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The propagator of the Calogero-Moser system in an external quadratic potential

We obtain the Hamilton operator of the Calogero-Moser quantum system in an external quadratic potential by conjugating the radial part for the action of SO(n) by conjugacy of the Hamilton operator of the quantum harmonic oscillator on the Euclidean vector space of real symmetric matrices.

Then, with Mehler's formula, we derive the propagator of the problem. We also investigate some schemes to change the interaction constant. For two-particle systems, we obtain explicit formulae, whereas for many-particle systems, we reduce the computation of the propagator to finding a definite integral. We give also the short time approximation, the energy levels and the trace of the propagation operator.

Introduction

Few quantum mechanics problems are exactly solvable. Except some one-body problems, the only known solvable problems are those the classical-mechanics counterparts of which are completly integrable: Toda lattices and Calogero-Moser systems [START_REF] Calogero (f) | Solution of the One-Dimensional N -body Problems with Quadratic and/or Inversely Quadratic Pair Potentials[END_REF] or similar ones, such as Sutherland's [START_REF] Sutherland | Exact results for a quantum many body problem in one dimension I[END_REF], [START_REF] Sutherland | Exact results for a quantum many body problem in one dimension II[END_REF].

The general idea of this paper comes from a description of the rational Calogero Model with an external quadratic potential as a projection of a harmonic motion in a matrix space. This idea has been used first for the explicit integration of the equations of motion in the classical case in papers by Olshaneski and Perelomov [START_REF] Olshaneski | Explicit solution of the Calogero model in the classical case and geodesic flows on symmetric spaces of zero curvature[END_REF], [START_REF] Olshaneski | Explicit solutions of some completely integrable systems[END_REF]. Kazdhan, Kostant and Sternberg's [START_REF] Kazdhan | Hamiltonian Group Actions and Dynamical Systems of Calogero Type[END_REF] proved that this projection method coincide with the Marsden-Weinstein symplectic reduction scheme (see also [START_REF] Perelomov | Integrable systems of classical mechanics and Lie algebras[END_REF] and Françoise [START_REF] Franc | Canonical Partition Functions and the Stationary Phase Formula[END_REF], who has solved a conjecture made by Gallavoti and Marchioro [START_REF] Gallavotti | On the calculation of an integral[END_REF]).

This idea is also very useful in the quantum case and sometimes gives the integral representations for wave functions and propagators (Green functions). This is emphasized in the review paper of Olshaneski and Perelomov [START_REF] Olshaneski | Quantum integrable systems related to Lie algebras[END_REF], where an analogue of the theorem 4 of this paper is given for more general cases.

Olshaneski and Perelomov [START_REF] Olshaneski | Quantum systems related to root systems and radial parts of Laplace operators[END_REF], by generalizing some results of Berezin [START_REF] Berezin | Laplace operators on semisimple Lie groups[END_REF], have noticed that the radial part of the Laplace-Beltrami operator of symmetric spaces is conjugated to the quantum Hamilton operator of the Sutherland system, which describes the motion of identical particles on a circle or a branch of a hyperbola with a pairwise interaction potential inversely proportionnal to the square of their mutual distance. They also observed that the problem on the line (Calogero's problem) was obtained as a limit when the curvature of the symmetric space goes to zero.

In this paper, we consider the problem on the line, starting not from a symmetric space, but from the space of real symmetric matrices, which can be understood as the limit of the symmetric space U (n)/SO(n) when its curvature goes to zero. Thus, taking the radial part of the Laplace-Beltrami operator for the action of SO(n), we directly obtain the problem on the line. This scheme allows us to add an external quadratic potential before reduction, that we find again in the reduced one.

The problem thus obtained is slightly different from the one Calogero has studied [START_REF] Calogero (f) | Solution of the One-Dimensional N -body Problems with Quadratic and/or Inversely Quadratic Pair Potentials[END_REF], where the quadratic potential is pairwise rather than external.

In part 1, we fix the notations in use along this paper. In part 2, we give the radial reduction leading to Calogero's problem. Part 3 is devoted to the calculation of the propagator giving the time evolution in terms of the initial wave function, by use of methods analogous to Debiard and Gaveau's ones [START_REF] Debiard | Analysis on Root Systems[END_REF]. In part 4, we give the short time approximation of the propagator by the stationary phase method. This approximation is not exact, but becomes so when the interaction potential vanishes, which allows to compute the Fourier transform of the delta function of adjoint orbits in u(n). Part 5 shows how other constants in the 1/r 2 pairwise potential may be obtained and the corresponding propagators are computed therein. The obtention of systems by reduction allows us to determine the eigenvalues of the Hamilton operator, and then to compute the trace of the propagation operator, which is done in part 6. The results we obtain deal with the propagation in a Weyl chamber. In the last part, we derive the physical propagation according to the statistics the particles obey to.

