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Abstract: We obtain the Hamilton operator of the Calogero-Moser quantum system in an external

quadratic potential by conjugating the radial part for the action of SO(n) by conjugacy of the Hamilton

operator of the quantum harmonic oscillator on the Euclidean vector space of real symmetric matrices.

Then, with Mehler’s formula, we derive the propagator of the problem. We also investigate some schemes

to change the interaction constant. For two-particle systems, we obtain explicit formulae, whereas for

many-particle systems, we reduce the computation of the propagator to finding a definite integral. We

give also the short time approximation, the energy levels and the trace of the propagation operator.

0. Introduction

Few quantum mechanics problems are exactly solvable. Except some one-body pro-
blems, the only known solvable problems are those the classical-mechanics counterparts of
which are completly integrable: Toda lattices and Calogero-Moser systems [2] or similar
ones, such as Sutherland’s [19], [20].

The general idea of this paper comes from a description of the rational Calogero Model
with an external quadratic potential as a projection of a harmonic motion in a matrix space.
This idea has been used first for the explicit integration of the equations of motion in the
classical case in papers by Olshaneski and Perelomov [13], [14]. Kazdhan, Kostant and
Sternberg’s [10] proved that this projection method coincide with the Marsden-Weinstein
symplectic reduction scheme (see also [17] and Françoise [4], who has solved a conjecture
made by Gallavoti and Marchioro [6]).

This idea is also very useful in the quantum case and sometimes gives the integral
representations for wave functions and propagators (Green functions). This is emphasized
in the review paper of Olshaneski and Perelomov [16], where an analogue of the theorem
4 of this paper is given for more general cases.

Olshaneski and Perelomov [15], by generalizing some results of Berezin[1], have noticed
that the radial part of the Laplace-Beltrami operator of symmetric spaces is conjugated to
the quantum Hamilton operator of the Sutherland system, which describes the motion of
identical particles on a circle or a branch of a hyperbola with a pairwise interaction potential
inversely proportionnal to the square of their mutual distance. They also observed that
the problem on the line (Calogero’s problem) was obtained as a limit when the curvature
of the symmetric space goes to zero.

In this paper, we consider the problem on the line, starting not from a symmetric
space, but from the space of real symmetric matrices, which can be understood as the limit
of the symmetric space U(n)/SO(n) when its curvature goes to zero. Thus, taking the
radial part of the Laplace-Beltrami operator for the action of SO(n), we directly obtain
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the problem on the line. This scheme allows us to add an external quadratic potential
before reduction, that we find again in the reduced one.

The problem thus obtained is slightly different from the one Calogero has studied [2],
where the quadratic potential is pairwise rather than external.

In part 1, we fix the notations in use along this paper. In part 2, we give the radial
reduction leading to Calogero’s problem. Part 3 is devoted to the calculation of the pro-
pagator giving the time evolution in terms of the initial wave function, by use of methods
analogous to Debiard and Gaveau’s ones [3]. In part 4, we give the short time appro-
ximation of the propagator by the stationary phase method. This approximation is not
exact, but becomes so when the interaction potential vanishes, which allows to compute
the Fourier transform of the delta function of adjoint orbits in u(n). Part 5 shows how
other constants in the 1/r2 pairwise potential may be obtained and the corresponding
propagators are computed therein. The obtention of systems by reduction allows us to
determine the eigenvalues of the Hamilton operator, and then to compute the trace of
the propagation operator, which is done in part 6. The results we obtain deal with the
propagation in a Weyl chamber. In the last part, we derive the physical propagation
according to the statistics the particles obey to.

1. Notations

The space of n × n real symmetric matrices will be denoted by V , and will be pro-
vided with the scalar product: < X,Y >= tr(XY ). The group SO(n) operates on V by
conjugacy : (g,X) 7→ gXg−1 (g ∈ SO(n), X ∈ V ) and preserves the scalar product on
V .

The submanifold Λ =

{
h1

h2

. . .

hn

 , h1 < h2 < ... < hn

}
is transversal

to the action of SO(n) and orthogonal to the orbits since the tangent space to the orbit
through H ∈ Λ is {[Z,H] = ZH −HZ|Z skewsymmetric}, the tangent space to Λ is the
space of diagonal matrices H ′ and

< H ′, [Z,H] >= tr(H ′ZH −H ′HZ) = 0 because HH ′ = H ′H.

We denote by M =

{±1
. . .

±1

, with an even number of -1

}
the isotropy

subgroup in SO(n) of matrices in Λ.
We provide SO(n) with the bi-invariant metric induced by the invariant scalar product

on the Lie-algebra so(n) : (X,Y ) 7→ −tr(XY ).
We will denote by dg et dḡ the corresponding invariant measures on SO(n) and

SO(n)/M .
We will also use the density fonction δ, which is the ratio between the riemannian
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measure induced by V on an orbit and the measure dḡ on SO(n)/M . The function δ is
radial (SO(n)-invariant).

