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acting on the nonaxisymmetric capillary bridges
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Abstract The didactic object of these developments on differential geometry of curves
and surfaces is to present fine and convenient mathematical strategies, adapted
to the study of capillary bridges from experimental data and relatively simple
to use in practice. The common thread is to be able to calculate accurately
in any situation the bending stress over the free surface Σ, represented math-
ematically by the integral of the Gaussian curvature over the surface (called
the total curvature) and also to obtain an information concerning the capil-
lary tension forces by term by term integrating the generalized Young-Laplace
equation. We mainly develop three convenient mathematical tools for assess-
ing the physical properties in the field of the axisymmetric or not capillary
bridges with convex or nonconvex plane boundaries, according to the local
wettability and roughness effects: the unit speed reparameterization (or by
arc length) of a regular curve and in particular for surfaces of revolution, the
Fenchel’s theorem and the Gauss-Bonnet-Binet theorem that expresses a re-
lation between the integral of the Gaussian curvature over the surface, the
topology of the surface and the integrals of the geodesic curvatures which are
directly linked to the wetting angle at the contact lines. We express also the
resultant of the bending energy only with respect to the wetting angles at the
contact line.
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1 Introduction
In this work, we present various results and complementary strategies of mathematical anal-
ysis that can be applied to concrete capillary bridges problems, concerning in a new way,
the Gauss-Bonnet and Fenchel’s theorems to establish various analytical formulas easy to
use, concerning firstly the case of the rather delicate approach to nonaxisymmetric capil-
lary bridges distortions. This article expands significantly on the partial results presented
in [11], concerning the only surfaces of revolution (circular boundaries, which makes these
cases much easier, especially for the explicit calculation of the total geodesic curvatures of
the boundaries, rarely possible in practice by the integral calculus).

The key to achieving generalization is a direct consequence of the Fenchel’s theorem in
differential geometry 3 [20] : the total curvature of any smooth closed convex plane curve
equals 2π, which avoids a lot of dead-end integration calculations. We also indicate how
to calculate precisely the total curvature of generic expression 2kπ, k 6= 1 of any closed
nonconvex plane curve, k being an integer, the index of the curve, the winding number.
Consequently, in other words, the index k of a closed plane curve, convex or nonconvex, can
be considered as the total curvature divided by 2π (the winding index in algebraic topology).
In the specific context of this study, the Fenchel’s theorem and the Gauss–Bonnet-Binet the-
orems are very strongly complementary, with the advantage of explicit calculative answers.

These developments relate in the first part to surfaces of revolution on the basis of an
unit speed reparameterization (or by arc length) for a regular curve, in this case, the semi-
meridian. For detailed presentations of the subject, the reader may refer to [3] p. 161-164,
[25] p. 161-162 and also to [2][12][13][17].

A convenient conceptual bridge between differential geometry and kinematics is to imagine
that the semi-meridian represents the successive positions of a moving object and from now
on, we get the position of the object as a function of how far the object has traveled along
the rotating curve. By this choice of calculation strategy, by reparameterization (always
orientation-preserving), the speed is ipso facto unit and therefore, the speed and acceleration
vectors are orthogonal. The Frenet-Serret apparatus is then very elegant and convenient to
use.

To illustrate the convenience of the method, it is indicated that the calculation and the
expression of the Gaussian curvature are very simplified. The calculation of the integral of
the Gaussian curvature over the surface of the bridge (the total Gaussian curvature) is then
direct and makes it possible to find again the analytical expression of the bending stress
given by the subtle theorems of Gauss Bonnet and Fenchel (proportional to the sum of
the cosine values of the two observed contact angles, possibly distinct). Moreover, it is also
an accessible way to determine explicitly all the surfaces of revolution of constant Gaussian
curvature.

It is also a convenient tool for calculating exactly the total curvature of the plane and smooth
boundaries of the bridges, mainly in the nonconvex case (the concept of curvature κ (kappa)
is indeed a way to measure how sharply a smooth curve turns).