Notations

The space of n × n real symmetric matrices will be denoted by V , and will be provided with the scalar product: < X, Y >= tr(XY ). The group SO(n) operates on V by conjugacy : (g, X) → gXg -1 (g ∈ SO(n), X ∈ V ) and preserves the scalar product on V . We provide SO(n) with the bi-invariant metric induced by the invariant scalar product on the Lie-algebra so(n) : (X, Y ) → -tr(XY ).

The submanifold Λ =     h 1 h 2 . . . h n     , h 1 < h 2 < ... < h n is
We will denote by dg et dḡ the corresponding invariant measures on SO(n) and SO(n)/M .

We will also use the density fonction δ, which is the ratio between the riemannian measure induced by V on an orbit and the measure dḡ on SO(n)/M . The function δ is radial (SO(n)-invariant). Let us compute this function δ. We remark that the matrices , p < q,

A pq = 1 √ 2      . . .
(1 and -1 being the coefficients of indices (p, q) and (q, p)) form an orthonormal basis of so , p < q, pairwise orthogonal, of norms (h q -h p ), which proves that

(n) = T Id SO(n) = T o (SO(n)/M ) (o denoting the origine of SO(n)/M ). Their images tangent at H =     h 1 h 2 . . . h n     ∈ Λ to the orbit through H are [A pq , H] = h q -h p √ 2      . . . .
δ(gHg -1 ) = p<q (h q -h p ) g ∈ SO(n), H ∈ Λ.
The Laplace-Beltrami operator L V on V induces its radial part ∆L V on Λ, given by ( [START_REF] Helgason | Groups and Geometric Analysis[END_REF]):

∆L V = δ -1/2 L Λ δ 1/2 -δ -1/2 L Λ (δ 1/2 )
where

L Λ = p ∂ 2 ∂h 2 p
is the Laplace-Beltrami operator on Λ provided with the metric induced by the metric of V .

Calogero operator

It has been noticed in [START_REF] Berezin | Laplace operators on semisimple Lie groups[END_REF] that operators of Calogero-Moser-Sutherland type are obtained by conjugation of the radial part of the Laplace-Beltrami operator on a symmetric space by the square root of the density function. Let's make the computation in the case at hand:

δ 1/2 ∆L V δ -1/2 = L Λ -δ -1/2 L Λ (δ 1/2 ) = r ∂ 2 ∂h 2 r -δ -1/2 r ∂ 2 δ 1/2 ∂h 2 r But ∂δ 1/2 ∂h r = 1 2δ 1/2 ∂δ ∂h r = 1 2δ 1/2 p<r δ h r -h p - q>r δ h q -h r = 1 2 δ 1/2 p =r 1 h r -h p and ∂ 2 δ 1/2 ∂h 2 r = 1 2 ∂δ 1/2 ∂h r p =r 1 h r -h p - 1 2 δ 1/2 p =r 1 (h r -h p ) 2 = 1 2 1 2 δ 1/2 ( p =r 1 h r -h p ) 2 - 1 2 δ 1/2 p =r 1 (h r -h p ) 2 = 1 4 δ 1 2 p =r 1 (h r -h p ) 2 + p =r,q =r,p =q 1 (h r -h p )(h r -h q ) - 1 2 δ 1 2 p =r 1 (h r -h p ) 2 = 1 4 δ 1/2 - p =r 1 (h r -h p ) 2 + p =r,q =r,p =q 1 (h r -h p )(h r -h q ) Therefore : δ -1/2 r ∂ 2 δ 1/2 ∂h 2 r = 1 4 - p =r 1 (h r -h p ) 2 + p =r,q =r,p =q 1 (h r -h p )(h r -h q )
But the second sum inside the brackets is zero, since:

3 • p =r,q =r,p =q 1 (h r -h p )(h r -h q ) = p =r,q =r,p =q 1 (h r -h p )(h r -h q ) + 1 (h p -h q )(h p -h r ) + 1 (h q -h p )(h q -h r ) = p =r,q =r,p =q h p -h q -(h r -h q ) (h r -h p )(h r -h q )(h p -h q ) + 1 (h q -h p )(h q -h r ) = p =r,q =r,p =q h p -h r (h r -h p )(h r -h q )(h p -h q ) + 1 (h q -h p )(h q -h r ) = 0. Therefore δ 1/2 ∆L V δ -1/2 = r ∂ 2 ∂h 2 r + 1 4 p =r 1 (h r -h p ) 2 .
If we apply the same scheme to the SO(n)-invariant operator on V :

