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I. INTRODUCTION

Calogero-Moser systems were introduced long ago and were proven to be completely integrable by Lax pairs technics, see Ref. 1. The systems with 1 r 2 and 1 sin 2 r interaction potentials received in Ref. 2 an enlightening geometric interpretation through Marsden-Weinstein reduction of geodesic flows on Lie algebras or Lie groups. Though, the system with a Weierstrass P function interaction potential remains less understood. The two particle system has been solved in Ref. 3, and the only known integration scheme in the general case was provided by Krichever in Ref. 4, through the solitonic solutions of K-P equation.

The present work starts from the solution of the system with 1 r 2 interaction potential and proceeds by infinite replication. Calogero and Françoise had previously used a duplication scheme to produce new integrable systems and their solutions from the system on the line in Ref. 5. Here we have in mind the eulerian development of 1 sin 2 and proceed by infinite replication by translations of the system on the line. The corresponding matrices are infinite dimensional and are interpreted as distributional elements of some loop algebra. The striking fact is that these distributions are just elementary differential operators. This allows us to give a new proof of the solution of the system with 1 sin 2 r interaction potential. Then, we apply a doubly infinite replication to investigate the system with Weierstrass P function interaction potential, which leads us to a partial differential operator on the space of doubly periodic functions with values in C n . Though this operator is very simple looking and much similar to the preceding one, it is indeed much more involved to determine its spectrum and this is beyond the author's reach. We connect this problem to some finite difference equation in a space of simply periodic analytic functions.

II. INFINITE REPLICATION

It is known that the Calogero-Moser system on the real line with 1 r 2 pairwise interaction potential can be integrated in the following way [5].

Let x 1 , x 2 , . . . , x n denote the initial positions of the particles, and y 1 , . . . , y n their initial velocities.

Let

A =      ix 1 0 . . . 0 0 . . . . . . . . . . . . . . . . . . 0 0 . . . 0 ix n      and B =        iy 1 1 x 2 -x 1 . . . 1 x n -x 1 1 x 1 -x 2 . . . . . . . . . . . . . . . . . . 1 x n -x n-1 1 x 1 -x n . . . 1 x n-1 -x n iy n        so that [A, B] = M =      0 -i . . . -i -i . . . . . . . . . . . . . . . . . . -i -i . . . -i 0     
The position of particles at time t are then the eigenvalues of A + tB, divided by i.

We also recall that the positions at time t of the Calogero-Moser on the circle with pairwise interaction potential 1/ sin 2 r 2 (also called Sutherland system) are the arguments of the eigenvalues of the matrix exp(A).exp (tC),

where C = (c k,l ) with c k,l = i e i(x l -x k ) -1 for k = l and c k,k = iy k ,
Our first aim is to show that the solution of the system on the circle can be deduced from a system on the line with infinitely many particles.

Let us recall the Eulerian expansion:

1 sin 2 r = k∈Z 1 (r -kπ) 2
According to this formula, one can write the hamiltonian

H = 1 2 i y 2 i + 1 2 i =j 1 4 sin 2 x j -x i 2 in the form H = 1 2 i y 2 i + 1 2 i =j k∈Z 1 (x j -x i -2kπ) 2 = 1 2 i y 2 i + 1 2 i =j lim N →+∞ 1 2N k,l∈[-N,N ] 1 [(x j + 2kπ) -(x i + 2lπ)] 2
For all i ∈ Z, let us write i = kn + r with 1 ≤ r ≤ n and set x i = x r + 2kπ and y i = y r . The hamiltonian takes thus the form

H = lim N →+∞ 1 2N 1 2 -nN ≤i≤nN y 2 i + 1 2 -nN ≤ i, j ≤ nN i ≡ j[n] 1 (x j -x i ) 2
Therefore, the n-body Sutherland system on the circle is analogous to the infinitly many body system on the line obtained by associating to each particle on the circle infinitly many particles on the line, 2π-distant of each other and animated with the same velocity.

We thus form the infinite dimensional matrices Ã, M and B indexed by Z × Z where

à =        . . . A -2iπI 0 0 0 A 0 0 0 A + 2iπI . . .        B =       
. . .