Let us compute this function δ. We remark that the matrices

Apq =
1√
2


. . . . . . . . . . . . . . .
. . . 0 . . . 1 . . .
. . . . . . . . . . . . . . .
. . . −1 . . . 0 . . .
. . . . . . . . . . . . . . .

 , p < q,

(1 and -1 being the coefficients of indices (p, q) and (q, p)) form an orthonormal basis of
so(n) = TIdSO(n) = To(SO(n)/M) (o denoting the origine of SO(n)/M). Their images

tangent at H =


h1

h2

. . .

hn

 ∈ Λ to the orbit through H are

[Apq, H] =
hq − hp√

2


. . . . . . . . . . . . . . .
. . . 0 . . . 1 . . .
. . . . . . . . . . . . . . .
. . . 1 . . . 0 . . .
. . . . . . . . . . . . . . .

 , p < q,

pairwise orthogonal, of norms (hq − hp), which proves that

δ(gHg−1) =
∏
p<q

(hq − hp) g ∈ SO(n), H ∈ Λ.

The Laplace-Beltrami operator LV on V induces its radial part ∆LV on Λ, given by
([9]):

∆LV = δ−1/2LΛδ
1/2 − δ−1/2LΛ(δ1/2)

where LΛ =
∑
p
∂2

∂h2
p

is the Laplace-Beltrami operator on Λ provided with the metric

induced by the metric of V .

2. Calogero operator

It has been noticed in [1] that operators of Calogero-Moser-Sutherland type are ob-
tained by conjugation of the radial part of the Laplace-Beltrami operator on a symmetric
space by the square root of the density function. Let’s make the computation in the case
at hand:

δ1/2∆LV δ
−1/2 = LΛ − δ−1/2LΛ(δ1/2)

=
∑
r

∂2

∂h2
r

− δ−1/2
∑
r

∂2δ1/2

∂h2
r
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But
∂δ1/2

∂hr
=

1

2δ1/2

∂δ

∂hr
=

1

2δ1/2

(∑
p<r

δ

hr − hp
−
∑
q>r

δ

hq − hr

)
=

1

2
δ1/2

∑
p 6=r

1

hr − hp

and
∂2δ1/2

∂h2
r

=
1

2

∂δ1/2

∂hr

∑
p 6=r

1

hr − hp
− 1

2
δ1/2

∑
p 6=r

1

(hr − hp)2

=
1

2

1

2
δ1/2(

∑
p 6=r

1

hr − hp
)2 − 1

2
δ1/2

∑
p 6=r

1

(hr − hp)2

=
1

4
δ

1
2

[∑
p 6=r

1

(hr − hp)2
+
∑

p 6=r,q 6=r,p 6=q

1

(hr − hp)(hr − hq)

]
− 1

2
δ

1
2

∑
p 6=r

1

(hr − hp)2

=
1

4
δ1/2

[
−
∑
p 6=r

1

(hr − hp)2
+

∑
p 6=r,q 6=r,p 6=q

1

(hr − hp)(hr − hq)

]

Therefore : δ−1/2
∑
r

∂2δ1/2

∂h2
r

=
1

4

[
−
∑
p 6=r

1

(hr − hp)2
+

∑
p6=r,q 6=r,p 6=q

1

(hr − hp)(hr − hq)

]
But the second sum inside the brackets is zero, since:

3 ·
∑

p 6=r,q 6=r,p 6=q

1

(hr − hp)(hr − hq)

=
∑

p 6=r,q 6=r,p 6=q

[ 1

(hr − hp)(hr − hq)
+

1

(hp − hq)(hp − hr)
+

1

(hq − hp)(hq − hr)

]
=

∑
p 6=r,q 6=r,p 6=q

[ hp − hq − (hr − hq)
(hr − hp)(hr − hq)(hp − hq)

+
1

(hq − hp)(hq − hr)

]
=

∑
p 6=r,q 6=r,p 6=q

[ hp − hr
(hr − hp)(hr − hq)(hp − hq)

+
1

(hq − hp)(hq − hr)

]
= 0.

Therefore

δ1/2∆LV δ
−1/2 =

∑
r

∂2

∂h2
r

+
1

4

∑
p 6=r

1

(hr − hp)2
.