- 1 2 L V + λ 2 2 X 2 (X ∈ V )
which describes the quantum mechanical harmonic oscillator, we get, after conjugating its radial part, the Calogero operator on Λ with an external quadratic potential:

H = - 1 2 r ∂ 2 ∂h 2 r - 1 8 q =r 1 (h r -h q ) 2 + λ 2 2 r h 2 r (h 1 < h 2 < . . . < h n ).
3. Propagator

General case

The propagator of the N-dimensional harmonic oscillator is known. It is given by Mehler's formula (see [START_REF] Guillemin | Symplectic Techniques in Physics[END_REF]) :

K t (X, X ) = (-i) N α t e -iN π/4 | 2π sin λt λ | -N/2 e iW (X,X ) with W (X, X ) = λ 2 sin λt cos(λt) X 2 + X 2 -2 < X, X > and α t = 0 if t ∈]0, π λ [, 1 if t ∈] π λ , 2π λ [, 2 if t ∈] 2π λ , 3π λ [, etc...
Let ψ 0 be an initial wave function of the form

ψ 0 = δ -1/2 f 0 where f 0 : V → C | is a radial function. Then ψ 0 ∈ L 2 (V ) iff f 0 |Λ ∈ L 2 (Λ) since V | ψ 0 (X) | 2 dX = Λ δ(H) SO(n)/M | ψ 0 (gHg -1 ) | 2 dḡdH = SO(n)/M dḡ × Λ | f 0 (H) | 2 dH
(see [START_REF] Helgason | Groups and Geometric Analysis[END_REF] for this change of variables. g ∈ SO(n) is a representative of ḡ).

The wave function at time t is of the form ψ t = δ -1/2 f t where f t is radial, and f is the solution of Schrödinger equation i ∂f ∂t = Hf with initial wave function f 0 . But for all H ∈ Λ:

δ -1/2 (H)f t (H) = ψ t (H) = V K t (H, X )ψ 0 (X )dX = (-i) N α t e -iN π/4 | 2π sin λt λ | -N/2 × V e iW (H,X ) δ -1/2 (X )f 0 (X )dX
where

N = dim V = n(n + 1) 2 = (-i) n(n+1) 2 α t e -i n(n+1)π 8 | 2π sin λt λ | -n(n+1) 4 × Λ δ(H )δ -1/2 (H )f 0 (H ) SO(n)/M e iW (H,gH g -1 ) dḡ.dH = 1 2 n-1 (-i) n(n+1) 2 α t e -i n(n+1)π 8 | 2π sin λt λ | -n(n+1) 4 × Λ δ 1/2 (H )f 0 (H ) SO(n)
e iW (H,gH g -1 ) dg.dH

(since M has cardinal 2 n-1 )
Hence the propagation of the restriction of f to Λ :

Theorem 1: The solution of Schrödinger equation i ∂f ∂t = Hf with initial condition f |t=0 = f 0 ∈ L 2 (Λ) is given by f t (H) = Λ k t (H, H )f 0 (H )dH where k t (H, H ) = 1 2 n-1 (-i) n(n+1) 2 α t e -i n(n+1)π 8 | 2π sin λt λ | -n(n+1) 4 δ 1/2 (H)δ 1/2 (H ) × e iλ cos λt 2 sin λt ( H 2 + H 2 ) SO(n) e -iλ sin λt <H,gH g -1 > dg Remark: If λ = 0, the propagator is k t (H, H ) = 1 2 n-1 e -i n(n+1)π 8 (2πt) -n(n+1) 4 δ 1/2 (H)δ 1/2 (H ) × e i 2t ( H 2 + H 2 ) SO(n) e -i t <H,gH g -1 > dg
In order to compute < H, gH g -1 >, it is sufficient to know the diagonal entries of gH g -1 , given by : < gH g -1 e p , e p >=< H g -1 e p , g -1 e p >=< r h r (g -1 ) rp e r , r (g -1 ) rp e r > = r h r (g -1 ) rp 2 = r (g pr ) 2 h r .

Therefore < H, gH g -1 >= pq (g pq ) 2 h p h q .

Remark: The propagator is 2π λ -periodic if n is congruent to 0 or 3 modulo 4, 4π λ -periodic in the remaining cases. This property comes from the fact that the system is the reduction of a n(n+1)
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-dimensional harmonic oscillator. The classical system is 2π λ -periodic (Zoll system), for the same reason.

The case n=2 (two-particle systems)

In the case n = 2, we show that the integral in the expression of the propagator can be expressed in terms of a Bessel function.