3Werner Fenchel (1905-1988), Professor at the universities of Götingen and Copenhagen.
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From there, we build an analytical toolbox for the in situ methodological evaluation of
various properties of these capillary bridges. The hard part would be inverting the speed
function that cannot usually be integrated explicitly in terms of usual functions. However,
to apply the method, it is not necessary to explain the parameterization; the analytical
formulas obtained only take into account the experimental data.

The general non-axisymmetric case requires the much more delicate but not insurmountable
use of the Gauss-Bonnet theorem closely associated to the Fenchel’s theorem in differential
geometry. In a singular way, for a smooth surface of revolution whose regular generating
curve does not cross the axis of rotation, we have at hand a classical method in differential
geometry of surfaces which is well suited in this situation: the arc length (or unit speed)
reparameterization of the rotating curve considered as a trajectory.

2 The analytical framework and the main objectives

2.1 About the generalized Young-Laplace equation, the bending
forces and the resulting geometrical effects

The generalized Young-Laplace equation concerns the strong distortions for which the bend-
ing effects are modeled by an additional curvature-related term: the introduction of CK , a
multiplier coefficient of the Gaussian curvature K, at the dimension of a force and standing
for the bending stress [1][10][15][34]. Under appropriate boundary conditions, the shape
of the free interface is then described by the so-called generalized Young-Laplace equation,
thus involving both mean and Gaussian curvatures. The resulting strongly nonlinear differ-
ential equation, at the downward vertical measurement x linked to the value ∆p0 at x = 0,
(a spontaneous unknown value) comes in the following form that is detailed and justified
more specifically in [10][11][12][15][16][18][22][28][32][33] and gratefully [6] for a very early
initiating study:

γ

(
1

ρc
+

1

N

)
+ CK

1

ρc N
= ∆p0 −∆ρ gx , (1)

associated with adequate miscellaneous boundary conditions [18], where the force CK divided
by the area ρcN stands via a pressure for the local bending stress, ρc and N being the
principal radii of curvature (evaluated algebraically, positively when the curvature is turned
into the interior of the capillary bridge) and the pressure deficiency is ∆p0 at x = 0.

It is assumed that the different cefficients, implicit unknown a priori, as ∆p0, resulting from
the final equilibrium, have been previously identified in situ from exprerimental data, by
solving a linear system, well posed and numerically stable (for example, thanks to a first
integral translating a principle of conservation) [9][10][11][12][14].

It is extremely noteworthily [12][31], that this strongly nonlinear differential equation is
mathematically isomorphic (the same structure) but with different variables and physical
units, to the Gullstrand equation of geometrical optics, which relates the optic power P ′

op

of a thick lens (in diopters, the reciprocal of the equivalent focal length) to its geometry
and the properties of the media. For example, the superficial tension γ is equivalent to
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the refractivity
n1

n2
− 1, where ni is a refractive index, CK is analogous to the expression

−
(
n1

n2
− 1

)2
n2

n1
d, d the lens thickness and ∆p corresponds to P ′

op.

Shear or free energy problems and the longitudinal bending stress of ship hulls have an
analogy with the subject [4][27][30][37].
The mathematical modeling and simulations of the petroleum engineering are also con-
cerned by this theoretical topic, in order to obtain for media with periodic microstructure
an "equivalent" macroscopic representation, by some statistical or homogenization methods
[8], chapter 1.

The bending stress over the free surface Σ is then represented in the following integral form,
at the dimension of a force:

Ebending stress = CK

∫
Σ

K dΣ ,

where K is the Gaussian curvature of the free surface Σ, intrinsic value, in particular inde-
pendent of the choice of the unit normal vector, and the nondimensional integral is the total
curvature4.

