂tZ̄ and ζ = ∂ttZ̄).

The following Lyapunov function candidate is introduced for the
stability analysis of system (32)-(34), for all x ∈ [0, L], t ∈ [0,+∞),
V̄
(
Z̄(x, t), X̄(t), η(x, t), ζ(x, t)

)
= V̄1 + V̄2 + V̄3, where

V̄1 =

∫ L

0

(
Z̄>(x, ·)P̄11(x)Z̄(x, ·) + Z̄>(x, ·)P̄12(x)X̄(·)

+ X̄>(·)P̄>12(x)Z̄(x, ·) + X̄>(·)P̄22X̄(·)
)

dx, (35)

V̄2 =

∫ L

0

η>(x, ·)P̄3(x)η(x, ·) dx, (36)

V̄3 =

∫ L

0

ζ>(x, ·)P̄4[Z̄](x)ζ(x, ·) dx, (37)

with
P̄11(x) , P̄11diag

{
e−µxIm, e

µxI2N−m
}
,

P̄12(x) , P̄12diag
{
e−

µ
2
xIm, e

µ
2
xI2N−m

}
,

P̄3(x) , P̄3diag
{
e−µxIm, e

µxI2N−m
}
,

P̄4[Z̄](x) is defined in [9, Lemma 5.2], P̄11, P̄3 are 2N × 2N
diagonal positive-definite matrices, P̄22 is a 2N × 2N symmetric
positive-definite matrix, and P̄12 is a 2N × 2N matrix.

Take the time derivative of V̄1 along the solutions to (32)-(34),
use integration by parts, and define ˙̄V1 = ˙̄V1L + ˙̄V1NL, where ˙̄V1L

is the time derivative of V̄1 along the linear target system (27)-(28),
computed as follows

˙̄V1L = −Z̄>(x, t)Λ(x)P̄11(x)Z̄(x, t)
∣∣∣L
0

+

∫ L

0

Z̄>(x, t)
(
Λ(x)P̄11(x)

)
x
Z̄(x, t) dx

−
(
Z̄>(x, t)Λ(x)P̄12(x)X̄(t) + X̄>(t)P̄>12(x)Λ(x)Z̄(x, t)

)∣∣∣L
0

+

∫ L

0

(
Z̄>(x, t)

(
Λ(x)P̄12(x)

)
x
X̄(t)

+ X̄>(t)
(
P̄>12(x)Λ(x)

)
x
Z̄(x, t)

)
dx

+

∫ L

0

((
Σ1(x)Z̄(x, t) +

∫ L

x

C1(x, ξ)Z̄(ξ, t) dξ
)>

(P̄11(x)Z̄(x, t) + P̄12(x)X̄(t))

+ (Z̄>(x, t)P̄11(x) + X̄>(t)P̄>12(x))(
Σ1(x)Z̄(x, t) +

∫ L

x

C1(x, ξ)Z̄(ξ, t) dξ
))

dx

+

∫ L

0

(
(Z̄>(x, t)P̄12(x) + X̄>(t)P̄22)

(
KI Z̄out(t) + Γ0ḋ(t)

)
+
(
KI Z̄out(t) + Γ0ḋ(t)

)>
(P̄>12(x)Z̄(x, t) + P̄22X̄(t))

)
dx,

(38)

and where ˙̄V1NL is defined as:

˙̄V1NL =

∫ L

0

((
F3[Z̄, ∂xZ̄] + F4[Z̄]

)>
P̄11(x)Z̄(x, t)

+ Z̄>(x, t)P̄11(x)
(
F3[Z̄, ∂xZ̄] + F4[Z̄]

))
dx

+

∫ L

0

(
Z̄>(x, t)P̄12(x)

(
− Γ0

dΠNL

dZ̄
(Z̄(0, t))η(0, t)

)
+
(
− Γ0

dΠNL

dZ̄
(Z̄(0, t))η(0, t)

)>
P̄>12(x)Z̄(x, t)

+
(
F3[Z̄, ∂xZ̄] + F4[Z̄]

)>
P̄12(x)X̄(t)

+ X̄>(t)P̄>12(x)
(
F3[Z̄, ∂xZ̄] + F4[Z̄]