We parametrize SO(2) in the usual way :

g = cos θ -sin θ sin θ cos θ and we have dg = √ 2dθ since the metric chosen on SO(2) is ds 2 = -tr 0 dθ -dθ 0 2 = 2dθ 2 and < H, gH g -1 > = cos 2 θ(h 1 h 1 + h 2 h 2 ) + sin 2 θ(h 1 h 2 + h 2 h 1 ) = 1 2 (h 1 + h 2 )(h 1 + h 2 ) + 1 2 (h 2 -h 1 )(h 2 -h 1 ) cos 2θ. Therefore SO(2) e -iλ sin λt <H,gH g -1 > dg = e -iλ 2 sin λt (h 1 +h 2 )(h 1 +h 2 ) 2π 0 e -iλ 2 sin λt (h 2 -h 1 )(h 2 -h 1 ) cos 2θ √ 2dθ = √ 2e -iλ 2 sin λt (h 1 +h 2 )(h 1 +h 2 ) 2πJ 0 λ(h 2 -h 1 )(h 2 -h 1 ) 2 sin λt
(where J 0 is the zero order Bessel function).

N = dim(V ) being equal to 3, we get the following expression of the propagator

k t (h 1 , h 2 ; h 1 , h 2 ) = 1 2 √ π i α t e -i3π/4 | sin λt λ | -3/2 (h 2 -h 1 )(h 2 -h 1 ) ×e iλ 2 sin λt (h 2 1 +h 2 2 +h 1 2 +h 2 2 ) cos λt-(h 2 +h 1 )(h 2 +h 1 ) J 0 λ(h 2 -h 1 )(h 2 -h 1 )
2 sin λt .

Remark : If the system is reduced to its center of mass, it is equivalent to a (separable) system of two uncoupled particles on a line, of equal masses, independent from one another, one in the harmonic potential λ 2 2 x 2 , the other in the potential λ 2 2 x 2 -1 8x 2 . Our result for two particle sytems can thus be deduced from Khandekar and Lawande's results [START_REF] Khandekar | Exact Propagator for a Time Dependent Harmonic Oscillator with and without Perturbation[END_REF]. The reader can also refer to Schulman's book [START_REF] Schulman | Techniques and Applications of Path Integration[END_REF] which gives a list of computable propagators.

Stationnary phase approximation

In view of the expression of the propagator found in the case n = 2, which contains a Bessel function, the semi-classical approximation of the propagator is not exact for finite times. Yet, it is possible to obtain the asymptotic behavior of the propagator for short times, using the stationnary phase method.

According to this method,

(2πt) -1 2 dim (SO(n)/M ) SO(n)/M e -iλ sin λt <H,gH g -1 > dḡ = ḡ c(ḡ)e -i t <H,gH g -1 > + O(t),
the summation being made on all the critical points of

f : ḡ ∈ SO(n)/M → -< H, gH g -1 >, c(ḡ) being equal to exp i π 4 sgn Hess ḡ f | det Hess ḡ f | -1 2 .
Here Hess ḡ f denotes the Hessian matrix of f at ḡ in a basis of T ḡ (SO(n)/M ) of volume 1, and sgn its signature, i.e. the difference between the numbers of its positive and negative eigenvalues.

Let H, H ∈ Λ. The critical points of the function f are those for which H is orthogonal to the orbit through H at gH g -1 , which amounts to gH g -1 being diagonal. Therefore the critical points of ḡ are in a one to one correspondence with the matrices obtained by permutation of the diagonal entries of H . Let ḡ be a critical point, H = gH g -1 . The vectors A pq .g (p < q) form an orthonormal basis of T g SO(n) and

< H, exp XgH g -1 exp(-X) > =< H, exp XH exp(-X) > =< H, (I + X + 1 2 X 2 )H (I -X + 1 2 X 2 ) > +o( X 2 ) =< H, H + [X, H ] + 1 2 (X 2 H + H X 2 ) -XH X > +o( X 2 ) =< H, H > + 1 2 < H, X 2 H + H X 2 -2XH X > +o( X 2 )
If X = p<q s pq A pq , we get

-< H, exp XgH g -1 exp(-X) >= -< H, H > + 1 2 p<q (h q -h p )(h q -h p )s 2 pq
The hessian matrix of f at ḡ is thus diagonal. The absolute value of its determinant is δ(H)δ(H ). Its signature is n(n-1)
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-2I(σ), where σ ∈ S n is the permutation of the set {1, . . . , n} corresponding to ḡ and I(σ) = Card {(p, q)| p < q, σ(p) > σ(q)} is the number of inversions in σ.