P 0 P -1 P -2 P 1 P 0 P -1 P 2 P 1 P 0 . . .        M =        . . . M M M M M M M M M . . .       
where

P k =        iy 1 δ k,0 1 x 2 -x 1 +2kπ . . . 1 x n -x 1 +2kπ 1 x 1 -x 2 +2kπ . . . . . . . . . . . . . . . . . . 1 x n -x n-1 +2kπ 1 x 1 -x n +2kπ . . . 1 x n-1 -x n +2kπ iy n δ k,0        so that [ Ã, B] = M ,

III. LOOP ALGEBRAIC INTERPRETATION

The matrices à and B will be considered as linear operators on the space of 1-periodic

C n -valued functions f : θ → k∈Z f k e 2ikπθ Writing f as f =        . . . f -1 f 0 f 1 . . .        , one gets Ãf =        . . . -2iπf -1 + Af -1 Af 0 2iπf 1 + Af 1 . . .        = f + Af
where the prime designates derivation with respect to the variable θ, and

Bf =        . . . . . . + P 0 f -1 + P -1 f 0 + P -2 f 1 + . . . . . . + P 1 f -1 + P 0 f 0 + P -1 f 1 + . . . . . . + P 2 f -1 + P 1 f 0 + P 0 f 1 + . . . . . .        = Λf
where Λ(θ) = . . . + P -1 e -2iπθ + P 0 + P 1 e 2iπθ + . . ..

We now proceed to the computation of Λ.

The equation [ Ã, B] = M can be rewritten in the following way:

∀k ∈ Z AP k -P k (A -2ikπI) = M
Multiplying each member by e 2ikπθ , we get after summation:

A k∈Z P k e 2ikπθ - k∈Z P k e 2ikπθ A + k∈Z 2ikπP k e 2ikπθ = M k∈Z e 2ikπθ
Thus [A, Λ(θ)] + Λ (θ) = M δ 0

In order to solve this equation on the circle, we first solve the associated equation on the line:

[A, Λ(θ)] + Λ (θ) = M k∈Z δ k (cf Poisson summation formula)
and we'll retain the 1-periodic solutions.

The associated homogeneous equation is

Λ (θ) = -[A, Λ(θ)]
the general solution of which is Λ(θ) = e -θA Ke θA (K constant matrix).

The solution of the complete equation is obtained by varying the constant K, which satisfies the equation e

-θA K e θA = M k∈Z δ k Therefore, K is constant on each intervale ]k, k + 1[ (k ∈ Z) and
has Heaviside singularities at integer points. All that we need is the value of K on ]0, 1[. In order to get this value, we just write

B = P 0 = 1 0 Λ(θ)dθ = 1 0 e -θA Ke θA dθ Writing K = (K k,l ) 1≤k,l≤n , we get e -θA Ke θA = e iθ(x l -x k ) K kl 1≤k,l≤n
and thus

iy k = B k,k = K k,k and for k = l 1 x l -x k = B k,l = e i(x l -x k ) -1) i(x l -x k ) K k,l which yields K k,l = i e i(x l -x k ) -1 . Thus K is the matrix C of the Kazdhan-Kostant-Sternberg the- ory [5].
and Λ(θ) = e -θA Ce θA .

Recall that the positions of the particle at time t are, in the finite case, the eigenvalues of A + tB divided by i. We conjecture that in the case at hand, they are the eigenvalues of d dθ +(A+tΛ(θ))id (divided by i), acting on the space of 1-periodic functions.

Since Λ is continuous except at integer points where it has Heaviside singularities, we look for the 1-periodic, differentiable except at integer points, but everywhere continuous solutions of this equation. This equation is satisfied by a non zero, 1-periodic and continuous function if only if e -λ is an eigenvalue of e -A e -tC Thus, the eigenvalues of Ã+t B are the (pure imaginary) complex numbers the exponentials of which are eigenvalues of e tC e A , which are the same as the eigenvalues of e A e tC . This agrees with the solution given in Ref. 2.

IV.1. The Operator

We apply the same scheme when the pairwise interaction potential is the Weierstrass P function,

P(z) = 1 z 2 + (k,l) =(0,0) 1 (z -2kπ -2ilωπ) 2 - 1 (2kπ + 2ilωπ) 2
We will use to this purpose matrices of infinite order indexed by (Z × Z) 2 instead of Z 2 , and the underlying Lie algebra will be the complexification of u(n), that is gl n (C).