If we apply the same scheme to the SO(n)-invariant operator on V :

−1

2
LV +

λ2

2
‖X‖2 (X ∈ V )

which describes the quantum mechanical harmonic oscillator, we get, after conjugating its
radial part, the Calogero operator on Λ with an external quadratic potential:

H = −1

2

∑
r

∂2

∂h2
r

− 1

8

∑
q 6=r

1

(hr − hq)2
+
λ2

2

∑
r

h2
r (h1 < h2 < . . . < hn).
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3. Propagator

3.1. General case
The propagator of the N-dimensional harmonic oscillator is known. It is given by

Mehler’s formula (see [8]) :

Kt(X,X
′) = (−i)Nαte−iNπ/4 | 2π sinλt

λ
|−N/2 eiW (X,X′)

with W (X,X ′) =
λ

2 sinλt

[
cos(λt)

(
‖X‖2 + ‖X ′‖2

)
− 2 < X,X ′ >

]
and αt = 0 if t ∈]0,

π

λ
[, 1 if t ∈]

π

λ
,

2π

λ
[, 2 if t ∈]

2π

λ
,

3π

λ
[, etc...

Let ψ0 be an initial wave function of the form ψ0 = δ−1/2f0 where f0 : V → C| is a
radial function. Then ψ0 ∈ L2(V ) iff f0|Λ ∈ L2(Λ) since∫
V

| ψ0(X) |2 dX =

∫
Λ

δ(H)

∫
SO(n)/M

| ψ0(gHg−1) |2 dḡdH =

∫
SO(n)/M

dḡ×
∫

Λ

| f0(H) |2 dH

(see [9] for this change of variables. g ∈ SO(n) is a representative of ḡ).
The wave function at time t is of the form ψt = δ−1/2ft where ft is radial, and f is

the solution of Schrödinger equation i∂f∂t = Hf with initial wave function f0. But for all
H ∈ Λ:

δ−1/2(H)ft(H) = ψt(H)

=

∫
V

Kt(H,X
′)ψ0(X ′)dX ′

= (−i)Nαte−iNπ/4 | 2π sinλt

λ
|−N/2

×
∫
V

eiW (H,X′)δ−1/2(X ′)f0(X ′)dX ′

where N = dimV =
n(n+ 1)

2

= (−i)
n(n+1)

2 αte−i
n(n+1)π

8 | 2π sinλt

λ
|−

n(n+1)
4

×
∫

Λ

δ(H ′)δ−1/2(H ′)f0(H ′)

∫
SO(n)/M

eiW (H,gH′g−1)dḡ.dH ′

=
1

2n−1
(−i)

n(n+1)
2 αte−i

n(n+1)π
8 | 2π sinλt

λ
|−

n(n+1)
4

×
∫

Λ

δ1/2(H ′)f0(H ′)

∫
SO(n)

eiW (H,gH′g−1)dg.dH ′

(since M has cardinal 2n−1)
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Hence the propagation of the restriction of f to Λ :

Theorem 1: The solution of Schrödinger equation i
∂f

∂t
= Hf with initial condition f|t=0 =

f0 ∈ L2(Λ) is given by ft(H) =

∫
Λ

kt(H,H
′)f0(H ′)dH ′ where

kt(H,H
′) =

1

2n−1
(−i)

n(n+1)
2 αte−i

n(n+1)π
8 | 2π sinλt

λ
|−

n(n+1)
4 δ1/2(H)δ1/2(H ′)

× e iλ cosλt
2 sinλt (‖H‖2+‖H′‖2)

∫
SO(n)

e−
iλ

sinλt<H,gH
′g−1>dg

Remark: If λ = 0, the propagator is

kt(H,H
′) =

1

2n−1
e−i

n(n+1)π
8 (2πt)−

n(n+1)
4 δ1/2(H)δ1/2(H ′)

× e i
2t (‖H‖2+‖H′‖2)

∫
SO(n)

e−
i
t<H,gH

′g−1>dg

In order to compute < H, gH ′g−1 >, it is sufficient to know the diagonal entries of
gH ′g−1, given by :

< gH ′g−1ep, ep >=< H ′g−1ep, g
−1ep >=<

∑
r h
′
r(g
−1)rper,

∑
r(g
−1)rper >

=
∑
r h
′
r

(
(g−1)rp

)2
=
∑
r(gpr)

2h′r.

Therefore < H, gH ′g−1 >=
∑
pq(gpq)

2hph
′
q.

Remark: The propagator is 2π
λ -periodic if n is congruent to 0 or 3 modulo 4, 4π

λ -periodic
in the remaining cases. This property comes from the fact that the system is the reduction

of a n(n+1)
2 -dimensional harmonic oscillator. The classical system is 2π

λ -periodic (Zoll
system), for the same reason.

3.2. The case n=2 (two-particle systems)

In the case n = 2, we show that the integral in the expression of the propagator can
be expressed in terms of a Bessel function.