Knowing the exact value of the bending stress, on would deduce from the generalized Young-
Laplace equation by a fine numerical integration of the right-hand side, the capillary tension
values.
Concerning the capillary tension forces, by term by term integrating over the free surface
Σ the generalized Young-Laplace equation, we have for example the relationship between
various forces:

γ

∫
Σ

(
1

ρc
+

1

N

)
dΣ = −CK

∫
Σ

K dΣ +

∫
Σ

(∆p0 −∆ρ gx) dΣ,

with the particular situation:

γ

∫
Σ

(
1

ρc
+

1

N

)
dΣ = −CK

∫
Σ

K dΣ + ∆p0 area (Σ)

when neglecting gravity effects.

This would allow to have a reasoned opinion on the relative importance of the bending
forces; according to an objective criterion, either by relative value or by intrinsic value.

2.2 Homotopic surfaces and Euler characteristic in geometry and
algebraic topology.

Recall that the Euler characteristic (or Euler-Poincaré characteristic) is a topological in-
variant, an integer that describes, according to precise axiomatic principles, the shape or
a structure of a topological space regardless of how it is bent according to the formula:

4For example, the total curvature of the catenoid whose axis is of infinite length is −4π, the total curvature
of the sphere of radius r is 4π and the torus 0.
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number of vertices−number of edges+ number of faces with the property of invariance by
homeomorphy. It is commonly denoted by χ or χ (M). As examples for surfaces in homo-
logical algebra, we have χ (M) = 2 for a sphere, χ (M) = 4 for two spheres (not connected),
χ (M) = 0 for a torus and χ (M) = −2 for a two-holed torus.

To speak very figuratively, quite approximately, the Euler-Poincaré characteristic is an in-
teger, invariant when the size and the shape of a geometrical object change by an effect of
a "plastic" deformation. One will find more axiomatic definitions!

This invariance property makes it a providential tool in the context of this study on the
bending effects, associated to the Gauss–Bonnet theorem, a deep relationship between sur-
faces in differential geometry, connecting the Gaussian curvature of a surface to its Euler
characteristic.

The Euler characteristic of the right cylinder is zero, thus so is that of the cylinder with
one or two boundaries. These following free surfaces with two circular boundaries and
whose meridian is an arc of Delaunay roulette are considered topologically equivalent (same
common topological genus), because it is possible to continuously move one to obtain the
other: portion of concave or convex, catenoid or unduloid (the right cylinder being the
transition case). Accordingly, these axisymmetric surfaces have in common the same Euler
characteristic, in this case, the value zero. It is the same for their continuous axisymmetric
smooth deformations by distorting effect of bending or gravity [22][26].

2.3 The Gauss-Bonnet or Gauss-Bonnet-Binet theorems
The Gauss-Bonnet theorem (Binet is often forgotten5) is reputed to be one of the most
profound and elegant results of the study of surfaces [2][3][5]. It has no surprisingly many
applications in Physics. It is used in sectors of activity where the problems of bending beams
surely arises (civil engineering, naval architecture, shell theory to predict the stress and the
displacement arising in an elastic shell, [5], etc...).

In fact, it unexpectedly links two completely different ways of studying a surface: one
geometric, the other topological.
Indeed, for any compact, boundaryless two-dimensional Riemannian manifold Σ, the integral
of the Gaussian curvature K over the entire manifold with respect to area measure is 2π
times the Euler characteristic of Σ, also called the Euler number of the manifold, i.e.∫

Σ

K dΣ = 2πχ (Σ) .

For example, for a sphere Σ of radius R in R3, it comes:∫
Σ

K dΣ =
1

R2
4πR2 = 4π and here χ (Σ) = 2.

Suppose now that M is a compact two-dimensional Riemannian manifold with a boundary
δM and let kg the signed geodesic curvature of δM. Then, in nondimensional writing,

5Because of the Binet’s independent work, but Bonnet credits Binet, cf. Tome III, correspondance de
l’Ecole Polytechnique.
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∫
M

K dM +

∫
δM

kg ds = 2πχ (M) .