Vectors of C Z×Z will be identified with C n -valued doubly periodic functions (with periods 1 and 1/ω with respect to variables θ and φ),

f (θ, φ) = k,l ξ k,l e 2ikπθ e 2ilπωφ
The matrix à has now the block decomposition

à = (A klk l ) k,l,k ,l ∈Z with A klk l = A+(2ikπ+2lωπ)I if k = k and l = l and A k,l,k ,l = 0 otherwise. It is identified with the operator ( Ãf )(θ, φ) = Af (θ, φ) + k,l ξ k,l (2ikπ -2lωπ)e 2ikπθ e 2ilπωφ = Af (θ, φ) + ∂f ∂θ - 1 i ∂f ∂φ = Af (z) + 2 ∂f ∂ z
(by writing z = θ + iφ)

In the same way, we identify B with the multiplication operator f → Λf where Λ is a doubly periodic gl n (C)-valued function.

M having the same meaning as before, Λ satisfies the partial derivative equation

[A, Λ] + 2 ∂Λ ∂ z = M δ O
where O denotes the origin of the torus.

As before, we start by solving the equation on C where K is any holomorphic matrix valued entire function.

We solve the complete equation by varying the "constant" K, which satisfies the equation 2e

-zA 2 ∂K ∂ z e zA 2 = M k,l δ k+il/ω . ∂K ∂ z = 1 2 Ω∈R δ Ω e ΩA 2 M e -ΩA 2 where R = Z + i ω Z
The solutions of this equation are the meromorphic functions whose poles are simple and are the points of the network R, the residue at Ω being 1 2π e ΩA 2 M e -ΩA 2

.

But Λ is also doubly periodic, and therefore ∀Ω ∈ R e -(z+ Ω)A/2 K(z + Ω)e (z+ Ω)A/2 = e -zA/2 K(z)e zA/2 K(z + Ω) = e ΩA/2 K(z)e -ΩA/2

Therefore:

the diagonal coefficients of K are pole free (because the diagonal coefficients of M are null) elliptic functions, and thus they are constant. In the same way as above, writing B = [0,1] 2 Λ, we get

K k,k = iy k ; tions which satisfy K k,l (z + Ω) = e Ωi(x k -x l )/2 K k,l (z)
and with simple poles Ω ∈ R and residues 1 2iπ e Ωi(x k -x l ) . As we prefer to deal with (simply) periodic functions, we set

P (z) = e -zA/2 K(z)e zA/2
One have for all Ω ∈ R, P (z + Ω) = e -(z+Ω)A/2 e ΩA/2 K(z)e -ΩA/2 e (z+Ω)A/2 = e -(Ω-Ω)A/2 P (z)e (Ω-Ω)A/2 Thus P is periodic with period 1 and

P (z + i/ω) = e -i/ωA P (z)e i/ωA
The diagonal coefficients of P are those of K. They are con-

stants: P k,k = iy k .
The off-diagonal coefficients of P are meromorphic with simple poles on the network and residue at zero: 1 2iπ They satisfy where Im(τ ) > 0 and a, b ∈ C. This defines an entire function which satisfies the fundamental relation

P k,l (z + 1) = P k,l (z) and P k,l (z + i/ω) = e x k -x l ω P k,l (z) (1 
ϑ a b (z + pτ + q) = e iπ(-2pz-p 2 τ +2pb-2aq) ϑ a b (z)
∀p, q ∈ Z. and the zeros of ϑ a b are simple and located at the

(a -1 2 )τ + b -1 2 + τ b + q, p, q ∈ Z. Set τ = i/ω. The function q = ϑ a b ϑ a b satisfies q(z + i ω p + q) = e iπ(2 p ω (b-b )-2(a-a )q) q(z)
This matches with (1) if we choose a, b, a , b such that

a -a = 0 and b -b = -i x k -x l 2πω
and the location of poles matches if a = b = 1 2 . Then

P k,l
q is an entire function with at most one simple pole in the fundamental cell (since theta functions have just one simple zero in the fundamental cell), thus it is constant and equal to its value at zero.