Thus

SO(n)/M e -iλ sin λt <H,gH g -1 > dḡ = (2πt) n(n-1) 4 δ -1 2 (H)δ -1 2 (H )e i n(n-1) 8 π σ∈S n e -i π 2 I(σ) e -i t (h 1 h σ(1) +...+h n h σ(n) ) + O(t)
Theorem 2: The short time approximation of the propagator is given by

k t (H, H ) = (2πt) -n 2 e -in π 4 σ∈S n e -i π 2 I(σ) e i 2t H-σ -1 (H ) 2 + O(t)
where I(σ) = I(σ -1 ) is the number of infinite potential wells

h i = h j across the segment [H, σ -1 (H )].
The contribution of H to the propagator for short times can be interpreted as resulting of broken straight lines from H to H, with a phase shift of -π 2 at each "reflexion" on a potential well, i.e. at each collision between two particles. Remark: By computing as in the preceding section the propagator for functions on u(n) invariants for the adjoint action of U (n), we can get the Fourier transform of the delta distribution of an adjoint orbit, a result first proved by Harish Chandra (cf [START_REF] Guillemin | Symplectic Techniques in Physics[END_REF]).

As a manifold transversal to the orbits, we chose the set Λ of diagonal purely imaginary matrices whose diagonal entries: ih 1 , . . . , ih n verify h 1 < h 2 < . . . < h n . The adjoint orbits are diffeomorphic to U (n)/M , M being the isotropy subgroup of purely imaginary diagonal matrices, i.e. the set of diagonal matrices in U (n). The radial part ∆L of the Laplace-Beltrami operator L on the euclidean space u(n) displays :

δ 1/2 ∆L • δ -1/2 = r ∂ 2 ∂h 2 r
where δ = r<l (h l -h r ) 2 is the density function, i.e. dX = δ.dh 1 . . . dh n dḡ, dḡ denoting the riemannian measure on U (n)/M . The propagator of Shrödinger equation i

∂ ∂t = -1 2 L for a free particle on u(n) is K t (X, X ) = e -iN π/4 1 (2πt) N/2 e iW (X,X ) where W (X, X ) = 1 2t X 2 + X 2 -2 < X, X > and N = dim u(n) = n 2
Let h denote the set of diagonal purely imaginary matrices. If a family of radial functions (ψ t ) t≥0 in L 2 (u(n)) verifies Schrödinger equation i ∂ ∂t = -1 2 L, the family of functions (f t ) t≥0 in L 2 (h), skew-symmetric in the variables h 1 , . . . , h n , defined by

f t (H) = δ 1/2 ψ t (H) = r<l (h l -h r )ψ t (H) verifies the equation i ∂ ∂t = -1 2 r ∂ 2 ∂h 2 r
. Hence f t is propagated by the kernel

k t (H, H ) = e -inπ/4 1 (2πt) n/2 e i 2t H 2 + H 2 -2<H,H >
and its restriction to Λ by σ∈S n (σ)k t (H, σ(H )), and also by δ 1/2 (H)δ 1/2 (H )

U (n)/M K t (H, gH g -1 )dḡ
We deduce Harish Chandra's formula for the Fourier transform of the delta distribution of an adjoint orbit

U (n)/M e -i<H,gH g -1 > dḡ = e in(n-1)π/4 (2π) n(n-1)/2 r<l (h l -h r )(h l -h r ) σ∈S n (σ)e -i<H,σ(H )>
which can be interpreted as a case of exactitude of the stationary phase approximation [START_REF] Guillemin | Quasi-classical aspects of reduction[END_REF].

Other interaction constants

Here we investigate two different schemes to obtain other interaction constants than -1 4

Eigenfunctions of orbital Laplace-Beltrami operators

Using the separation of variables, we consider fonctions which are the product of a radial function and a fixed angular function whose restriction to each orbit is an eigenfunction of the orbital Laplace-Beltrami operator.

For this purpose, we need the expression of the Laplace-Beltrami operator L V with respect to the coordinates (H, ḡ) ∈ Λ × SO(n)/M . L V splits into a transversal and an orbital part (cf [START_REF] Helgason | Groups and Geometric Analysis[END_REF]), which means that at each point X of V , for any function ψ ∈ C ∞ (V ),

(L V ψ)(X) = (L V ) T ψ (X) + (L O X ψ |O X )(X)
where (L V ) T is the transversal part of L V :

(L V ) T ψ (gHg -1 ) = (∆L V ) H ∈ Λ → ψ(gH g -1 (H),
and L O X is the Laplace-Beltrami operator on the orbit O X through X.