We recall that the geodesic curvature kg, of an arbitrary curve at a point P on a smooth
surface, is defined as the curvature at P of the orthogonal projection of the curve onto the
plane tangent to the surface at P and we have:

kg = kcos θ, (2)
where θ is the angle between the osculating plane of C and the tangent plane Q at point P .
It is easy to see that cos θ is nothing else than the local contact angle for wetting problems
and capillary bridges.

We want to obtain in any situation an explicit expression of this integral, of simple and
immediate use for the experimenter, and highlight the determining parameters and their
respective influence.

3 The aim and effective convenience of the arc length
reparameterization strategy

3.1 Surface of revolution
The rather paradoxical aspect of this method is that it is only very rarely easy to get in
practice an explicit calculation formula. However, it leads to general quantitative results
in the form of analytical formulas very easy to use from the experimental data, via a very
convenient expression of the Gaussian curvature of a surface of revolution (the speed and
acceleration vectors are then orthogonal).’How complexity leads to simplicity...’

To illustrate what we are talking about, let us consider a smooth curve of the half-plan {y >
0, z = 0} parametrized by the arc length. The surface of revolution resulting in R3 from the
rotation of the curve around the x-axis, ψ being the angle of rotation, is parametrized by:

M ((s, ψ)) = (x (s) , y (s) cosψ, y (s) sin (ψ) , ) 0 ≤ ψ ≤ 2π, 0 ≤ s ≤ L.

As the meridian portion is parameterized by arc length, we have ipso facto the following
remarkable and convenient relations and convenient expressions for angular (in radians) and
trigonometric values as well as for the Gaussian curvature of the surfaces of revolution:

x′2 + y′2 = 1 at any point, (3)
and therefore, by differentiating, the orthogonality relationship

x′x′′ + y′y
′′

= 0 ,

that is to say that T.
dT

ds
= 0 where the dot denotes the scalar product of R3 and where

T (s) =
dM(s)

ds
is the unit tangent vector to the curve M(s) = M(s, 0).

The Gaussian curvature K of the surface of revolution has then the very convenient expres-
sion (see [2], p.162, eq. (9)):
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K (s, θ) = −y
′′

(s)

y (s)
.

In this context, the expression of the mean curvature H of a surface of revolution is less
attractive (see [2], p.162, eq. (11)).

A remarkable illustrative example of the arc length reparameterization strategy is the deter-
mination of the axisymmetric surfaces of constant Gaussian curvature6 (procedure indicated
in [2], p.162, eq. (9)).We consider then the classical differential equation, linear, of the second
order, homogeneous:

y
′′

(s) +K y (s)− 0 , 0 ≤ s ≤ L,

with the three following cases: K < 0, K = 0, K > 0. Then, introducing the general form
of the corresponding solutions in y, we consider the resulting differential equations

x′2 = 1− y′2 , 0 ≤ s ≤ L (4)

resulting from (3).

Moreover, ϕ being the angle that the tangent to the profile curve makes with the x-axis, we
have the following relationships:

sinϕ =
y′ (s)√

x′2 (s) + y′2 (s)
, i.e. sinϕ = y′ (s) and cosϕ = x′ (s) .

To compute the global bending stress in this context, we have to consider succesively:

Ebending stress = Ck

∫
M

K dM = Ck

∫ ∫
−y

′′
(s)

y (s)
y (s) dψds

and therefore

Ck

∫ ∫
−y

′′
(s) dψds = −2πCk (y′ (L)− y′ (0))

so that
Ebending stress = 2π(Ck (sin (ϕ (L))− sin (ϕ(0)) ,

ϕ being the angle that the tangent to the profile curve makes with the x−axis, the axis of
rotation.