Hence,

P k,l (z) = 1 2iπ × ϑ 1/2 1/2 (0) ϑ 1/2 1 2 -i x k -x l 2πω (0) × ϑ 1/2 1 2 -i x k -x l 2πω (z) ϑ 1/2 1/2 (z) = 1 2iπ × ϑ 1 (0) ϑ 1 (i x k -x l 2πω ) × ϑ 1 (z + i x k -x l 2πω ) ϑ 1 (z)
where we have set ϑ 1 = ϑ 1/2 1/2 (Jacobi's notation).

We have another way for expressing the off-diagonal coefficients of P .

Let δ ∈]0, 2π[.

Consider the series f (z) = j∈Z e -jδ
1-e -2jπ/ω e 2iπz . This series converges normally on all compact of C \ R and defines a meromorphic function with period 1 that verifies f (z+ i ω ) = e δ f (z). Its only poles are simple and are the points of R. Its residue at 0 is 1 -2iπ . In the same way, for δ ∈] -2π, 0[, the series

f (z) = j∈Z e -jδ
1-e 2jπ/ω e -2iπz defines a meromorphic function with period 1 that verifies f (z

+ i ω ) = e δ f (z). Its residue at 0 is 1 2iπ . write if k < l P k,l (z) = j∈Z e -j(x k -x l )/ω 1 -e 2jπ/ω e -2iπz if k > l P k,l (z) = - j∈Z e -j(x k -x l )/ω 1 -e -2jπ/ω e 2iπz

IV.2. The spectrum

We conjecture that the positions of the particles at time t are the eigenvalues of the operator

A + 2 ∂ ∂ z + tΛ(z)
acting on the space of doubly periodic functions (with periods 1 and i/ω).

Let λ be some (pure imaginary) complex number and f some doubly periodic function satisfying

Af + 2 ∂f ∂ z + tΛf = λf Set f (z) = e
λz 2 e -zA/2 g(z) The preceding p.d.e. becomes 2e λz 2 e -zA/2 ∂g ∂ z + te -zA/2 K(z)e zA/2 e λz 2 e -zA/2 g(z) = 0 which amounts to

2 ∂g ∂ z + tK(z)g(z) = 0
Recall that K is holomorphic except at the points of the network R. Set g(z) = e -tzK(z)/2 h(z).

The preceding equation amounts to ∂h ∂ z = 0, except at the points of the network.

Therefore, except at these points, f takes the form f (z) = e λz/2 e -zA/2 e -tzK(z)/2 h(z)

where h is holomorphic.

The function f is doubly periodic. This means that for all Ω in the network,

f (z + Ω) = f (z)
Since f (z + Ω) = e λ(z+ Ω)/2 e -zA/2 e -ΩA/2 e -t(z+ Ω)K(z+Ω)/2 h(z + Ω) = e λ(z+ Ω)/2 e -zA/2 e -t(z+ Ω)K(z)/2 e -ΩA/2 h(z + Ω)

we get h(z + Ω) = e -λ Ω/2 e ΩA/2 e t ΩK(z)/2 h(z)

Set then h(z) = e tzK(z)/2 k(z) and recall that K(z

+ Ω) = e ΩA/2 K(z)e -Ω/2
The preceding condition reads e ΩA/2 e t(z+Ω)K(z)/2 e -ΩA/2 k(z + Ω) = e -λ Ω/2 e ΩA/2 e t ΩL(z)/2 e tzK(z)/2 k(z)

which simplifies to k(z + Ω) = e -λ Ω/2 e ΩA/2 e t( Ω-Ω)K(z)/2 k(z)

Set then k(z) = e -λz/2 e zA/2 φ(z). The preceding condition reads thus e -λ(z+Ω)/2 e (z+Ω)A/2 φ(z + Ω) = e -λ Ω/2 e ΩA/2 e t( Ω-Ω)K(z)/2 e -λz/2 e zA/2 φ(z)

which simplifies to φ(z + Ω) = e λ(Ω-Ω)/2 e -(z+Ω-Ω)A/2 e t( Ω-Ω)K(z)/2 e zA/2 φ(z)

Therefore we look for analytic functions on C \ R satisfying φ is periodic with period 1 and φ(z + i/ω) = e iλ/ω e -(z+2i/ω)A/2 e -it/ωK(z) e zA/2 φ(z) = e iλ/ω L(z)φ(z)

where L(z) = e -(z+2i/ω)A/2 e -it/ωK(z) e zA/2 = e -i/ωA e -it/ωP (z)

We conjecture that the correct condition is that φ, which coincides with f on the real axis, should have no singularity there.