We parametrize SO(2) in the usual way :

g =

(
cos θ − sin θ
sin θ cos θ

)
and we have dg =

√
2dθ(

since the metric chosen on SO(2) is ds2 = −tr

(
0 dθ
−dθ 0

)2

= 2dθ2
)

and < H, gH ′g−1 > = cos2 θ(h1h
′
1 + h2h

′
2) + sin2 θ(h1h

′
2 + h2h

′
1)

=
1

2
(h1 + h2)(h′1 + h′2) +

1

2
(h2 − h1)(h′2 − h′1) cos 2θ.
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Therefore∫
SO(2)

e−
iλ

sinλt<H,gH
′g−1>dg

= e−
iλ

2 sinλt (h1+h2)(h′1+h′2)

∫ 2π

0

e−
iλ

2 sinλt (h2−h1)(h′2−h
′
1) cos 2θ

√
2dθ

=
√

2e−
iλ

2 sinλt (h1+h2)(h′1+h′2)2πJ0

(λ(h2 − h1)(h′2 − h′1)

2 sinλt

)
(where J0 is the zero order Bessel function).

N = dim(V ) being equal to 3, we get the following expression of the propagator

kt(h1, h2;h′1, h
′
2) =

1

2
√
π
iαte−i3π/4 | sinλt

λ
|−3/2

√
(h2 − h1)(h′2 − h′1)

×e
iλ

2 sinλt

[
(h2

1+h2
2+h′1

2+h′2
2) cosλt−(h2+h1)(h′2+h′1)

]
J0

(λ(h2 − h1)(h′2 − h′1)

2 sinλt

)
.

Remark : If the system is reduced to its center of mass, it is equivalent to a (separable)
system of two uncoupled particles on a line, of equal masses, independent from one another,

one in the harmonic potential λ2

2 x
2, the other in the potential λ2

2 x
2 − 1

8x2 . Our result for
two particle sytems can thus be deduced from Khandekar and Lawande’s results [11]. The
reader can also refer to Schulman’s book [18] which gives a list of computable propagators.

4. Stationnary phase approximation

In view of the expression of the propagator found in the case n = 2, which contains a
Bessel function, the semi-classical approximation of the propagator is not exact for finite
times. Yet, it is possible to obtain the asymptotic behavior of the propagator for short
times, using the stationnary phase method.

According to this method,

(2πt)−
1
2dim (SO(n)/M)

∫
SO(n)/M

e−
iλ

sinλt<H,gH
′g−1>dḡ =

∑
ḡ

c(ḡ)e−
i
t<H,gH

′g−1> +O(t),

the summation being made on all the critical points of

f : ḡ ∈ SO(n)/M 7→ − < H, gH ′g−1 >,

c(ḡ) being equal to

exp
(
i
π

4
sgn Hessḡf

)
| det Hessḡf |−

1
2 .

Here Hessḡf denotes the Hessian matrix of f at ḡ in a basis of Tḡ(SO(n)/M) of volume 1,
and sgn its signature, i.e. the difference between the numbers of its positive and negative
eigenvalues.
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LetH,H ′ ∈ Λ. The critical points of the function f are those for whichH is orthogonal
to the orbit through H ′ at gH ′g−1, which amounts to gH ′g−1 being diagonal. Therefore
the critical points of ḡ are in a one to one correspondence with the matrices obtained by
permutation of the diagonal entries of H ′. Let ḡ be a critical point, H ′′ = gH ′g−1. The
vectors Apq.g (p < q) form an orthonormal basis of TgSO(n) and

< H, expXgH ′g−1 exp(−X) >

=< H, expXH ′′ exp(−X) >

=< H, (I +X +
1

2
X2)H ′′(I −X +

1

2
X2) > +o(‖X‖2)

=< H,H ′′ + [X,H ′′] +
1

2
(X2H ′′ +H ′′X2)−XH ′′X > +o(‖X‖2)

=< H,H ′′ > +
1

2
< H,X2H ′′ +H ′′X2 − 2XH ′′X > +o(‖X‖2)

If X =
∑
p<q spqApq, we get

− < H, expXgH ′g−1 exp(−X) >= − < H,H ′′ > +
1

2

∑
p<q

(hq − hp)(h′′q − h′′p)s2
pq

The hessian matrix of f at ḡ is thus diagonal. The absolute value of its determinant is

δ(H)δ(H ′). Its signature is n(n−1)
2 − 2I(σ), where σ ∈ Sn is the permutation of the set

{1, . . . , n} corresponding to ḡ and I(σ) = Card {(p, q)| p < q, σ(p) > σ(q)} is the number
of inversions in σ.