Let H ∈ Λ. Let us denote by A pq the infinitesimal rotations defined in part 1, as well as the vector fields that they induce on O H . The vectors B pq = A pq /(h q -h p ), p < q form at each point of the orbit an orthonormal basis of the tangent space. For every function f defined on O H , the gradient of f is given by grad(f ) = p<q (B pq f )B pq . Furthermore, the metric of the orbit and therefore its volume form being invariant under the action of SO(n), the vector fields B pq are divergence free. Hence

L O X f = div gradf = p<q [< grad(B pq f ), B pq > +(B pq f )div(B pq )] = p<q B 2 pq f = p<q 1 (h q -h p ) 2 A 2 pq f.
Let c be a function on SO(n)/M inducing on each orbit an eigenfunction of the orbital Laplace-Beltrami operator. Functions of the form ψ(gHg -1 ) = f (H)c(ḡ) conserve this form through their time evolution with respect to the harmonic oscillator problem.

The orbital Laplace-Beltrami operator is a linear combination of the squares of the infinitesimal rotations A 2 pq , p < q in the coordinates planes. Therefore, if c(ḡ) is an eigenfunction of the square of the infinitesimal rotation in each coordinates plane, then it will satisfy to the condition above .

Let χ be a representation of SO(n) on some vector space E. If u ∈ E is an eigenvector for each operator (dχA pq ) 2 , and η any linear form on E, then the representation coefficient c(g) = η(χ(g)u) is also an eigenvector of the A 2 pq 's with the same eigenvalues. Indeed:

A 2 pq c(g) = d 2 dt 2 |t=0 c(g exp(tA pq )) = d 2 dt 2 |t=0 η(χ(g exp(tA pq )u) = η χ(g)(dχA pq ) 2 u
Let us consider the irreducible representation χ of SO(n) on the space E of harmonic polynomials of n indeterminates x 1 , . . . , x n homogeneous of degree n (cf [START_REF] Vilenkin | Fonctions spéciales et théorie de la représentation des groupes[END_REF]). We have:

dχ(A pq ) = 1 √ 2 (x q ∂ ∂x p -x p ∂ ∂x q )
Note that the harmonic monomial u = x 1 x 2 . . . x n yields:

dχ(A pq )u = 1 √ 2 (x 1 . . . xp . . . x 2 q . . . x n -x 1 . . . x 2 p . . . xq . . . x n )
(the symbol ˆdesigning an omitted factor ) and: (dχ(A pq ))

2 u = -2u
Furthermore u is left invariant by the rotations of angle π in the coordinates planes (which amount to turning two of the coordinates x p and x q into their opposite), thus the coefficients c(g) = η(χ(g)u) define functions c(ḡ) on the quotient space SO(n)/M and therefore on the orbits. For instance, if η is the component on the vector x 1 x 2 . . . x n of the canonical basis of E, c(ḡ) = σ∈S n g 1σ(1) g 2σ(2) . . . g nσ(n) where g = ((g pg )) ∈ SO(n) is a representative of ḡ. These functions are eigenfunctions, and the associated eigenvalue on the orbit

O H is -2 p<q 1 (h q -h p ) 2
Remark: these functions are exceptional. The author has verified that in the case n = 3, there is no other non proportional function which is an eigenfunction for each (dχA pq ) 2 .

Therefore, for ψ :

gHg -1 → f (H)c(ḡ), L V (δ 1/2 ψ)(gHg -1 ) = δ 1/2 (H) r ∂ 2 ∂h 2 r - 3 2 p<r 1 (h r -h p ) 2 (f )(H)c(ḡ)

Hence

Theorem 3: The propagator of the Hamilton operator

- 1 2 r ∂ 2 ∂h 2 r + 3 4 p<r 1 (h r -h p ) 2 + λ 2 2 H 2 is k t (H, H ) = 1 2 n-1 (-i) n(n+1) 2 α t e -i n(n+1)π 8 | 2π sin λt λ | -n(n+1) 4 δ 1/2 (H)δ 1/2 (H ) × 1 c(1) e iλ cos λt 2 sin λt ( H 2 + H 2 ) SO(n) e -iλ sin λt <H,gH g -1 > c(g)dg
In the exceptional case n = 2, all the irreducible representations of SO(2) are unidimensionnal and each vector of the representation line is obviously an eigenvector for

A 12 = 1 √ 2 d dθ . If c(ḡ θ ) = e 2inθ
, g θ designing the rotation of angle θ and n a fixed integer (c(ḡ) is not single-valued for n half integer), A 2 pq c = -n 2 c. Hence we can obtain all the interaction constants of the form n 2 -1 4 , n ∈ I N . The integral in the propagator can be expressed using a Bessel function of order n:

k t (h 1 , h 2 ; h 1 , h 2 ) = 1 2 √ π i α t -n e -i3π/4 | sin λt λ | -3/2 (h 2 -h 1 )(h 2 -h 1 ) ×e iλ 2 sin λt (h 2 1 +h 2 2 +h 2 1 +h 2 2 ) cos λt-(h 2 +h 1 )(h 2 +h 1 ) J n λ 2 sin λt (h 2 -h 1 )(h 2 -h 1 )