Since φ is then holomorphic on the domain |Im(z)| < 1, we can write φ(z) = j∈Z φ j e 2iπjz , this expansion being valid in the same domain.

Since L(x-i

2 ) is a smooth 1-periodic function of the real variable x, we can write L(x -i 2 ) = j∈Z L j e 2iπjx . Condition (2) is satisfied if and only if it is satisfied on the line R -i 2 (because only analytic function are involved), and this reads: ∀x ∈ R e -πj φ j = e iλ k∈Z L j-k e πk φ k that is e -iλ = e x is an eigenvalue of the infinite matrix T = (T j,k ) (block decomposition) with T j,k = e π(j+k) L j-k .

Our problem is to express the Fourier expansion of x → L(xi/2), which is beyond our reach in the general case.

Though, some remarks can be made.

ϑ 1 is odd, therefore

P k,l (-z) = -P l,k (z) if k = l
The series expansion of P yields also

P k,l (z) = -P l,k (z) For x ∈ R, we have for k = l: P k,l (x -i/2) = -P l,k (x -i/2) = -P l,k (x + i/2) = -e x l -x k P l,k (x -i/2).
and this holds also for k = l since P k,k is a pure imaginary number.

Therefore, e -iA/ω P (x -i/2) is skew-hermitian, and thus, -itP/ω is hermitian with respect to the hermitian form with matrix e -iA . Thus so is e -itP/ω and thus L = e -iA/ω e -itP/ω is hermitian (at x -i/2 for real x).

Therefore for all integer j,

L j = 1 0 e -2iπjx L(x - i 2 )dx = 1 0 e -2iπjx [ L(x - i 2 )] † dx = [ 1 0 e 2iπjx L(x - i 2 )dx] † = [ L-j ] †
where the dagger denotes transposition, and thus the infinite matrix T is hermitian.

13 Numerical simulations confirms our conjectures.

Quite surprisingly, finite submatrices of small order of the infinite matrix T give very accurate results. Using a submatrix of order 14, in the two particle case at time 1, we got a four digit agreement with the positions given by Runge-Kutta integration.

CONCLUSION

Our infinite replication scheme has succeeded in re-investigating the Calogero-Moser system with 1 sin 2 r potential, but made the system with elliptic potential more mysterious than ever by connecting it to a new finite difference equation. Many questions remain open. Does this problem have a close form solution? How is it connected with the solution given by Krichever 6 through K-P equation? And is there a geometric interpretation of the system analogous to the one given by Kazdhan, Kostant and Sternberg 5 for 1 sin 2 r potential?

1 CALOGERO (F.), Exactly solvable one-dimensional many-body problems, Lettere 

  On ]0, 1[, this equation reads f + (A + e -θA Ce θA )f = λf Set f (θ) = e λθ e -θA g(θ). The preceding differential equation is equivalent to g (θ) + tCg(θ) = 0 or f (θ) = e λθ e -θA e -tθC f 0 with constant f 0 .

  τ (m-a) 2 +2(m-a)(z-b)]

  al Nuovo Cimento 13 (1975), 411-416 2 KAZDHAN (D.), KOSTANT (B.) and STERNBERG (S.), Hamiltonian Group Actions and Dynamical Systems of Calogero Type, Communications on Pure and Applied Mathematics XXXI (1978), 481-507 3 CHUDNOVSKY (D.V.), Meromorphic solutions of nonlinear partial differential equations and many-particle completely integrable systems, J. Math. Phys. 20 (1979), 2416-2422 4 KRICHEVER (I.M.), Elliptic solutions of the Kadomtsev-Petviashvili equation and integrable systems of particles, Funct. Anal. Appl. 14:4 (1980), 282-290 5 CALOGERO (F.), FRANCOISE (J.P.), Integrable dynamical systems obtained by duplication, Annales de l'Institut Henri Poincaré 57 (1992), 167-181 6 DEBARRE (O.), Tores et variétés abéliennes complexes, Société mathématique de France, EDP Sciences (1999)