))
dx

+ L

(
− Γ0

dΠNL

dZ̄
(Z̄(0, t))η(0, t)

)>
P̄22X̄(t)

+ LX̄>(t)P̄22

(
− Γ0

dΠNL

dZ̄
(Z̄(0, t))η(0, t)

)
. (39)

From system (32)-(34), we derive, for all x ∈ [0, L], t ∈ [0,+∞),

∂tη(x, t) + Λ(x)∂xη(x, t) = Σ1(x)η(x, t)

+

∫ L

x

C1(x, ξ)η(ξ, t) dξ + F5[Z̄, ∂xη] + F6[Z̄, η, ∂xZ̄], (40)

ηin(t) = KP ηout(t) + ˙̄X(t) + Γ0(−d1IN×Nw1(t)− d2IN×Nw2(t)),
(41)

˙̄X(t) = KI Z̄out(t) + Γ0

(
ḋ(t)− dΠNL

dZ̄
(Z̄(0, t))η(0, t)

)
, (42)

where

F5[Z̄, ∂xη] = K[(Λ(x) + F1[Z̄])∂xη] + Λ(x)∂xη,

F6[Z̄, η, ∂xZ̄] = K[
(
Λ(x) + F1[Z̄]

)
K1[L[η]]− Σ(x)L[η]

− F2[Z̄]L[η] + F12[η](∂xZ̄ +K1[L[Z̄]])− F22[η]L[Z̄]]−K12[η],

F12[η] =
d

dt
F1[Z̄],

F22[η] =
d

dt
F2[Z̄].

Take the time derivative of V̄2 along the solutions to (32)-(34), use
integration by parts, and define ˙̄V2 = ˙̄V2L + ˙̄V2NL, where ˙̄V2L is the
time derivative of V̄2 along the linear target system (27)-(28),

˙̄V2L = −η>(x, t)Λ(x)P̄3(x)η(x, t)
∣∣∣L
0

+

∫ L

0

η>(x, t)

(
Λ(x)P̄3(x)

)
x
η(x, t) dx+

∫ L

0

((
Σ1(x)η(x, t)

+

∫ L

x

C1(x, ξ)η(ξ, t) dξ
)>
P̄3(x)η(x, t) + η>(x, t)P̄3(x)(

Σ1(x)η(x, t) +

∫ L

x

C1(x, ξ)η(ξ, t) dξ
))

dx, (43)

and where ˙̄V2NL is defined as:

˙̄V2NL = (KP
˙̄Zout(t))

>Ē1P̄3

(
− Γ0

dΠNL

dZ̄
(Z̄(0, t))η(0, t)

)
+

(
− Γ0

dΠNL

dZ̄
(Z̄(0, t))η(0, t)

)>
P̄3Ē1(KP

˙̄Zout(t))

+

(
KI Z̄out(t) + Γ0

(
ḋ(t)− dΠNL

dZ̄
(Z̄(0, t))η(0, t)

)
− Γ0(d1IN×Nw1(t) + d2IN×Nw2(t))

)>
Ē1P̄3(

− Γ0
dΠNL

dZ̄
(Z̄(0, t))η(0, t)

)
+

(
− Γ0

dΠNL

dZ̄
(Z̄(0, t))η(0, t)

)>
Ē1P̄3
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(
KI Z̄out(t) + Γ0

(
ḋ(t)− dΠNL

dZ̄
(Z̄(0, t))η(0, t)

)
− Γ0(d1IN×Nw1(t) + d2IN×Nw2(t))

)
+

(
− Γ0

dΠNL

dZ̄
(Z̄(0, t))η(0, t)

)>
Ē1P̄3(

− Γ0
dΠNL

dZ̄
(Z̄(0, t))η(0, t)

)
+

∫ L

0

((
F5[Z̄, ∂xη] + F6[Z̄, η, ∂xZ̄]

)>
P̄3(x)η(x, t)

+ η>(x, t)P̄3(x)
(
F5[Z̄, ∂xη] + F6[Z̄, η, ∂xZ̄]

))
dx. (44)

Since the term ˙̄V1L + ˙̄V2L is analyzed in [12, Theorem 1], which is
for the iISS of the linear target system (27)-(28), there exist positive
constants c1, b1, a1, a2, a3, such that