Other symmetric spaces

Olshaneski and Perelomov remarked in [START_REF] Olshaneski | Quantum systems related to root systems and radial parts of Laplace operators[END_REF] that the radial parts of the Laplace Beltrami operator of symmetric spaces SU (2n)/Sp(n) and E 6 /F 4 are conjugated to Sutherland systems with interaction constants 2 et 12. The corresponding Calogero systems can be obtained by letting the curvature go to zero with homothetical transformations and by making a central extension to get rid of the constraint " h p = 0". For instance, when the interaction constant is 2, we consider the action of Sp(n) by conjugacy on the orthogonal complement of sp(n) in u(2n), which is the space of matrices of the form

Z 1 Z 2 Z2 -Z1
, Z 1 ∈ u(n), Z 2 complex skew-symmetric.

Energy levels and trace of the propagator

Let us denote by X = ((X pq )) the generic element of V and set

z pp = X pp z pq = 1 √ 2 X pq , p < q
The z pq , p ≤ q form a system of orthonormal coordinates on V . The one-dimensional harmonic oscillator with Hamilton operator -1 2

d 2 dx 2 + λ 2 2
x 2 has eigenfunctions of the form ψ(x) = cste.e -λ x 2 2 H p ( √ λx) (where H p denotes the p th Hermite polynomial) with eigenvalues (p + 1 2 )λ (see [START_REF] Landau | Physique Théorique tome 3: Mécanique quantique[END_REF] for instance). The eigenfunctions of the harmonic oscillator which hamiltonian is

- 1 2 L V + λ 2 2 X 2
are thus the functions of the form

ψ(X) = exp(-λ X 2 
2 ) The eigenfunctions of the reduced operator are obtained by multiplicating by the quare root of the density function the restriction to Λ of the radial functions among the ones above.

(
Therefore each eigenfunction of the reduced system is of the form

ϕ(H) = δ(H) exp(-λ H 2 2 )P (h 1 , . . . , h n )
where P is a polynomial. Furthermore, since the invariant function ψ(gHg -1 ) = exp(-λ H 2 2 )P (h 1 , . . . , h n ) defined by ϕ is an eigenfunction of the harmonic oscillator, it is analytic and thus

ψ h σ(1) . . . h σ(n) = exp(-λ H 2 2 )P (h σ(1) , . . . , h σ(n) )
for every permutation σ ∈ S(n).

But h σ(1) . . . h σ(n) is conjugated to h 1 . . . h n
hence the left hand side of the equality above is also equal to exp(-λ H 2 2 )P (h 1 , . . . , h n ), which proves that the polynomial P is symmetric.

We will prove that the functions of the form ϕ(H) = δ a (H) exp(-λ H 2 2 )P (H), where P is a homogeneous symmetric polynomial, provide a basis of L 2 (Λ) in which the matrix of

H = -1 2 r ∂ 2 ∂h 2 r + b q =r 1 (h r -h q ) 2 + λ 2 2
r h 2 r is triangular. The exponent a > 0 will depend on the interaction constant b and be equal to 1/2 in the case of the reduction of radial functions (b = -1/8).

We have

∂ϕ ∂h r = δ a (H) exp(-λ H 2 2 ) a p =r 1 (h r -h p ) P -λh r P + ∂P ∂h r , ∂ 2 ϕ ∂h 2 r = δ a (H) exp(-λ H 2 2 ) p =r a 2 -a (h r -h p ) 2 + p =r,q =r,p =q a 2 (h r -h p )(h r -h q ) P +(λ 2 h 2 r -λ)P + ∂ 2 P ∂h 2 r + 2 a p =r 1 h r -h p -λh r ∂P ∂h r + 2a p =r 1 h r -h p (-λh r )P Since r p =r h r h r -h p = n(n-1)
2 and p =r,q =r,p =q 1 (h r -h p )(h r -h q ) = 0 (cf part 2),

Hϕ = δ a (H) exp(-λ H 2 2 ) - 1 2 r ∂ 2 P ∂h 2 r + r (λh r -a p =r 1 h r -h p ) ∂P ∂h r + a n(n -1) 2 + n 2 λP ,
where a > 0 is chosen so that (a 2 -a)/2 is equal to the interaction constant b.