Thus∫
SO(n)/M

e−
iλ

sinλt<H,gH
′g−1>dḡ =

(2πt)
n(n−1)

4

[
δ−

1
2 (H)δ−

1
2 (H ′)ei

n(n−1)
8 π

∑
σ∈Sn

e−i
π
2 I(σ)e−

i
t (h1h

′
σ(1)+...+hnh

′
σ(n)) +O(t)

]

Theorem 2: The short time approximation of the propagator is given by

kt(H,H
′) = (2πt)−

n
2 e−in

π
4

[ ∑
σ∈Sn

e−i
π
2 I(σ)e

i
2t‖H−σ

−1(H′)‖2 +O(t)
]

where I(σ) = I(σ−1) is the number of infinite potential wells hi = hj across the
segment [H,σ−1(H ′)].

The contribution ofH ′ to the propagator for short times can be interpreted as resulting
of broken straight lines from H ′ to H, with a phase shift of −π2 at each ”reflexion” on a
potential well, i.e. at each collision between two particles.

Remark: By computing as in the preceding section the propagator for functions on u(n)
invariants for the adjoint action of U(n), we can get the Fourier transform of the delta
distribution of an adjoint orbit, a result first proved by Harish Chandra (cf [8]).

8



As a manifold transversal to the orbits, we chose the set Λ of diagonal purely imaginary
matrices whose diagonal entries: ih1, . . . , ihn verify h1 < h2 < . . . < hn. The adjoint orbits
are diffeomorphic to U(n)/M , M being the isotropy subgroup of purely imaginary diagonal
matrices, i.e. the set of diagonal matrices in U(n). The radial part ∆L of the Laplace-
Beltrami operator L on the euclidean space u(n) displays :

δ1/2∆L ◦ δ−1/2 =
∑
r

∂2

∂h2
r

where δ =
∏
r<l(hl − hr)2 is the density function, i.e. dX = δ.dh1 . . . dhndḡ, dḡ denoting

the riemannian measure on U(n)/M .

The propagator of Shrödinger equation i ∂∂t = − 1
2L for a free particle on u(n) is

Kt(X,X
′) = e−iNπ/4

1

(2πt)N/2
eiW (X,X′)

where W (X,X ′) =
1

2t

(
‖X‖2 + ‖X ′‖2 − 2 < X,X ′ >

)
and N = dim u(n) = n2

Let h denote the set of diagonal purely imaginary matrices. If a family of radial
functions (ψt)t≥0 in L2(u(n)) verifies Schrödinger equation i ∂∂t = − 1

2L, the family of
functions (ft)t≥0 in L2(h), skew-symmetric in the variables h1, . . . , hn, defined by ft(H) =

δ1/2ψt(H) =
∏
r<l(hl − hr)ψt(H) verifies the equation i ∂∂t = − 1

2

∑
r
∂2

∂h2
r

. Hence ft is

propagated by the kernel

kt(H,H
′) = e−inπ/4

1

(2πt)n/2
e
i
2t

(
‖H‖2+‖H′‖2−2<H,H′>

)
and its restriction to Λ by

∑
σ∈Sn

ε(σ)kt(H,σ(H ′)), and also by δ1/2(H)δ1/2(H ′)

∫
U(n)/M

Kt(H, gH
′g−1)dḡ

We deduce Harish Chandra’s formula for the Fourier transform of the delta distribu-
tion of an adjoint orbit

∫
U(n)/M

e−i<H,gH
′g−1>dḡ =

ein(n−1)π/4(2π)n(n−1)/2∏
r<l

[
(hl − hr)(h′l − h′r)

] ∑
σ∈Sn

ε(σ)e−i<H,σ(H′)>

which can be interpreted as a case of exactitude of the stationary phase approximation [7].
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5. Other interaction constants

Here we investigate two different schemes to obtain other interaction constants than
− 1

4

5.1. Eigenfunctions of orbital Laplace-Beltrami operators

Using the separation of variables, we consider fonctions which are the product of a ra-
dial function and a fixed angular function whose restriction to each orbit is an eigenfunction
of the orbital Laplace-Beltrami operator.

For this purpose, we need the expression of the Laplace-Beltrami operator LV with
respect to the coordinates (H, ḡ) ∈ Λ× SO(n)/M .

LV splits into a transversal and an orbital part (cf [9]), which means that at each
point X of V , for any function ψ ∈ C∞(V ),

(LV ψ)(X) =
(
(LV )Tψ

)
(X) + (LOXψ|OX )(X)

where (LV )T is the transversal part of LV :(
(LV )Tψ

)
(gHg−1) =

[
(∆LV )

(
H ′ ∈ Λ 7→ ψ(gH ′g−1

)]
(H),

and LOX is the Laplace-Beltrami operator on the orbit OX through X.
Let H ∈ Λ. Let us denote by Apq the infinitesimal rotations defined in part 1, as well

as the vector fields that they induce on OH . The vectors Bpq = Apq/(hq−hp), p < q form
at each point of the orbit an orthonormal basis of the tangent space. For every function
f defined on OH , the gradient of f is given by grad(f) =

∑
p<q(Bpqf)Bpq. Furthermore,

the metric of the orbit and therefore its volume form being invariant under the action of
SO(n), the vector fields Bpq are divergence free. Hence

LOXf = div gradf =
∑
p<q

[< grad(Bpqf), Bpq > +(Bpqf)div(Bpq)]

=
∑
p<q

B2
pqf =

∑
p<q

1

(hq − hp)2
A2
pqf.