˙̄V1L + ˙̄V2L ≤− c1(V̄1 + V̄2) + b1|ḋ|2 + a1(w2
1 + w2

2)

+ a2‖Z̄‖∞(V̄1 + V̄2) + a3‖η‖∞(V̄2 + V̄3). (45)

Now analyze the remaining items ˙̄V1NL and ˙̄V2NL. There exist
positive constants k1, k2, k3, k4, k5, k6, k7 such that

˙̄V1NL ≤ k1

∫ L

0

(∣∣F3[Z̄, ∂xZ̄]
∣∣+
∣∣F4[Z̄]

∣∣) ∣∣Z̄∣∣ dx

+ k2

∫ L

0

( ∣∣Z̄∣∣ ∣∣∣∣Γ0
dΠNL

dZ̄
(Z̄(0, t))η(0, t)

∣∣∣∣
+
(∣∣F3[Z̄, ∂xZ̄]

∣∣+
∣∣F4[Z̄]

∣∣) ∣∣X̄(t)
∣∣ ) dx

+ k3

∣∣∣∣Γ0
dΠNL

dZ̄
(Z̄(0, t))η(0, t)

∣∣∣∣ ∣∣X̄(t)
∣∣ ,

˙̄V2NL ≤ k4

∣∣∣ ˙̄Zout(t)
∣∣∣ ∣∣∣∣Γ0

dΠNL

dZ̄
(Z̄(0, t))η(0, t)

∣∣∣∣
+ k5

( ∣∣∣KI Z̄out(t) + Γ0ḋ(t)
∣∣∣+

∣∣∣∣Γ0
dΠNL

dZ̄
(Z̄(0, t))η(0, t)

∣∣∣∣
+ |Γ0(d1IN×Nw1(t) + d2IN×Nw2(t))|

) ∣∣∣∣Γ0
dΠNL

dZ̄
(Z̄(0, t))η(0, t)

∣∣∣∣
+ k6

∣∣∣∣Γ0
dΠNL

dZ̄
(Z̄(0, t))η(0, t)

∣∣∣∣2
+ k7

∫ L

0

( ∣∣F5[Z̄, ∂xη]
∣∣+
∣∣F6[Z̄, η, ∂xZ̄]

∣∣ ) |η| dx.

Applying [9, Lemma B.2], there exists δ1 > 0, and positive constants
k8, k9, k10, h1, h2, h3, h4 such that for all Z̄ satisfying ‖Z̄‖∞ ≤ δ1,
it holds

∣∣Γ0Π̄NL(Z̄(0, t))
∣∣ ≤ k8|Z̄(0, t)|, ‖Z̄‖2L2 +

∣∣X̄(t)
∣∣2 ≤ k9V̄1,

‖η‖2L2 ≤ k10V̄2, and∫ L

0

(∣∣F3[Z̄, ∂xZ̄]
∣∣+
∣∣F4[Z̄]

∣∣) ∣∣Z̄∣∣ dx ≤ h1k9(‖Z̄‖∞ + ‖η‖∞)V̄1,∫ L

0

∣∣Z̄∣∣ ∣∣∣∣Γ0
dΠNL

dZ̄
(Z̄(0, t))η(0, t)

∣∣∣∣ dx

≤ h2(k9‖Z̄‖∞V̄1 + k10‖η‖∞V̄2),∫ L

0

(∣∣F3[Z̄, ∂xZ̄]
∣∣+
∣∣F4[Z̄]

∣∣) ∣∣X̄(t)
∣∣ dx ≤ h3k9(‖Z̄‖∞ + ‖η‖∞)V̄1,∣∣∣∣Γ0

dΠNL

dZ̄
(Z̄(0, t))η(0, t)

∣∣∣∣ ∣∣X̄(t)
∣∣ ≤ h4(k9‖Z̄‖∞V̄1 + k10‖η‖∞V̄2).