Let us quote that this case of a surface of revolution around x-axis may correspond to a
capillary bridge between two parallel planes at x = 0 and x = L. With the notations of
[9][11], the wetting angles at the triple lines are given by θ1 = −ϕ (L) and θ2 = ϕ (0).
Therefore, we recover the expression of the bending stress of [11] obtained in the general
case for a surface of revolution (not necessarily with constant Gauss curvature) from the
Gauss-Bonnet integration theorem:

6Problem studied more extensively by Gaston Darboux 1890. Among the solutions, surfaces are found
that look like a hyperboloid.
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Ebending stress = Ck

∫
M

K dM = −2πCk (cos θ1 + cos θ2) ,

with here the Euler characteristic χ (M) = 0 and when the total geodesic curvature at the
boundaries is 2π (cos θ1 + cos θ2).

3.2 The conclusive Fenchel’s theorem
In the case of a portion of an ellipse, the parameterization involves elliptic integrals, rarely
possible to explain in practice, so that the parameters would have to be sought numerically
(spline interpolation). This computational difficulty is overcame by knowing the Fenchel’s
theorem, which shows the complementarity of the three methods.

To well illustrate the interest of Fenchel’s theorem associated with the theorems of Gauss
and Bonnet, let us consider a reparameterization by arc length of the curve defining the
surface of revolution.

Close plane curve

According to Fenchel’s theorem7 (1929), the value of the total curvature∫
Γ

k(s)ds

of any smooth closed space curve Γ is at least 2π , i.e
∫

Γ

k(s)ds ≥ 2π. The equality holds

if and only if the curve is a convex plane curve. In other words, the average curvature of a
closed convex plane curve equals 2π/L, where L is the length (the perimeter) of the curve8.

By the Fenchel’s theorem, without calculation of primitive functions, often tedious or ineffec-
tive, we deduce directly, for any closed convex plane curve Γ (i.e. the curve is the boundary
of a convex set in the Euclidean plane), that∫

Γ

k(s)ds = 2π.

In the case of a closed nonconvex plane curve, we are led to conclude by defining of the
notion of the winding index, a topological argument, in what follows.

Open plane curve

Let us give some classical preliminary elements of differential geometry related to smooth
boundaries of surfaces, parametrized by arc length. The curvature of a plane curve parametrized

7The Fary-Milnor theorem concerning the total curvature of the knotted closed curves does not seem
appropriate for the subject of this study.

8For a given arc of a plane curve, the local average curvature quantifies the ratio of the change in
inclination of the tangent to the curve over the arc length.
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by arc length is the rate of turning of the tangent line with respect to an ad hoc frame along
the curve.

Let ϕ(s) be the angle of inclination of the unit tangent vector T = T (s) with respect to a
fixed frame of reference, for instance x−axis. Considered then as a rate of turning for the
tangent line when one moves along the curve at unit speed, the curvature k(s) becomes

k(s) =
dϕ

ds
(s) = ϕ′(s).

It follows that the total curvature of a smooth curve C is then given by the formula depending
only of the initial and final states:

∫
C

k(s)ds = ϕ(ending)− ϕ(starting), (in radians). (5)

For a piecewise smooth curve parametrized by arc length, then we need to deal with the
exterior angles at the corners according to the orientation of the curve in the turning motion.
However, up to now, to our knowledge such capillary bridges with non convex or open contact
line have are not considered in literature.

3.3 General case for axisymmetric capillary bridges of revolution
Let us come back to the general case of axisymmetric capillary bridges of revolution whose
profile have one or more inflection points. The methods of Euler’s characteristic associated to
the Gauss–Bonnet theorem apply immediately to these cases. These axisymmetric surfaces
have in common the same Euler characteristic, in this case, the value zero. It then comes
with adjusted data (cite [11] for more details):

Ebending stress = Ck

∫
Σ

K dΣ = −2πCk (cos θ1 + cos θ2) .

In summary, it should be kept in mind that the value of the bending stress depends, besides
physical constants, only on the observed values of the contact angles, whereas these angles
result in part implicitly from the final equilibrium of the device.
The essential point here is there are no major issues for generalization of the bending stress
calculation to the non-axisymmetric cases, as specified below.