Let c be a function on SO(n)/M inducing on each orbit an eigenfunction of the
orbital Laplace-Beltrami operator. Functions of the form ψ(gHg−1) = f(H)c(ḡ) conserve
this form through their time evolution with respect to the harmonic oscillator problem.

The orbital Laplace-Beltrami operator is a linear combination of the squares of the
infinitesimal rotations A2

pq, p < q in the coordinates planes. Therefore, if c(ḡ) is an eigen-
function of the square of the infinitesimal rotation in each coordinates plane, then it will
satisfy to the condition above .

Let χ be a representation of SO(n) on some vector space E. If u ∈ E is an eigenvector
for each operator (dχApq)

2, and η any linear form on E, then the representation coefficient
c(g) = η(χ(g)u) is also an eigenvector of the A2

pq’s with the same eigenvalues. Indeed:

A2
pqc(g) =

d2

dt2 |t=0
c(g exp(tApq))

=
d2

dt2 |t=0
η(χ(g exp(tApq)u)

= η
(
χ(g)(dχApq)

2u
)

10



Let us consider the irreducible representation χ of SO(n) on the space E of harmonic
polynomials of n indeterminates x1, . . . , xn homogeneous of degree n (cf [21]). We have:

dχ(Apq) =
1√
2

(xq
∂

∂xp
− xp

∂

∂xq
)

Note that the harmonic monomial u = x1x2 . . . xn yields:

dχ(Apq)u =
1√
2

(x1 . . . x̂p . . . x
2
q . . . xn − x1 . . . x

2
p . . . x̂q . . . xn)

(the symbol ˆ designing an omitted factor )

and: (dχ(Apq))
2u = −2u

Furthermore u is left invariant by the rotations of angle π in the coordinates planes (which
amount to turning two of the coordinates xp and xq into their opposite), thus the coeffi-
cients c(g) = η(χ(g)u) define functions c(ḡ) on the quotient space SO(n)/M and therefore
on the orbits. For instance, if η is the component on the vector x1x2 . . . xn of the canonical
basis of E, c(ḡ) =

∑
σ∈Sn g1σ(1)g2σ(2) . . . gnσ(n) where g = ((gpg)) ∈ SO(n) is a represen-

tative of ḡ. These functions are eigenfunctions, and the associated eigenvalue on the orbit
OH is

−2
∑
p<q

1

(hq − hp)2

Remark: these functions are exceptional. The author has verified that in the case n = 3,
there is no other non proportional function which is an eigenfunction for each (dχApq)

2.
Therefore, for ψ : gHg−1 7→ f(H)c(ḡ),

LV (δ1/2ψ)(gHg−1) = δ1/2(H)
[∑

r

∂2

∂h2
r

− 3

2

∑
p<r

1

(hr − hp)2

]
(f)(H)c(ḡ)

Hence

Theorem 3: The propagator of the Hamilton operator

−1

2

∑
r

∂2

∂h2
r

+
3

4

∑
p<r

1

(hr − hp)2
+
λ2

2
‖H‖2

is

kt(H,H
′) =

1

2n−1
(−i)

n(n+1)
2 αte−i

n(n+1)π
8 | 2π sinλt

λ
|−

n(n+1)
4 δ1/2(H)δ1/2(H ′)

× 1

c(1)
e
iλ cosλt
2 sinλt (‖H‖2+‖H′‖2)

∫
SO(n)

e−
iλ

sinλt<H,gH
′g−1>c(g)dg

In the exceptional case n = 2, all the irreducible representations of SO(2) are uni-
dimensionnal and each vector of the representation line is obviously an eigenvector for

11



A12 = 1√
2
d
dθ . If c(ḡθ) = e2inθ, gθ designing the rotation of angle θ and n a fixed integer

(c(ḡ) is not single-valued for n half integer), A2
pqc = −n2c.