If P is homogeneous of degree d, then Euler formula r h r ∂P ∂h r = d.P yields:

Hϕ = δ a (H) exp(-λ H 2 2 ) - 1 2 r ∂ 2 P ∂h 2 r -a r p =r 1 h r -h p ∂P ∂h r +(a n(n -1) 2 + n 2 +d)λP
If moreover P is symmetric, then ∂P ∂h r -∂P ∂h p is zero when h r = h p and thus is divisible by (h r -h p ).

Therefore, we obtain:

Hϕ = ( n(an + 1 -a) 2 + d)λϕ + δ a (H) exp(-λ H 2 2 )Q
where Q is a symmetric polynomial of degree at most d -2. Hence:

Theorem 4: Each eigenfunction corresponds to a symmetric polynomial, the energy levels are ( n(an+1-a) 2 + d)λ (d ∈ I N ), with multiplicity equal to the dimension of the space of homogeneous symmetric polynomials of n indeterminates of degree d. This dimension is the cardinal of the set {(a 1 , . . . , a

n ) ∈ I N n | a 1 ≤ a 2 ≤ . . . ≤ a n , a 1 + . . . + a n = d}.
We refer the reader to [START_REF] Olshaneski | Quantum integrable systems related to Lie algebras[END_REF] for an anologue of this theorem for more general cases.

Hence the trace of the propagation operator has a very simple closed form expression:

tr(e -itH ) = ) (2i) n sin(λt/2) sin(λt) sin(3λt/2) . . . sin(nλt/2) Besides, the trace can also be expressed with respect to the propagator:

tr(e -itH ) = Λ k t (H, H)dH
In the case of two-particle systems, we obtain known identities involving Bessel functions, connected with the formula (cf [START_REF] Watson | A Treatise on the Theory of Bessel Functions[END_REF])

+∞ 0 e -ax J ν (bx)dx = [ √ a 2 + b 2 -a] ν b ν √ a 2 + b 2
More complex identities may be obtained by considering systems with three particles or more.

Bosons and Fermions

The propagators computed so far allow to describe the motion of n particles whichever statistic (bosonic or fermionic) the particles obey.

The wave function f t at time t of such a system is not defined on Λ, but on the spce of diagonal matrices with distinct entries :

Λ = σ∈S n σ(Λ)
where a permutation σ ∈ S n de {1, 2, . . . , n} acts on the space of diagonal matrices by : 

σ     h 1 h 2 . . . h n     =      h σ -1 ( 

  transversal to the action of SO(n) and orthogonal to the orbits since the tangent space to the orbit through H ∈ Λ is {[Z, H] = ZH -HZ|Z skewsymmetric}, the tangent space to Λ is the space of diagonal matrices H and < H , [Z, H] >= tr(H ZH -H HZ) = 0 because HH = H H.We denote by M = an even number of -1 the isotropy subgroup in SO(n) of matrices in Λ.

Theorem 5 :

 5 ia 2 λt) . . . ∞ a n =a n-1 exp(-ia n λt) But ∞ a n =a n-1 exp(-ia n λt) = exp(-ia n-1 λt) ∞ a n =0 exp(-ia n λt) = exp(-ia n-1 λt) 1 1 -exp(-iλt) = exp(-ia n-1 λt) exp(iλt/2) 2i sin(λt/2)Thus the trace of the propagation operator tr(e -itH ) is equal to exp(-i n(an + 1 -The trace of the propagation operator tr(e -itH ) is equal to exp(i (1-2a)n(n-1)λt 4

  a pq ) p≤q ∈I N where the c a 11 a 12 ...a nn are arbitrary constants. The corresponding energy level is (r + N/2)λ = [r + n(n + 1)/4]λ.

				√
			c a 11 a 12 ...a nn	H a pq (	λz pq )
		n(n+1) 2	,	p≤q
	p≤q	a pq =r	

  In both cases, the propagation of ft is given by the one of f t : the solution of the Schrödinger equation -h p ) 2 + b

	i	∂ ft ∂t	= -	1 2	∆ ft + a	p =q	1 (h q p	h 2 p ft ,
	with initial wave function f0 , is given by :	
			ft σ(H) =	k t (H, H )f 0 (H )dH
						Λ		
						(for bosons)
					ou	(σ)	k t (H, H )f 0 (H )dH
							Λ	
						(for fermions)
	Bibliography :							
								1)	
									h σ -1 (2)	. . .	   	.
									h σ -1 (n)
	But ft is determined by its restriction to f t à Λ :
			ft σ(H) = f t (H)	for bosons
			ft σ(H) = (σ)f t (H)	for fermions
							H ∈ Λ, σ ∈ S n
						(σ) denotes the signature of σ.