We deduce, for all Z̄ satisfying ‖Z̄‖∞ ≤ δ1,

˙̄V1NL ≤ (h1 + h3)k9(‖Z̄‖∞ + ‖η‖∞)V̄1

+ (h2 + h4)(k9‖Z̄‖∞V̄1 + k10‖η‖∞V̄2). (46)

Applying [9, Lemma B.3], there exist positive constants δ2 ≤ δ1,
h5, h6, h7, h8, h9, h10, h11 such that for all Z̄ satisfying ‖Z̄‖∞ +

‖η‖∞ ≤ δ2, ‖ζ‖L2 ≤ k11V̄
1/2
3 , k11 > 0, it holds∣∣∣ ˙̄Zout(t)

∣∣∣ ∣∣∣∣Γ0
dΠNL

dZ̄
(Z̄(0, t))η(0, t)

∣∣∣∣ ≤ h5‖η‖∞(V̄2 + V̄3),( ∣∣∣KI Z̄out(t) + Γ0ḋ(t)
∣∣∣+

∣∣∣∣Γ0
dΠNL

dZ̄
(Z̄(0, t))η(0, t)

∣∣∣∣
+ |Γ0(d1IN×Nw1(t) + d2IN×Nw2(t))|

) ∣∣∣∣Γ0
dΠNL

dZ̄
(Z̄(0, t))η(0, t)

∣∣∣∣
≤ h6‖Z̄‖∞V̄2 + h6‖Z̄‖∞(V̄1 + V̄2) + h7

∣∣∣ḋ(t)
∣∣∣2 + h8(w2

1 + w2
2),∣∣∣∣Γ0

dΠNL

dZ̄
(Z̄(0, t))η(0, t)

∣∣∣∣2 ≤ h9‖Z̄‖∞V̄2,∫ L

0

( ∣∣F5[Z̄, ∂xη]
∣∣+
∣∣F6[Z̄, η, ∂xZ̄]

∣∣ ) |η| dx

≤ h10‖Z̄‖∞(V̄2 + V̄3) + h11‖Z̄‖∞V̄2

(
‖Z̄‖∞ + ‖η‖∞ + 1

)
,

and therefore

˙̄V2NL ≤ k4h5‖η‖∞(V̄2 + V̄3)

+ (k4h5 + k5h6 + k6h9 + k7h10 + k7h11)‖Z̄‖∞V̄2

+ k5

(
h6‖Z̄‖∞(V̄1 + V̄2) + h7

∣∣∣ḋ(t)
∣∣∣2 + h8(w2

1 + w2
2)

)
+ k7h10‖Z̄‖∞V̄3 + k7h11V̄2

(
‖Z̄‖∞ + ‖η‖∞

)
. (47)

Taking the time derivative in (40), we obtain the following equation
for ζ,

∂tζ(x, t) + (Λ(x) + F1[Z̄])∂xζ(x, t) = F7[Z̄, ζ, ∂xζ]

+ F8[Z̄, η, ζ, ∂xZ̄, ∂xη], (48)

ζin(t) = KP ζout(t) + ¨̄X(t) + Γ0(d2
1w1(t) + d2

2w2(t)), (49)

¨̄X(t) = KI
˙̄Zout(t) + Γ0

(
d̈(t)− d2ΠNL

dZ̄2
(Z̄(0, t))η2(0, t)

− dΠNL

dZ̄
(Z̄(0, t))ζ(0, t)

)
, (50)

where

F7[Z̄, ζ, ∂xζ] = −K[(Λ(x) + F1[Z̄])(∂xζ +K1[L[ζ]])]

+ (Λ(x) + F1[Z̄])(∂xζ +K1[L[ζ]]),

F8[Z̄, η, ζ, ∂xZ̄, ∂xη] = −(Λ(x) + F1[Z̄])K1[L[ζ]]

+K[(Σ(x) + F2[Z̄])L[ζ]− 2F12[Z̄](∂xη +K1[L[η]])

+ 2F22[Z̄]L[η] + F23L[Z̄]− F13(∂xZ̄ +K1[L[Z̄]])],

F13[Z̄, η, ζ] =
d2ΛNL(L[Z̄], x)

dt2
,

F23[Z̄, η, ζ] =
d2ΣNL(L[Z̄], x)

dt2
.