Hence we can obtain all the interaction constants of the form n2 − 1
4 , n ∈ IN . The

integral in the propagator can be expressed using a Bessel function of order n:

kt(h1, h2;h′1, h
′
2) =

1

2
√
π
iαt−ne−i3π/4 | sinλt

λ
|−3/2

√
(h2 − h1)(h′2 − h′1)

×e
iλ

2 sinλt

[
(h2

1+h2
2+h′21 +h′22 ) cosλt−(h2+h1)(h′2+h′1)

]
Jn
( λ

2 sinλt
(h2 − h1)(h′2 − h′1)

)
5.2. Other symmetric spaces

Olshaneski and Perelomov remarked in [15] that the radial parts of the Laplace Bel-
trami operator of symmetric spaces SU(2n)/Sp(n) and E6/F4 are conjugated to Suther-
land systems with interaction constants 2 et 12. The corresponding Calogero systems can
be obtained by letting the curvature go to zero with homothetical transformations and by
making a central extension to get rid of the constraint ”

∑
hp = 0”. For instance, when the

interaction constant is 2, we consider the action of Sp(n) by conjugacy on the orthogonal
complement of sp(n) in u(2n), which is the space of matrices of the form(

Z1 Z2

Z̄2 −Z̄1

)
, Z1 ∈ u(n), Z2 complex skew-symmetric.

6. Energy levels and trace of the propagator

Let us denote by X = ((Xpq)) the generic element of V and set

zpp = Xpp

zpq =
1√
2
Xpq, p < q

The zpq, p ≤ q form a system of orthonormal coordinates on V .

The one-dimensional harmonic oscillator with Hamilton operator − 1
2
d2

dx2 + λ2

2 x
2 has

eigenfunctions of the form ψ(x) = cste.e−λ
x2

2 Hp(
√
λx) (where Hp denotes the pth Hermite

polynomial) with eigenvalues (p + 1
2 )λ (see [12] for instance). The eigenfunctions of the

harmonic oscillator which hamiltonian is

−1

2
LV +

λ2

2
‖X‖2

are thus the functions of the form

ψ(X) = exp(−λ‖X‖
2

2
)

∑{
(apq)p≤q∈IN

n(n+1)
2 ,∑

p≤q
apq=r

}
ca11a12...ann

∏
p≤q

Hapq (
√
λzpq)

12



where the ca11a12...ann are arbitrary constants. The corresponding energy level is (r +
N/2)λ = [r + n(n+ 1)/4]λ.

The eigenfunctions of the reduced operator are obtained by multiplicating by the
quare root of the density function the restriction to Λ of the radial functions among the
ones above.

Therefore each eigenfunction of the reduced system is of the form

ϕ(H) =
√
δ(H) exp(−λ‖H‖

2

2
)P (h1, . . . , hn)

where P is a polynomial.

Furthermore, since the invariant function ψ(gHg−1) = exp(−λ‖H‖
2

2 )P (h1, . . . , hn)
defined by ϕ is an eigenfunction of the harmonic oscillator, it is analytic and thus

ψ

(
hσ(1)

. . . hσ(n)

)
= exp(−λ‖H‖

2

2
)P (hσ(1), . . . , hσ(n))

for every permutation σ ∈ S(n).

But

(
hσ(1)

. . . hσ(n)

)
is conjugated to

(
h1

. . . hn

)
hence the left hand

side of the equality above is also equal to exp(−λ‖H‖
2

2 )P (h1, . . . , hn), which proves that
the polynomial P is symmetric.

We will prove that the functions of the form ϕ(H) = δa(H) exp(−λ‖H‖
2

2 )P (H), where
P is a homogeneous symmetric polynomial, provide a basis of L2(Λ) in which the matrix

of H = − 1
2

∑
r
∂2

∂h2
r

+ b
∑
q 6=r

1
(hr−hq)2 + λ2

2

∑
r h

2
r is triangular. The exponent a > 0 will

depend on the interaction constant b and be equal to 1/2 in the case of the reduction of
radial functions (b = −1/8).

We have

∂ϕ

∂hr
= δa(H) exp(−λ‖H‖

2

2
)
[
a
∑
p 6=r

1

(hr − hp)
P − λhrP +

∂P

∂hr

]
,

∂2ϕ

∂h2
r

= δa(H) exp(−λ‖H‖
2

2
)
[(∑

p 6=r

a2 − a
(hr − hp)2

+
∑

p 6=r,q 6=r,p 6=q

a2

(hr − hp)(hr − hq)
)
P

+(λ2h2
r − λ)P +

∂2P

∂h2
r

+ 2
(
a
∑
p6=r

1

hr − hp
− λhr

) ∂P
∂hr

+ 2a
∑
p 6=r

1

hr − hp
(−λhr)P

]
Since

∑
r

∑
p 6=r

hr
hr−hp = n(n−1)

2 and
∑
p 6=r,q 6=r,p 6=q

1
(hr−hp)(hr−hq) = 0 (cf part 2),

Hϕ = δa(H) exp(−λ‖H‖
2

2
)
[
− 1

2

∑
r

∂2P

∂h2
r

+
∑
r

(λhr − a
∑
p 6=r

1

hr − hp
)
∂P

∂hr
+
(
a
n(n− 1)