It would be interesting to reconsider, in taking into account the bending effects, the result-
ing contact angles and the elegant Gauss-Bonnet theorem, a new analytical framework for
evaluating the cohesion effects of coalescence between saddle shaped capillary bridges [14].

For didactic purposes, we limited ourselves to the detailed case of axisymmetric capillary
bridges to show the interest of the simultaneous use of the Gauss-Binet-Bonnet formula and
of the topological notion of Euler characteristic to evaluate the importance of the bending
stress. The obtained result clearly shows in an explicit way, the major role of the contact
angles values after distortion effects, eventually distinct.
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3.4 The prevaling roles of the contact angles values and of the
convexity/nonconvexity of the boundaries.

All the factors determining the contact angle have consecutively an influence on the bending
stress (surface roughness and heterogeneity, influence of gravity, contact angle hysteresis,
[16],[35], [36], etc ).

It is well known that the contact angle value is determined by the balance between adhesive
and cohesive forces on the rigid supports. As the tendency of a drop to spread out over a
flat, solid surface increases, the contact angle decreases. Thus, the contact angle provides
an inverse measure of wettability.
In this context, the case of the right cylinders is still a borderline case.

A contact angle less than
π

2
(low contact angle) usually indicates that wetting of the surface

is very favorable, and the fluid will spread over a large area of the surface. Contact angles
greater than

π

2
(high contact angle) generally mean that wetting of the surface is unfavorable.

It should be quoted that a certain number of terms of the generalized Young-Laplace equation
are spontaneous values, resulting from instantaneous equilibrium, and are therefore implicit
unknowns. This is a difficulty for the mathematical resolution of this nonlinear differential
boundary problem.
In addition, the Fenchel’s theorem sheds light on the importance of the convexity or the
nonconvexity of the outer edges in calculating exactly the value of the total curvatures.
Consequently, even a limited displacement of the surface boundary can modify the bending
stress, by local modifications of the contact angles or affecting the local curvature of the
outline curve and then, the total geodesic curvature. The contact angle hysteresis can also
be significant.

4 The general case and its implementation
In the general cases of nonaxisymmetric capillary bridges between two supports, possibly of
distinct natures, the method remains applicable in principle. The difficulty is not conceptual
in dealing with the general case but rather calculative. We must then, in any given case,
engage in a delicate exercise in differential and analytical geometries to explicitly calculate
the total signed geodesic curvature of the boundaries by the classical methods of analytical
geometry.

The calculation procedure is as follows.

At any point P of the border liquid-solid, one considers the tangent plane in P to the free
surface (that supposes an adequate local regularity). One then considers the orthogonal
projection of each edge into this tangent plane. The curvature in P of the projected curve
is then calculated, what introduces the important role of the cosine of the local contact
angle. To make a metaphor from the point of view of the kinematics, remember that for
a unit speed curve on a smooth surface, the geodesic curvature is the length of the surface
tangential component of acceleration. The geodesics correspond to zero values.
The curvature k of the closed curve C at point P is related to the geodesic curvature kg at
P by the relationship:

10



kg = k cos θ

where θ is the local contact angle, i.e. the angle between the osculating plane of C and the
tangent plane Q at point P .

When the contact angle is constant on the considered contact surface, we have the particu-
larly simple relationship:

∫
Γi

kg(s) ds = cosθ

∫
Γi

k(s) ds.

The special situation of heterogeneous contact surfaces

When the contact angles are separately variable on each of the contact surfaces, i.e . θ =
θ1 (M) and θ = θ2 (M) according to the physical conditions of the two surfaces (non ideal
smooth surfaces), the integral along each boundary, corresponding to the total geodesic
curvature, in fact, of the kind ∫

Γi

cosθi(M((s)) k(s) ds,

is more complicated to calculate with computational prediction of wetting (at our knowledge,
an open problem for the probably most realistic case). The use of a mean theorem would
likely be imprecise (effects of surface roughness).