Take the time derivative of V̄3 along the solutions to (32)-(34),
apply [9, Lemma 5.2], and define ˙̄V3 = ˙̄V3L + ˙̄V3NL, where ˙̄V3L

is the time derivative of V̄3L along the linear target system (27)-(28),

˙̄V3L = −ζ>(x, t)
(
P̄4[Z̄](x)(Λ(x) + F1[Z̄])

)
ζ(x, t)

∣∣∣L
0

+

∫ L

0

ζ>(x, t)
(
P̄4[Z̄](x)(Λ(x) + F1[Z̄])

)
x
ζ(x, t) dx

+

∫ L

0

ζ>(x, ·)
(
P̄4[Z̄](x)

)
t
ζ(x, ·),

and

˙̄V3NL =

∫ L

0

((
F7[Z̄, ζ, ∂xζ] + F8[Z̄, η, ζ, ∂xZ̄, ∂xη]

)>
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P̄4[Z̄](x)ζ(x, t) + ζ>(x, t)P̄4[Z̄](x)
(
F7[Z̄, ζ, ∂xζ]

+ F8[Z̄, η, ζ, ∂xZ̄, ∂xη]
))

dx.

According to [9, Proposition 5.4], there exist positive constants c2,
h12, h13, h14, h15, h16, h17, h18, h19, h20 such that

− ζ>(x, t)
(
P̄4[Z̄](x)(Λ(x) + F1[Z̄])

)
ζ(x, t)

∣∣∣L
0

≤ h12‖ζ‖∞(V̄1 + V̄2 + V̄3) + h13(w2
1 + w2

2)

+ h14‖η‖∞(V̄2 + V̄3) + h15|d̈|2 + h16‖ζ‖∞V̄ 2
2 ,∫ L

0

ζ>(x, t)
(
P̄4[Z̄](x)

(
Λ(x) + F1[Z̄]

) )
x
ζ(x, t) dx

≤ −c2V̄3 + h17(‖Z̄‖∞ + ‖η‖∞)V̄3,∫ L

0

ζ>(x, ·)
(
P̄4[Z̄](x)

)
t
ζ(x, ·) dx ≤ h18V̄3‖η‖∞,∫ L

0

ζ>(x, t)P̄4[Z̄](x)
(
F7[Z̄, ζ, ∂xζ] + F8[Z̄, η, ζ, ∂xZ̄, ∂xη]

)
dx

≤ h19V̄2‖ζ‖∞
(
‖Z̄‖∞ + ‖η‖∞

)
+ h20

(
‖η‖∞V̄3 + ‖ζ‖∞V̄2 + ‖Z̄‖∞V̄3

)
.

Therefore there exist positive constants δ3 ≤ δ2, c3 and c4 satisfying
c3 +c4 < c2 such that, for all Z̄ satisfying ‖Z̄‖∞+‖η‖∞+‖ζ‖∞ ≤
δ3, it holds

˙̄V3L ≤ (−c2 + c3)(V̄1 + V̄2 + V̄3) + h15|d̈|2 + h13(w2
1 + w2

2),
(51)

˙̄V3NL ≤ c4(V̄1 + V̄2 + V̄3). (52)

Combining (51), (52) with (45), (46), (47), and letting c = c3 + c4−
c2 − c1 and a = a1 + k5h8 + h13, we get, for all ‖Z̄‖∞ + ‖η‖∞ +
‖ζ‖∞ ≤ δ2,

˙̄V ≤− cV̄ + (b1 + k5h7)|ḋ|2 + h15|d̈|2 + a(w2
1 + w2

2). (53)

By defining W̄ = V̄ + b4
2

(
w2

1
d1

+
w2

2
d2

), we derive

˙̄W ≤ −cV̄ + (b1 + k5h7)|ḋ|2 + h15|d̈|2 + (a− b4)(w2
1 + w2

2).

Choosing a < b4, for some positive constant c5, we obtain

˙̄W ≤− c5W̄ + (b1 + k5h7)|ḋ|2 + h15|d̈|2. (54)

For sufficiently small W̄ (0), W̄ exponentionally converge to zero.
If ‖Z̄‖L2 + ‖η‖L2 + ‖ζ‖L2 is sufficiently small, V̄ is equivalent to
the H2 norm of Z̄. We deduce (31) by a standard application of
comparison lemma. This concludes the proof of Theorem 1. �

Furthermore, under the assumption of Theorem 1, coming back to
(1)-(2), we deduce that the quasilinear plant system u is locally iISS
around the nonuniform equilibrium u∗ in the space H2.