2
+
n

2

)
λP
]
,

13



where a > 0 is chosen so that (a2 − a)/2 is equal to the interaction constant b.
If P is homogeneous of degree d, then Euler formula

∑
r hr

∂P
∂hr

= d.P yields:

Hϕ = δa(H) exp(−λ‖H‖
2

2
)
[
− 1

2

∑
r

∂2P

∂h2
r

−a
∑
r

∑
p 6=r

1

hr − hp
∂P

∂hr
+(a

n(n− 1)

2
+
n

2
+d)λP

]
If moreover P is symmetric, then ∂P

∂hr
− ∂P
∂hp

is zero when hr = hp and thus is divisible

by (hr − hp).
Therefore, we obtain:

Hϕ = (
n(an+ 1− a)

2
+ d)λϕ+ δa(H) exp(−λ‖H‖

2

2
)Q

where Q is a symmetric polynomial of degree at most d− 2.

Hence:

Theorem 4: Each eigenfunction corresponds to a symmetric polynomial, the energy levels

are (n(an+1−a)
2 + d)λ (d ∈ IN), with multiplicity equal to the dimension of the space of

homogeneous symmetric polynomials of n indeterminates of degree d. This dimension is
the cardinal of the set {(a1, . . . , an) ∈ INn| a1 ≤ a2 ≤ . . . ≤ an, a1 + . . .+ an = d}.

We refer the reader to [16] for an anologue of this theorem for more general cases.

Hence the trace of the propagation operator has a very simple closed form expression:

tr(e−itH) =
∑

E energy level

exp(−iEt) (Im t < 0)

= exp(−in(an+ 1− a)λt

2
)
∞∑
a1=0

exp(−ia1λt)
∞∑

a2=a1

exp(−ia2λt) . . .
∞∑

an=an−1

exp(−ianλt)

But

∞∑
an=an−1

exp(−ianλt) = exp(−ian−1λt)
∞∑

a′n=0

exp(−ia′nλt)

= exp(−ian−1λt)
1

1− exp(−iλt)
= exp(−ian−1λt)

exp(iλt/2)

2i sin(λt/2)

Thus the trace of the propagation operator tr(e−itH) is equal to

exp(−in(an+ 1− a)λt

2
)

exp(iλt/2)

2i sin(λt/2)

∞∑
a1=0

exp(−ia1λt)

∞∑
a2=a1

exp(−ia2λt) . . .

∞∑
an−1=an−2

exp(−2ian−1λt)
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= exp(−in(an+ 1− a)λt

2
)

exp(iλt/2)

2i sin(λt/2)

exp(iλt)

2i sin(λt)

exp(i3λt/2)

2i sin(3λt/2)
. . .

exp(inλt/2)

2i sin(nλt/2)

Theorem 5: The trace of the propagation operator tr(e−itH) is equal to

exp(i (1−2a)n(n−1)λt
4 )

(2i)n sin(λt/2) sin(λt) sin(3λt/2) . . . sin(nλt/2)

Besides, the trace can also be expressed with respect to the propagator:

tr(e−itH) =

∫
Λ

kt(H,H)dH

In the case of two-particle systems, we obtain known identities involving Bessel func-
tions, connected with the formula (cf [22])∫ +∞

0

e−axJν(bx)dx =
[
√
a2 + b2 − a]ν

bν
√
a2 + b2

More complex identities may be obtained by considering systems with three particles or
more.

7. Bosons and Fermions

The propagators computed so far allow to describe the motion of n particles whichever
statistic (bosonic or fermionic) the particles obey.

The wave function ft at time t of such a system is not defined on Λ, but on the spce
of diagonal matrices with distinct entries :

Λ̃ =
⋃
σ∈Sn

σ(Λ)

where a permutation σ ∈ Sn de {1, 2, . . . , n} acts on the space of diagonal matrices by :

σ


h1

h2

. . .

hn

 =


hσ−1(1)

hσ−1(2)

. . .

hσ−1(n)

 .

But f̃t is determined by its restriction to ft à Λ :

f̃t
(
σ(H)

)
= ft(H) for bosons

f̃t
(
σ(H)

)
= ε(σ)ft(H) for fermions

H ∈ Λ, σ ∈ Sn
ε(σ) denotes the signature of σ.
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In both cases, the propagation of f̃t is given by the one of ft : the solution of the
Schrödinger equation

i
∂f̃t
∂t

= −1

2
∆f̃t +

(
a
∑
p 6=q

1

(hq − hp)2
+ b

∑
p

h2
p

)
f̃t,

with initial wave function f̃0, is given by :

f̃t
(
σ(H)

)
=

∫
Λ

kt(H,H
′)f0(H ′)dH ′

(for bosons)

ou ε(σ)

∫
Λ

kt(H,H
′)f0(H ′)dH ′

(for fermions)
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