The general case of homogeneous contact surfaces

When multiplied by the coefficient (−CK) at the dimension of a force, the dimensionless
integral of these curvature values along the reunion of the two contact edges gives finally
the value of the resulting bending stress by the Fenchel’s theorem (the cornerstone of the
method).

The three possible scenarios then arise according to the geometry of the boundaries (closed
plane convex or nonconvex curves) are the following, the surfaces having in common, without
loss of generality, the same Euler characteristic, in this illustrative case, the value zero.

By introducing the contact angles θ1 and θ2 (in radians) on each outline of contact surfaces,
we proved that, at least theoretically, the wettability being evaluated, here, by constant
contact angles, separately on each contact support.

Case 1:
The boundaries are two closed plane convex curves. Then,

Ebending stress = Ck

∫
M

K dM = −2πCk (cos θ1 + cos θ2) .

Case 2:
The boundaries are two closed plane curves, one convex and the other nonconvex. Then,

11



Ebending stress = Ck

∫
M

K dM = −Ck (2k1π cos θ1 + 2π cos θ2) ,

the observed integer k1 , k1 ≥ 2, being the winding number of the nonconvex curve ( the
winding index in algebraic topology).

Case 3:
The boundaries are two closed disjoint plane curves, nonconvex. Then,

Ebending stress = Ck

∫
M

K dM = −Ck (2k1π cos θ1 + 2k2π cos θ2) ,

k1 and k2 being the integers, ≥ 2, winding numbers of the curves, observed and known in
situ.

In the rather theoretical case, where the value of the Euler characteristic is non-zero, it
should be necessary to write:

Ebending stress = Ck

∫
M

K dM = 2πχ (M)− Ck (2k1π cos θ1 + 2k2π cos θ2) .

According to these theoretical calculations, the bending stress is practically not existing in
the neighborhood where the contact angle is close to π

2 radian. Then, at the contact, the
surface is locally similar to a right cylinder whose outline is a closed plane curve, convex or
nonconvex. This last topological aspect of convexity is here non-essential (the non-convexity
modifies in a known and controlled way the total curvature).

It must be emphasized that, when the contact angles are separately variable on each of the
contact surfaces according to the physical conditions of the two surfaces (non ideal smooth
surfaces), the integral along each boundary, corresponding to the total geodesic curvature
of the plane and closed boundaries, seems a serious difficulty to explain. The question might
interest specialists in differential geometry.

5 Conclusion
We then see that the developments obtained here, generalization of formulas relating to
surfaces of revolution, result from concepts in differential geometry and geometric analysis
with applications to Lagrangian Mechanics, without resorting to differential calculus and
integral calculus, sometimes out of concrete practice for problems involving elliptic integrals,
for example, requiring numerically computing.

The methods of Euler’s characteristic, associated to the Gauss–Bonnet-Binet theorem and
the strongly complementary Fenchel’s theorem apply immediately to the cases of the non-
axisymmetric surfaces, with explicit, easy-to-use, results formulations.

We proved that in the general way, the value of the bending stress depends, besides physical
constants, only on the observed values of the contact angles, whereas these angles result
in part implicitly from the final equilibrium of the device. Therefore, all the factors deter-
mining the contact angle have an influence on the bending stress (surface roughness and
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heterogeneity, influence of gravity, contact angle hysteresis.

It would be interesting to reconsider, in taking into account these new results concerning
the bending effects, the important role of the contact curves geometry and the Gauss-
Bonnet and Fenchel theorems, an analytical framework for reassessing the cohesion effects
of coalescence between saddle shaped capillary bridges [14]. Finally, by creating a support
material having a nonconvex region with high wettability and a complementary region with
very low wettability, the experimenter could illustrate the theory by experimentation.
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