IV. SIMULATIONS

In consideration of verifying the applicability of the control law
U in (29) to locally stabilize the quasilinear system u around the
nonuniform equilibrium u∗ on a considered road section (road length:
1km, width: 6.5m), the values of traffic parameters for two vehicle
classes are chosen as in [12], see Table I. Let

KP =


0 0 0 −7.85
0 0 0 6.85
0 0 0 −41.88

−5.67 −5.09 7.15 0

× 10−5,

K11
I =

−20 30 30
−24 −7 26
−10 20 −30

× 10−5,K12
I =

60
30
20

× 10−5,

Name Symbol Value Unit
Relaxation time τ1 30 s

τ2 60 s
Pressure exponent γ1 2.5 1

γ2 2 1
Free-flow velocity vM1 80 km

h

vM2 60 km
h

Maximum AO AoM1 0.9 1
AoM2 0.85 1

Occupied surface per vehicle a1 10 m2

a2 42 m2

equilibrium density at the inlet ρ∗1(0) 110 veh
km

ρ∗2(0) 70 veh
km

equilibrium velocity at the inlet v∗1 (0) 50 km
h

v∗2 (0) 25 km
h

TABLE I
SELECTED VALUES OF PARAMETERS FOR TWO VEHICLE CLASSES.

Γ0 =


0 0.0469

0.0156 −0.0625
0.0332 0.2041

0 0

 ,Γ1 =

 −0.785
1.0467
−4.2039

 ,

Γ2 =

 0 0.0469
0 −0.0625

0.0332 0.2051

 .
The values of parameters KP , K11

I , K12
I , Γ0, Γ1, Γ2 were obtained

by seeking the optimal controller U in paper [12] in order to minimize

the likelihood of congested traffic. Letting Θ =

[
0.2
0.8

]
× 10−5, Θ̄ =[

1 1 1
]
, we derive the optimal controller for the linearized

system (24)-(25), see Figure 2. Given the initial condition, for

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
-1500

-1000

-500

0

500

1000

1500

Fig. 2. Time evolution of controller (30).

x ∈ [0, L]

u(x, 0) =


ρ∗1(x) + 0.05ρ∗1(x) cos 12πx
v∗1(x) + 0.05v∗1(x) sin 12πx
ρ∗2(x) + 0.05ρ∗2(x) cos 12πx
v∗2(x) + 0.05v∗2(x) sin 12πx

 , (55)

and d(t) =

[
275e−30t cos 30πt
87.5e−20t cos 30πt

]
, illustrated for simulation by rush

hours. The optimal controller U not only stabilizes the linearized
system (24)-(25), but also stabilizes the quasilinear system (20)-
(21). Figure 3 gives the numerical simulations of the quasilinear
two vehicle-class traffic model with the controller U . It is obvious
that the designed controller for the linearized system stabilizes the
quasilinear plant system. However, given a large initial condition



8 MANUSCRIPT SUBMITTED TO IEEE TRANSACTION ON AUTOMATIC CONTROL

Fig. 3. From left top to right down: time and space evolutions of the state
components ρ1, v1, ρ2, v2 to (1)-(2).

u(x, 0), x ∈ [0, L], namely the initial condition given by (55) by
replacing 0.05 by 0.1, that is sufficiently ”far” from the equilibrium
u∗(x), the corresponding solution to the same closed-loop system
does not converge to the equilibrium. It is consistent with the locality
of the stability as described in Theorem 1, in other words, the initial
state should be in a neighborhood of the equilibrium (in H2 norm)
in order to guarantee the iISS of the multi-type quasilinear traffic
system.

V. CONCLUSION

The problem of boundary stabilization of a multi-type quasilinear
traffic flow system with disturbances was solved by actuation at the
inlet boundary of the considered road segment. The applicability of
the control law, which was designed for the corresponding linearized
system by using the backstepping method, has been proven for the
locally iISS of the quasilinear system. It would be of interest to
extend this result to design an observer and combine them to obtain an
observer-based output feedback controller. The extension of this result
to other first-order hyperbolic systems would be also interesting.
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